1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
|
Internet Engineering Task Force (IETF) M. Jones
Request for Comments: 7518 Microsoft
Category: Standards Track May 2015
ISSN: 2070-1721
JSON Web Algorithms (JWA)
Abstract
This specification registers cryptographic algorithms and identifiers
to be used with the JSON Web Signature (JWS), JSON Web Encryption
(JWE), and JSON Web Key (JWK) specifications. It defines several
IANA registries for these identifiers.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7518.
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Jones Standards Track [Page 1]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Notational Conventions . . . . . . . . . . . . . . . . . 4
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Cryptographic Algorithms for Digital Signatures and MACs . . 6
3.1. "alg" (Algorithm) Header Parameter Values for JWS . . . . 6
3.2. HMAC with SHA-2 Functions . . . . . . . . . . . . . . . . 7
3.3. Digital Signature with RSASSA-PKCS1-v1_5 . . . . . . . . 8
3.4. Digital Signature with ECDSA . . . . . . . . . . . . . . 9
3.5. Digital Signature with RSASSA-PSS . . . . . . . . . . . . 10
3.6. Using the Algorithm "none" . . . . . . . . . . . . . . . 11
4. Cryptographic Algorithms for Key Management . . . . . . . . . 11
4.1. "alg" (Algorithm) Header Parameter Values for JWE . . . . 12
4.2. Key Encryption with RSAES-PKCS1-v1_5 . . . . . . . . . . 13
4.3. Key Encryption with RSAES OAEP . . . . . . . . . . . . . 14
4.4. Key Wrapping with AES Key Wrap . . . . . . . . . . . . . 14
4.5. Direct Encryption with a Shared Symmetric Key . . . . . . 15
4.6. Key Agreement with Elliptic Curve Diffie-Hellman
Ephemeral Static (ECDH-ES) . . . . . . . . . . . . . . . 15
4.6.1. Header Parameters Used for ECDH Key Agreement . . . . 16
4.6.1.1. "epk" (Ephemeral Public Key) Header Parameter . . 16
4.6.1.2. "apu" (Agreement PartyUInfo) Header Parameter . . 17
4.6.1.3. "apv" (Agreement PartyVInfo) Header Parameter . . 17
4.6.2. Key Derivation for ECDH Key Agreement . . . . . . . . 17
4.7. Key Encryption with AES GCM . . . . . . . . . . . . . . . 18
4.7.1. Header Parameters Used for AES GCM Key Encryption . . 19
4.7.1.1. "iv" (Initialization Vector) Header Parameter . . 19
4.7.1.2. "tag" (Authentication Tag) Header Parameter . . . 19
4.8. Key Encryption with PBES2 . . . . . . . . . . . . . . . . 20
4.8.1. Header Parameters Used for PBES2 Key Encryption . . . 20
4.8.1.1. "p2s" (PBES2 Salt Input) Header Parameter . . . . 21
4.8.1.2. "p2c" (PBES2 Count) Header Parameter . . . . . . 21
5. Cryptographic Algorithms for Content Encryption . . . . . . . 21
5.1. "enc" (Encryption Algorithm) Header Parameter Values for
JWE . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2. AES_CBC_HMAC_SHA2 Algorithms . . . . . . . . . . . . . . 22
5.2.1. Conventions Used in Defining AES_CBC_HMAC_SHA2 . . . 23
5.2.2. Generic AES_CBC_HMAC_SHA2 Algorithm . . . . . . . . . 23
5.2.2.1. AES_CBC_HMAC_SHA2 Encryption . . . . . . . . . . 23
5.2.2.2. AES_CBC_HMAC_SHA2 Decryption . . . . . . . . . . 25
5.2.3. AES_128_CBC_HMAC_SHA_256 . . . . . . . . . . . . . . 25
5.2.4. AES_192_CBC_HMAC_SHA_384 . . . . . . . . . . . . . . 26
5.2.5. AES_256_CBC_HMAC_SHA_512 . . . . . . . . . . . . . . 26
5.2.6. Content Encryption with AES_CBC_HMAC_SHA2 . . . . . . 26
5.3. Content Encryption with AES GCM . . . . . . . . . . . . . 27
6. Cryptographic Algorithms for Keys . . . . . . . . . . . . . . 27
6.1. "kty" (Key Type) Parameter Values . . . . . . . . . . . . 28
Jones Standards Track [Page 2]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
6.2. Parameters for Elliptic Curve Keys . . . . . . . . . . . 28
6.2.1. Parameters for Elliptic Curve Public Keys . . . . . . 28
6.2.1.1. "crv" (Curve) Parameter . . . . . . . . . . . . . 28
6.2.1.2. "x" (X Coordinate) Parameter . . . . . . . . . . 29
6.2.1.3. "y" (Y Coordinate) Parameter . . . . . . . . . . 29
6.2.2. Parameters for Elliptic Curve Private Keys . . . . . 29
6.2.2.1. "d" (ECC Private Key) Parameter . . . . . . . . . 29
6.3. Parameters for RSA Keys . . . . . . . . . . . . . . . . . 30
6.3.1. Parameters for RSA Public Keys . . . . . . . . . . . 30
6.3.1.1. "n" (Modulus) Parameter . . . . . . . . . . . . . 30
6.3.1.2. "e" (Exponent) Parameter . . . . . . . . . . . . 30
6.3.2. Parameters for RSA Private Keys . . . . . . . . . . . 30
6.3.2.1. "d" (Private Exponent) Parameter . . . . . . . . 30
6.3.2.2. "p" (First Prime Factor) Parameter . . . . . . . 31
6.3.2.3. "q" (Second Prime Factor) Parameter . . . . . . . 31
6.3.2.4. "dp" (First Factor CRT Exponent) Parameter . . . 31
6.3.2.5. "dq" (Second Factor CRT Exponent) Parameter . . . 31
6.3.2.6. "qi" (First CRT Coefficient) Parameter . . . . . 31
6.3.2.7. "oth" (Other Primes Info) Parameter . . . . . . . 31
6.4. Parameters for Symmetric Keys . . . . . . . . . . . . . . 32
6.4.1. "k" (Key Value) Parameter . . . . . . . . . . . . . . 32
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 32
7.1. JSON Web Signature and Encryption Algorithms Registry . . 33
7.1.1. Registration Template . . . . . . . . . . . . . . . . 34
7.1.2. Initial Registry Contents . . . . . . . . . . . . . . 35
7.2. Header Parameter Names Registration . . . . . . . . . . . 42
7.2.1. Registry Contents . . . . . . . . . . . . . . . . . . 42
7.3. JSON Web Encryption Compression Algorithms Registry . . . 43
7.3.1. Registration Template . . . . . . . . . . . . . . . . 43
7.3.2. Initial Registry Contents . . . . . . . . . . . . . . 44
7.4. JSON Web Key Types Registry . . . . . . . . . . . . . . . 44
7.4.1. Registration Template . . . . . . . . . . . . . . . . 44
7.4.2. Initial Registry Contents . . . . . . . . . . . . . . 45
7.5. JSON Web Key Parameters Registration . . . . . . . . . . 45
7.5.1. Registry Contents . . . . . . . . . . . . . . . . . . 46
7.6. JSON Web Key Elliptic Curve Registry . . . . . . . . . . 48
7.6.1. Registration Template . . . . . . . . . . . . . . . . 48
7.6.2. Initial Registry Contents . . . . . . . . . . . . . . 49
8. Security Considerations . . . . . . . . . . . . . . . . . . . 49
8.1. Cryptographic Agility . . . . . . . . . . . . . . . . . . 50
8.2. Key Lifetimes . . . . . . . . . . . . . . . . . . . . . . 50
8.3. RSAES-PKCS1-v1_5 Security Considerations . . . . . . . . 50
8.4. AES GCM Security Considerations . . . . . . . . . . . . . 50
8.5. Unsecured JWS Security Considerations . . . . . . . . . . 51
8.6. Denial-of-Service Attacks . . . . . . . . . . . . . . . . 51
8.7. Reusing Key Material when Encrypting Keys . . . . . . . . 51
8.8. Password Considerations . . . . . . . . . . . . . . . . . 52
8.9. Key Entropy and Random Values . . . . . . . . . . . . . . 52
Jones Standards Track [Page 3]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
8.10. Differences between Digital Signatures and MACs . . . . . 52
8.11. Using Matching Algorithm Strengths . . . . . . . . . . . 53
8.12. Adaptive Chosen-Ciphertext Attacks . . . . . . . . . . . 53
8.13. Timing Attacks . . . . . . . . . . . . . . . . . . . . . 53
8.14. RSA Private Key Representations and Blinding . . . . . . 53
9. Internationalization Considerations . . . . . . . . . . . . . 53
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.1. Normative References . . . . . . . . . . . . . . . . . . 53
10.2. Informative References . . . . . . . . . . . . . . . . . 56
Appendix A. Algorithm Identifier Cross-Reference . . . . . . . . 59
A.1. Digital Signature/MAC Algorithm Identifier Cross-
Reference . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2. Key Management Algorithm Identifier Cross-Reference . . . 61
A.3. Content Encryption Algorithm Identifier Cross-Reference . 62
Appendix B. Test Cases for AES_CBC_HMAC_SHA2 Algorithms . . . . 62
B.1. Test Cases for AES_128_CBC_HMAC_SHA_256 . . . . . . . . . 63
B.2. Test Cases for AES_192_CBC_HMAC_SHA_384 . . . . . . . . . 64
B.3. Test Cases for AES_256_CBC_HMAC_SHA_512 . . . . . . . . . 65
Appendix C. Example ECDH-ES Key Agreement Computation . . . . . 66
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 69
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 69
1. Introduction
This specification registers cryptographic algorithms and identifiers
to be used with the JSON Web Signature (JWS) [JWS], JSON Web
Encryption (JWE) [JWE], and JSON Web Key (JWK) [JWK] specifications.
It defines several IANA registries for these identifiers. All these
specifications utilize JSON-based [RFC7159] data structures. This
specification also describes the semantics and operations that are
specific to these algorithms and key types.
Registering the algorithms and identifiers here, rather than in the
JWS, JWE, and JWK specifications, is intended to allow them to remain
unchanged in the face of changes in the set of Required, Recommended,
Optional, and Deprecated algorithms over time. This also allows
changes to the JWS, JWE, and JWK specifications without changing this
document.
Names defined by this specification are short because a core goal is
for the resulting representations to be compact.
1.1. Notational Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
"Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].
Jones Standards Track [Page 4]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
The interpretation should only be applied when the terms appear in
all capital letters.
BASE64URL(OCTETS) denotes the base64url encoding of OCTETS, per
Section 2 of [JWS].
UTF8(STRING) denotes the octets of the UTF-8 [RFC3629] representation
of STRING, where STRING is a sequence of zero or more Unicode
[UNICODE] characters.
ASCII(STRING) denotes the octets of the ASCII [RFC20] representation
of STRING, where STRING is a sequence of zero or more ASCII
characters.
The concatenation of two values A and B is denoted as A || B.
2. Terminology
The terms "JSON Web Signature (JWS)", "Base64url Encoding", "Header
Parameter", "JOSE Header", "JWS Payload", "JWS Protected Header",
"JWS Signature", "JWS Signing Input", and "Unsecured JWS" are defined
by the JWS specification [JWS].
The terms "JSON Web Encryption (JWE)", "Additional Authenticated Data
(AAD)", "Authentication Tag", "Content Encryption Key (CEK)", "Direct
Encryption", "Direct Key Agreement", "JWE Authentication Tag", "JWE
Ciphertext", "JWE Encrypted Key", "JWE Initialization Vector", "JWE
Protected Header", "Key Agreement with Key Wrapping", "Key
Encryption", "Key Management Mode", and "Key Wrapping" are defined by
the JWE specification [JWE].
The terms "JSON Web Key (JWK)" and "JWK Set" are defined by the JWK
specification [JWK].
The terms "Ciphertext", "Digital Signature", "Initialization Vector",
"Message Authentication Code (MAC)", and "Plaintext" are defined by
the "Internet Security Glossary, Version 2" [RFC4949].
This term is defined by this specification:
Base64urlUInt
The representation of a positive or zero integer value as the
base64url encoding of the value's unsigned big-endian
representation as an octet sequence. The octet sequence MUST
utilize the minimum number of octets needed to represent the
value. Zero is represented as BASE64URL(single zero-valued
octet), which is "AA".
Jones Standards Track [Page 5]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
3. Cryptographic Algorithms for Digital Signatures and MACs
JWS uses cryptographic algorithms to digitally sign or create a MAC
of the contents of the JWS Protected Header and the JWS Payload.
3.1. "alg" (Algorithm) Header Parameter Values for JWS
The table below is the set of "alg" (algorithm) Header Parameter
values defined by this specification for use with JWS, each of which
is explained in more detail in the following sections:
+--------------+-------------------------------+--------------------+
| "alg" Param | Digital Signature or MAC | Implementation |
| Value | Algorithm | Requirements |
+--------------+-------------------------------+--------------------+
| HS256 | HMAC using SHA-256 | Required |
| HS384 | HMAC using SHA-384 | Optional |
| HS512 | HMAC using SHA-512 | Optional |
| RS256 | RSASSA-PKCS1-v1_5 using | Recommended |
| | SHA-256 | |
| RS384 | RSASSA-PKCS1-v1_5 using | Optional |
| | SHA-384 | |
| RS512 | RSASSA-PKCS1-v1_5 using | Optional |
| | SHA-512 | |
| ES256 | ECDSA using P-256 and SHA-256 | Recommended+ |
| ES384 | ECDSA using P-384 and SHA-384 | Optional |
| ES512 | ECDSA using P-521 and SHA-512 | Optional |
| PS256 | RSASSA-PSS using SHA-256 and | Optional |
| | MGF1 with SHA-256 | |
| PS384 | RSASSA-PSS using SHA-384 and | Optional |
| | MGF1 with SHA-384 | |
| PS512 | RSASSA-PSS using SHA-512 and | Optional |
| | MGF1 with SHA-512 | |
| none | No digital signature or MAC | Optional |
| | performed | |
+--------------+-------------------------------+--------------------+
The use of "+" in the Implementation Requirements column indicates
that the requirement strength is likely to be increased in a future
version of the specification.
See Appendix A.1 for a table cross-referencing the JWS digital
signature and MAC "alg" (algorithm) values defined in this
specification with the equivalent identifiers used by other standards
and software packages.
Jones Standards Track [Page 6]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
3.2. HMAC with SHA-2 Functions
Hash-based Message Authentication Codes (HMACs) enable one to use a
secret plus a cryptographic hash function to generate a MAC. This
can be used to demonstrate that whoever generated the MAC was in
possession of the MAC key. The algorithm for implementing and
validating HMACs is provided in RFC 2104 [RFC2104].
A key of the same size as the hash output (for instance, 256 bits for
"HS256") or larger MUST be used with this algorithm. (This
requirement is based on Section 5.3.4 (Security Effect of the HMAC
Key) of NIST SP 800-117 [NIST.800-107], which states that the
effective security strength is the minimum of the security strength
of the key and two times the size of the internal hash value.)
The HMAC SHA-256 MAC is generated per RFC 2104, using SHA-256 as the
hash algorithm "H", using the JWS Signing Input as the "text" value,
and using the shared key. The HMAC output value is the JWS
Signature.
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWS Signature is an HMAC value computed using the
corresponding algorithm:
+-------------------+--------------------+
| "alg" Param Value | MAC Algorithm |
+-------------------+--------------------+
| HS256 | HMAC using SHA-256 |
| HS384 | HMAC using SHA-384 |
| HS512 | HMAC using SHA-512 |
+-------------------+--------------------+
The HMAC SHA-256 MAC for a JWS is validated by computing an HMAC
value per RFC 2104, using SHA-256 as the hash algorithm "H", using
the received JWS Signing Input as the "text" value, and using the
shared key. This computed HMAC value is then compared to the result
of base64url decoding the received encoded JWS Signature value. The
comparison of the computed HMAC value to the JWS Signature value MUST
be done in a constant-time manner to thwart timing attacks.
Alternatively, the computed HMAC value can be base64url encoded and
compared to the received encoded JWS Signature value (also in a
constant-time manner), as this comparison produces the same result as
comparing the unencoded values. In either case, if the values match,
the HMAC has been validated.
Jones Standards Track [Page 7]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
Securing content and validation with the HMAC SHA-384 and HMAC
SHA-512 algorithms is performed identically to the procedure for HMAC
SHA-256 -- just using the corresponding hash algorithms with
correspondingly larger minimum key sizes and result values: 384 bits
each for HMAC SHA-384 and 512 bits each for HMAC SHA-512.
An example using this algorithm is shown in Appendix A.1 of [JWS].
3.3. Digital Signature with RSASSA-PKCS1-v1_5
This section defines the use of the RSASSA-PKCS1-v1_5 digital
signature algorithm as defined in Section 8.2 of RFC 3447 [RFC3447]
(commonly known as PKCS #1), using SHA-2 [SHS] hash functions.
A key of size 2048 bits or larger MUST be used with these algorithms.
The RSASSA-PKCS1-v1_5 SHA-256 digital signature is generated as
follows: generate a digital signature of the JWS Signing Input using
RSASSA-PKCS1-v1_5-SIGN and the SHA-256 hash function with the desired
private key. This is the JWS Signature value.
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWS Signature is a digital signature value computed
using the corresponding algorithm:
+-------------------+---------------------------------+
| "alg" Param Value | Digital Signature Algorithm |
+-------------------+---------------------------------+
| RS256 | RSASSA-PKCS1-v1_5 using SHA-256 |
| RS384 | RSASSA-PKCS1-v1_5 using SHA-384 |
| RS512 | RSASSA-PKCS1-v1_5 using SHA-512 |
+-------------------+---------------------------------+
The RSASSA-PKCS1-v1_5 SHA-256 digital signature for a JWS is
validated as follows: submit the JWS Signing Input, the JWS
Signature, and the public key corresponding to the private key used
by the signer to the RSASSA-PKCS1-v1_5-VERIFY algorithm using SHA-256
as the hash function.
Signing and validation with the RSASSA-PKCS1-v1_5 SHA-384 and RSASSA-
PKCS1-v1_5 SHA-512 algorithms is performed identically to the
procedure for RSASSA-PKCS1-v1_5 SHA-256 -- just using the
corresponding hash algorithms instead of SHA-256.
An example using this algorithm is shown in Appendix A.2 of [JWS].
Jones Standards Track [Page 8]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
3.4. Digital Signature with ECDSA
The Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] provides
for the use of Elliptic Curve Cryptography, which is able to provide
equivalent security to RSA cryptography but using shorter key sizes
and with greater processing speed for many operations. This means
that ECDSA digital signatures will be substantially smaller in terms
of length than equivalently strong RSA digital signatures.
This specification defines the use of ECDSA with the P-256 curve and
the SHA-256 cryptographic hash function, ECDSA with the P-384 curve
and the SHA-384 hash function, and ECDSA with the P-521 curve and the
SHA-512 hash function. The P-256, P-384, and P-521 curves are
defined in [DSS].
The ECDSA P-256 SHA-256 digital signature is generated as follows:
1. Generate a digital signature of the JWS Signing Input using ECDSA
P-256 SHA-256 with the desired private key. The output will be
the pair (R, S), where R and S are 256-bit unsigned integers.
2. Turn R and S into octet sequences in big-endian order, with each
array being be 32 octets long. The octet sequence
representations MUST NOT be shortened to omit any leading zero
octets contained in the values.
3. Concatenate the two octet sequences in the order R and then S.
(Note that many ECDSA implementations will directly produce this
concatenation as their output.)
4. The resulting 64-octet sequence is the JWS Signature value.
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWS Signature is a digital signature value computed
using the corresponding algorithm:
+-------------------+-------------------------------+
| "alg" Param Value | Digital Signature Algorithm |
+-------------------+-------------------------------+
| ES256 | ECDSA using P-256 and SHA-256 |
| ES384 | ECDSA using P-384 and SHA-384 |
| ES512 | ECDSA using P-521 and SHA-512 |
+-------------------+-------------------------------+
Jones Standards Track [Page 9]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
The ECDSA P-256 SHA-256 digital signature for a JWS is validated as
follows:
1. The JWS Signature value MUST be a 64-octet sequence. If it is
not a 64-octet sequence, the validation has failed.
2. Split the 64-octet sequence into two 32-octet sequences. The
first octet sequence represents R and the second S. The values R
and S are represented as octet sequences using the Integer-to-
OctetString Conversion defined in Section 2.3.7 of SEC1 [SEC1]
(in big-endian octet order).
3. Submit the JWS Signing Input, R, S, and the public key (x, y) to
the ECDSA P-256 SHA-256 validator.
Signing and validation with the ECDSA P-384 SHA-384 and ECDSA P-521
SHA-512 algorithms is performed identically to the procedure for
ECDSA P-256 SHA-256 -- just using the corresponding hash algorithms
with correspondingly larger result values. For ECDSA P-384 SHA-384,
R and S will be 384 bits each, resulting in a 96-octet sequence. For
ECDSA P-521 SHA-512, R and S will be 521 bits each, resulting in a
132-octet sequence. (Note that the Integer-to-OctetString Conversion
defined in Section 2.3.7 of SEC1 [SEC1] used to represent R and S as
octet sequences adds zero-valued high-order padding bits when needed
to round the size up to a multiple of 8 bits; thus, each 521-bit
integer is represented using 528 bits in 66 octets.)
Examples using these algorithms are shown in Appendices A.3 and A.4
of [JWS].
3.5. Digital Signature with RSASSA-PSS
This section defines the use of the RSASSA-PSS digital signature
algorithm as defined in Section 8.1 of RFC 3447 [RFC3447] with the
MGF1 mask generation function and SHA-2 hash functions, always using
the same hash function for both the RSASSA-PSS hash function and the
MGF1 hash function. The size of the salt value is the same size as
the hash function output. All other algorithm parameters use the
defaults specified in Appendix A.2.3 of RFC 3447.
A key of size 2048 bits or larger MUST be used with this algorithm.
The RSASSA-PSS SHA-256 digital signature is generated as follows:
generate a digital signature of the JWS Signing Input using RSASSA-
PSS-SIGN, the SHA-256 hash function, and the MGF1 mask generation
function with SHA-256 with the desired private key. This is the JWS
Signature value.
Jones Standards Track [Page 10]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWS Signature is a digital signature value computed
using the corresponding algorithm:
+-------------------+-----------------------------------------------+
| "alg" Param Value | Digital Signature Algorithm |
+-------------------+-----------------------------------------------+
| PS256 | RSASSA-PSS using SHA-256 and MGF1 with |
| | SHA-256 |
| PS384 | RSASSA-PSS using SHA-384 and MGF1 with |
| | SHA-384 |
| PS512 | RSASSA-PSS using SHA-512 and MGF1 with |
| | SHA-512 |
+-------------------+-----------------------------------------------+
The RSASSA-PSS SHA-256 digital signature for a JWS is validated as
follows: submit the JWS Signing Input, the JWS Signature, and the
public key corresponding to the private key used by the signer to the
RSASSA-PSS-VERIFY algorithm using SHA-256 as the hash function and
using MGF1 as the mask generation function with SHA-256.
Signing and validation with the RSASSA-PSS SHA-384 and RSASSA-PSS
SHA-512 algorithms is performed identically to the procedure for
RSASSA-PSS SHA-256 -- just using the alternative hash algorithm in
both roles.
3.6. Using the Algorithm "none"
JWSs MAY also be created that do not provide integrity protection.
Such a JWS is called an Unsecured JWS. An Unsecured JWS uses the
"alg" value "none" and is formatted identically to other JWSs, but
MUST use the empty octet sequence as its JWS Signature value.
Recipients MUST verify that the JWS Signature value is the empty
octet sequence.
Implementations that support Unsecured JWSs MUST NOT accept such
objects as valid unless the application specifies that it is
acceptable for a specific object to not be integrity protected.
Implementations MUST NOT accept Unsecured JWSs by default. In order
to mitigate downgrade attacks, applications MUST NOT signal
acceptance of Unsecured JWSs at a global level, and SHOULD signal
acceptance on a per-object basis. See Section 8.5 for security
considerations associated with using this algorithm.
4. Cryptographic Algorithms for Key Management
JWE uses cryptographic algorithms to encrypt or determine the Content
Encryption Key (CEK).
Jones Standards Track [Page 11]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
4.1. "alg" (Algorithm) Header Parameter Values for JWE
The table below is the set of "alg" (algorithm) Header Parameter
values that are defined by this specification for use with JWE.
These algorithms are used to encrypt the CEK, producing the JWE
Encrypted Key, or to use key agreement to agree upon the CEK.
+--------------------+--------------------+--------+----------------+
| "alg" Param Value | Key Management | More | Implementation |
| | Algorithm | Header | Requirements |
| | | Params | |
+--------------------+--------------------+--------+----------------+
| RSA1_5 | RSAES-PKCS1-v1_5 | (none) | Recommended- |
| RSA-OAEP | RSAES OAEP using | (none) | Recommended+ |
| | default parameters | | |
| RSA-OAEP-256 | RSAES OAEP using | (none) | Optional |
| | SHA-256 and MGF1 | | |
| | with SHA-256 | | |
| A128KW | AES Key Wrap with | (none) | Recommended |
| | default initial | | |
| | value using | | |
| | 128-bit key | | |
| A192KW | AES Key Wrap with | (none) | Optional |
| | default initial | | |
| | value using | | |
| | 192-bit key | | |
| A256KW | AES Key Wrap with | (none) | Recommended |
| | default initial | | |
| | value using | | |
| | 256-bit key | | |
| dir | Direct use of a | (none) | Recommended |
| | shared symmetric | | |
| | key as the CEK | | |
| ECDH-ES | Elliptic Curve | "epk", | Recommended+ |
| | Diffie-Hellman | "apu", | |
| | Ephemeral Static | "apv" | |
| | key agreement | | |
| | using Concat KDF | | |
| ECDH-ES+A128KW | ECDH-ES using | "epk", | Recommended |
| | Concat KDF and CEK | "apu", | |
| | wrapped with | "apv" | |
| | "A128KW" | | |
| ECDH-ES+A192KW | ECDH-ES using | "epk", | Optional |
| | Concat KDF and CEK | "apu", | |
| | wrapped with | "apv" | |
| | "A192KW" | | |
Jones Standards Track [Page 12]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
| ECDH-ES+A256KW | ECDH-ES using | "epk", | Recommended |
| | Concat KDF and CEK | "apu", | |
| | wrapped with | "apv" | |
| | "A256KW" | | |
| A128GCMKW | Key wrapping with | "iv", | Optional |
| | AES GCM using | "tag" | |
| | 128-bit key | | |
| A192GCMKW | Key wrapping with | "iv", | Optional |
| | AES GCM using | "tag" | |
| | 192-bit key | | |
| A256GCMKW | Key wrapping with | "iv", | Optional |
| | AES GCM using | "tag" | |
| | 256-bit key | | |
| PBES2-HS256+A128KW | PBES2 with HMAC | "p2s", | Optional |
| | SHA-256 and | "p2c" | |
| | "A128KW" wrapping | | |
| PBES2-HS384+A192KW | PBES2 with HMAC | "p2s", | Optional |
| | SHA-384 and | "p2c" | |
| | "A192KW" wrapping | | |
| PBES2-HS512+A256KW | PBES2 with HMAC | "p2s", | Optional |
| | SHA-512 and | "p2c" | |
| | "A256KW" wrapping | | |
+--------------------+--------------------+--------+----------------+
The More Header Params column indicates what additional Header
Parameters are used by the algorithm, beyond "alg", which all use.
All but "dir" and "ECDH-ES" also produce a JWE Encrypted Key value.
The use of "+" in the Implementation Requirements column indicates
that the requirement strength is likely to be increased in a future
version of the specification. The use of "-" indicates that the
requirement strength is likely to be decreased in a future version of
the specification.
See Appendix A.2 for a table cross-referencing the JWE "alg"
(algorithm) values defined in this specification with the equivalent
identifiers used by other standards and software packages.
4.2. Key Encryption with RSAES-PKCS1-v1_5
This section defines the specifics of encrypting a JWE CEK with
RSAES-PKCS1-v1_5 [RFC3447]. The "alg" (algorithm) Header Parameter
value "RSA1_5" is used for this algorithm.
A key of size 2048 bits or larger MUST be used with this algorithm.
An example using this algorithm is shown in Appendix A.2 of [JWE].
Jones Standards Track [Page 13]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
4.3. Key Encryption with RSAES OAEP
This section defines the specifics of encrypting a JWE CEK with RSAES
using Optimal Asymmetric Encryption Padding (OAEP) [RFC3447]. Two
sets of parameters for using OAEP are defined, which use different
hash functions. In the first case, the default parameters specified
in Appendix A.2.1 of RFC 3447 are used. (Those default parameters
are the SHA-1 hash function and the MGF1 with SHA-1 mask generation
function.) In the second case, the SHA-256 hash function and the
MGF1 with SHA-256 mask generation function are used.
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWE Encrypted Key is the result of encrypting the
CEK using the corresponding algorithm:
+-------------------+-----------------------------------------------+
| "alg" Param Value | Key Management Algorithm |
+-------------------+-----------------------------------------------+
| RSA-OAEP | RSAES OAEP using default parameters |
| RSA-OAEP-256 | RSAES OAEP using SHA-256 and MGF1 with |
| | SHA-256 |
+-------------------+-----------------------------------------------+
A key of size 2048 bits or larger MUST be used with these algorithms.
(This requirement is based on Table 4 (Security-strength time frames)
of NIST SP 800-57 [NIST.800-57], which requires 112 bits of security
for new uses, and Table 2 (Comparable strengths) of the same, which
states that 2048-bit RSA keys provide 112 bits of security.)
An example using RSAES OAEP with the default parameters is shown in
Appendix A.1 of [JWE].
4.4. Key Wrapping with AES Key Wrap
This section defines the specifics of encrypting a JWE CEK with the
Advanced Encryption Standard (AES) Key Wrap Algorithm [RFC3394] using
the default initial value specified in Section 2.2.3.1 of that
document.
Jones Standards Track [Page 14]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWE Encrypted Key is the result of encrypting the
CEK using the corresponding algorithm and key size:
+-----------------+-------------------------------------------------+
| "alg" Param | Key Management Algorithm |
| Value | |
+-----------------+-------------------------------------------------+
| A128KW | AES Key Wrap with default initial value using |
| | 128-bit key |
| A192KW | AES Key Wrap with default initial value using |
| | 192-bit key |
| A256KW | AES Key Wrap with default initial value using |
| | 256-bit key |
+-----------------+-------------------------------------------------+
An example using this algorithm is shown in Appendix A.3 of [JWE].
4.5. Direct Encryption with a Shared Symmetric Key
This section defines the specifics of directly performing symmetric
key encryption without performing a key wrapping step. In this case,
the shared symmetric key is used directly as the Content Encryption
Key (CEK) value for the "enc" algorithm. An empty octet sequence is
used as the JWE Encrypted Key value. The "alg" (algorithm) Header
Parameter value "dir" is used in this case.
Refer to the security considerations on key lifetimes in Section 8.2
and AES GCM in Section 8.4 when considering utilizing direct
encryption.
4.6. Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static
(ECDH-ES)
This section defines the specifics of key agreement with Elliptic
Curve Diffie-Hellman Ephemeral Static [RFC6090], in combination with
the Concat KDF, as defined in Section 5.8.1 of [NIST.800-56A]. The
key agreement result can be used in one of two ways:
1. directly as the Content Encryption Key (CEK) for the "enc"
algorithm, in the Direct Key Agreement mode, or
2. as a symmetric key used to wrap the CEK with the "A128KW",
"A192KW", or "A256KW" algorithms, in the Key Agreement with Key
Wrapping mode.
A new ephemeral public key value MUST be generated for each key
agreement operation.
Jones Standards Track [Page 15]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
In Direct Key Agreement mode, the output of the Concat KDF MUST be a
key of the same length as that used by the "enc" algorithm. In this
case, the empty octet sequence is used as the JWE Encrypted Key
value. The "alg" (algorithm) Header Parameter value "ECDH-ES" is
used in the Direct Key Agreement mode.
In Key Agreement with Key Wrapping mode, the output of the Concat KDF
MUST be a key of the length needed for the specified key wrapping
algorithm. In this case, the JWE Encrypted Key is the CEK wrapped
with the agreed-upon key.
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWE Encrypted Key is the result of encrypting the
CEK using the result of the key agreement algorithm as the key
encryption key for the corresponding key wrapping algorithm:
+-----------------+-------------------------------------------------+
| "alg" Param | Key Management Algorithm |
| Value | |
+-----------------+-------------------------------------------------+
| ECDH-ES+A128KW | ECDH-ES using Concat KDF and CEK wrapped with |
| | "A128KW" |
| ECDH-ES+A192KW | ECDH-ES using Concat KDF and CEK wrapped with |
| | "A192KW" |
| ECDH-ES+A256KW | ECDH-ES using Concat KDF and CEK wrapped with |
| | "A256KW" |
+-----------------+-------------------------------------------------+
4.6.1. Header Parameters Used for ECDH Key Agreement
The following Header Parameter names are used for key agreement as
defined below.
4.6.1.1. "epk" (Ephemeral Public Key) Header Parameter
The "epk" (ephemeral public key) value created by the originator for
the use in key agreement algorithms. This key is represented as a
JSON Web Key [JWK] public key value. It MUST contain only public key
parameters and SHOULD contain only the minimum JWK parameters
necessary to represent the key; other JWK parameters included can be
checked for consistency and honored, or they can be ignored. This
Header Parameter MUST be present and MUST be understood and processed
by implementations when these algorithms are used.
Jones Standards Track [Page 16]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
4.6.1.2. "apu" (Agreement PartyUInfo) Header Parameter
The "apu" (agreement PartyUInfo) value for key agreement algorithms
using it (such as "ECDH-ES"), represented as a base64url-encoded
string. When used, the PartyUInfo value contains information about
the producer. Use of this Header Parameter is OPTIONAL. This Header
Parameter MUST be understood and processed by implementations when
these algorithms are used.
4.6.1.3. "apv" (Agreement PartyVInfo) Header Parameter
The "apv" (agreement PartyVInfo) value for key agreement algorithms
using it (such as "ECDH-ES"), represented as a base64url encoded
string. When used, the PartyVInfo value contains information about
the recipient. Use of this Header Parameter is OPTIONAL. This
Header Parameter MUST be understood and processed by implementations
when these algorithms are used.
4.6.2. Key Derivation for ECDH Key Agreement
The key derivation process derives the agreed-upon key from the
shared secret Z established through the ECDH algorithm, per
Section 6.2.2.2 of [NIST.800-56A].
Key derivation is performed using the Concat KDF, as defined in
Section 5.8.1 of [NIST.800-56A], where the Digest Method is SHA-256.
The Concat KDF parameters are set as follows:
Z
This is set to the representation of the shared secret Z as an
octet sequence.
keydatalen
This is set to the number of bits in the desired output key. For
"ECDH-ES", this is length of the key used by the "enc" algorithm.
For "ECDH-ES+A128KW", "ECDH-ES+A192KW", and "ECDH-ES+A256KW", this
is 128, 192, and 256, respectively.
AlgorithmID
The AlgorithmID value is of the form Datalen || Data, where Data
is a variable-length string of zero or more octets, and Datalen is
a fixed-length, big-endian 32-bit counter that indicates the
length (in octets) of Data. In the Direct Key Agreement case,
Data is set to the octets of the ASCII representation of the "enc"
Header Parameter value. In the Key Agreement with Key Wrapping
case, Data is set to the octets of the ASCII representation of the
"alg" (algorithm) Header Parameter value.
Jones Standards Track [Page 17]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
PartyUInfo
The PartyUInfo value is of the form Datalen || Data, where Data is
a variable-length string of zero or more octets, and Datalen is a
fixed-length, big-endian 32-bit counter that indicates the length
(in octets) of Data. If an "apu" (agreement PartyUInfo) Header
Parameter is present, Data is set to the result of base64url
decoding the "apu" value and Datalen is set to the number of
octets in Data. Otherwise, Datalen is set to 0 and Data is set to
the empty octet sequence.
PartyVInfo
The PartyVInfo value is of the form Datalen || Data, where Data is
a variable-length string of zero or more octets, and Datalen is a
fixed-length, big-endian 32-bit counter that indicates the length
(in octets) of Data. If an "apv" (agreement PartyVInfo) Header
Parameter is present, Data is set to the result of base64url
decoding the "apv" value and Datalen is set to the number of
octets in Data. Otherwise, Datalen is set to 0 and Data is set to
the empty octet sequence.
SuppPubInfo
This is set to the keydatalen represented as a 32-bit big-endian
integer.
SuppPrivInfo
This is set to the empty octet sequence.
Applications need to specify how the "apu" and "apv" Header
Parameters are used for that application. The "apu" and "apv" values
MUST be distinct, when used. Applications wishing to conform to
[NIST.800-56A] need to provide values that meet the requirements of
that document, e.g., by using values that identify the producer and
consumer. Alternatively, applications MAY conduct key derivation in
a manner similar to "Diffie-Hellman Key Agreement Method" [RFC2631]:
in that case, the "apu" parameter MAY either be omitted or represent
a random 512-bit value (analogous to PartyAInfo in Ephemeral-Static
mode in RFC 2631) and the "apv" parameter SHOULD NOT be present.
See Appendix C for an example key agreement computation using this
method.
4.7. Key Encryption with AES GCM
This section defines the specifics of encrypting a JWE Content
Encryption Key (CEK) with Advanced Encryption Standard (AES) in
Galois/Counter Mode (GCM) ([AES] and [NIST.800-38D]).
Jones Standards Track [Page 18]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
Use of an Initialization Vector (IV) of size 96 bits is REQUIRED with
this algorithm. The IV is represented in base64url-encoded form as
the "iv" (initialization vector) Header Parameter value.
The Additional Authenticated Data value used is the empty octet
string.
The requested size of the Authentication Tag output MUST be 128 bits,
regardless of the key size.
The JWE Encrypted Key value is the ciphertext output.
The Authentication Tag output is represented in base64url-encoded
form as the "tag" (authentication tag) Header Parameter value.
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWE Encrypted Key is the result of encrypting the
CEK using the corresponding algorithm and key size:
+-------------------+---------------------------------------------+
| "alg" Param Value | Key Management Algorithm |
+-------------------+---------------------------------------------+
| A128GCMKW | Key wrapping with AES GCM using 128-bit key |
| A192GCMKW | Key wrapping with AES GCM using 192-bit key |
| A256GCMKW | Key wrapping with AES GCM using 256-bit key |
+-------------------+---------------------------------------------+
4.7.1. Header Parameters Used for AES GCM Key Encryption
The following Header Parameters are used for AES GCM key encryption.
4.7.1.1. "iv" (Initialization Vector) Header Parameter
The "iv" (initialization vector) Header Parameter value is the
base64url-encoded representation of the 96-bit IV value used for the
key encryption operation. This Header Parameter MUST be present and
MUST be understood and processed by implementations when these
algorithms are used.
4.7.1.2. "tag" (Authentication Tag) Header Parameter
The "tag" (authentication tag) Header Parameter value is the
base64url-encoded representation of the 128-bit Authentication Tag
value resulting from the key encryption operation. This Header
Parameter MUST be present and MUST be understood and processed by
implementations when these algorithms are used.
Jones Standards Track [Page 19]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
4.8. Key Encryption with PBES2
This section defines the specifics of performing password-based
encryption of a JWE CEK, by first deriving a key encryption key from
a user-supplied password using PBES2 schemes as specified in
Section 6.2 of [RFC2898], then by encrypting the JWE CEK using the
derived key.
These algorithms use HMAC SHA-2 algorithms as the Pseudorandom
Function (PRF) for the PBKDF2 key derivation and AES Key Wrap
[RFC3394] for the encryption scheme. The PBES2 password input is an
octet sequence; if the password to be used is represented as a text
string rather than an octet sequence, the UTF-8 encoding of the text
string MUST be used as the octet sequence. The salt parameter MUST
be computed from the "p2s" (PBES2 salt input) Header Parameter value
and the "alg" (algorithm) Header Parameter value as specified in the
"p2s" definition below. The iteration count parameter MUST be
provided as the "p2c" (PBES2 count) Header Parameter value. The
algorithms respectively use HMAC SHA-256, HMAC SHA-384, and HMAC
SHA-512 as the PRF and use 128-, 192-, and 256-bit AES Key Wrap keys.
Their derived-key lengths respectively are 16, 24, and 32 octets.
The following "alg" (algorithm) Header Parameter values are used to
indicate that the JWE Encrypted Key is the result of encrypting the
CEK using the result of the corresponding password-based encryption
algorithm as the key encryption key for the corresponding key
wrapping algorithm:
+--------------------+----------------------------------------------+
| "alg" Param Value | Key Management Algorithm |
+--------------------+----------------------------------------------+
| PBES2-HS256+A128KW | PBES2 with HMAC SHA-256 and "A128KW" |
| | wrapping |
| PBES2-HS384+A192KW | PBES2 with HMAC SHA-384 and "A192KW" |
| | wrapping |
| PBES2-HS512+A256KW | PBES2 with HMAC SHA-512 and "A256KW" |
| | wrapping |
+--------------------+----------------------------------------------+
See Appendix C of the JWK specification [JWK] for an example key
encryption computation using "PBES2-HS256+A128KW".
4.8.1. Header Parameters Used for PBES2 Key Encryption
The following Header Parameters are used for Key Encryption with
PBES2.
Jones Standards Track [Page 20]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
4.8.1.1. "p2s" (PBES2 Salt Input) Header Parameter
The "p2s" (PBES2 salt input) Header Parameter encodes a Salt Input
value, which is used as part of the PBKDF2 salt value. The "p2s"
value is BASE64URL(Salt Input). This Header Parameter MUST be
present and MUST be understood and processed by implementations when
these algorithms are used.
The salt expands the possible keys that can be derived from a given
password. A Salt Input value containing 8 or more octets MUST be
used. A new Salt Input value MUST be generated randomly for every
encryption operation; see RFC 4086 [RFC4086] for considerations on
generating random values. The salt value used is (UTF8(Alg) || 0x00
|| Salt Input), where Alg is the "alg" (algorithm) Header Parameter
value.
4.8.1.2. "p2c" (PBES2 Count) Header Parameter
The "p2c" (PBES2 count) Header Parameter contains the PBKDF2
iteration count, represented as a positive JSON integer. This Header
Parameter MUST be present and MUST be understood and processed by
implementations when these algorithms are used.
The iteration count adds computational expense, ideally compounded by
the possible range of keys introduced by the salt. A minimum
iteration count of 1000 is RECOMMENDED.
5. Cryptographic Algorithms for Content Encryption
JWE uses cryptographic algorithms to encrypt and integrity-protect
the plaintext and to integrity-protect the Additional Authenticated
Data.
Jones Standards Track [Page 21]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
5.1. "enc" (Encryption Algorithm) Header Parameter Values for JWE
The table below is the set of "enc" (encryption algorithm) Header
Parameter values that are defined by this specification for use with
JWE.
+---------------+----------------------------------+----------------+
| "enc" Param | Content Encryption Algorithm | Implementation |
| Value | | Requirements |
+---------------+----------------------------------+----------------+
| A128CBC-HS256 | AES_128_CBC_HMAC_SHA_256 | Required |
| | authenticated encryption | |
| | algorithm, as defined in Section | |
| | 5.2.3 | |
| A192CBC-HS384 | AES_192_CBC_HMAC_SHA_384 | Optional |
| | authenticated encryption | |
| | algorithm, as defined in Section | |
| | 5.2.4 | |
| A256CBC-HS512 | AES_256_CBC_HMAC_SHA_512 | Required |
| | authenticated encryption | |
| | algorithm, as defined in Section | |
| | 5.2.5 | |
| A128GCM | AES GCM using 128-bit key | Recommended |
| A192GCM | AES GCM using 192-bit key | Optional |
| A256GCM | AES GCM using 256-bit key | Recommended |
+---------------+----------------------------------+----------------+
All also use a JWE Initialization Vector value and produce JWE
Ciphertext and JWE Authentication Tag values.
See Appendix A.3 for a table cross-referencing the JWE "enc"
(encryption algorithm) values defined in this specification with the
equivalent identifiers used by other standards and software packages.
5.2. AES_CBC_HMAC_SHA2 Algorithms
This section defines a family of authenticated encryption algorithms
built using a composition of AES [AES] in Cipher Block Chaining (CBC)
mode [NIST.800-38A] with PKCS #7 padding operations per Section 6.3
of [RFC5652] and HMAC ([RFC2104] and [SHS]) operations. This
algorithm family is called AES_CBC_HMAC_SHA2. It also defines three
instances of this family: the first using 128-bit CBC keys and HMAC
SHA-256, the second using 192-bit CBC keys and HMAC SHA-384, and the
third using 256-bit CBC keys and HMAC SHA-512. Test cases for these
algorithms can be found in Appendix B.
Jones Standards Track [Page 22]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
These algorithms are based upon "Authenticated Encryption with AES-
CBC and HMAC-SHA" [AEAD-CBC-SHA], performing the same cryptographic
computations, but with the Initialization Vector (IV) and
Authentication Tag values remaining separate, rather than being
concatenated with the ciphertext value in the output representation.
This option is discussed in Appendix B of that specification. This
algorithm family is a generalization of the algorithm family in
[AEAD-CBC-SHA] and can be used to implement those algorithms.
5.2.1. Conventions Used in Defining AES_CBC_HMAC_SHA2
We use the following notational conventions.
CBC-PKCS7-ENC(X, P) denotes the AES-CBC encryption of P using PKCS
#7 padding utilizing the cipher with the key X.
MAC(Y, M) denotes the application of the MAC to the message M
using the key Y.
5.2.2. Generic AES_CBC_HMAC_SHA2 Algorithm
This section defines AES_CBC_HMAC_SHA2 in a manner that is
independent of the AES-CBC key size or hash function to be used.
Sections 5.2.2.1 and 5.2.2.2 define the generic encryption and
decryption algorithms. Sections 5.2.3 through 5.2.5 define instances
of AES_CBC_HMAC_SHA2 that specify those details.
5.2.2.1. AES_CBC_HMAC_SHA2 Encryption
The authenticated encryption algorithm takes as input four octet
strings: a secret key K, a plaintext P, Additional Authenticated Data
A, and an Initialization Vector IV. The authenticated ciphertext
value E and the Authentication Tag value T are provided as outputs.
The data in the plaintext are encrypted and authenticated, and the
Additional Authenticated Data are authenticated, but not encrypted.
The encryption process is as follows, or uses an equivalent set of
steps:
1. The secondary keys MAC_KEY and ENC_KEY are generated from the
input key K as follows. Each of these two keys is an octet
string.
MAC_KEY consists of the initial MAC_KEY_LEN octets of K, in
order.
ENC_KEY consists of the final ENC_KEY_LEN octets of K, in
order.
Jones Standards Track [Page 23]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
The number of octets in the input key K MUST be the sum of
MAC_KEY_LEN and ENC_KEY_LEN. The values of these parameters are
specified by the Authenticated Encryption algorithms in Sections
5.2.3 through 5.2.5. Note that the MAC key comes before the
encryption key in the input key K; this is in the opposite order
of the algorithm names in the identifier "AES_CBC_HMAC_SHA2".
2. The IV used is a 128-bit value generated randomly or
pseudorandomly for use in the cipher.
3. The plaintext is CBC encrypted using PKCS #7 padding using
ENC_KEY as the key and the IV. We denote the ciphertext output
from this step as E.
4. The octet string AL is equal to the number of bits in the
Additional Authenticated Data A expressed as a 64-bit unsigned
big-endian integer.
5. A message Authentication Tag T is computed by applying HMAC
[RFC2104] to the following data, in order:
the Additional Authenticated Data A,
the Initialization Vector IV,
the ciphertext E computed in the previous step, and
the octet string AL defined above.
The string MAC_KEY is used as the MAC key. We denote the output
of the MAC computed in this step as M. The first T_LEN octets of
M are used as T.
6. The ciphertext E and the Authentication Tag T are returned as the
outputs of the authenticated encryption.
The encryption process can be illustrated as follows. Here K, P, A,
IV, and E denote the key, plaintext, Additional Authenticated Data,
Initialization Vector, and ciphertext, respectively.
MAC_KEY = initial MAC_KEY_LEN octets of K,
ENC_KEY = final ENC_KEY_LEN octets of K,
E = CBC-PKCS7-ENC(ENC_KEY, P),
M = MAC(MAC_KEY, A || IV || E || AL),
T = initial T_LEN octets of M.
Jones Standards Track [Page 24]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
5.2.2.2. AES_CBC_HMAC_SHA2 Decryption
The authenticated decryption operation has five inputs: K, A, IV, E,
and T as defined above. It has only a single output: either a
plaintext value P or a special symbol FAIL that indicates that the
inputs are not authentic. The authenticated decryption algorithm is
as follows, or uses an equivalent set of steps:
1. The secondary keys MAC_KEY and ENC_KEY are generated from the
input key K as in Step 1 of Section 5.2.2.1.
2. The integrity and authenticity of A and E are checked by
computing an HMAC with the inputs as in Step 5 of
Section 5.2.2.1. The value T, from the previous step, is
compared to the first MAC_KEY length bits of the HMAC output. If
those values are identical, then A and E are considered valid,
and processing is continued. Otherwise, all of the data used in
the MAC validation are discarded, and the authenticated
decryption operation returns an indication that it failed, and
the operation halts. (But see Section 11.5 of [JWE] for security
considerations on thwarting timing attacks.)
3. The value E is decrypted and the PKCS #7 padding is checked and
removed. The value IV is used as the Initialization Vector. The
value ENC_KEY is used as the decryption key.
4. The plaintext value is returned.
5.2.3. AES_128_CBC_HMAC_SHA_256
This algorithm is a concrete instantiation of the generic
AES_CBC_HMAC_SHA2 algorithm above. It uses the HMAC message
authentication code [RFC2104] with the SHA-256 hash function [SHS] to
provide message authentication, with the HMAC output truncated to 128
bits, corresponding to the HMAC-SHA-256-128 algorithm defined in
[RFC4868]. For encryption, it uses AES in the CBC mode of operation
as defined in Section 6.2 of [NIST.800-38A], with PKCS #7 padding and
a 128-bit IV value.
The AES_CBC_HMAC_SHA2 parameters specific to AES_128_CBC_HMAC_SHA_256
are:
The input key K is 32 octets long.
ENC_KEY_LEN is 16 octets.
MAC_KEY_LEN is 16 octets.
The SHA-256 hash algorithm is used for the HMAC.
The HMAC-SHA-256 output is truncated to T_LEN=16 octets, by
stripping off the final 16 octets.
Jones Standards Track [Page 25]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
5.2.4. AES_192_CBC_HMAC_SHA_384
AES_192_CBC_HMAC_SHA_384 is based on AES_128_CBC_HMAC_SHA_256, but
with the following differences:
The input key K is 48 octets long instead of 32.
ENC_KEY_LEN is 24 octets instead of 16.
MAC_KEY_LEN is 24 octets instead of 16.
SHA-384 is used for the HMAC instead of SHA-256.
The HMAC SHA-384 value is truncated to T_LEN=24 octets instead of
16.
5.2.5. AES_256_CBC_HMAC_SHA_512
AES_256_CBC_HMAC_SHA_512 is based on AES_128_CBC_HMAC_SHA_256, but
with the following differences:
The input key K is 64 octets long instead of 32.
ENC_KEY_LEN is 32 octets instead of 16.
MAC_KEY_LEN is 32 octets instead of 16.
SHA-512 is used for the HMAC instead of SHA-256.
The HMAC SHA-512 value is truncated to T_LEN=32 octets instead of
16.
5.2.6. Content Encryption with AES_CBC_HMAC_SHA2
This section defines the specifics of performing authenticated
encryption with the AES_CBC_HMAC_SHA2 algorithms.
The CEK is used as the secret key K.
The following "enc" (encryption algorithm) Header Parameter values
are used to indicate that the JWE Ciphertext and JWE Authentication
Tag values have been computed using the corresponding algorithm:
+---------------+---------------------------------------------------+
| "enc" Param | Content Encryption Algorithm |
| Value | |
+---------------+---------------------------------------------------+
| A128CBC-HS256 | AES_128_CBC_HMAC_SHA_256 authenticated encryption |
| | algorithm, as defined in Section 5.2.3 |
| A192CBC-HS384 | AES_192_CBC_HMAC_SHA_384 authenticated encryption |
| | algorithm, as defined in Section 5.2.4 |
| A256CBC-HS512 | AES_256_CBC_HMAC_SHA_512 authenticated encryption |
| | algorithm, as defined in Section 5.2.5 |
+---------------+---------------------------------------------------+
Jones Standards Track [Page 26]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
5.3. Content Encryption with AES GCM
This section defines the specifics of performing authenticated
encryption with AES in Galois/Counter Mode (GCM) ([AES] and
[NIST.800-38D]).
The CEK is used as the encryption key.
Use of an IV of size 96 bits is REQUIRED with this algorithm.
The requested size of the Authentication Tag output MUST be 128 bits,
regardless of the key size.
The following "enc" (encryption algorithm) Header Parameter values
are used to indicate that the JWE Ciphertext and JWE Authentication
Tag values have been computed using the corresponding algorithm and
key size:
+-------------------+------------------------------+
| "enc" Param Value | Content Encryption Algorithm |
+-------------------+------------------------------+
| A128GCM | AES GCM using 128-bit key |
| A192GCM | AES GCM using 192-bit key |
| A256GCM | AES GCM using 256-bit key |
+-------------------+------------------------------+
An example using this algorithm is shown in Appendix A.1 of [JWE].
6. Cryptographic Algorithms for Keys
A JSON Web Key (JWK) [JWK] is a JSON data structure that represents a
cryptographic key. These keys can be either asymmetric or symmetric.
They can hold both public and private information about the key.
This section defines the parameters for keys using the algorithms
specified by this document.
Jones Standards Track [Page 27]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
6.1. "kty" (Key Type) Parameter Values
The table below is the set of "kty" (key type) parameter values that
are defined by this specification for use in JWKs.
+-------------+--------------------------------+--------------------+
| "kty" Param | Key Type | Implementation |
| Value | | Requirements |
+-------------+--------------------------------+--------------------+
| EC | Elliptic Curve [DSS] | Recommended+ |
| RSA | RSA [RFC3447] | Required |
| oct | Octet sequence (used to | Required |
| | represent symmetric keys) | |
+-------------+--------------------------------+--------------------+
The use of "+" in the Implementation Requirements column indicates
that the requirement strength is likely to be increased in a future
version of the specification.
6.2. Parameters for Elliptic Curve Keys
JWKs can represent Elliptic Curve [DSS] keys. In this case, the
"kty" member value is "EC".
6.2.1. Parameters for Elliptic Curve Public Keys
An Elliptic Curve public key is represented by a pair of coordinates
drawn from a finite field, which together define a point on an
Elliptic Curve. The following members MUST be present for all
Elliptic Curve public keys:
o "crv"
o "x"
The following member MUST also be present for Elliptic Curve public
keys for the three curves defined in the following section:
o "y"
6.2.1.1. "crv" (Curve) Parameter
The "crv" (curve) parameter identifies the cryptographic curve used
with the key. Curve values from [DSS] used by this specification
are:
o "P-256"
o "P-384"
o "P-521"
Jones Standards Track [Page 28]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
These values are registered in the IANA "JSON Web Key Elliptic Curve"
registry defined in Section 7.6. Additional "crv" values can be
registered by other specifications. Specifications registering
additional curves must define what parameters are used to represent
keys for the curves registered. The "crv" value is a case-sensitive
string.
SEC1 [SEC1] point compression is not supported for any of these three
curves.
6.2.1.2. "x" (X Coordinate) Parameter
The "x" (x coordinate) parameter contains the x coordinate for the
Elliptic Curve point. It is represented as the base64url encoding of
the octet string representation of the coordinate, as defined in
Section 2.3.5 of SEC1 [SEC1]. The length of this octet string MUST
be the full size of a coordinate for the curve specified in the "crv"
parameter. For example, if the value of "crv" is "P-521", the octet
string must be 66 octets long.
6.2.1.3. "y" (Y Coordinate) Parameter
The "y" (y coordinate) parameter contains the y coordinate for the
Elliptic Curve point. It is represented as the base64url encoding of
the octet string representation of the coordinate, as defined in
Section 2.3.5 of SEC1 [SEC1]. The length of this octet string MUST
be the full size of a coordinate for the curve specified in the "crv"
parameter. For example, if the value of "crv" is "P-521", the octet
string must be 66 octets long.
6.2.2. Parameters for Elliptic Curve Private Keys
In addition to the members used to represent Elliptic Curve public
keys, the following member MUST be present to represent Elliptic
Curve private keys.
6.2.2.1. "d" (ECC Private Key) Parameter
The "d" (ECC private key) parameter contains the Elliptic Curve
private key value. It is represented as the base64url encoding of
the octet string representation of the private key value, as defined
in Section 2.3.7 of SEC1 [SEC1]. The length of this octet string
MUST be ceiling(log-base-2(n)/8) octets (where n is the order of the
curve).
Jones Standards Track [Page 29]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
6.3. Parameters for RSA Keys
JWKs can represent RSA [RFC3447] keys. In this case, the "kty"
member value is "RSA". The semantics of the parameters defined below
are the same as those defined in Sections 3.1 and 3.2 of RFC 3447.
6.3.1. Parameters for RSA Public Keys
The following members MUST be present for RSA public keys.
6.3.1.1. "n" (Modulus) Parameter
The "n" (modulus) parameter contains the modulus value for the RSA
public key. It is represented as a Base64urlUInt-encoded value.
Note that implementers have found that some cryptographic libraries
prefix an extra zero-valued octet to the modulus representations they
return, for instance, returning 257 octets for a 2048-bit key, rather
than 256. Implementations using such libraries will need to take
care to omit the extra octet from the base64url-encoded
representation.
6.3.1.2. "e" (Exponent) Parameter
The "e" (exponent) parameter contains the exponent value for the RSA
public key. It is represented as a Base64urlUInt-encoded value.
For instance, when representing the value 65537, the octet sequence
to be base64url-encoded MUST consist of the three octets [1, 0, 1];
the resulting representation for this value is "AQAB".
6.3.2. Parameters for RSA Private Keys
In addition to the members used to represent RSA public keys, the
following members are used to represent RSA private keys. The
parameter "d" is REQUIRED for RSA private keys. The others enable
optimizations and SHOULD be included by producers of JWKs
representing RSA private keys. If the producer includes any of the
other private key parameters, then all of the others MUST be present,
with the exception of "oth", which MUST only be present when more
than two prime factors were used.
6.3.2.1. "d" (Private Exponent) Parameter
The "d" (private exponent) parameter contains the private exponent
value for the RSA private key. It is represented as a Base64urlUInt-
encoded value.
Jones Standards Track [Page 30]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
6.3.2.2. "p" (First Prime Factor) Parameter
The "p" (first prime factor) parameter contains the first prime
factor. It is represented as a Base64urlUInt-encoded value.
6.3.2.3. "q" (Second Prime Factor) Parameter
The "q" (second prime factor) parameter contains the second prime
factor. It is represented as a Base64urlUInt-encoded value.
6.3.2.4. "dp" (First Factor CRT Exponent) Parameter
The "dp" (first factor CRT exponent) parameter contains the Chinese
Remainder Theorem (CRT) exponent of the first factor. It is
represented as a Base64urlUInt-encoded value.
6.3.2.5. "dq" (Second Factor CRT Exponent) Parameter
The "dq" (second factor CRT exponent) parameter contains the CRT
exponent of the second factor. It is represented as a Base64urlUInt-
encoded value.
6.3.2.6. "qi" (First CRT Coefficient) Parameter
The "qi" (first CRT coefficient) parameter contains the CRT
coefficient of the second factor. It is represented as a
Base64urlUInt-encoded value.
6.3.2.7. "oth" (Other Primes Info) Parameter
The "oth" (other primes info) parameter contains an array of
information about any third and subsequent primes, should they exist.
When only two primes have been used (the normal case), this parameter
MUST be omitted. When three or more primes have been used, the
number of array elements MUST be the number of primes used minus two.
For more information on this case, see the description of the
OtherPrimeInfo parameters in Appendix A.1.2 of RFC 3447 [RFC3447],
upon which the following parameters are modeled. If the consumer of
a JWK does not support private keys with more than two primes and it
encounters a private key that includes the "oth" parameter, then it
MUST NOT use the key. Each array element MUST be an object with the
following members.
6.3.2.7.1. "r" (Prime Factor)
The "r" (prime factor) parameter within an "oth" array member
represents the value of a subsequent prime factor. It is represented
as a Base64urlUInt-encoded value.
Jones Standards Track [Page 31]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
6.3.2.7.2. "d" (Factor CRT Exponent)
The "d" (factor CRT exponent) parameter within an "oth" array member
represents the CRT exponent of the corresponding prime factor. It is
represented as a Base64urlUInt-encoded value.
6.3.2.7.3. "t" (Factor CRT Coefficient)
The "t" (factor CRT coefficient) parameter within an "oth" array
member represents the CRT coefficient of the corresponding prime
factor. It is represented as a Base64urlUInt-encoded value.
6.4. Parameters for Symmetric Keys
When the JWK "kty" member value is "oct" (octet sequence), the member
"k" (see Section 6.4.1) is used to represent a symmetric key (or
another key whose value is a single octet sequence). An "alg" member
SHOULD also be present to identify the algorithm intended to be used
with the key, unless the application uses another means or convention
to determine the algorithm used.
6.4.1. "k" (Key Value) Parameter
The "k" (key value) parameter contains the value of the symmetric (or
other single-valued) key. It is represented as the base64url
encoding of the octet sequence containing the key value.
7. IANA Considerations
The following registration procedure is used for all the registries
established by this specification.
The registration procedure for values is Specification Required
[RFC5226] after a three-week review period on the
jose-reg-review@ietf.org mailing list, on the advice of one or more
Designated Experts. However, to allow for the allocation of values
prior to publication, the Designated Experts may approve registration
once they are satisfied that such a specification will be published.
Registration requests sent to the mailing list for review should use
an appropriate subject (e.g., "Request to register algorithm:
example").
Within the review period, the Designated Experts will either approve
or deny the registration request, communicating this decision to the
review list and IANA. Denials should include an explanation and, if
applicable, suggestions as to how to make the request successful.
Jones Standards Track [Page 32]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
Registration requests that are undetermined for a period longer than
21 days can be brought to the IESG's attention (using the
iesg@ietf.org mailing list) for resolution.
Criteria that should be applied by the Designated Experts include
determining whether the proposed registration duplicates existing
functionality, whether it is likely to be of general applicability or
useful only for a single application, and whether the registration
description is clear.
IANA must only accept registry updates from the Designated Experts
and should direct all requests for registration to the review mailing
list.
It is suggested that multiple Designated Experts be appointed who are
able to represent the perspectives of different applications using
this specification, in order to enable broadly informed review of
registration decisions. In cases where a registration decision could
be perceived as creating a conflict of interest for a particular
Expert, that Expert should defer to the judgment of the other
Experts.
7.1. JSON Web Signature and Encryption Algorithms Registry
This specification establishes the IANA "JSON Web Signature and
Encryption Algorithms" registry for values of the JWS and JWE "alg"
(algorithm) and "enc" (encryption algorithm) Header Parameters. The
registry records the algorithm name, the algorithm description, the
algorithm usage locations, the implementation requirements, the
change controller, and a reference to the specification that defines
it. The same algorithm name can be registered multiple times,
provided that the sets of usage locations are disjoint.
It is suggested that the length of the key be included in the
algorithm name when multiple variations of algorithms are being
registered that use keys of different lengths and the key lengths for
each need to be fixed (for instance, because they will be created by
key derivation functions). This allows readers of the JSON text to
more easily make security decisions.
The Designated Experts should perform reasonable due diligence that
algorithms being registered either are currently considered
cryptographically credible or are being registered as Deprecated or
Prohibited.
Jones Standards Track [Page 33]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
The implementation requirements of an algorithm may be changed over
time as the cryptographic landscape evolves, for instance, to change
the status of an algorithm to Deprecated or to change the status of
an algorithm from Optional to Recommended+ or Required. Changes of
implementation requirements are only permitted on a Specification
Required basis after review by the Designated Experts, with the new
specification defining the revised implementation requirements level.
7.1.1. Registration Template
Algorithm Name:
The name requested (e.g., "HS256"). This name is a case-sensitive
ASCII string. Names may not match other registered names in a
case-insensitive manner unless the Designated Experts state that
there is a compelling reason to allow an exception.
Algorithm Description:
Brief description of the algorithm (e.g., "HMAC using SHA-256").
Algorithm Usage Location(s):
The algorithm usage locations. This must be one or more of the
values "alg" or "enc" if the algorithm is to be used with JWS or
JWE. The value "JWK" is used if the algorithm identifier will be
used as a JWK "alg" member value, but will not be used with JWS or
JWE; this could be the case, for instance, for non-authenticated
encryption algorithms. Other values may be used with the approval
of a Designated Expert.
JOSE Implementation Requirements:
The algorithm implementation requirements for JWS and JWE, which
must be one the words Required, Recommended, Optional, Deprecated,
or Prohibited. Optionally, the word can be followed by a "+" or
"-". The use of "+" indicates that the requirement strength is
likely to be increased in a future version of the specification.
The use of "-" indicates that the requirement strength is likely
to be decreased in a future version of the specification. Any
identifiers registered for non-authenticated encryption algorithms
or other algorithms that are otherwise unsuitable for direct use
as JWS or JWE algorithms must be registered as "Prohibited".
Change Controller:
For Standards Track RFCs, list the "IESG". For others, give the
name of the responsible party. Other details (e.g., postal
address, email address, home page URI) may also be included.
Jones Standards Track [Page 34]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
Specification Document(s):
Reference to the document or documents that specify the parameter,
preferably including URIs that can be used to retrieve copies of
the documents. An indication of the relevant sections may also be
included but is not required.
Algorithm Analysis Documents(s):
References to a publication or publications in well-known
cryptographic conferences, by national standards bodies, or by
other authoritative sources analyzing the cryptographic soundness
of the algorithm to be registered. The Designated Experts may
require convincing evidence of the cryptographic soundness of a
new algorithm to be provided with the registration request unless
the algorithm is being registered as Deprecated or Prohibited.
Having gone through working group and IETF review, the initial
registrations made by this document are exempt from the need to
provide this information.
7.1.2. Initial Registry Contents
o Algorithm Name: "HS256"
o Algorithm Description: HMAC using SHA-256
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Required
o Change Controller: IESG
o Specification Document(s): Section 3.2 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "HS384"
o Algorithm Description: HMAC using SHA-384
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.2 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "HS512"
o Algorithm Description: HMAC using SHA-512
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.2 of RFC 7518
o Algorithm Analysis Documents(s): n/a
Jones Standards Track [Page 35]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Algorithm Name: "RS256"
o Algorithm Description: RSASSA-PKCS1-v1_5 using SHA-256
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended
o Change Controller: IESG
o Specification Document(s): Section 3.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "RS384"
o Algorithm Description: RSASSA-PKCS1-v1_5 using SHA-384
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "RS512"
o Algorithm Description: RSASSA-PKCS1-v1_5 using SHA-512
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "ES256"
o Algorithm Description: ECDSA using P-256 and SHA-256
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended+
o Change Controller: IESG
o Specification Document(s): Section 3.4 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "ES384"
o Algorithm Description: ECDSA using P-384 and SHA-384
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.4 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "ES512"
o Algorithm Description: ECDSA using P-521 and SHA-512
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.4 of RFC 7518
o Algorithm Analysis Documents(s): n/a
Jones Standards Track [Page 36]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Algorithm Name: "PS256"
o Algorithm Description: RSASSA-PSS using SHA-256 and MGF1 with
SHA-256
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.5 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "PS384"
o Algorithm Description: RSASSA-PSS using SHA-384 and MGF1 with
SHA-384
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.5 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "PS512"
o Algorithm Description: RSASSA-PSS using SHA-512 and MGF1 with
SHA-512
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.5 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "none"
o Algorithm Description: No digital signature or MAC performed
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 3.6 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "RSA1_5"
o Algorithm Description: RSAES-PKCS1-v1_5
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended-
o Change Controller: IESG
o Specification Document(s): Section 4.2 of RFC 7518
o Algorithm Analysis Documents(s): n/a
Jones Standards Track [Page 37]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Algorithm Name: "RSA-OAEP"
o Algorithm Description: RSAES OAEP using default parameters
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended+
o Change Controller: IESG
o Specification Document(s): Section 4.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "RSA-OAEP-256"
o Algorithm Description: RSAES OAEP using SHA-256 and MGF1 with
SHA-256
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A128KW"
o Algorithm Description: AES Key Wrap using 128-bit key
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended
o Change Controller: IESG
o Specification Document(s): Section 4.4 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A192KW"
o Algorithm Description: AES Key Wrap using 192-bit key
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.4 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A256KW"
o Algorithm Description: AES Key Wrap using 256-bit key
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended
o Change Controller: IESG
o Specification Document(s): Section 4.4 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "dir"
o Algorithm Description: Direct use of a shared symmetric key
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended
o Change Controller: IESG
o Specification Document(s): Section 4.5 of RFC 7518
o Algorithm Analysis Documents(s): n/a
Jones Standards Track [Page 38]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Algorithm Name: "ECDH-ES"
o Algorithm Description: ECDH-ES using Concat KDF
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended+
o Change Controller: IESG
o Specification Document(s): Section 4.6 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "ECDH-ES+A128KW"
o Algorithm Description: ECDH-ES using Concat KDF and "A128KW"
wrapping
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended
o Change Controller: IESG
o Specification Document(s): Section 4.6 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "ECDH-ES+A192KW"
o Algorithm Description: ECDH-ES using Concat KDF and "A192KW"
wrapping
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.6 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "ECDH-ES+A256KW"
o Algorithm Description: ECDH-ES using Concat KDF and "A256KW"
wrapping
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Recommended
o Change Controller: IESG
o Specification Document(s): Section 4.6 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A128GCMKW"
o Algorithm Description: Key wrapping with AES GCM using 128-bit key
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.7 of RFC 7518
o Algorithm Analysis Documents(s): n/a
Jones Standards Track [Page 39]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Algorithm Name: "A192GCMKW"
o Algorithm Description: Key wrapping with AES GCM using 192-bit key
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.7 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A256GCMKW"
o Algorithm Description: Key wrapping with AES GCM using 256-bit key
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.7 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "PBES2-HS256+A128KW"
o Algorithm Description: PBES2 with HMAC SHA-256 and "A128KW"
wrapping
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.8 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "PBES2-HS384+A192KW"
o Algorithm Description: PBES2 with HMAC SHA-384 and "A192KW"
wrapping
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.8 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "PBES2-HS512+A256KW"
o Algorithm Description: PBES2 with HMAC SHA-512 and "A256KW"
wrapping
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 4.8 of RFC 7518
o Algorithm Analysis Documents(s): n/a
Jones Standards Track [Page 40]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Algorithm Name: "A128CBC-HS256"
o Algorithm Description: AES_128_CBC_HMAC_SHA_256 authenticated
encryption algorithm
o Algorithm Usage Location(s): "enc"
o JOSE Implementation Requirements: Required
o Change Controller: IESG
o Specification Document(s): Section 5.2.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A192CBC-HS384"
o Algorithm Description: AES_192_CBC_HMAC_SHA_384 authenticated
encryption algorithm
o Algorithm Usage Location(s): "enc"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 5.2.4 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A256CBC-HS512"
o Algorithm Description: AES_256_CBC_HMAC_SHA_512 authenticated
encryption algorithm
o Algorithm Usage Location(s): "enc"
o JOSE Implementation Requirements: Required
o Change Controller: IESG
o Specification Document(s): Section 5.2.5 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A128GCM"
o Algorithm Description: AES GCM using 128-bit key
o Algorithm Usage Location(s): "enc"
o JOSE Implementation Requirements: Recommended
o Change Controller: IESG
o Specification Document(s): Section 5.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
o Algorithm Name: "A192GCM"
o Algorithm Description: AES GCM using 192-bit key
o Algorithm Usage Location(s): "enc"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 5.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
Jones Standards Track [Page 41]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Algorithm Name: "A256GCM"
o Algorithm Description: AES GCM using 256-bit key
o Algorithm Usage Location(s): "enc"
o JOSE Implementation Requirements: Recommended
o Change Controller: IESG
o Specification Document(s): Section 5.3 of RFC 7518
o Algorithm Analysis Documents(s): n/a
7.2. Header Parameter Names Registration
This section registers the Header Parameter names defined in Sections
4.6.1, 4.7.1, and 4.8.1 of this specification in the IANA "JSON Web
Signature and Encryption Header Parameters" registry established by
[JWS].
7.2.1. Registry Contents
o Header Parameter Name: "epk"
o Header Parameter Description: Ephemeral Public Key
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.6.1.1 of RFC 7518
o Header Parameter Name: "apu"
o Header Parameter Description: Agreement PartyUInfo
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.6.1.2 of RFC 7518
o Header Parameter Name: "apv"
o Header Parameter Description: Agreement PartyVInfo
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.6.1.3 of RFC 7518
o Header Parameter Name: "iv"
o Header Parameter Description: Initialization Vector
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.7.1.1 of RFC 7518
o Header Parameter Name: "tag"
o Header Parameter Description: Authentication Tag
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.7.1.2 of RFC 7518
Jones Standards Track [Page 42]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Header Parameter Name: "p2s"
o Header Parameter Description: PBES2 Salt Input
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.8.1.1 of RFC 7518
o Header Parameter Name: "p2c"
o Header Parameter Description: PBES2 Count
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.8.1.2 of RFC 7518
7.3. JSON Web Encryption Compression Algorithms Registry
This specification establishes the IANA "JSON Web Encryption
Compression Algorithms" registry for JWE "zip" member values. The
registry records the compression algorithm value and a reference to
the specification that defines it.
7.3.1. Registration Template
Compression Algorithm Value:
The name requested (e.g., "DEF"). Because a core goal of this
specification is for the resulting representations to be compact,
it is RECOMMENDED that the name be short -- not to exceed 8
characters without a compelling reason to do so. This name is
case sensitive. Names may not match other registered names in a
case-insensitive manner unless the Designated Experts state that
there is a compelling reason to allow an exception.
Compression Algorithm Description:
Brief description of the compression algorithm (e.g., "DEFLATE").
Change Controller:
For Standards Track RFCs, list "IESG". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, home page URI) may also be included.
Specification Document(s):
Reference to the document or documents that specify the parameter,
preferably including URIs that can be used to retrieve copies of
the documents. An indication of the relevant sections may also be
included but is not required.
Jones Standards Track [Page 43]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
7.3.2. Initial Registry Contents
o Compression Algorithm Value: "DEF"
o Compression Algorithm Description: DEFLATE
o Change Controller: IESG
o Specification Document(s): JSON Web Encryption (JWE) [JWE]
7.4. JSON Web Key Types Registry
This specification establishes the IANA "JSON Web Key Types" registry
for values of the JWK "kty" (key type) parameter. The registry
records the "kty" value, implementation requirements, and a reference
to the specification that defines it.
The implementation requirements of a key type may be changed over
time as the cryptographic landscape evolves, for instance, to change
the status of a key type to Deprecated or to change the status of a
key type from Optional to Recommended+ or Required. Changes of
implementation requirements are only permitted on a Specification
Required basis after review by the Designated Experts, with the new
specification defining the revised implementation requirements level.
7.4.1. Registration Template
"kty" Parameter Value:
The name requested (e.g., "EC"). Because a core goal of this
specification is for the resulting representations to be compact,
it is RECOMMENDED that the name be short -- not to exceed 8
characters without a compelling reason to do so. This name is
case sensitive. Names may not match other registered names in a
case-insensitive manner unless the Designated Experts state that
there is a compelling reason to allow an exception.
Key Type Description:
Brief description of the Key Type (e.g., "Elliptic Curve").
Change Controller:
For Standards Track RFCs, list "IESG". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, home page URI) may also be included.
Jones Standards Track [Page 44]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
JOSE Implementation Requirements:
The key type implementation requirements for JWS and JWE, which
must be one the words Required, Recommended, Optional, Deprecated,
or Prohibited. Optionally, the word can be followed by a "+" or
"-". The use of "+" indicates that the requirement strength is
likely to be increased in a future version of the specification.
The use of "-" indicates that the requirement strength is likely
to be decreased in a future version of the specification.
Specification Document(s):
Reference to the document or documents that specify the parameter,
preferably including URIs that can be used to retrieve copies of
the documents. An indication of the relevant sections may also be
included but is not required.
7.4.2. Initial Registry Contents
This section registers the values defined in Section 6.1.
o "kty" Parameter Value: "EC"
o Key Type Description: Elliptic Curve
o JOSE Implementation Requirements: Recommended+
o Change Controller: IESG
o Specification Document(s): Section 6.2 of RFC 7518
o "kty" Parameter Value: "RSA"
o Key Type Description: RSA
o JOSE Implementation Requirements: Required
o Change Controller: IESG
o Specification Document(s): Section 6.3 of RFC 7518
o "kty" Parameter Value: "oct"
o Key Type Description: Octet Sequence
o JOSE Implementation Requirements: Required
o Change Controller: IESG
o Specification Document(s): Section 6.4 of RFC 7518
7.5. JSON Web Key Parameters Registration
This section registers the parameter names defined in Sections 6.2,
6.3, and 6.4 of this specification in the IANA "JSON Web Key
Parameters" registry established by [JWK].
Jones Standards Track [Page 45]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
7.5.1. Registry Contents
o Parameter Name: "crv"
o Parameter Description: Curve
o Used with "kty" Value(s): "EC"
o Parameter Information Class: Public
o Change Controller: IESG
o Specification Document(s): Section 6.2.1.1 of RFC 7518
o Parameter Name: "x"
o Parameter Description: X Coordinate
o Used with "kty" Value(s): "EC"
o Parameter Information Class: Public
o Change Controller: IESG
o Specification Document(s): Section 6.2.1.2 of RFC 7518
o Parameter Name: "y"
o Parameter Description: Y Coordinate
o Used with "kty" Value(s): "EC"
o Parameter Information Class: Public
o Change Controller: IESG
o Specification Document(s): Section 6.2.1.3 of RFC 7518
o Parameter Name: "d"
o Parameter Description: ECC Private Key
o Used with "kty" Value(s): "EC"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.2.2.1 of RFC 7518
o Parameter Name: "n"
o Parameter Description: Modulus
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Public
o Change Controller: IESG
o Specification Document(s): Section 6.3.1.1 of RFC 7518
o Parameter Name: "e"
o Parameter Description: Exponent
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Public
o Change Controller: IESG
o Specification Document(s): Section 6.3.1.2 of RFC 7518
Jones Standards Track [Page 46]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Parameter Name: "d"
o Parameter Description: Private Exponent
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.3.2.1 of RFC 7518
o Parameter Name: "p"
o Parameter Description: First Prime Factor
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.3.2.2 of RFC 7518
o Parameter Name: "q"
o Parameter Description: Second Prime Factor
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.3.2.3 of RFC 7518
o Parameter Name: "dp"
o Parameter Description: First Factor CRT Exponent
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.3.2.4 of RFC 7518
o Parameter Name: "dq"
o Parameter Description: Second Factor CRT Exponent
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.3.2.5 of RFC 7518
o Parameter Name: "qi"
o Parameter Description: First CRT Coefficient
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.3.2.6 of RFC 7518
Jones Standards Track [Page 47]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
o Parameter Name: "oth"
o Parameter Description: Other Primes Info
o Used with "kty" Value(s): "RSA"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.3.2.7 of RFC 7518
o Parameter Name: "k"
o Parameter Description: Key Value
o Used with "kty" Value(s): "oct"
o Parameter Information Class: Private
o Change Controller: IESG
o Specification Document(s): Section 6.4.1 of RFC 7518
7.6. JSON Web Key Elliptic Curve Registry
This section establishes the IANA "JSON Web Key Elliptic Curve"
registry for JWK "crv" member values. The registry records the curve
name, implementation requirements, and a reference to the
specification that defines it. This specification registers the
parameter names defined in Section 6.2.1.1.
The implementation requirements of a curve may be changed over time
as the cryptographic landscape evolves, for instance, to change the
status of a curve to Deprecated or to change the status of a curve
from Optional to Recommended+ or Required. Changes of implementation
requirements are only permitted on a Specification Required basis
after review by the Designated Experts, with the new specification
defining the revised implementation requirements level.
7.6.1. Registration Template
Curve Name:
The name requested (e.g., "P-256"). Because a core goal of this
specification is for the resulting representations to be compact,
it is RECOMMENDED that the name be short -- not to exceed 8
characters without a compelling reason to do so. This name is
case sensitive. Names may not match other registered names in a
case-insensitive manner unless the Designated Experts state that
there is a compelling reason to allow an exception.
Curve Description:
Brief description of the curve (e.g., "P-256 Curve").
JOSE Implementation Requirements:
The curve implementation requirements for JWS and JWE, which must
be one the words Required, Recommended, Optional, Deprecated, or
Prohibited. Optionally, the word can be followed by a "+" or "-".
Jones Standards Track [Page 48]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
The use of "+" indicates that the requirement strength is likely
to be increased in a future version of the specification. The use
of "-" indicates that the requirement strength is likely to be
decreased in a future version of the specification.
Change Controller:
For Standards Track RFCs, list "IESG". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, home page URI) may also be included.
Specification Document(s):
Reference to the document or documents that specify the parameter,
preferably including URIs that can be used to retrieve copies of
the documents. An indication of the relevant sections may also be
included but is not required.
7.6.2. Initial Registry Contents
o Curve Name: "P-256"
o Curve Description: P-256 Curve
o JOSE Implementation Requirements: Recommended+
o Change Controller: IESG
o Specification Document(s): Section 6.2.1.1 of RFC 7518
o Curve Name: "P-384"
o Curve Description: P-384 Curve
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 6.2.1.1 of RFC 7518
o Curve Name: "P-521"
o Curve Description: P-521 Curve
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): Section 6.2.1.1 of RFC 7518
8. Security Considerations
All of the security issues that are pertinent to any cryptographic
application must be addressed by JWS/JWE/JWK agents. Among these
issues are protecting the user's asymmetric private and symmetric
secret keys and employing countermeasures to various attacks.
The security considerations in [AES], [DSS], [JWE], [JWK], [JWS],
[NIST.800-38D], [NIST.800-56A], [NIST.800-107], [RFC2104], [RFC3394],
[RFC3447], [RFC5116], [RFC6090], and [SHS] apply to this
specification.
Jones Standards Track [Page 49]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
8.1. Cryptographic Agility
Implementers should be aware that cryptographic algorithms become
weaker with time. As new cryptanalysis techniques are developed and
computing performance improves, the work factor to break a particular
cryptographic algorithm will be reduced. Therefore, implementers and
deployments must be prepared for the set of algorithms that are
supported and used to change over time. Thus, cryptographic
algorithm implementations should be modular, allowing new algorithms
to be readily inserted.
8.2. Key Lifetimes
Many algorithms have associated security considerations related to
key lifetimes and/or the number of times that a key may be used.
Those security considerations continue to apply when using those
algorithms with JOSE data structures. See NIST SP 800-57
[NIST.800-57] for specific guidance on key lifetimes.
8.3. RSAES-PKCS1-v1_5 Security Considerations
While Section 8 of RFC 3447 [RFC3447] explicitly calls for people not
to adopt RSASSA-PKCS1-v1_5 for new applications and instead requests
that people transition to RSASSA-PSS, this specification does include
RSASSA-PKCS1-v1_5, for interoperability reasons, because it is
commonly implemented.
Keys used with RSAES-PKCS1-v1_5 must follow the constraints in
Section 7.2 of RFC 3447. Also, keys with a low public key exponent
value, as described in Section 3 of "Twenty Years of Attacks on the
RSA Cryptosystem" [Boneh99], must not be used.
8.4. AES GCM Security Considerations
Keys used with AES GCM must follow the constraints in Section 8.3 of
[NIST.800-38D], which states: "The total number of invocations of the
authenticated encryption function shall not exceed 2^32, including
all IV lengths and all instances of the authenticated encryption
function with the given key". In accordance with this rule, AES GCM
MUST NOT be used with the same key value more than 2^32 times.
An IV value MUST NOT ever be used multiple times with the same AES
GCM key. One way to prevent this is to store a counter with the key
and increment it with every use. The counter can also be used to
prevent exceeding the 2^32 limit above.
This security consideration does not apply to the composite AES-CBC
HMAC SHA-2 or AES Key Wrap algorithms.
Jones Standards Track [Page 50]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
8.5. Unsecured JWS Security Considerations
Unsecured JWSs (JWSs that use the "alg" value "none") provide no
integrity protection. Thus, they must only be used in contexts in
which the payload is secured by means other than a digital signature
or MAC value, or they need not be secured.
An example means of preventing accepting Unsecured JWSs by default is
for the "verify" method of a hypothetical JWS software library to
have a Boolean "acceptUnsecured" parameter that indicates "none" is
an acceptable "alg" value. As another example, the "verify" method
might take a list of algorithms that are acceptable to the
application as a parameter and would reject Unsecured JWS values if
"none" is not in that list.
The following example illustrates the reasons for not accepting
Unsecured JWSs at a global level. Suppose an application accepts
JWSs over two channels, (1) HTTP and (2) HTTPS with client
authentication. It requires a JWS Signature on objects received over
HTTP, but accepts Unsecured JWSs over HTTPS. If the application were
to globally indicate that "none" is acceptable, then an attacker
could provide it with an Unsecured JWS over HTTP and still have that
object successfully validate. Instead, the application needs to
indicate acceptance of "none" for each object received over HTTPS
(e.g., by setting "acceptUnsecured" to "true" for the first
hypothetical JWS software library above), but not for each object
received over HTTP.
8.6. Denial-of-Service Attacks
Receiving agents that validate signatures and sending agents that
encrypt messages need to be cautious of cryptographic processing
usage when validating signatures and encrypting messages using keys
larger than those mandated in this specification. An attacker could
supply content using keys that would result in excessive
cryptographic processing, for example, keys larger than those
mandated in this specification. Implementations should set and
enforce upper limits on the key sizes they accept. Section 5.6.1
(Comparable Algorithm Strengths) of NIST SP 800-57 [NIST.800-57]
contains statements on largest approved key sizes that may be
applicable.
8.7. Reusing Key Material when Encrypting Keys
It is NOT RECOMMENDED to reuse the same entire set of key material
(Key Encryption Key, Content Encryption Key, Initialization Vector,
etc.) to encrypt multiple JWK or JWK Set objects, or to encrypt the
same JWK or JWK Set object multiple times. One suggestion for
Jones Standards Track [Page 51]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
preventing reuse is to always generate at least one new piece of key
material for each encryption operation (e.g., a new Content
Encryption Key, a new IV, and/or a new PBES2 Salt), based on the
considerations noted in this document as well as from RFC 4086
[RFC4086].
8.8. Password Considerations
Passwords are vulnerable to a number of attacks. To help mitigate
some of these limitations, this document applies principles from RFC
2898 [RFC2898] to derive cryptographic keys from user-supplied
passwords.
However, the strength of the password still has a significant impact.
A high-entropy password has greater resistance to dictionary attacks.
[NIST.800-63-2] contains guidelines for estimating password entropy,
which can help applications and users generate stronger passwords.
An ideal password is one that is as large as (or larger than) the
derived key length. However, passwords larger than a certain
algorithm-specific size are first hashed, which reduces an attacker's
effective search space to the length of the hash algorithm. It is
RECOMMENDED that a password used for "PBES2-HS256+A128KW" be no
shorter than 16 octets and no longer than 128 octets and a password
used for "PBES2-HS512+A256KW" be no shorter than 32 octets and no
longer than 128 octets long.
Still, care needs to be taken in where and how password-based
encryption is used. These algorithms can still be susceptible to
dictionary-based attacks if the iteration count is too small; this is
of particular concern if these algorithms are used to protect data
that an attacker can have indefinite number of attempts to circumvent
the protection, such as protected data stored on a file system.
8.9. Key Entropy and Random Values
See Section 10.1 of [JWS] for security considerations on key entropy
and random values.
8.10. Differences between Digital Signatures and MACs
See Section 10.5 of [JWS] for security considerations on differences
between digital signatures and MACs.
Jones Standards Track [Page 52]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
8.11. Using Matching Algorithm Strengths
See Section 11.3 of [JWE] for security considerations on using
matching algorithm strengths.
8.12. Adaptive Chosen-Ciphertext Attacks
See Section 11.4 of [JWE] for security considerations on adaptive
chosen-ciphertext attacks.
8.13. Timing Attacks
See Section 10.9 of [JWS] and Section 11.5 of [JWE] for security
considerations on timing attacks.
8.14. RSA Private Key Representations and Blinding
See Section 9.3 of [JWK] for security considerations on RSA private
key representations and blinding.
9. Internationalization Considerations
Passwords obtained from users are likely to require preparation and
normalization to account for differences of octet sequences generated
by different input devices, locales, etc. It is RECOMMENDED that
applications perform the steps outlined in [PRECIS] to prepare a
password supplied directly by a user before performing key derivation
and encryption.
10. References
10.1. Normative References
[AES] National Institute of Standards and Technology (NIST),
"Advanced Encryption Standard (AES)", FIPS PUB 197,
November 2001, <http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf>.
[Boneh99] "Twenty Years of Attacks on the RSA Cryptosystem", Notices
of the American Mathematical Society (AMS), Vol. 46,
No. 2, pp. 203-213, 1999, <http://crypto.stanford.edu/
~dabo/pubs/papers/RSA-survey.pdf>.
Jones Standards Track [Page 53]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
[DSS] National Institute of Standards and Technology (NIST),
"Digital Signature Standard (DSS)", FIPS PUB 186-4, July
2013, <http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.186-4.pdf>.
[JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,
<http://www.rfc-editor.org/info/rfc7516>.
[JWK] Jones, M., "JSON Web Key (JWK)", RFC 7517,
DOI 10.17487/RFC7517, May 2015,
<http://www.rfc-editor.org/info/rfc7517>.
[JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
2015, <http://www.rfc-editor.org/info/rfc7515>.
[NIST.800-38A]
National Institute of Standards and Technology (NIST),
"Recommendation for Block Cipher Modes of Operation", NIST
Special Publication 800-38A, December 2001,
<http://csrc.nist.gov/publications/nistpubs/800-38a/
sp800-38a.pdf>.
[NIST.800-38D]
National Institute of Standards and Technology (NIST),
"Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC", NIST Special
Publication 800-38D, December 2001,
<http://csrc.nist.gov/publications/nistpubs/800-38D/
SP-800-38D.pdf>.
[NIST.800-56A]
National Institute of Standards and Technology (NIST),
"Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography", NIST Special
Publication 800-56A, Revision 2, May 2013,
<http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-56Ar2.pdf>.
[NIST.800-57]
National Institute of Standards and Technology (NIST),
"Recommendation for Key Management - Part 1: General
(Revision 3)", NIST Special Publication 800-57, Part 1,
Revision 3, July 2012, <http://csrc.nist.gov/publications/
nistpubs/800-57/sp800-57_part1_rev3_general.pdf>.
Jones Standards Track [Page 54]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
[RFC20] Cerf, V., "ASCII format for Network Interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,
<http://www.rfc-editor.org/info/rfc20>.
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
Keyed-Hashing for Message Authentication", RFC 2104,
DOI 10.17487/RFC2104, February 1997,
<http://www.rfc-editor.org/info/rfc2104>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
Specification Version 2.0", RFC 2898,
DOI 10.17487/RFC2898, September 2000,
<http://www.rfc-editor.org/info/rfc2898>.
[RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
(AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
September 2002, <http://www.rfc-editor.org/info/rfc3394>.
[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
2003, <http://www.rfc-editor.org/info/rfc3447>.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
2003, <http://www.rfc-editor.org/info/rfc3629>.
[RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256,
HMAC-SHA-384, and HMAC-SHA-512 with IPsec", RFC 4868,
DOI 10.17487/RFC4868, May 2007,
<http://www.rfc-editor.org/info/rfc4868>.
[RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
<http://www.rfc-editor.org/info/rfc4949>.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,
<http://www.rfc-editor.org/info/rfc5652>.
Jones Standards Track [Page 55]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
[RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
Curve Cryptography Algorithms", RFC 6090,
DOI 10.17487/RFC6090, February 2011,
<http://www.rfc-editor.org/info/rfc6090>.
[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
2014, <http://www.rfc-editor.org/info/rfc7159>.
[SEC1] Standards for Efficient Cryptography Group, "SEC 1:
Elliptic Curve Cryptography", Version 2.0, May 2009,
<http://www.secg.org/sec1-v2.pdf>.
[SHS] National Institute of Standards and Technology (NIST),
"Secure Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
<http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf>.
[UNICODE] The Unicode Consortium, "The Unicode Standard",
<http://www.unicode.org/versions/latest/>.
10.2. Informative References
[AEAD-CBC-SHA]
McGrew, D., Foley, J., and K. Paterson, "Authenticated
Encryption with AES-CBC and HMAC-SHA", Work in Progress,
draft-mcgrew-aead-aes-cbc-hmac-sha2-05, July 2014.
[CanvasApp]
Facebook, "Canvas Applications", 2010,
<http://developers.facebook.com/docs/authentication/
canvas>.
[JCA] Oracle, "Java Cryptography Architecture (JCA) Reference
Guide", 2014, <http://docs.oracle.com/javase/8/docs/techno
tes/guides/security/crypto/CryptoSpec.html>.
[JSE] Bradley, J. and N. Sakimura (editor), "JSON Simple
Encryption", September 2010,
<http://jsonenc.info/enc/1.0/>.
[JSMS] Rescorla, E. and J. Hildebrand, "JavaScript Message
Security Format", Work in Progress,
draft-rescorla-jsms-00, March 2011.
[JSS] Bradley, J. and N. Sakimura, Ed., "JSON Simple Sign 1.0",
Draft 01, September 2010, <http://jsonenc.info/jss/1.0/>.
Jones Standards Track [Page 56]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
[JWE-JWK] Miller, M., "Using JavaScript Object Notation (JSON) Web
Encryption (JWE) for Protecting JSON Web Key (JWK)
Objects", Work in Progress,
draft-miller-jose-jwe-protected-jwk-02, June 2013.
[MagicSignatures]
Panzer, J., Ed., Laurie, B., and D. Balfanz, "Magic
Signatures", January 2011,
<http://salmon-protocol.googlecode.com/svn/trunk/
draft-panzer-magicsig-01.html>.
[NIST.800-107]
National Institute of Standards and Technology (NIST),
"Recommendation for Applications Using Approved Hash
Algorithms", NIST Special Publication 800-107, Revision 1,
August 2012, <http://csrc.nist.gov/publications/
nistpubs/800-107-rev1/sp800-107-rev1.pdf>.
[NIST.800-63-2]
National Institute of Standards and Technology (NIST),
"Electronic Authentication Guideline", NIST Special
Publication 800-63-2, August 2013,
<http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-63-2.pdf>.
[PRECIS] Saint-Andre, P. and A. Melnikov, "Preparation,
Enforcement, and Comparison of Internationalized Strings
Representing Usernames and Passwords", Work in Progress,
draft-ietf-precis-saslprepbis-16, April 2015.
[RFC2631] Rescorla, E., "Diffie-Hellman Key Agreement Method",
RFC 2631, DOI 10.17487/RFC2631, June 1999,
<http://www.rfc-editor.org/info/rfc2631>.
[RFC3275] Eastlake 3rd, D., Reagle, J., and D. Solo, "(Extensible
Markup Language) XML-Signature Syntax and Processing",
RFC 3275, DOI 10.17487/RFC3275, March 2002,
<http://www.rfc-editor.org/info/rfc3275>.
[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC 4086,
DOI 10.17487/RFC4086, June 2005,
<http://www.rfc-editor.org/info/rfc4086>.
[RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
<http://www.rfc-editor.org/info/rfc5116>.
Jones Standards Track [Page 57]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<http://www.rfc-editor.org/info/rfc5226>.
[W3C.NOTE-xmldsig-core2-20130411]
Eastlake, D., Reagle, J., Solo, D., Hirsch, F., Roessler,
T., Yiu, K., Datta, P., and S. Cantor, "XML Signature
Syntax and Processing Version 2.0", World Wide Web
Consortium Note NOTE-xmldsig-core2-20130411, April 2013,
<http://www.w3.org/TR/2013/NOTE-xmldsig-core2-20130411/>.
[W3C.REC-xmlenc-core-20021210]
Eastlake, D. and J. Reagle, "XML Encryption Syntax and
Processing", World Wide Web Consortium Recommendation REC-
xmlenc-core-20021210, December 2002,
<http://www.w3.org/TR/2002/REC-xmlenc-core-20021210>.
[W3C.REC-xmlenc-core1-20130411]
Eastlake, D., Reagle, J., Hirsch, F., and T. Roessler,
"XML Encryption Syntax and Processing Version 1.1", World
Wide Web Consortium Recommendation REC-xmlenc-
core1-20130411, April 2013,
<http://www.w3.org/TR/2013/REC-xmlenc-core1-20130411/>.
Jones Standards Track [Page 58]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
Appendix A. Algorithm Identifier Cross-Reference
This appendix contains tables cross-referencing the cryptographic
algorithm identifier values defined in this specification with the
equivalent identifiers used by other standards and software packages.
See XML DSIG [RFC3275], XML DSIG 2.0
[W3C.NOTE-xmldsig-core2-20130411], XML Encryption
[W3C.REC-xmlenc-core-20021210], XML Encryption 1.1
[W3C.REC-xmlenc-core1-20130411], and Java Cryptography Architecture
[JCA] for more information about the names defined by those
documents.
Jones Standards Track [Page 59]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
A.1. Digital Signature/MAC Algorithm Identifier Cross-Reference
This section contains a table cross-referencing the JWS digital
signature and MAC "alg" (algorithm) values defined in this
specification with the equivalent identifiers used by other standards
and software packages.
+-------------------------------------------------------------------+
| JWS | XML DSIG |
| | JCA | OID |
+-------------------------------------------------------------------+
| HS256 | http://www.w3.org/2001/04/xmldsig-more#hmac-sha256 |
| | HmacSHA256 | 1.2.840.113549.2.9 |
+-------------------------------------------------------------------+
| HS384 | http://www.w3.org/2001/04/xmldsig-more#hmac-sha384 |
| | HmacSHA384 | 1.2.840.113549.2.10 |
+-------------------------------------------------------------------+
| HS512 | http://www.w3.org/2001/04/xmldsig-more#hmac-sha512 |
| | HmacSHA512 | 1.2.840.113549.2.11 |
+-------------------------------------------------------------------+
| RS256 | http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 |
| | SHA256withRSA | 1.2.840.113549.1.1.11 |
+-------------------------------------------------------------------+
| RS384 | http://www.w3.org/2001/04/xmldsig-more#rsa-sha384 |
| | SHA384withRSA | 1.2.840.113549.1.1.12 |
+-------------------------------------------------------------------+
| RS512 | http://www.w3.org/2001/04/xmldsig-more#rsa-sha512 |
| | SHA512withRSA | 1.2.840.113549.1.1.13 |
+-------------------------------------------------------------------+
| ES256 | http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256 |
| | SHA256withECDSA | 1.2.840.10045.4.3.2 |
+-------------------------------------------------------------------+
| ES384 | http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384 |
| | SHA384withECDSA | 1.2.840.10045.4.3.3 |
+-------------------------------------------------------------------+
| ES512 | http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512 |
| | SHA512withECDSA | 1.2.840.10045.4.3.4 |
+-------------------------------------------------------------------+
| PS256 | http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1 |
| | SHA256withRSAandMGF1 | 1.2.840.113549.1.1.10 |
+-------------------------------------------------------------------+
| PS384 | http://www.w3.org/2007/05/xmldsig-more#sha384-rsa-MGF1 |
| | SHA384withRSAandMGF1 | 1.2.840.113549.1.1.10 |
+-------------------------------------------------------------------+
| PS512 | http://www.w3.org/2007/05/xmldsig-more#sha512-rsa-MGF1 |
| | SHA512withRSAandMGF1 | 1.2.840.113549.1.1.10 |
+-------------------------------------------------------------------+
Jones Standards Track [Page 60]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
A.2. Key Management Algorithm Identifier Cross-Reference
This section contains a table cross-referencing the JWE "alg"
(algorithm) values defined in this specification with the equivalent
identifiers used by other standards and software packages.
+-------------------------------------------------------------------+
| JWE | XML ENC |
| | JCA | OID |
+-------------------------------------------------------------------+
| RSA1_5 | http://www.w3.org/2001/04/xmlenc#rsa-1_5 |
| | RSA/ECB/PKCS1Padding | 1.2.840.113549.1.1.1 |
+-------------------------------------------------------------------+
| RSA-OAEP | http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p |
| | RSA/ECB/OAEPWithSHA-1AndMGF1Padding | 1.2.840.113549.1.1.7 |
+-------------------------------------------------------------------+
| RSA-OAEP-256 | http://www.w3.org/2009/xmlenc11#rsa-oaep |
| | & http://www.w3.org/2009/xmlenc11#mgf1sha256 |
| | RSA/ECB/OAEPWithSHA-256AndMGF1Padding | |
| | & MGF1ParameterSpec.SHA256 | 1.2.840.113549.1.1.7 |
+-------------------------------------------------------------------+
| ECDH-ES | http://www.w3.org/2009/xmlenc11#ECDH-ES |
| | ECDH | 1.3.132.1.12 |
+-------------------------------------------------------------------+
| A128KW | http://www.w3.org/2001/04/xmlenc#kw-aes128 |
| | AESWrap | 2.16.840.1.101.3.4.1.5 |
+-------------------------------------------------------------------+
| A192KW | http://www.w3.org/2001/04/xmlenc#kw-aes192 |
| | AESWrap | 2.16.840.1.101.3.4.1.25 |
+-------------------------------------------------------------------+
| A256KW | http://www.w3.org/2001/04/xmlenc#kw-aes256 |
| | AESWrap | 2.16.840.1.101.3.4.1.45 |
+-------------------------------------------------------------------+
Jones Standards Track [Page 61]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
A.3. Content Encryption Algorithm Identifier Cross-Reference
This section contains a table cross-referencing the JWE "enc"
(encryption algorithm) values defined in this specification with the
equivalent identifiers used by other standards and software packages.
For the composite algorithms "A128CBC-HS256", "A192CBC-HS384", and
"A256CBC-HS512", the corresponding AES-CBC algorithm identifiers are
listed.
+-------------------------------------------------------------------+
| JWE | XML ENC |
| | JCA | OID |
+-------------------------------------------------------------------+
| A128CBC-HS256 | http://www.w3.org/2001/04/xmlenc#aes128-cbc |
| | AES/CBC/PKCS5Padding | 2.16.840.1.101.3.4.1.2 |
+-------------------------------------------------------------------+
| A192CBC-HS384 | http://www.w3.org/2001/04/xmlenc#aes192-cbc |
| | AES/CBC/PKCS5Padding | 2.16.840.1.101.3.4.1.22 |
+-------------------------------------------------------------------+
| A256CBC-HS512 | http://www.w3.org/2001/04/xmlenc#aes256-cbc |
| | AES/CBC/PKCS5Padding | 2.16.840.1.101.3.4.1.42 |
+-------------------------------------------------------------------+
| A128GCM | http://www.w3.org/2009/xmlenc11#aes128-gcm |
| | AES/GCM/NoPadding | 2.16.840.1.101.3.4.1.6 |
+-------------------------------------------------------------------+
| A192GCM | http://www.w3.org/2009/xmlenc11#aes192-gcm |
| | AES/GCM/NoPadding | 2.16.840.1.101.3.4.1.26 |
+-------------------------------------------------------------------+
| A256GCM | http://www.w3.org/2009/xmlenc11#aes256-gcm |
| | AES/GCM/NoPadding | 2.16.840.1.101.3.4.1.46 |
+-------------------------------------------------------------------+
Appendix B. Test Cases for AES_CBC_HMAC_SHA2 Algorithms
The following test cases can be used to validate implementations of
the AES_CBC_HMAC_SHA2 algorithms defined in Section 5.2. They are
also intended to correspond to test cases that may appear in a future
version of [AEAD-CBC-SHA], demonstrating that the cryptographic
computations performed are the same.
The variable names are those defined in Section 5.2. All values are
hexadecimal.
Jones Standards Track [Page 62]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
B.1. Test Cases for AES_128_CBC_HMAC_SHA_256
AES_128_CBC_HMAC_SHA_256
K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
ENC_KEY = 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65
IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04
A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
4b 65 72 63 6b 68 6f 66 66 73
AL = 00 00 00 00 00 00 01 50
E = c8 0e df a3 2d df 39 d5 ef 00 c0 b4 68 83 42 79
a2 e4 6a 1b 80 49 f7 92 f7 6b fe 54 b9 03 a9 c9
a9 4a c9 b4 7a d2 65 5c 5f 10 f9 ae f7 14 27 e2
fc 6f 9b 3f 39 9a 22 14 89 f1 63 62 c7 03 23 36
09 d4 5a c6 98 64 e3 32 1c f8 29 35 ac 40 96 c8
6e 13 33 14 c5 40 19 e8 ca 79 80 df a4 b9 cf 1b
38 4c 48 6f 3a 54 c5 10 78 15 8e e5 d7 9d e5 9f
bd 34 d8 48 b3 d6 95 50 a6 76 46 34 44 27 ad e5
4b 88 51 ff b5 98 f7 f8 00 74 b9 47 3c 82 e2 db
M = 65 2c 3f a3 6b 0a 7c 5b 32 19 fa b3 a3 0b c1 c4
e6 e5 45 82 47 65 15 f0 ad 9f 75 a2 b7 1c 73 ef
T = 65 2c 3f a3 6b 0a 7c 5b 32 19 fa b3 a3 0b c1 c4
Jones Standards Track [Page 63]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
B.2. Test Cases for AES_192_CBC_HMAC_SHA_384
K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17
ENC_KEY = 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27
28 29 2a 2b 2c 2d 2e 2f
P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65
IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04
A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
4b 65 72 63 6b 68 6f 66 66 73
AL = 00 00 00 00 00 00 01 50
E = ea 65 da 6b 59 e6 1e db 41 9b e6 2d 19 71 2a e5
d3 03 ee b5 00 52 d0 df d6 69 7f 77 22 4c 8e db
00 0d 27 9b dc 14 c1 07 26 54 bd 30 94 42 30 c6
57 be d4 ca 0c 9f 4a 84 66 f2 2b 22 6d 17 46 21
4b f8 cf c2 40 0a dd 9f 51 26 e4 79 66 3f c9 0b
3b ed 78 7a 2f 0f fc bf 39 04 be 2a 64 1d 5c 21
05 bf e5 91 ba e2 3b 1d 74 49 e5 32 ee f6 0a 9a
c8 bb 6c 6b 01 d3 5d 49 78 7b cd 57 ef 48 49 27
f2 80 ad c9 1a c0 c4 e7 9c 7b 11 ef c6 00 54 e3
M = 84 90 ac 0e 58 94 9b fe 51 87 5d 73 3f 93 ac 20
75 16 80 39 cc c7 33 d7 45 94 f8 86 b3 fa af d4
86 f2 5c 71 31 e3 28 1e 36 c7 a2 d1 30 af de 57
T = 84 90 ac 0e 58 94 9b fe 51 87 5d 73 3f 93 ac 20
75 16 80 39 cc c7 33 d7
Jones Standards Track [Page 64]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
B.3. Test Cases for AES_256_CBC_HMAC_SHA_512
K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
ENC_KEY = 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65
IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04
A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
4b 65 72 63 6b 68 6f 66 66 73
AL = 00 00 00 00 00 00 01 50
E = 4a ff aa ad b7 8c 31 c5 da 4b 1b 59 0d 10 ff bd
3d d8 d5 d3 02 42 35 26 91 2d a0 37 ec bc c7 bd
82 2c 30 1d d6 7c 37 3b cc b5 84 ad 3e 92 79 c2
e6 d1 2a 13 74 b7 7f 07 75 53 df 82 94 10 44 6b
36 eb d9 70 66 29 6a e6 42 7e a7 5c 2e 08 46 a1
1a 09 cc f5 37 0d c8 0b fe cb ad 28 c7 3f 09 b3
a3 b7 5e 66 2a 25 94 41 0a e4 96 b2 e2 e6 60 9e
31 e6 e0 2c c8 37 f0 53 d2 1f 37 ff 4f 51 95 0b
be 26 38 d0 9d d7 a4 93 09 30 80 6d 07 03 b1 f6
M = 4d d3 b4 c0 88 a7 f4 5c 21 68 39 64 5b 20 12 bf
2e 62 69 a8 c5 6a 81 6d bc 1b 26 77 61 95 5b c5
fd 30 a5 65 c6 16 ff b2 f3 64 ba ec e6 8f c4 07
53 bc fc 02 5d de 36 93 75 4a a1 f5 c3 37 3b 9c
T = 4d d3 b4 c0 88 a7 f4 5c 21 68 39 64 5b 20 12 bf
2e 62 69 a8 c5 6a 81 6d bc 1b 26 77 61 95 5b c5
Jones Standards Track [Page 65]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
Appendix C. Example ECDH-ES Key Agreement Computation
This example uses ECDH-ES Key Agreement and the Concat KDF to derive
the CEK in the manner described in Section 4.6. In this example, the
ECDH-ES Direct Key Agreement mode ("alg" value "ECDH-ES") is used to
produce an agreed-upon key for AES GCM with a 128-bit key ("enc"
value "A128GCM").
In this example, a producer Alice is encrypting content to a consumer
Bob. The producer (Alice) generates an ephemeral key for the key
agreement computation. Alice's ephemeral key (in JWK format) used
for the key agreement computation in this example (including the
private part) is:
{"kty":"EC",
"crv":"P-256",
"x":"gI0GAILBdu7T53akrFmMyGcsF3n5dO7MmwNBHKW5SV0",
"y":"SLW_xSffzlPWrHEVI30DHM_4egVwt3NQqeUD7nMFpps",
"d":"0_NxaRPUMQoAJt50Gz8YiTr8gRTwyEaCumd-MToTmIo"
}
The consumer's (Bob's) key (in JWK format) used for the key agreement
computation in this example (including the private part) is:
{"kty":"EC",
"crv":"P-256",
"x":"weNJy2HscCSM6AEDTDg04biOvhFhyyWvOHQfeF_PxMQ",
"y":"e8lnCO-AlStT-NJVX-crhB7QRYhiix03illJOVAOyck",
"d":"VEmDZpDXXK8p8N0Cndsxs924q6nS1RXFASRl6BfUqdw"
}
Header Parameter values used in this example are as follows. The
"apu" (agreement PartyUInfo) Header Parameter value is the base64url
encoding of the UTF-8 string "Alice" and the "apv" (agreement
PartyVInfo) Header Parameter value is the base64url encoding of the
UTF-8 string "Bob". The "epk" (ephemeral public key) Header
Parameter is used to communicate the producer's (Alice's) ephemeral
public key value to the consumer (Bob).
Jones Standards Track [Page 66]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
{"alg":"ECDH-ES",
"enc":"A128GCM",
"apu":"QWxpY2U",
"apv":"Qm9i",
"epk":
{"kty":"EC",
"crv":"P-256",
"x":"gI0GAILBdu7T53akrFmMyGcsF3n5dO7MmwNBHKW5SV0",
"y":"SLW_xSffzlPWrHEVI30DHM_4egVwt3NQqeUD7nMFpps"
}
}
The resulting Concat KDF [NIST.800-56A] parameter values are:
Z
This is set to the ECDH-ES key agreement output. (This value is
often not directly exposed by libraries, due to NIST security
requirements, and only serves as an input to a KDF.) In this
example, Z is following the octet sequence (using JSON array
notation):
[158, 86, 217, 29, 129, 113, 53, 211, 114, 131, 66, 131, 191, 132,
38, 156, 251, 49, 110, 163, 218, 128, 106, 72, 246, 218, 167, 121,
140, 254, 144, 196].
keydatalen
This value is 128 - the number of bits in the desired output key
(because "A128GCM" uses a 128-bit key).
AlgorithmID
This is set to the octets representing the 32-bit big-endian value
7 - [0, 0, 0, 7] - the number of octets in the AlgorithmID content
"A128GCM", followed, by the octets representing the ASCII string
"A128GCM" - [65, 49, 50, 56, 71, 67, 77].
PartyUInfo
This is set to the octets representing the 32-bit big-endian value
5 - [0, 0, 0, 5] - the number of octets in the PartyUInfo content
"Alice", followed, by the octets representing the UTF-8 string
"Alice" - [65, 108, 105, 99, 101].
PartyVInfo
This is set to the octets representing the 32-bit big-endian value
3 - [0, 0, 0, 3] - the number of octets in the PartyUInfo content
"Bob", followed, by the octets representing the UTF-8 string "Bob"
- [66, 111, 98].
Jones Standards Track [Page 67]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
SuppPubInfo
This is set to the octets representing the 32-bit big-endian value
128 - [0, 0, 0, 128] - the keydatalen value.
SuppPrivInfo
This is set to the empty octet sequence.
Concatenating the parameters AlgorithmID through SuppPubInfo results
in an OtherInfo value of:
[0, 0, 0, 7, 65, 49, 50, 56, 71, 67, 77, 0, 0, 0, 5, 65, 108, 105,
99, 101, 0, 0, 0, 3, 66, 111, 98, 0, 0, 0, 128]
Concatenating the round number 1 ([0, 0, 0, 1]), Z, and the OtherInfo
value results in the Concat KDF round 1 hash input of:
[0, 0, 0, 1,
158, 86, 217, 29, 129, 113, 53, 211, 114, 131, 66, 131, 191, 132, 38,
156, 251, 49, 110, 163, 218, 128, 106, 72, 246, 218, 167, 121, 140,
254, 144, 196,
0, 0, 0, 7, 65, 49, 50, 56, 71, 67, 77, 0, 0, 0, 5, 65, 108, 105, 99,
101, 0, 0, 0, 3, 66, 111, 98, 0, 0, 0, 128]
The resulting derived key, which is the first 128 bits of the round 1
hash output is:
[86, 170, 141, 234, 248, 35, 109, 32, 92, 34, 40, 205, 113, 167, 16,
26]
The base64url-encoded representation of this derived key is:
VqqN6vgjbSBcIijNcacQGg
Jones Standards Track [Page 68]
^L
RFC 7518 JSON Web Algorithms (JWA) May 2015
Acknowledgements
Solutions for signing and encrypting JSON content were previously
explored by "Magic Signatures" [MagicSignatures], "JSON Simple Sign
1.0" [JSS], "Canvas Applications" [CanvasApp], "JSON Simple
Encryption" [JSE], and "JavaScript Message Security Format" [JSMS],
all of which influenced this document.
The "Authenticated Encryption with AES-CBC and HMAC-SHA"
[AEAD-CBC-SHA] specification, upon which the AES_CBC_HMAC_SHA2
algorithms are based, was written by David A. McGrew and Kenny
Paterson. The test cases for AES_CBC_HMAC_SHA2 are based upon those
for [AEAD-CBC-SHA] by John Foley.
Matt Miller wrote "Using JavaScript Object Notation (JSON) Web
Encryption (JWE) for Protecting JSON Web Key (JWK) Objects"
[JWE-JWK], upon which the password-based encryption content of this
document is based.
This specification is the work of the JOSE working group, which
includes dozens of active and dedicated participants. In particular,
the following individuals contributed ideas, feedback, and wording
that influenced this specification:
Dirk Balfanz, Richard Barnes, Carsten Bormann, John Bradley, Brian
Campbell, Alissa Cooper, Breno de Medeiros, Vladimir Dzhuvinov, Roni
Even, Stephen Farrell, Yaron Y. Goland, Dick Hardt, Joe Hildebrand,
Jeff Hodges, Edmund Jay, Charlie Kaufman, Barry Leiba, James Manger,
Matt Miller, Kathleen Moriarty, Tony Nadalin, Axel Nennker, John
Panzer, Emmanuel Raviart, Eric Rescorla, Pete Resnick, Nat Sakimura,
Jim Schaad, Hannes Tschofenig, and Sean Turner.
Jim Schaad and Karen O'Donoghue chaired the JOSE working group and
Sean Turner, Stephen Farrell, and Kathleen Moriarty served as
Security Area Directors during the creation of this specification.
Author's Address
Michael B. Jones
Microsoft
EMail: mbj@microsoft.com
URI: http://self-issued.info/
Jones Standards Track [Page 69]
^L
|