summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc7577.txt
blob: 2886d43f87a64a7dc44ddce02e0301282cddcdf1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
Internet Engineering Task Force (IETF)                        J. Quittek
Request for Comments: 7577                                     R. Winter
Category: Standards Track                                       T. Dietz
ISSN: 2070-1721                                         NEC Europe, Ltd.
                                                               July 2015


          Definition of Managed Objects for Battery Monitoring

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in the Internet community.
   In particular, it defines managed objects that provide information on
   the status of batteries in managed devices.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7577.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.







Quittek, et al.              Standards Track                    [Page 1]
^L
RFC 7577                       Battery MIB                     July 2015


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  The Internet-Standard Management Framework  . . . . . . . . .   5
   3.  Design of the Battery MIB Module  . . . . . . . . . . . . . .   6
     3.1.  MIB Module Structure  . . . . . . . . . . . . . . . . . .   6
     3.2.  Battery Technologies  . . . . . . . . . . . . . . . . . .   8
       3.2.1.  Guidelines for Adding Battery Technologies  . . . . .   9
     3.3.  Battery Identification  . . . . . . . . . . . . . . . . .   9
     3.4.  Charging Cycles . . . . . . . . . . . . . . . . . . . . .  10
     3.5.  Charge Control  . . . . . . . . . . . . . . . . . . . . .  10
     3.6.  Imported Definitions  . . . . . . . . . . . . . . . . . .  11
   4.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .  11
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  33
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  36
     6.1.  SMI Object Identifier Registration  . . . . . . . . . . .  36
     6.2.  Battery Technology Registration . . . . . . . . . . . . .  36
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  37
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  37
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  38
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  40
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  40

1.  Introduction

   Today, more and more managed devices contain batteries that supply
   them with power when disconnected from electrical power distribution
   grids.  Common examples are nomadic and mobile devices, such as
   notebook computers, netbooks, and smartphones.  The status of
   batteries in such a device, particularly the charging status, is
   typically controlled by automatic functions that act locally on the
   device and manually by users of the device.

   In addition to this, there is a need to monitor battery status of
   these devices by network management systems.  This document defines a
   portion of the Management Information Base (MIB) that provides a
   means for monitoring batteries in or attached to managed devices.
   The Battery MIB module defined in Section 4 meets the requirements
   for monitoring the status of batteries specified in RFC 6988
   [RFC6988].

   The Battery MIB module provides for monitoring the battery status.
   According to the framework for energy management [RFC7326], it is an
   Energy Managed Object; thus, MIB modules such as the Power and Energy
   Monitoring MIB [RFC7460] could, in principle, be implemented for
   batteries.  The Battery MIB extends the more generic aspects of
   energy management by adding battery-specific information.  Amongst
   other things, the Battery MIB enables the monitoring of:



Quittek, et al.              Standards Track                    [Page 2]
^L
RFC 7577                       Battery MIB                     July 2015


   o  the current charge of a battery,

   o  the age of a battery (charging cycles),

   o  the state of a battery (e.g., being recharged),

   o  last usage of a battery, and

   o  maximum energy provided by a battery (remaining and total
      capacity).

   Further, means are provided for battery-powered devices to send
   notifications to inform the management system of needed replacement
   when the current battery charge has dropped below a certain
   threshold.  The same applies to the age of a battery.

   Many battery-driven devices have existing instrumentation for
   monitoring the battery status because this is already needed for
   local control of the battery by the device.  This reduces the effort
   for implementing the managed objects defined in this document.  For
   many devices, only additional software will be needed; no additional
   hardware instrumentation for battery monitoring is necessary.

   Since there are a lot of devices in use that contain more than one
   battery, means for battery monitoring defined in this document
   support addressing multiple batteries within a single device.  Also,
   batteries today often come in packages that can include
   identification and might contain additional hardware and firmware.
   The former allows tracing a battery and allows continuous monitoring
   even if the battery is installed in another device.  The firmware
   version is useful information as the battery behavior might be
   different for different firmware versions.

   Not explicitly in the scope of definitions in this document are very
   small backup batteries, for example, batteries used on a PC
   motherboard to run the clock circuit and retain configuration memory
   while the system is turned off.  Other means may be required for
   reporting on these batteries.  However, the MIB module defined in
   Section 3.1 can be used for this purpose.

   A traditional type of managed device containing batteries is an
   Uninterruptible Power Supply (UPS) system; these supply other devices
   with electrical energy when the main power supply fails.  There is
   already a MIB module for managing UPS systems defined in RFC 1628
   [RFC1628].  The UPS MIB module includes managed objects for
   monitoring the batteries contained in a UPS system.  However, the
   information provided by the UPS MIB objects is limited and tailored
   to the particular needs of UPS systems.



Quittek, et al.              Standards Track                    [Page 3]
^L
RFC 7577                       Battery MIB                     July 2015


   A huge variety of battery technologies are available, and they are
   evolving over time.  For different applications, different battery
   technologies are preferable, for example, because of different
   weight, cost, robustness, charging time, etc.  Some technologies,
   such as lead-acid batteries, are continuously in use for decades,
   while others, such as nickel-based battery technologies (nickel-
   cadmium and nickel-metal hydride), have, to a wide extent, been
   replaced by lithium-based battery technologies (lithium-ion and
   lithium polymer).

   The Battery MIB module uses a generic abstraction of batteries that
   is independent of particular battery technologies and expected to be
   applicable to future technologies as well.  While identification of a
   particular battery technology is supported by an extensible list of
   battery technology identifiers (see Section 3.2), individual
   properties of the technologies are not modeled by the abstraction.
   In particular, methods for charging a battery, and the parameters of
   those methods, which vary greatly between different technologies are
   not individually modeled.

   Instead, the Battery MIB module uses a simple common charging model
   with batteries being in one of the following states: 'charging',
   'maintaining charge', 'not charging', and 'discharging'.  Control of
   the charging process is limited to requests for transitions between
   these states.  For charging controllers that use charging state
   engines with more states, implementations of the Battery MIB module
   need to map those states to the four listed above.

   For energy management systems that require finer-grained control of
   the battery charging process, additional means need to be developed;
   for example, MIB modules that model richer sets of charging states
   and parameters for charging states.

   All use cases sketched above assume that the batteries are contained
   in a managed entity.  In a typical case, this entity also hosts the
   SNMP applications (command responder and notification generator) and
   the charging controller for contained batteries.  For definitions in
   this document, it is not strictly required that batteries be
   contained in the same managed entity, even though the Battery MIB
   module (defined further below) uses the containment tree of the
   Entity MIB module [RFC6933] for battery indexing.

   External batteries can be supported as long as the charging
   controller for these batteries is connected to the SNMP applications
   that implement the Battery MIB module.  An example with an external
   battery is shown in the figure below.  It illustrates that the
   Battery MIB module is designed as an interface between the management
   system and battery charging controller.  Out of scope of this



Quittek, et al.              Standards Track                    [Page 4]
^L
RFC 7577                       Battery MIB                     July 2015


   document is the interface between the battery charging controller and
   controlled batteries.

                 +-----------------------------------+
                 |         management system         |
                 +-----------------+-----------------+
                                   |
                                   | Battery MIB
                                   |
                 +-----------------+-----------------+
                 | managed element |                 |
                 |                 |                 |
                 |  +--------------+--------------+  |
                 |  | battery charging controller |  |
                 |  +-----+--------------+--------+  |
                 |        |              |           |
                 |  +-----+-----+        |           |
                 |  | internal  |        |           |
                 |  | battery   |        |           |
                 |  +-----------+        |           |
                 +-----------------------+-----------+
                                         |
                                   +-----+-----+
                                   | external  |
                                   | battery   |
                                   +-----------+

     Figure 1: Battery MIB as Interface between Management System and
         Battery-Charging Controller Supporting External Batteries

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

2.  The Internet-Standard Management Framework

   For a detailed overview of the documents that describe the current
   Internet-Standard Management Framework, please refer to section 7 of
   RFC 3410 [RFC3410].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  MIB objects are generally
   accessed through the Simple Network Management Protocol (SNMP).
   Objects in the MIB are defined using the mechanisms defined in the
   Structure of Management Information (SMI).  This memo specifies MIB
   modules that are compliant to the SMIv2, which is described in STD




Quittek, et al.              Standards Track                    [Page 5]
^L
RFC 7577                       Battery MIB                     July 2015


   58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58,RFC
   2580 [RFC2580].

3.  Design of the Battery MIB Module

3.1.  MIB Module Structure

   The Battery MIB module defined in this document defines objects for
   reporting information about batteries.  All managed objects providing
   information on the status of a battery are contained in a single
   table called "batteryTable".  The batteryTable contains one
   conceptual row per battery.

   Batteries are indexed by the entPhysicalIndex of the
   entPhysicalTable defined in the Entity MIB module [RFC6933].  An
   implementation of the Entity MIB module complying with the
   entity4CRCompliance MODULE-COMPLIANCE statement is required for
   compliant implementations of the Battery MIB module.

   If a battery is replaced, and the replacing battery uses the same
   physical connector as the replaced battery, then the replacing
   battery MUST be indexed with the same value of object
   entPhysicalIndex as the replaced battery.

   The kind of entity in the entPhysicalTable of the Entity MIB module
   is indicated by the value of enumeration object entPhysicalClass.
   All batteries SHOULD have the value of object entPhysicalClass set to
   battery(14) in their row of the entPhysicalTable.

   The batteryTable contains three groups of objects.  The first group
   (OIDs ending with 1-9) provides information on static properties of
   the battery.  The second group of objects (OIDs ending with 10-18)
   provides information on the current battery state, if it is charging
   or discharging, how much it is charged, its remaining capacity, the
   number of experienced charging cycles, etc.
















Quittek, et al.              Standards Track                    [Page 6]
^L
RFC 7577                       Battery MIB                     July 2015


      batteryTable(1)
      +--batteryEntry(1) [entPhysicalIndex]
         +-- r-n SnmpAdminString batteryIdentifier(1)
         +-- r-n SnmpAdminString batteryFirmwareVersion(2)
         +-- r-n Enumeration     batteryType(3)
         +-- r-n Unsigned32      batteryTechnology(4)
         +-- r-n Unsigned32      batteryDesignVoltage(5)
         +-- r-n Unsigned32      batteryNumberOfCells(6)
         +-- r-n Unsigned32      batteryDesignCapacity(7)
         +-- r-n Unsigned32      batteryMaxChargingCurrent(8)
         +-- r-n Unsigned32      batteryTrickleChargingCurrent(9)
         +-- r-n Unsigned32      batteryActualCapacity(10)
         +-- r-n Unsigned32      batteryChargingCycleCount(11)
         +-- r-n DateAndTime     batteryLastChargingCycleTime(12)
         +-- r-n Enumeration     batteryChargingOperState(13)
         +-- rwn Enumeration     batteryChargingAdminState(14)
         +-- r-n Unsigned32      batteryActualCharge(15)
         +-- r-n Unsigned32      batteryActualVoltage(16)
         +-- r-n Integer32       batteryActualCurrent(17)
         +-- r-n Integer32       batteryTemperature(18)
         +-- rwn Unsigned32      batteryAlarmLowCharge(19)
         +-- rwn Unsigned32      batteryAlarmLowVoltage(20)
         +-- rwn Unsigned32      batteryAlarmLowCapacity(21)
         +-- rwn Unsigned32      batteryAlarmHighCycleCount(22)
         +-- rwn Integer32       batteryAlarmHighTemperature(23)
         +-- rwn Integer32       batteryAlarmLowTemperature(24)
         +-- r-n SnmpAdminString batteryCellIdentifier(25)

   The third group of objects in this table (OIDs ending with 19-25) is
   used for notifications.  Threshold objects (OIDs ending with 19-24)
   indicate thresholds that can be used to raise an alarm if a property
   of the battery exceeds one of them.  Raising an alarm may include
   sending a notification.

   The Battery MIB defines seven notifications for indicating:

   1.  a battery-charging state change that was not triggered by writing
       to object batteryChargingAdminState,

   2.  a low-battery charging state,

   3.  a critical-battery state in which it cannot be used for power
       supply,

   4.  an aged battery that may need to be replaced,

   5.  a battery that has exceeded a temperature threshold,




Quittek, et al.              Standards Track                    [Page 7]
^L
RFC 7577                       Battery MIB                     July 2015


   6.  a battery that has been connected, and

   7.  disconnection of one or more batteries.

   Notifications 2-5 can use object batteryCellIdentifier to indicate a
   specific cell or a set of cells within the battery that have
   triggered the notification.

3.2.  Battery Technologies

   Static information in the batteryTable includes battery type and
   technology.  The battery type distinguishes primary (not
   rechargeable) batteries from rechargeable (secondary) batteries and
   capacitors.  The battery technology describes the actual technology
   of a battery, which typically is a chemical technology.

   Since battery technologies are the subject of intensive research and
   widely used technologies are often replaced by successor technologies
   within a few years, the list of battery technologies was not chosen
   as a fixed list.  Instead, IANA has created a registry for battery
   technologies at <http://www.iana.org/assignments/battery-
   technologies> where numbers are assigned to battery technologies.

   The table below shows battery technologies known today that are in
   commercial use with the numbers assigned to them by IANA.  New
   entries can be added to the IANA registry if new technologies are
   developed or if missing technologies are identified.  Note that there
   exists a huge number of battery types that are not listed in the IANA
   registry.  Many of them are experimental or cannot be used in an
   economically useful way.  New entries should be added to the IANA
   registry only if the respective technologies are in commercial use
   and relevant to standardized battery monitoring over the Internet.



















Quittek, et al.              Standards Track                    [Page 8]
^L
RFC 7577                       Battery MIB                     July 2015


      +--------------------------------+---------------+
      | Battery Technology             |      Value    |
      +--------------------------------+---------------+
      | Reserved                       |             0 |
      | Unknown                        |             1 |
      | Other                          |             2 |
      | Zinc-carbon                    |             3 |
      | Zinc chloride                  |             4 |
      | Nickel oxyhydroxide            |             5 |
      | Lithium-copper oxide           |             6 |
      | Lithium-iron disulfide         |             7 |
      | Lithium-manganese dioxide      |             8 |
      | Zinc-air                       |             9 |
      | Silver oxide                   |            10 |
      | Alkaline                       |            11 |
      | Lead-acid                      |            12 |
      | Valve-Regulated Lead-Acid, Gel |            13 |
      | Valve-Regulated Lead-Acid, AGM |            14 |
      | Nickel-cadmium                 |            15 |
      | Nickel-metal hydride           |            16 |
      | Nickel-zinc                    |            17 |
      | Lithium-ion                    |            18 |
      | Lithium polymer                |            19 |
      | Double layer capacitor         |            20 |
      | Unassigned                     | 21-4294967295 |
      +--------------------------------+---------------+

3.2.1.  Guidelines for Adding Battery Technologies

   New entries can be added to the IANA registry if new technologies are
   developed or if missing technologies are identified.  Note that there
   exists a huge number of battery types that are not listed in the IANA
   registry.  Many of them are experimental or cannot be used in an
   economically useful way.  New entries should be added to the IANA
   registry only if the respective technologies are in commercial use
   and relevant to standardized battery monitoring over the Internet.

3.3.  Battery Identification

   There are two identifiers to be used: the entPhysicalUUID defined in
   the Entity MIB [RFC6933] module and the batteryIdentifier defined in
   this module.  A battery is linked to an entPhysicalUUID through the
   shared entPhysicalIndex.

   The batteryIdentifier uniquely identifies the battery itself while
   the entPhysicalUUID identifies the slot of the device in which the
   battery is (currently) contained.  For a non-replaceable battery,
   both identifiers are always linked to the same physical battery.  But



Quittek, et al.              Standards Track                    [Page 9]
^L
RFC 7577                       Battery MIB                     July 2015


   for batteries that can be replaced, the identifiers have different
   functions.

   The entPhysicalUUID is always the same for a certain battery slot of
   a containing device even if the contained battery is replaced by
   another.  The batteryIdentifier is a representation of the battery
   identifier set by the battery manufacturer.  It is tied to the
   battery and usually cannot be changed.

   Many manufacturers deliver not just plain batteries but battery
   packages including additional hardware and firmware.  Typically,
   these modules include a battery identifier that can by retrieved by a
   device in which a battery has been installed.  The value of the
   object batteryIdentifier is an exact representation of this
   identifier.  The batteryIdentifier is useful when batteries are
   removed and reinstalled in the same device or in other devices.
   Then, the device or the network management system can trace batteries
   and achieve continuity of battery monitoring.

3.4.  Charging Cycles

   The lifetime of a battery can be approximated using the measure of
   charging cycles.  A commonly used definition of a charging cycle is
   the amount of discharge equal to the design (or nominal) capacity of
   the battery [SBS].  This means that a single charging cycle may
   include several steps of partial charging and discharging until the
   amount of discharging has reached the design capacity of the battery.
   After that, the next charging cycle immediately starts.

3.5.  Charge Control

   Managed object batteryChargingOperState indicates the current
   operational charging state of a battery and is a read-only object.
   For controlling the charging state, object batteryChargingAdminState
   can be used.  Writing to this object initiates a request to adapt the
   operational state according to the value that has been written.

   By default, the batteryChargingAdminState object is set to notSet(1).
   In this state, the charging controller is using its predefined
   policies to decide which operational state is suitable in the current
   situation.

   Setting the value of object batteryChargingAdminState may result in
   not changing the state of the battery to this value or even in
   setting the charging state to another value than the requested one.
   Due to operational conditions and limitations of the implementation
   of the Battery MIB module, changing the battery status according to a
   set value of object batteryChargingAdminState might not be possible.



Quittek, et al.              Standards Track                   [Page 10]
^L
RFC 7577                       Battery MIB                     July 2015


   For example, the charging controller might, at any time, decide to
   enter state discharging(5), if there is an operational need to use
   the battery for supplying power.

   The object batteryChargingAdminState will not automatically change
   when the object batteryChargingOperState changes.  If the operational
   state is changed, e.g., to the state discharging(5) due to
   operational conditions, the admin state will remain in its current
   state.  The charging controller SHOULD change the operational state
   to the state indicated by the object batteryChargingAdminState as
   soon as operational conditions allow this change.

   If a state change of the object batteryChargingAdminState is desired
   upon change of the operational state, the object
   batteryChargingOperState must be polled or the notification
   batteryChargingStateNotification must be used to get notified about
   the state change.  This could be used, e.g., if maintaining charge is
   not desired after fully charging a battery even if the charging
   controller and battery support it.  The object
   batteryChargingAdminState can then be set to doNotCharge(3) when the
   object batteryChargingOperState changes from charging(2) to
   maintainingCharge(3).  Another use case would be when performing
   several charge and discharge cycles for battery maintenance.

3.6.  Imported Definitions

   The BATTERY-MIB module defined in this document imports definitions
   from the following MIB modules: SNMPv2-SMI [RFC2578], SNMPv2-TC
   [RFC2579], SNMPv2-CONF [RFC2580], SNMP-FRAMEWORK-MIB [RFC3411], and
   ENTITY-MIB [RFC6933].

4.  Definitions

  BATTERY-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
      mib-2, Integer32, Unsigned32
          FROM SNMPv2-SMI                                -- RFC 2578
      DateAndTime
          FROM SNMPv2-TC                                 -- RFC 2579
      MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
          FROM SNMPv2-CONF                               -- RFC 2580
      SnmpAdminString
          FROM SNMP-FRAMEWORK-MIB                        -- RFC 3411
      entPhysicalIndex
          FROM ENTITY-MIB;                               -- RFC 6933




Quittek, et al.              Standards Track                   [Page 11]
^L
RFC 7577                       Battery MIB                     July 2015


  batteryMIB MODULE-IDENTITY
      LAST-UPDATED "201506150000Z"         -- 15 June 2015
      ORGANIZATION "IETF EMAN Working Group"
      CONTACT-INFO
          "General Discussion: eman@ietf.org
          To Subscribe: <http://www.ietf.org/mailman/listinfo/eman>
          Archive: <http://www.ietf.org/mail-archive/web/eman>

          Editor:
            Juergen Quittek
            NEC Europe, Ltd.
            NEC Laboratories Europe
            Kurfuersten-Anlage 36
            69115 Heidelberg
            Germany
            Tel: +49 6221 4342-115
            Email: quittek@neclab.eu"

      DESCRIPTION
          "This MIB module defines a set of objects for monitoring
          batteries of networked devices and of their components.

          Copyright (c) 2015 IETF Trust and the persons identified as
          authors of the code.  All rights reserved.

          Redistribution and use in source and binary forms, with or
          without modification, is permitted pursuant to, and subject
          to the license terms contained in, the Simplified BSD License
          set forth in Section 4.c of the IETF Trust's Legal Provisions
          Relating to IETF Documents
          (http://trustee.ietf.org/license-info).

          This version of this MIB module is part of RFC 7577; see
          the RFC itself for full legal notices."
  --  Revision history

      REVISION "201506150000Z"         -- 15 June 2015
      DESCRIPTION
          "Initial version published as RFC 7577."

      ::= { mib-2 233 }










Quittek, et al.              Standards Track                   [Page 12]
^L
RFC 7577                       Battery MIB                     July 2015


  --******************************************************************
  -- Top-Level Structure of the MIB Module
  --******************************************************************

  batteryNotifications OBJECT IDENTIFIER ::= { batteryMIB 0 }
  batteryObjects       OBJECT IDENTIFIER ::= { batteryMIB 1 }
  batteryConformance   OBJECT IDENTIFIER ::= { batteryMIB 2 }

  --==================================================================
  -- 1.  Object Definitions
  --==================================================================

  --------------------------------------------------------------------
  -- 1.1.  Battery Table
  --------------------------------------------------------------------
  batteryTable  OBJECT-TYPE
      SYNTAX      SEQUENCE OF BatteryEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table provides information on batteries.  It contains
          one conceptual row per battery in a managed entity.

          Batteries are indexed by the entPhysicalIndex of the
          entPhysicalTable defined in the ENTITY-MIB (RFC 6933).

          For implementations of the BATTERY-MIB, an implementation of
          the ENTITY-MIB complying with the entity4CRCompliance
          MODULE-COMPLIANCE statement of the ENTITY-MIB is required.

          If batteries are replaced, and the replacing battery uses
          the same physical connector as the replaced battery, then
          the replacing battery SHOULD be indexed with the same value
          of object entPhysicalIndex as the replaced battery."
      ::= { batteryObjects 1 }

  batteryEntry OBJECT-TYPE
      SYNTAX      BatteryEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "An entry providing information on a battery."
      INDEX  { entPhysicalIndex }
      ::= { batteryTable 1 }







Quittek, et al.              Standards Track                   [Page 13]
^L
RFC 7577                       Battery MIB                     July 2015


  BatteryEntry ::=
      SEQUENCE {
         batteryIdentifier               SnmpAdminString,
         batteryFirmwareVersion          SnmpAdminString,
         batteryType                     INTEGER,
         batteryTechnology               Unsigned32,
         batteryDesignVoltage            Unsigned32,
         batteryNumberOfCells            Unsigned32,
         batteryDesignCapacity           Unsigned32,
         batteryMaxChargingCurrent       Unsigned32,
         batteryTrickleChargingCurrent   Unsigned32,
         batteryActualCapacity           Unsigned32,
         batteryChargingCycleCount       Unsigned32,
         batteryLastChargingCycleTime    DateAndTime,
         batteryChargingOperState        INTEGER,
         batteryChargingAdminState       INTEGER,
         batteryActualCharge             Unsigned32,
         batteryActualVoltage            Unsigned32,
         batteryActualCurrent            Integer32,
         batteryTemperature              Integer32,
         batteryAlarmLowCharge           Unsigned32,
         batteryAlarmLowVoltage          Unsigned32,
         batteryAlarmLowCapacity         Unsigned32,
         batteryAlarmHighCycleCount      Unsigned32,
         batteryAlarmHighTemperature     Integer32,
         batteryAlarmLowTemperature      Integer32,
         batteryCellIdentifier           SnmpAdminString
      }

  batteryIdentifier OBJECT-TYPE
      SYNTAX      SnmpAdminString
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object contains an identifier for the battery.

          Many manufacturers deliver not only simple batteries but
          battery packages including additional hardware and firmware.
          Typically, these modules include an identifier that can be
          retrieved by a device in which a battery has been installed.
          The identifier is useful when batteries are removed and
          reinstalled in the same or other devices.  Then, the device
          or the network management system can trace batteries and
          achieve continuity of battery monitoring.

          If the battery is identified by more than one value,
          for example, by a model number and a serial number,
          then the value of this object is a concatenation of these



Quittek, et al.              Standards Track                   [Page 14]
^L
RFC 7577                       Battery MIB                     July 2015


          values, separated by the colon symbol ':'.  The values
          should be ordered so that a more significant value comes
          before a less significant one.  In the example above, the
          (more significant) model number would be first, and the serial
          number would follow: '<model number>:<serial number>'.

          If the battery identifier cannot be represented using the
          ISO/IEC IS 10646-1 character set, then a hexadecimal
          encoding of a binary representation of the entire battery
          identifier must be used.

          The value of this object must be an empty string if there
          is no battery identifier or if the battery identifier is
          unknown."
      ::= { batteryEntry 1 }

  batteryFirmwareVersion OBJECT-TYPE
      SYNTAX      SnmpAdminString
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object indicates the version number of the firmware
          that is included in a battery module.

          Many manufacturers deliver not pure batteries but battery
          packages including additional hardware and firmware.

          Since the behavior of the battery may change with the
          firmware, it may be useful to retrieve the firmware version
          number.

          The value of this object must be an empty string if there
          is no firmware or if the version number of the firmware is
          unknown."
      ::= { batteryEntry 2 }

  batteryType OBJECT-TYPE
      SYNTAX      INTEGER {
                      unknown(1),
                      other(2),
                      primary(3),
                      rechargeable(4),
                      capacitor(5)
                  }
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object indicates the type of battery.



Quittek, et al.              Standards Track                   [Page 15]
^L
RFC 7577                       Battery MIB                     July 2015


          It distinguishes between primary (not rechargeable)
          batteries, rechargeable (secondary) batteries, and
          capacitors.  Capacitors are not really batteries but
          are often used in the same way as a battery.

          The value other(2) can be used if the battery type is known
          but is none of the ones above.  Value unknown(1) is to be used
          if the type of battery cannot be determined."

      ::= { batteryEntry 3 }

  batteryTechnology OBJECT-TYPE
      SYNTAX      Unsigned32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object indicates the technology used by the battery.
          Numbers identifying battery technologies are registered at
          IANA.  A current list of assignments can be found at
          <http://www.iana.org/assignments/battery-technologies>.

          Value unknown(1) MUST be used if the technology of the
          battery cannot be determined.

          Value other(2) can be used if the battery technology is known
          but is not one of the types already registered at IANA."
      ::= { batteryEntry 4 }

  batteryDesignVoltage OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "millivolt"
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object provides the design (or nominal) voltage of the
          battery in units of millivolt (mV).

          Note that the design voltage is a constant value and
          typically different from the actual voltage of the battery.

          A value of 0 indicates that the design voltage is unknown."
      ::= { batteryEntry 5 }

  batteryNumberOfCells OBJECT-TYPE
      SYNTAX      Unsigned32
      MAX-ACCESS  read-only
      STATUS      current




Quittek, et al.              Standards Track                   [Page 16]
^L
RFC 7577                       Battery MIB                     July 2015


      DESCRIPTION
          "This object indicates the number of cells contained in the
          battery.

          A value of 0 indicates that the number of cells is unknown."
      ::= { batteryEntry 6 }

  batteryDesignCapacity OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "milliampere hours"
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object provides the design (or nominal) capacity of
          the battery in units of milliampere hours (mAh).

          Note that the design capacity is a constant value and
          typically different from the actual capacity of the battery.
          Usually, this is a value provided by the manufacturer of the
          battery.

          A value of 0 indicates that the design capacity is
          unknown."
      ::= { batteryEntry 7 }

  batteryMaxChargingCurrent OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "milliampere"
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object provides the maximum current to be used for
          charging the battery in units of milliampere (mA).

          Note that the maximum charging current may not lead to
          optimal charge of the battery and that some batteries can
          only be charged with the maximum current for a limited
          amount of time.

          A value of 0 indicates that the maximum charging current is
          unknown."
      ::= { batteryEntry 8 }

  batteryTrickleChargingCurrent OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "milliampere"
      MAX-ACCESS  read-only
      STATUS      current



Quittek, et al.              Standards Track                   [Page 17]
^L
RFC 7577                       Battery MIB                     July 2015


      DESCRIPTION
          "This object provides the recommended average current
          to be used for trickle charging the battery in units of
          mA.

          Typically, this is a value recommended by the manufacturer
          of the battery or by the manufacturer of the charging
          circuit.

          A value of 0 indicates that the recommended trickle charging
          current is unknown."
      ::= { batteryEntry 9 }

  batteryActualCapacity OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "milliampere hours"
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object provides the actual capacity of the
          battery in units of mAh.

          Typically, the actual capacity of a battery decreases
          with time and with usage of the battery.  It is usually
          lower than the design capacity.

          Note that the actual capacity needs to be measured and is
          typically an estimate based on observed discharging and
          charging cycles of the battery.

          A value of 'ffffffff'H indicates that the actual capacity
          cannot be determined."
      ::= { batteryEntry 10 }

  batteryChargingCycleCount OBJECT-TYPE
      SYNTAX      Unsigned32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object indicates the number of completed charging
          cycles that the battery underwent.  In line with the
          Smart Battery Data Specification Revision 1.1, a charging
          cycle is defined as the process of discharging the battery
          by a total amount equal to the battery design capacity as
          given by object batteryDesignCapacity.  A charging cycle
          may include several steps of charging and discharging the
          battery until the discharging amount given by
          batteryDesignCapacity has been reached.  As soon as a



Quittek, et al.              Standards Track                   [Page 18]
^L
RFC 7577                       Battery MIB                     July 2015


          charging cycle has been completed, the next one starts
          immediately, independent of the battery's current charge at
          the end of the cycle.

          For batteries of type primary(3), the value of this object is
          always 0.

          A value of 'ffffffff'H indicates that the number of charging
          cycles cannot be determined."
      ::= { batteryEntry 11 }

  batteryLastChargingCycleTime OBJECT-TYPE
      SYNTAX      DateAndTime
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "The date and time of the last charging cycle.  The value
          '0000000000000000'H is returned if the battery has not been
          charged yet or if the last charging time cannot be
          determined.

          For batteries of type primary(1), the value of this object is
          always '0000000000000000'H."
      ::= { batteryEntry 12 }

  batteryChargingOperState OBJECT-TYPE
      SYNTAX      INTEGER {
                      unknown(1),
                      charging(2),
                      maintainingCharge(3),
                      noCharging(4),
                      discharging(5)
                  }
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object indicates the current charging state of the
          battery.

          Value unknown(1) indicates that the charging state of the
          battery cannot be determined.

          Value charging(2) indicates that the battery is being
          charged in a way such that the charge of the battery
          increases.

          Value maintainingCharge(3) indicates that the battery is
          being charged with a low-average current that compensates



Quittek, et al.              Standards Track                   [Page 19]
^L
RFC 7577                       Battery MIB                     July 2015


          self-discharging.  This includes trickle charging, float
          charging, and other methods for maintaining the current
          charge of a battery.  In typical implementations of charging
          controllers, state maintainingCharge(3) is only applied
          if the battery is fully charged or almost fully charged.

          Value noCharging(4) indicates that the battery is not being
          charged or discharged by electric current between the
          battery and electric circuits external to the battery.
          Note that the battery may still be subject to
          self-discharging.

          Value discharging(5) indicates that the battery is either
          used as the power source for electric circuits external to
          the battery or discharged intentionally by the
          charging controller, e.g., for the purpose of battery
          maintenance.  In any case, the charge of the battery
          decreases."
      ::= { batteryEntry 13 }

  batteryChargingAdminState OBJECT-TYPE
      SYNTAX      INTEGER {
                      notSet(1),
                      charge(2),
                      doNotCharge(3),
                      discharge(4)
                  }
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
          "The value of this object indicates the desired
          charging state of the battery.  The real state is
          indicated by object batteryChargingOperState.  See the
          definition of object batteryChargingOperState for a
          description of the values.

          When this object is initialized by an implementation of the
          BATTERY-MIB module, its value is set to notSet(1).  In this
          case, the charging controller is free to choose which
          operational state is suitable.

          When the batteryChargingAdminState object is set, then the
          BATTERY-MIB implementation must try to set the battery
          to the indicated state.  The result will be indicated by
          object batteryChargingOperState.

          Setting object batteryChargingAdminState to value notSet(1)
          is a request to the charging controller to operate



Quittek, et al.              Standards Track                   [Page 20]
^L
RFC 7577                       Battery MIB                     July 2015


          autonomously and choose the operational state that is
          suitable.

          Setting object batteryChargingAdminState to value charge(2)
          is a request to enter the operational state charging(2) until
          the battery is fully charged.  When the battery is fully
          charged, or if the battery was already fully charged or
          almost fully charged at the time of the request, the
          operational state will change to maintainingCharge(3) if the
          charging controller and the battery support the functionality
          of maintaining the charge, or it will change to noCharging(4)
          otherwise.

          Setting object batteryChargingAdminState to value
          doNotCharge(3) is a request for entering operational
          state noCharging(4).

          Setting object batteryChargingAdminState to value
          discharge(4) is a request for entering operational
          state discharging(5).  Discharging can be accomplished
          by ordinary use, applying a dedicated load, or any other
          means.  An example for applying this state is battery
          maintenance.  If the battery is empty or almost empty, the
          operational state will change to noCharging(4).
          The charging controller will decide which charge condition
          will be considered empty dependent on the battery
          technology used.  This is done to avoid damage on the
          battery due to deep discharge.

          Due to operational conditions and limitations of the
          implementation of the BATTERY-MIB module, changing the
          battery status according to a set value of object
          batteryChargingAdminState may not be possible.
          Setting the value of object batteryChargingAdminState
          may result in not changing the state of the battery
          to this value or even in setting the charging state
          to another value than the requested one.  For example,
          the charging controller might at any time decide to
          enter state discharging(5), if there is an operational need
          to use the battery for supplying power."
      ::= { batteryEntry 14 }

  batteryActualCharge OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "milliampere hours"
      MAX-ACCESS  read-only
      STATUS      current




Quittek, et al.              Standards Track                   [Page 21]
^L
RFC 7577                       Battery MIB                     July 2015


      DESCRIPTION
          "This object provides the actual charge of the battery
          in units of mAh.

          Note that the actual charge needs to be measured and is
          typically an estimate based on observed discharging and
          charging cycles of the battery.

          A value of 'ffffffff'H indicates that the actual charge
          cannot be determined."
      ::= { batteryEntry 15 }

  batteryActualVoltage OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "millivolt"
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object provides the actual voltage of the battery
          in units of mV.

          A value of 'ffffffff'H indicates that the actual voltage
          cannot be determined."
      ::= { batteryEntry 16 }

  batteryActualCurrent OBJECT-TYPE
      SYNTAX      Integer32
      UNITS       "milliampere"
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object provides the actual charging or discharging
          current of the battery in units of mA.
          The charging current is represented by positive values,
          and the discharging current is represented by negative values.

          A value of '7fffffff'H indicates that the actual current
          cannot be determined."
      ::= { batteryEntry 17 }

  batteryTemperature OBJECT-TYPE
      SYNTAX      Integer32
      UNITS       "deci-degrees Celsius"
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "The ambient temperature at or within close proximity
          of the battery.



Quittek, et al.              Standards Track                   [Page 22]
^L
RFC 7577                       Battery MIB                     July 2015


          A value of '7fffffff'H indicates that the temperature
          cannot be determined."
      ::= { batteryEntry 18 }

  batteryAlarmLowCharge OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "milliampere hours"
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
          "This object provides the lower-threshold value for object
          batteryActualCharge.  If the value of object
          batteryActualCharge falls below this threshold,
          a low-battery alarm will be raised.  The alarm procedure may
          include generating a batteryLowNotification.

          This object should be set to a value such that when the
          batteryLowNotification is generated, the battery is still
          sufficiently charged to keep the device(s) that it powers
          operational for a time long enough to take actions before
          the powered device(s) enters a 'sleep' or 'off' state.

          A value of 0 indicates that no alarm will be raised for any
          value of object batteryActualVoltage."
      ::= { batteryEntry 19 }

    batteryAlarmLowVoltage OBJECT-TYPE
        SYNTAX      Unsigned32
        UNITS       "millivolt"
        MAX-ACCESS  read-write
        STATUS      current
        DESCRIPTION
            "This object provides the lower-threshold value for object
            batteryActualVoltage.  If the value of object
            batteryActualVoltage falls below this threshold,
            a low-battery alarm will be raised.  The alarm procedure may
            include generating a batteryLowNotification.

            This object should be set to a value such that when the
            batteryLowNotification is generated, the battery is still
            sufficiently charged to keep the device(s) that it powers
            operational for a time long enough to take actions before
            the powered device(s) enters a 'sleep' or 'off' state.

            A value of 0 indicates that no alarm will be raised for any
            value of object batteryActualVoltage."
        ::= { batteryEntry 20 }




Quittek, et al.              Standards Track                   [Page 23]
^L
RFC 7577                       Battery MIB                     July 2015


  batteryAlarmLowCapacity OBJECT-TYPE
      SYNTAX      Unsigned32
      UNITS       "milliampere hours"
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
          "This object provides the lower-threshold value for object
          batteryActualCapacity.  If the value of object
          batteryActualCapacity falls below this threshold,
          a battery aging alarm will be raised.  The alarm procedure
          may include generating a batteryAgingNotification.

          A value of 0 indicates that no alarm will be raised for any
          value of object batteryActualCapacity."
      ::= { batteryEntry 21 }

  batteryAlarmHighCycleCount OBJECT-TYPE
      SYNTAX      Unsigned32
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
          "This object provides the upper-threshold value for object
          batteryChargingCycleCount.  If the value of object
          batteryChargingCycleCount rises above this threshold,
          a battery aging alarm will be raised.  The alarm procedure
          may include generating a batteryAgingNotification.

          A value of 0 indicates that no alarm will be raised for any
          value of object batteryChargingCycleCount."
      ::= { batteryEntry 22 }

  batteryAlarmHighTemperature OBJECT-TYPE
      SYNTAX      Integer32
      UNITS       "deci-degrees Celsius"
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
          "This object provides the upper-threshold value for object
          batteryTemperature.  If the value of object
          batteryTemperature rises above this threshold, a battery
          high temperature alarm will be raised.  The alarm procedure
          may include generating a batteryTemperatureNotification.

          A value of '7fffffff'H indicates that no alarm will be
          raised for any value of object batteryTemperature."
      ::= { batteryEntry 23 }





Quittek, et al.              Standards Track                   [Page 24]
^L
RFC 7577                       Battery MIB                     July 2015


  batteryAlarmLowTemperature OBJECT-TYPE
      SYNTAX      Integer32
      UNITS       "deci-degrees Celsius"
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
          "This object provides the lower-threshold value for object
          batteryTemperature.  If the value of object
          batteryTemperature falls below this threshold, a battery
          low temperature alarm will be raised.  The alarm procedure
          may include generating a batteryTemperatureNotification.

          A value of '7fffffff'H indicates that no alarm will be
          raised for any value of object batteryTemperature."
      ::= { batteryEntry 24 }

  batteryCellIdentifier OBJECT-TYPE
      SYNTAX      SnmpAdminString
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "The value of this object identifies one or more cells of a
          battery.  The format of the cell identifier may vary between
          different implementations.  It should uniquely identify one
          or more cells of the indexed battery.

          This object can be used for batteries, such as lithium
          polymer batteries for which battery controllers monitor
          cells individually.

          This object is used by notifications of types
          batteryLowNotification, batteryTemperatureNotification,
          batteryCriticalNotification, and batteryAgingNotification.
          These notifications can use the value of this object to
          indicate the event that triggered the generation of the
          notification in more detail by specifying a single cell
          or a set of cells within the battery that is specifically
          addressed by the notification.

          An example use case for this object is a single cell in a
          battery that exceeds the temperature indicated by object
          batteryAlarmHighTemperature.  In such a case, a
          batteryTemperatureNotification can be generated that not
          only indicates the battery for which the temperature limit
          has been exceeded but also the particular cell.

          The initial value of this object is the empty string.  The
          value of this object is set each time a



Quittek, et al.              Standards Track                   [Page 25]
^L
RFC 7577                       Battery MIB                     July 2015


          batteryLowNotification, batteryTemperatureNotification,
          batteryCriticalNotification, or batteryAgingNotification
          is generated.

          When a notification is generated that does not indicate a
          specific cell or set of cells, the value of this object is
          set to the empty string."
      ::= { batteryEntry 25 }

  --==================================================================
  -- 2.  Notifications
  --==================================================================

  batteryChargingStateNotification NOTIFICATION-TYPE
      OBJECTS     {
          batteryChargingOperState
      }
      STATUS      current
      DESCRIPTION
          "This notification can be generated when a charging state
          of the battery (indicated by the value of object
          batteryChargingOperState) is triggered by an event other
          than a write action to object batteryChargingAdminState.
          Such an event may, for example, be triggered by a local
          battery controller."
      ::= { batteryNotifications 1 }

  batteryLowNotification NOTIFICATION-TYPE
      OBJECTS     {
          batteryActualCharge,
          batteryActualVoltage,
          batteryCellIdentifier
      }
      STATUS      current
      DESCRIPTION
          "This notification can be generated when the current charge
          (batteryActualCharge) or the current voltage
          (batteryActualVoltage) of the battery falls below a
          threshold defined by object batteryAlarmLowCharge or object
          batteryAlarmLowVoltage, respectively.

          Note that, typically, this notification is generated in a
          state where the battery is still sufficiently charged to keep
          the device(s) that it powers operational for some time.
          If the charging state of the battery has become critical,
          i.e., the device(s) powered by the battery must go to a
          'sleep' or 'off' state, then the batteryCriticalNotification
          should be used instead.



Quittek, et al.              Standards Track                   [Page 26]
^L
RFC 7577                       Battery MIB                     July 2015


          If the low charge or voltage has been detected for a single
          cell or a set of cells of the battery and not for the entire
          battery, then object batteryCellIdentifier should be set to
          a value that identifies the cell or set of cells.
          Otherwise, the value of object batteryCellIdentifier should
          be set to the empty string when this notification is
          generated.

          The notification should not be sent again for the same
          battery or cell before either (a) the current voltage or
          the current charge, respectively, has become higher than the
          corresponding threshold through charging or (b) an indication
          of a maintenance action has been detected, such as a battery
          disconnection event or a reinitialization of the battery
          monitoring system.

          This notification should not be sent when the battery is in
          a charging mode, i.e., the value of object
          batteryChargingOperState is charging(2)."
      ::= { batteryNotifications 2 }

  batteryCriticalNotification NOTIFICATION-TYPE
      OBJECTS     {
          batteryActualCharge,
          batteryActualVoltage,
          batteryCellIdentifier
      }
      STATUS      current
      DESCRIPTION
          "This notification can be generated when the current charge
          of the battery falls so low that it cannot provide a
          sufficient power supply function for regular operation
          of the powered device(s).  The battery needs to be charged
          before it can be used for regular power supply again.  The
          battery may still provide sufficient power for a 'sleep'
          mode of a powered device(s) or for a transition into an 'off'
          mode.

          If the critical state is caused by a single cell or a set of
          cells of the battery, then object batteryCellIdentifier
          should be set to a value that identifies the cell or set of
          cells.  Otherwise, the value of object batteryCellIdentifier
          should be set to the empty string when this notification is
          generated.

          The notification should not be sent again for the same
          battery before either the battery charge has increased
          through charging to a non-critical value or an indication



Quittek, et al.              Standards Track                   [Page 27]
^L
RFC 7577                       Battery MIB                     July 2015


          of a maintenance action has been detected, such as a battery
          disconnection event or a reinitialization of the battery
          monitoring system.

          This notification should not be sent when the battery is in
          a charging mode, i.e., the value of object
          batteryChargingOperState is charging(2)."
      ::= { batteryNotifications 3 }

  batteryTemperatureNotification NOTIFICATION-TYPE
      OBJECTS     {
          batteryTemperature,
          batteryCellIdentifier
      }
      STATUS      current
      DESCRIPTION
          "This notification can be generated when the measured
          temperature (batteryTemperature) rises above the threshold
          defined by object batteryAlarmHighTemperature or falls
          below the threshold defined by object
          batteryAlarmLowTemperature.

          If the low or high temperature has been detected for a
          single cell or a set of cells of the battery and not for the
          entire battery, then object batteryCellIdentifier should be
          set to a value that identifies the cell or set of cells.
          Otherwise, the value of object batteryCellIdentifier should
          be set to the empty string when this notification is
          generated.

          It may occur that the temperature alternates between values
          slightly below and slightly above a threshold.  For limiting
          the notification rate in such a case, this notification
          should not be sent again for the same battery or cell,
          respectively, within a time interval of 10 minutes.

          An exception to the rate limitations occurs immediately
          after the reinitialization of the battery monitoring system.
          At this point in time, if the battery temperature is above
          the threshold defined by object batteryAlarmHighTemperature
          or below the threshold defined by object
          batteryAlarmLowTemperature, respectively, then this
          notification should be sent, independent of the time at
          which previous notifications for the same battery or cell,
          respectively, had been sent."
      ::= { batteryNotifications 4 }





Quittek, et al.              Standards Track                   [Page 28]
^L
RFC 7577                       Battery MIB                     July 2015


  batteryAgingNotification NOTIFICATION-TYPE
      OBJECTS     {
          batteryActualCapacity,
          batteryChargingCycleCount,
          batteryCellIdentifier
      }
      STATUS      current
      DESCRIPTION
          "This notification can be generated when the actual
          capacity (batteryActualCapacity) falls below a threshold
          defined by object batteryAlarmLowCapacity
          or when the charging cycle count of the battery
          (batteryChargingCycleCount) exceeds the threshold defined
          by object batteryAlarmHighCycleCount.

          If the aging has been detected for a single cell or a set
          of cells of the battery and not for the entire battery, then
          object batteryCellIdentifier should be set to a value that
          identifies the cell or set of cells.  Otherwise, the value
          of object batteryCellIdentifier should be set to the empty
          string when this notification is generated.

          This notification should not be sent again for the same
          battery or cell, respectively, before an indication of a
          maintenance action has been detected, such as a battery
          disconnection event or a reinitialization of the battery
          monitoring system."
      ::= { batteryNotifications 5 }

  batteryConnectedNotification NOTIFICATION-TYPE
      OBJECTS     {
          batteryIdentifier
      }
      STATUS      current
      DESCRIPTION
          "This notification can be generated when it has been
          detected that a battery has been connected.  The battery
          can be identified by the value of object batteryIdentifier
          as well as by the value of index entPhysicalIndex that is
          contained in the OID of object batteryIdentifier."
      ::= { batteryNotifications 6 }

  batteryDisconnectedNotification NOTIFICATION-TYPE
      STATUS      current
      DESCRIPTION
          "This notification can be generated when it has been
          detected that one or more batteries have been disconnected."
      ::= { batteryNotifications 7 }



Quittek, et al.              Standards Track                   [Page 29]
^L
RFC 7577                       Battery MIB                     July 2015


  --==================================================================
  -- 3.  Conformance Information
  --==================================================================

  batteryCompliances OBJECT IDENTIFIER ::= { batteryConformance 1 }
  batteryGroups      OBJECT IDENTIFIER ::= { batteryConformance 2 }

  --------------------------------------------------------------------
  -- 3.1.  Compliance Statements
  --------------------------------------------------------------------

  batteryCompliance MODULE-COMPLIANCE
      STATUS      current
      DESCRIPTION
          "The compliance statement for implementations of the
          BATTERY-MIB module.

          A compliant implementation MUST implement the objects
          defined in the mandatory groups batteryDescriptionGroup
          and batteryStatusGroup.

          Note that this compliance statement requires
          compliance with the entity4CRCompliance
          MODULE-COMPLIANCE statement of the
          ENTITY-MIB (RFC 6933)."
      MODULE  -- this module
          MANDATORY-GROUPS {
              batteryDescriptionGroup,
              batteryStatusGroup
          }

          GROUP   batteryAlarmThresholdsGroup
          DESCRIPTION
             "A compliant implementation does not have to implement
              the batteryAlarmThresholdsGroup."

          GROUP   batteryNotificationsGroup
          DESCRIPTION
             "A compliant implementation does not have to implement
              the batteryNotificationsGroup."

          GROUP   batteryPerCellNotificationsGroup
          DESCRIPTION
             "A compliant implementation does not have to implement
              the batteryPerCellNotificationsGroup."

          GROUP   batteryAdminGroup
          DESCRIPTION



Quittek, et al.              Standards Track                   [Page 30]
^L
RFC 7577                       Battery MIB                     July 2015


             "A compliant implementation does not have to implement
              the batteryAdminGroup."

          OBJECT batteryAlarmLowCharge
          MIN-ACCESS  read-only
          DESCRIPTION
              "A compliant implementation is not required
              to support set operations on this object."

          OBJECT batteryAlarmLowVoltage
          MIN-ACCESS  read-only
          DESCRIPTION
              "A compliant implementation is not required
              to support set operations on this object."

          OBJECT batteryAlarmLowCapacity
          MIN-ACCESS  read-only
          DESCRIPTION
              "A compliant implementation is not required
              to support set operations on this object."

          OBJECT batteryAlarmHighCycleCount
          MIN-ACCESS  read-only
          DESCRIPTION
              "A compliant implementation is not required
              to support set operations on this object."

          OBJECT batteryAlarmHighTemperature
          MIN-ACCESS  read-only
          DESCRIPTION
              "A compliant implementation is not required
              to support set operations on this object."

          OBJECT batteryAlarmLowTemperature
          MIN-ACCESS  read-only
          DESCRIPTION
              "A compliant implementation is not required
              to support set operations on this object."

      ::= { batteryCompliances 1 }

  --------------------------------------------------------------------
  -- 3.2.  MIB Grouping
  --------------------------------------------------------------------

  batteryDescriptionGroup OBJECT-GROUP
      OBJECTS {
         batteryIdentifier,



Quittek, et al.              Standards Track                   [Page 31]
^L
RFC 7577                       Battery MIB                     July 2015


         batteryFirmwareVersion,
         batteryType,
         batteryTechnology,
         batteryDesignVoltage,
         batteryNumberOfCells,
         batteryDesignCapacity,
         batteryMaxChargingCurrent,
         batteryTrickleChargingCurrent
      }
      STATUS      current
      DESCRIPTION
         "A compliant implementation MUST implement the objects
         contained in this group."
      ::= { batteryGroups 1 }

  batteryStatusGroup OBJECT-GROUP
      OBJECTS {
         batteryActualCapacity,
         batteryChargingCycleCount,
         batteryLastChargingCycleTime,
         batteryChargingOperState,
         batteryActualCharge,
         batteryActualVoltage,
         batteryActualCurrent,
         batteryTemperature
      }
      STATUS      current
      DESCRIPTION
         "A compliant implementation MUST implement the objects
         contained in this group."
      ::= { batteryGroups 2 }

  batteryAdminGroup OBJECT-GROUP
      OBJECTS {
         batteryChargingAdminState
      }
      STATUS      current
      DESCRIPTION
         "A compliant implementation does not have to implement the
         object contained in this group."
      ::= { batteryGroups 3 }

  batteryAlarmThresholdsGroup OBJECT-GROUP
      OBJECTS {
         batteryAlarmLowCharge,
         batteryAlarmLowVoltage,
         batteryAlarmLowCapacity,
         batteryAlarmHighCycleCount,



Quittek, et al.              Standards Track                   [Page 32]
^L
RFC 7577                       Battery MIB                     July 2015


         batteryAlarmHighTemperature,
         batteryAlarmLowTemperature
      }
      STATUS      current
      DESCRIPTION
         "A compliant implementation does not have to implement the
         objects contained in this group."
      ::= { batteryGroups 4 }

  batteryNotificationsGroup NOTIFICATION-GROUP
      NOTIFICATIONS {
         batteryChargingStateNotification,
         batteryLowNotification,
         batteryCriticalNotification,
         batteryAgingNotification,
         batteryTemperatureNotification,
         batteryConnectedNotification,
         batteryDisconnectedNotification
      }
      STATUS      current
      DESCRIPTION
          "A compliant implementation does not have to implement the
          notifications contained in this group."
      ::= { batteryGroups 5 }

  batteryPerCellNotificationsGroup OBJECT-GROUP
      OBJECTS {
         batteryCellIdentifier
      }
      STATUS      current
      DESCRIPTION
          "A compliant implementation does not have to implement the
          object contained in this group."
      ::= { batteryGroups 6 }
  END

5.  Security Considerations

   There are a number of management objects defined in this MIB module
   with a MAX-ACCESS clause of read-write.  Such objects may be
   considered sensitive or vulnerable in some network environments.  The
   support for SET operations in a non-secure environment without proper
   protection opens devices to attack.  These are the tables and objects
   and their sensitivity/vulnerability:

   o  batteryChargingAdminState:
      Setting the battery charging state can be beneficial for an
      operator for various reasons such as charging batteries when the



Quittek, et al.              Standards Track                   [Page 33]
^L
RFC 7577                       Battery MIB                     July 2015


      price of electricity is low.  However, setting the charging state
      can be used by an attacker to discharge batteries of devices and
      thereby switching these devices off if they are powered solely by
      batteries.  In particular, if the batteryAlarmLowCharge and
      batteryAlarmLowVoltage can also be set, this attack will go
      unnoticed (i.e., no notifications are sent).

   o  batteryAlarmLowCharge and batteryAlarmLowVoltage:
      These objects set the threshold for an alarm to be raised when the
      battery charge or voltage falls below the corresponding one of
      them.  An attacker setting one of these alarm values can switch
      off the alarm by setting it to the 'off' value 0, or it can modify
      the alarm behavior by setting it to any other value.  The result
      may be loss of data if the battery runs empty without warning to a
      recipient expecting such a notification.

   o  batteryAlarmLowCapacity and batteryAlarmHighCycleCount:
      These objects set the threshold for an alarm to be raised when the
      battery becomes older and less performant than required for stable
      operation.  An attacker setting this alarm value can switch off
      the alarm by setting it to the 'off' value 0 or modify the alarm
      behavior by setting it to any other value.  This may lead to
      either a costly replacement of a working battery or use of
      batteries that are too old or too weak.  The consequence of the
      latter could be that, e.g., a battery cannot provide power long
      enough between two scheduled charging actions causing the powered
      device to shut down and potentially lose data.

   o  batteryAlarmHighTemperature and batteryAlarmLowTemperature:
      These objects set thresholds for an alarm to be raised when the
      battery rises above / falls below them.  An attacker setting one
      of these alarm values can switch off these alarms by setting them
      to the 'off' value '7fffffff'H, or it can modify the alarm
      behavior by setting them to any other value.  The result may be,
      e.g., an unnecessary shutdown of a device if
      batteryAlarmHighTemperature is set too low, there is damage to the
      device by temperatures that are too high if switched off or set to
      values that are too high, or there is damage to the battery when,
      e.g., it is being charged.  Batteries can also be damaged, e.g.,
      in an attempt to charge them at temperatures that are too low.

   Some of the readable objects in this MIB module (i.e., objects with a
   MAX-ACCESS other than not-accessible) may be considered sensitive or
   vulnerable in some network environments.  It is thus important to
   control even GET and/or NOTIFY access to these objects and possibly
   to even encrypt the values of these objects when sending them over
   the network via SNMP.  These are the tables and objects and their
   sensitivity/vulnerability:



Quittek, et al.              Standards Track                   [Page 34]
^L
RFC 7577                       Battery MIB                     July 2015


   All potentially sensible or vulnerable objects of this MIB module are
   in the batteryTable.  In general, there are no serious operational
   vulnerabilities foreseen in case of an unauthorized read access to
   this table.  However, corporate confidentiality issues need to be
   considered.  The following information or parts of it might be a
   trade secret:

   o  the number of batteries installed in a managed node (batteryIndex)

   o  properties of these batteries (batteryActualCapacity and
      batteryChargingCycleCount)

   o  the time at which the next replacement cycle for batteries can be
      expected (batteryAlarmLowCapacity and batteryAlarmHighCycleCount)

   o  the types of batteries in use and their firmware versions
      (batteryIdentifier, batteryFirmwareVersion, batteryType, and
      batteryTechnology)

   For any battery-powered device whose use can be correlated to an
   individual or a small group of individuals, the following objects
   have the potential to reveal information about those individuals'
   activities or habits (e.g., if they are near a power outlet, if they
   have been using their devices heavily, etc.):

   o  batteryChargingCycleCount

   o  batteryLastChargingCycleTime

   o  batteryChargingOperState

   o  batteryActualCharge

   o  batteryActualVoltage

   o  batteryActualCurrent

   o  batteryTemperature

   o  batteryAlarmLowCharge

   o  batteryAlarmLowVoltage

   o  batteryAlarmLowCapacity

   o  batteryAlarmHighCycleCount

   o  batteryAlarmHighTemperature



Quittek, et al.              Standards Track                   [Page 35]
^L
RFC 7577                       Battery MIB                     July 2015


   o  batteryAlarmLowTemperature

   Implementers of this specification should use appropriate privacy
   protections as discussed in Section 9 of "Requirements for Energy
   Management" [RFC6988].  Battery monitoring of devices used by
   individuals or in homes should only occur with proper authorization.

   SNMP versions prior to SNMPv3 did not include adequate security.
   Even if the network itself is secure (for example by using IPsec),
   there is no control as to who on the secure network is allowed to
   access and GET/SET (read/change/create/delete) the objects in this
   MIB module.

   Implementations SHOULD provide the security features described by the
   SNMPv3 framework (see [RFC3410]), and implementations claiming
   compliance to the SNMPv3 standard MUST include full support for
   authentication and privacy via the User-based Security Model (USM)
   [RFC3414] with the AES cipher algorithm [RFC3826].  Implementations
   MAY also provide support for the Transport Security Model (TSM)
   [RFC5591] in combination with a secure transport such as SSH
   [RFC5592] or TLS/DTLS [RFC6353].

   Further, deployment of SNMP versions prior to SNMPv3 is NOT
   RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
   enable cryptographic security.  It is then a customer/operator
   responsibility to ensure that the SNMP entity giving access to an
   instance of this MIB module is properly configured to give access to
   the objects only to those principals (users) that have legitimate
   rights to indeed GET or SET (change/create/delete) them.

6.  IANA Considerations

6.1.  SMI Object Identifier Registration

   The Battery MIB module defined in this document uses the following
   IANA-assigned OBJECT IDENTIFIER value recorded in the SMI Numbers
   registry:

             Descriptor        OBJECT IDENTIFIER value
             ----------        -----------------------
             batteryMIB        { mib-2 233 }

6.2.  Battery Technology Registration

   Object batteryTechnology defined in Section 4 reports battery
   technologies.  Eighteen values for battery technologies have
   initially been defined.  They are listed in a table in Section 3.2.




Quittek, et al.              Standards Track                   [Page 36]
^L
RFC 7577                       Battery MIB                     July 2015


   For ensuring extensibility of this list, IANA has created a registry
   for battery technologies at <http://www.iana.org/assignments/battery-
   technologies> and filled it with the initial list given in
   Section 3.2.

   New assignments of numbers for battery technologies will be
   administered by IANA through Expert Review [RFC5226].  Experts must
   check for sufficient relevance of a battery technology to be added
   according to the guidelines in Section 3.2.1.

7.  References

7.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Structure of Management Information
              Version 2 (SMIv2)", STD 58, RFC 2578,
              DOI 10.17487/RFC2578, April 1999,
              <http://www.rfc-editor.org/info/rfc2578>.

   [RFC2579]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Textual Conventions for SMIv2",
              STD 58, RFC 2579, DOI 10.17487/RFC2579, April 1999,
              <http://www.rfc-editor.org/info/rfc2579>.

   [RFC2580]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Conformance Statements for SMIv2",
              STD 58, RFC 2580, DOI 10.17487/RFC2580, April 1999,
              <http://www.rfc-editor.org/info/rfc2580>.

   [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
              Architecture for Describing Simple Network Management
              Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
              DOI 10.17487/RFC3411, December 2002,
              <http://www.rfc-editor.org/info/rfc3411>.

   [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
              (USM) for version 3 of the Simple Network Management
              Protocol (SNMPv3)", STD 62, RFC 3414,
              DOI 10.17487/RFC3414, December 2002,
              <http://www.rfc-editor.org/info/rfc3414>.





Quittek, et al.              Standards Track                   [Page 37]
^L
RFC 7577                       Battery MIB                     July 2015


   [RFC3826]  Blumenthal, U., Maino, F., and K. McCloghrie, "The
              Advanced Encryption Standard (AES) Cipher Algorithm in the
              SNMP User-based Security Model", RFC 3826,
              DOI 10.17487/RFC3826, June 2004,
              <http://www.rfc-editor.org/info/rfc3826>.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <http://www.rfc-editor.org/info/rfc5226>.

   [RFC5591]  Harrington, D. and W. Hardaker, "Transport Security Model
              for the Simple Network Management Protocol (SNMP)",
              STD 78, RFC 5591, DOI 10.17487/RFC5591, June 2009,
              <http://www.rfc-editor.org/info/rfc5591>.

   [RFC5592]  Harrington, D., Salowey, J., and W. Hardaker, "Secure
              Shell Transport Model for the Simple Network Management
              Protocol (SNMP)", RFC 5592, DOI 10.17487/RFC5592, June
              2009, <http://www.rfc-editor.org/info/rfc5592>.

   [RFC6353]  Hardaker, W., "Transport Layer Security (TLS) Transport
              Model for the Simple Network Management Protocol (SNMP)",
              STD 78, RFC 6353, DOI 10.17487/RFC6353, July 2011,
              <http://www.rfc-editor.org/info/rfc6353>.

   [RFC6933]  Bierman, A., Romascanu, D., Quittek, J., and M.
              Chandramouli, "Entity MIB (Version 4)", RFC 6933,
              DOI 10.17487/RFC6933, May 2013,
              <http://www.rfc-editor.org/info/rfc6933>.

7.2.  Informative References

   [RFC1628]  Case, J., Ed., "UPS Management Information Base",
              RFC 1628, DOI 10.17487/RFC1628, May 1994,
              <http://www.rfc-editor.org/info/rfc1628>.

   [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
              "Introduction and Applicability Statements for Internet-
              Standard Management Framework", RFC 3410,
              DOI 10.17487/RFC3410, December 2002,
              <http://www.rfc-editor.org/info/rfc3410>.

   [RFC6988]  Quittek, J., Ed., Chandramouli, M., Winter, R., Dietz, T.,
              and B. Claise, "Requirements for Energy Management",
              RFC 6988, DOI 10.17487/RFC6988, September 2013,
              <http://www.rfc-editor.org/info/rfc6988>.




Quittek, et al.              Standards Track                   [Page 38]
^L
RFC 7577                       Battery MIB                     July 2015


   [RFC7326]  Parello, J., Claise, B., Schoening, B., and J. Quittek,
              "Energy Management Framework", RFC 7326,
              DOI 10.17487/RFC7326, September 2014,
              <http://www.rfc-editor.org/info/rfc7326>.

   [RFC7460]  Chandramouli, M., Claise, B., Schoening, B., Quittek, J.,
              and T. Dietz, "Monitoring and Control MIB for Power and
              Energy", RFC 7460, DOI 10.17487/RFC7460, March 2015,
              <http://www.rfc-editor.org/info/rfc7460>.

   [SBS]      "Smart Battery Data Specification", Revision 1.1, December
              1998.







































Quittek, et al.              Standards Track                   [Page 39]
^L
RFC 7577                       Battery MIB                     July 2015


Acknowledgements

   We would like to thank Steven Chew, Bill Mielke, and Alan Luchuk for
   their valuable input.

Authors' Addresses

   Juergen Quittek
   NEC Europe, Ltd.
   NEC Laboratories Europe
   Network Research Division
   Kurfuersten-Anlage 36
   Heidelberg  69115
   Germany

   Phone: +49 6221 4342-115
   Email: quittek@neclab.eu


   Rolf Winter
   NEC Europe, Ltd.
   NEC Laboratories Europe
   Network Research Division
   Kurfuersten-Anlage 36
   Heidelberg  69115
   Germany

   Phone: +49 6221 4342-121
   Email: Rolf.Winter@neclab.eu


   Thomas Dietz
   NEC Europe, Ltd.
   NEC Laboratories Europe
   Network Research Division
   Kurfuersten-Anlage 36
   Heidelberg  69115
   Germany

   Phone: +49 6221 4342-128
   Email: Thomas.Dietz@neclab.eu










Quittek, et al.              Standards Track                   [Page 40]
^L