1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
Internet Engineering Task Force (IETF) J. Richer, Ed.
Request for Comments: 7592
Category: Experimental M. Jones
ISSN: 2070-1721 Microsoft
J. Bradley
Ping Identity
M. Machulak
Newcastle University
July 2015
OAuth 2.0 Dynamic Client Registration Management Protocol
Abstract
This specification defines methods for management of OAuth 2.0
dynamic client registrations for use cases in which the properties of
a registered client may need to be changed during the lifetime of the
client. Not all authorization servers supporting dynamic client
registration will support these management methods.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7592.
Richer, et al. Experimental [Page 1]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Notational Conventions . . . . . . . . . . . . . . . . . 3
1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Protocol Flow . . . . . . . . . . . . . . . . . . . . . . 4
2. Client Configuration Endpoint . . . . . . . . . . . . . . . . 5
2.1. Client Read Request . . . . . . . . . . . . . . . . . . . 6
2.2. Client Update Request . . . . . . . . . . . . . . . . . . 7
2.3. Client Delete Request . . . . . . . . . . . . . . . . . . 9
3. Client Information Response . . . . . . . . . . . . . . . . . 10
4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11
5. Security Considerations . . . . . . . . . . . . . . . . . . . 12
6. Privacy Considerations . . . . . . . . . . . . . . . . . . . 13
7. Normative References . . . . . . . . . . . . . . . . . . . . 13
Appendix A. Registration Tokens and Client Credentials . . . . . 15
A.1. Credential Rotation . . . . . . . . . . . . . . . . . . . 16
Appendix B. Forming the Client Configuration Endpoint URL . . . 16
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 17
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 18
1. Introduction
In order for an OAuth 2.0 client to utilize an OAuth 2.0
authorization server, the client needs specific information to
interact with the server, including an OAuth 2.0 client identifier to
use with that server. "OAuth 2.0 Dynamic Client Registration
Protocol" [RFC7591] describes how an OAuth 2.0 client can be
dynamically registered with an authorization server to obtain this
information and how metadata about the client can be registered with
the server.
Richer, et al. Experimental [Page 2]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
This specification extends the core registration specification by
defining a set of methods for management of dynamic OAuth 2.0 client
registrations beyond those defined in the core registration
specification. In some situations, the registered metadata of a
client can change over time, either by modification at the
authorization server or by a change in the client software itself.
This specification provides methods for the current registration
state of a client to be queried at the authorization server, methods
for the registration of a client to be updated at the authorization
server, and methods for the client to be unregistered from the
authorization server.
This Experimental RFC is intended to encourage development and
deployment of interoperable solutions with the intent that feedback
from this experience will inform a future standard.
1.1. Notational Conventions
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
document are to be interpreted as described in [RFC2119].
Unless otherwise noted, all the protocol parameter names and values
are case sensitive.
1.2. Terminology
This specification uses the terms "access token", "authorization
code", "authorization endpoint", "authorization grant",
"authorization server", "client", "client identifier", "client
secret", "grant type", "protected resource", "redirection URI",
"refresh token", "resource owner", "resource server", "response
type", and "token endpoint" defined by OAuth 2.0 [RFC6749] and the
terms defined by "OAuth 2.0 Client Dynamic Registration Protocol"
[RFC7591].
This specification defines the following terms:
Client Configuration Endpoint
OAuth 2.0 endpoint through which registration information for a
registered client can be managed. This URL for this endpoint is
returned by the authorization server in the client information
response.
Richer, et al. Experimental [Page 3]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
Registration Access Token
OAuth 2.0 Bearer Token issued by the authorization server through
the client registration endpoint that is used to authenticate the
caller when accessing the client's registration information at the
client configuration endpoint. This access token is associated
with a particular registered client.
1.3. Protocol Flow
This extends the flow in "OAuth 2.0 Dynamic Client Registration
Protocol" [RFC7591] as follows:
+--------(A)- Initial Access Token (OPTIONAL)
|
| +----(B)- Software Statement (OPTIONAL)
| |
v v
+-----------+ +---------------+
| |--(C)- Client Registration Request -->| Client |
| | | Registration |
| |<-(D)- Client Information Response ---| Endpoint |
| | +---------------+
| |
| | +---------------+
| Client or |--(E)- Read or Update Request ------->| |
| Developer | | |
| |<-(F)- Client Information Response ---| Client |
| | | Configuration |
| | | Endpoint |
| | | |
| |--(G)- Delete Request --------------->| |
| | | |
| |<-(H)- Delete Confirmation -----------| |
+-----------+ +---------------+
Figure 1: Abstract Extended Dynamic Client Registration Flow
The abstract OAuth 2.0 client dynamic registration flow illustrated
in Figure 1 describes the interaction between the client or developer
and the endpoints defined in this specification and its parent. This
figure does not demonstrate error conditions. This flow includes the
following steps:
(A) Optionally, the client or developer is issued an initial access
token for use with the client registration endpoint. The
method by which the initial access token is issued to the
client or developer is out of scope for this specification.
Richer, et al. Experimental [Page 4]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
(B) Optionally, the client or developer is issued a software
statement for use with the client registration endpoint. The
method by which the software statement is issued to the client
or developer is out of scope for this specification.
(C) The client or developer calls the client registration endpoint
with its desired registration metadata, optionally including
the initial access token from (A) if one is required by the
authorization server.
(D) The authorization server registers the client and returns:
* the client's registered metadata,
* a client identifier that is unique to the server,
* a set of client credentials such as a client secret, if
applicable for this client,
* a URI pointing to the client configuration endpoint, and
* a registration access token to be used when calling the
client configuration endpoint.
(E) The client or developer optionally calls the client
configuration endpoint with a read or update request using the
registration access token issued in (D). An update request
contains all of the client's registered metadata.
(F) The authorization server responds with the client's current
configuration, potentially including a new registration access
token and a new set of client credentials such as a client
secret if applicable for this client. If a new registration
access token is issued, it replaces the token issued in (D) for
all subsequent calls to the client configuration endpoint.
(G) The client or developer optionally calls the client
configuration endpoint with a delete request using the
registration access token issued in (D) or (F).
(H) The authorization server deprovisions the client and responds
with a confirmation that the deletion has taken place.
2. Client Configuration Endpoint
The client configuration endpoint is an OAuth 2.0 protected resource
that is provisioned by the server to facilitate viewing, updating,
and deleting a client's registered information. The location of this
Richer, et al. Experimental [Page 5]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
endpoint is communicated to the client through the
"registration_client_uri" member of the client information response,
as specified in Section 3. The client MUST use its registration
access token in all calls to this endpoint as an OAuth 2.0 Bearer
Token [RFC6750].
The client configuration endpoint MUST be protected by a transport-
layer security mechanism, as described in Section 5.
Operations on this endpoint are switched through the use of different
HTTP methods [RFC7231]. If an authorization server does not support
a particular method on the client configuration endpoint, it MUST
respond with the appropriate error code.
2.1. Client Read Request
To read the current configuration of the client on the authorization
server, the client makes an HTTP GET request to the client
configuration endpoint, authenticating with its registration access
token.
The following is a non-normative example request:
GET /register/s6BhdRkqt3 HTTP/1.1
Accept: application/json
Host: server.example.com
Authorization: Bearer reg-23410913-abewfq.123483
Upon successful read of the information for a currently active
client, the authorization server responds with an HTTP 200 OK with
content type of "application/json" and a payload as described in
Section 3. Some values in the response, including the
"client_secret" and "registration_access_token", MAY be different
from those in the initial registration response. If the
authorization server includes a new client secret and/or registration
access token in its response, the client MUST immediately discard its
previous client secret and/or registration access token. The value
of the "client_id" MUST NOT change from the initial registration
response.
If the registration access token used to make this request is not
valid, the server MUST respond with an error as described in the
OAuth Bearer Token Usage specification [RFC6750].
If the client does not exist on this server, the server MUST respond
with HTTP 401 Unauthorized and the registration access token used to
make this request SHOULD be immediately revoked.
Richer, et al. Experimental [Page 6]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
If the client does not have permission to read its record, the server
MUST return an HTTP 403 Forbidden.
2.2. Client Update Request
To update a previously registered client's registration with an
authorization server, the client makes an HTTP PUT request to the
client configuration endpoint with a content type of "application/
json". The HTTP entity payload is a JSON [RFC7159] document
consisting of a JSON object and all parameters as top-level members
of that JSON object. This request is authenticated by the
registration access token issued to the client.
This request MUST include all client metadata fields as returned to
the client from a previous registration, read, or update operation.
The updated client metadata fields request MUST NOT include the
"registration_access_token", "registration_client_uri",
"client_secret_expires_at", or "client_id_issued_at" fields described
in Section 3.
Valid values of client metadata fields in this request MUST replace,
not augment, the values previously associated with this client.
Omitted fields MUST be treated as null or empty values by the server,
indicating the client's request to delete them from the client's
registration. The authorization server MAY ignore any null or empty
value in the request just as any other value.
The client MUST include its "client_id" field in the request, and it
MUST be the same as its currently issued client identifier. If the
client includes the "client_secret" field in the request, the value
of this field MUST match the currently issued client secret for that
client. The client MUST NOT be allowed to overwrite its existing
client secret with its own chosen value.
For all metadata fields, the authorization server MAY replace any
invalid values with suitable default values, and it MUST return any
such fields to the client in the response.
For example, a client could send the following request to the client
registration endpoint to update the client registration in the above
example with new information.
Richer, et al. Experimental [Page 7]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
The following is a non-normative example request:
PUT /register/s6BhdRkqt3 HTTP/1.1
Accept: application/json
Host: server.example.com
Authorization: Bearer reg-23410913-abewfq.123483
{
"client_id": "s6BhdRkqt3",
"client_secret": "cf136dc3c1fc93f31185e5885805d",
"redirect_uris": [
"https://client.example.org/callback",
"https://client.example.org/alt"],
"grant_types": ["authorization_code", "refresh_token"],
"token_endpoint_auth_method": "client_secret_basic",
"jwks_uri": "https://client.example.org/my_public_keys.jwks",
"client_name": "My New Example",
"client_name#fr": "Mon Nouvel Exemple",
"logo_uri": "https://client.example.org/newlogo.png",
"logo_uri#fr": "https://client.example.org/fr/newlogo.png"
}
This example uses client metadata values defined in [RFC7591].
Upon successful update, the authorization server responds with an
HTTP 200 OK message with content type "application/json" and a
payload as described in Section 3. Some values in the response,
including the "client_secret" and "registration_access_token", MAY be
different from those in the initial registration response. If the
authorization server includes a new client secret and/or registration
access token in its response, the client MUST immediately discard its
previous client secret and/or registration access token. The value
of the "client_id" MUST NOT change from the initial registration
response.
If the registration access token used to make this request is not
valid, the server MUST respond with an error as described in the
OAuth Bearer Token Usage specification [RFC6750].
If the client does not exist on this server, the server MUST respond
with HTTP 401 Unauthorized, and the registration access token used to
make this request SHOULD be immediately revoked.
If the client is not allowed to update its records, the server MUST
respond with HTTP 403 Forbidden.
Richer, et al. Experimental [Page 8]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
If the client attempts to set an invalid metadata field and the
authorization server does not set a default value, the authorization
server responds with an error as described in [RFC7591].
2.3. Client Delete Request
To deprovision itself on the authorization server, the client makes
an HTTP DELETE request to the client configuration endpoint. This
request is authenticated by the registration access token issued to
the client.
The following is a non-normative example request:
DELETE /register/s6BhdRkqt3 HTTP/1.1
Host: server.example.com
Authorization: Bearer reg-23410913-abewfq.123483
A successful delete action will invalidate the "client_id",
"client_secret", and "registration_access_token" for this client,
thereby preventing the "client_id" from being used at either the
authorization endpoint or token endpoint of the authorization server.
If possible, the authorization server SHOULD immediately invalidate
all existing authorization grants and currently active access tokens,
all refresh tokens, and all other tokens associated with this client.
If a client has been successfully deprovisioned, the authorization
server MUST respond with an HTTP 204 No Content message.
If the server does not support the delete method, the server MUST
respond with HTTP 405 Not Supported.
If the registration access token used to make this request is not
valid, the server MUST respond with an error as described in the
OAuth Bearer Token Usage specification [RFC6750].
If the client does not exist on this server, the server MUST respond
with HTTP 401 Unauthorized and the registration access token used to
make this request SHOULD be immediately revoked, if possible.
If the client is not allowed to delete itself, the server MUST
respond with HTTP 403 Forbidden.
The following is a non-normative example response:
HTTP/1.1 204 No Content
Cache-Control: no-store
Pragma: no-cache
Richer, et al. Experimental [Page 9]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
3. Client Information Response
This specification extends the client information response defined in
"OAuth 2.0 Client Dynamic Registration" [RFC7591], which states that
the response contains the client identifier (as well as the client
secret if the client is a confidential client). When used with this
specification, the client information response also contains the
fully qualified URL of the client configuration endpoint (Section 2)
for this specific client that the client or developer may use to
manage the client's registration configuration, as well as a
registration access token that is to be used by the client or
developer to perform subsequent operations at the client
configuration endpoint.
registration_client_uri
REQUIRED. String containing the fully qualified URL of the client
configuration endpoint for this client.
registration_access_token
REQUIRED. String containing the access token to be used at the
client configuration endpoint to perform subsequent operations
upon the client registration.
Additionally, the authorization server MUST return all registered
metadata about this client, including any fields provisioned by the
authorization server itself. The authorization server MAY reject or
replace any of the client's requested metadata values submitted
during the registration or update requests and substitute them with
suitable values.
The response is an "application/json" document with all parameters as
top-level members of a JSON object [RFC7159].
Richer, et al. Experimental [Page 10]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
The following is a non-normative example response:
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache
{
"registration_access_token": "reg-23410913-abewfq.123483",
"registration_client_uri":
"https://server.example.com/register/s6BhdRkqt3",
"client_id": "s6BhdRkqt3",
"client_secret": "cf136dc3c1fc93f31185e5885805d",
"client_id_issued_at": 2893256800,
"client_secret_expires_at": 2893276800,
"client_name": "My Example Client",
"client_name#ja-Jpan-JP":
"\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
"redirect_uris": [
"https://client.example.org/callback",
"https://client.example.org/callback2"],
"grant_types": ["authorization_code", "refresh_token"],
"token_endpoint_auth_method": "client_secret_basic",
"logo_uri": "https://client.example.org/logo.png",
"jwks_uri": "https://client.example.org/my_public_keys.jwks"
}
4. IANA Considerations
This specification registers the following client metadata names and
descriptions in the "OAuth Dynamic Client Registration Metadata"
registry established by [RFC7591]:
o Client Metadata Name: "registration_access_token"
o Client Metadata Description: OAuth 2.0 Bearer Token used to access
the client configuration endpoint
o Change Controller: IESG
o Specification Document(s): RFC 7592
o Client Metadata Name: "registration_client_uri"
o Client Metadata Description: Fully qualified URI of the client
registration endpoint
o Change Controller: IESG
Richer, et al. Experimental [Page 11]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
o Specification Document(s): RFC 7592
5. Security Considerations
While the client secret can expire, the registration access token
SHOULD NOT expire while a client is still actively registered. If
this token were to expire, a developer or client could be left in a
situation where they have no means of retrieving, updating, or
deleting the client's registration information. Were that the case,
a new registration would be required, thereby generating a new client
identifier. However, to limit the exposure surface of the
registration access token, the registration access token MAY be
rotated when the developer or client does a read or update operation
on the client's client configuration endpoint. As the registration
access tokens are relatively long-term credentials, and since the
registration access token is a Bearer Token and acts as the sole
authentication for use at the client configuration endpoint, it MUST
be protected by the developer or client as described in the OAuth 2.0
Bearer Token Usage specification [RFC6750].
Since requests to the client configuration endpoint result in the
transmission of clear-text credentials (in the HTTP request and
response), the authorization server MUST require the use of a
transport-layer security mechanism when sending requests to the
endpoint. The server MUST support TLS 1.2 [RFC5246] and MAY support
additional transport-layer security mechanisms meeting its security
requirements. When using TLS, the client MUST perform a TLS/SSL
server certificate check, per RFC 6125 [RFC6125]. Implementation
security considerations can be found in Recommendations for Secure
Use of TLS and DTLS [BCP195].
Since possession of the registration access token authorizes the
holder to potentially read, modify, or delete a client's registration
(including its credentials such as a client_secret), the registration
access token MUST contain sufficient entropy to prevent a random
guessing attack of this token, such as described in Section 5.2 of
[RFC6750] and Section 5.1.4.2.2 of [RFC6819].
If a client is deprovisioned from a server, any outstanding
registration access token for that client MUST be invalidated at the
same time. Otherwise, this can lead to an inconsistent state wherein
a client could make requests to the client configuration endpoint
where the authentication would succeed but the action would fail
because the client is no longer valid. The authorization server MUST
treat all such requests as if the registration access token was
invalid by returning an HTTP 401 Unauthorized error, as described.
Richer, et al. Experimental [Page 12]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
6. Privacy Considerations
This specification poses no additional privacy considerations beyond
those described in the core "OAuth 2.0 Dynamic Client Registration
Protocol" [RFC7591].
7. Normative References
[BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, May 2015,
<http://www.rfc-editor.org/info/bcp195>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<http://www.rfc-editor.org/info/rfc5246>.
[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
2011, <http://www.rfc-editor.org/info/rfc6125>.
[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
<http://www.rfc-editor.org/info/rfc6749>.
[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
Framework: Bearer Token Usage", RFC 6750,
DOI 10.17487/RFC6750, October 2012,
<http://www.rfc-editor.org/info/rfc6750>.
[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFC 6819,
DOI 10.17487/RFC6819, January 2013,
<http://www.rfc-editor.org/info/rfc6819>.
[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
2014, <http://www.rfc-editor.org/info/rfc7159>.
Richer, et al. Experimental [Page 13]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
DOI 10.17487/RFC7231, June 2014,
<http://www.rfc-editor.org/info/rfc7231>.
[RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
RFC 7591, DOI 10.17487/RFC7591, July 2015,
<http://www.rfc-editor.org/info/rfc7591>.
Richer, et al. Experimental [Page 14]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
Appendix A. Registration Tokens and Client Credentials
Throughout the course of the dynamic registration protocol, there are
three different classes of credentials in play, each with different
properties and targets.
o The initial access token is optionally used by the client or
developer at the registration endpoint. This is an OAuth 2.0
token that is used to authorize the initial client registration
request. The content, structure, generation, and validation of
this token are out of scope for this specification. The
authorization server can use this token to verify that the
presenter is allowed to dynamically register new clients. This
token may be shared among multiple instances of a client to allow
them to each register separately, thereby letting the
authorization server use this token to tie multiple instances of
registered clients (each with their own distinct client
identifier) back to the party to whom the initial access token was
issued, usually an application developer. This token is usually
intended to be used only at the client registration endpoint.
o The registration access token is used by the client or developer
at the client configuration endpoint and represents the holder's
authorization to manage the registration of a client. This is an
OAuth 2.0 Bearer Token that is issued from the client registration
endpoint in response to a client registration request and is
returned in a client information response. The registration
access token is uniquely bound to the client identifier and is
required to be presented with all calls to the client
configuration endpoint. The registration access token should be
protected as described in [RFC6750] and should not be shared
between instances of a client. If a registration access token is
shared between client instances, one instance could change or
delete registration values for all other instances of the client.
The registration access token can be rotated through the use of
the client read or update method on the client configuration
endpoint. The registration access token is intended to be used
only at the client configuration endpoint.
Richer, et al. Experimental [Page 15]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
o The client credentials (such as "client_secret") are optional
depending on the type of client and are used to retrieve OAuth
tokens. Client credentials are most often bound to particular
instances of a client and should not be shared between instances.
Note that since not all types of clients have client credentials,
they cannot be used to manage client registrations at the client
configuration endpoint. The client credentials can be rotated
through the use of the client read or update method on the client
configuration endpoint. The client credentials are intended to be
used only at the token endpoint.
A.1. Credential Rotation
The authorization server may be configured to issue new registration
access tokens and/or client credentials (such as a "client_secret")
throughout the lifetime of the client. This may help minimize the
impact of exposed credentials. The authorization server conveys new
registration access tokens and client credentials (if applicable) to
the client in the client information response of either a read or
update request to the client configuration endpoint. The client's
current registration access token and client credentials (if
applicable) MUST be included in the client information response.
The registration access token SHOULD be rotated only in response to a
read or update request to the client configuration endpoint. At this
point, the new registration access token is returned to the client,
the old registration access token MUST be discarded by the client,
and it SHOULD be discarded by the server, if possible. If, instead,
the registration access token were to expire or be invalidated
outside of such requests, the client or developer might be locked out
of managing the client's configuration.
Note that the authorization server decides the frequency of the
credential rotation and not the client. Methods by which the client
can request credential rotation are outside the scope of this
document.
Appendix B. Forming the Client Configuration Endpoint URL
The authorization server MUST provide the client with the fully
qualified URL in the "registration_client_uri" element of the Client
Information Response, as specified in Section 3. The authorization
server MUST NOT expect the client to construct or discover this URL
on its own. The client MUST use the URL as given by the server and
MUST NOT construct this URL from component pieces.
Richer, et al. Experimental [Page 16]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
Depending on deployment characteristics, the client configuration
endpoint URL may take any number of forms. It is RECOMMENDED that
this endpoint URL be formed through the use of a server-constructed
URL string that combines the client registration endpoint's URL and
the issued "client_id" for this client, with the latter as either a
path parameter or a query parameter. For example, a client with the
client identifier "s6BhdRkqt3" could be given a client configuration
endpoint URL of "https://server.example.com/register/s6BhdRkqt3"
(path parameter) or of "https://server.example.com/
register?client_id=s6BhdRkqt3" (query parameter). In both of these
cases, the client simply uses the URL as given by the authorization
server.
These common patterns can help the server to more easily determine
the client to which the request pertains, which MUST be matched
against the client to which the registration access token was issued.
If desired, the server MAY simply return the client registration
endpoint URL as the client configuration endpoint URL and change
behavior based on the authentication context provided by the
registration access token.
Acknowledgments
The authors thank the OAuth Working Group, the User-Managed Access
Working Group, and the OpenID Connect Working Group participants for
their input to this document. In particular, the following
individuals have been instrumental in their review and contribution
to various draft versions of this document: Amanda Anganes, Derek
Atkins, Tim Bray, Domenico Catalano, Donald Coffin, Vladimir
Dzhuvinov, George Fletcher, Thomas Hardjono, Phil Hunt, William Kim,
Torsten Lodderstedt, Eve Maler, Josh Mandel, Nov Matake, Tony
Nadalin, Nat Sakimura, Christian Scholz, and Hannes Tschofenig.
Richer, et al. Experimental [Page 17]
^L
RFC 7592 OAuth 2.0 Dynamic Registration Management July 2015
Authors' Addresses
Justin Richer (editor)
Email: ietf@justin.richer.org
Michael B. Jones
Microsoft
Email: mbj@microsoft.com
URI: http://self-issued.info/
John Bradley
Ping Identity
Email: ve7jtb@ve7jtb.com
Maciej Machulak
Newcastle University
Email: maciej.machulak@gmail.com
Richer, et al. Experimental [Page 18]
^L
|