1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
|
Independent Submission P. Garg, Ed.
Request for Comments: 7637 Y. Wang, Ed.
Category: Informational Microsoft
ISSN: 2070-1721 September 2015
NVGRE: Network Virtualization Using Generic Routing Encapsulation
Abstract
This document describes the usage of the Generic Routing
Encapsulation (GRE) header for Network Virtualization (NVGRE) in
multi-tenant data centers. Network Virtualization decouples virtual
networks and addresses from physical network infrastructure,
providing isolation and concurrency between multiple virtual networks
on the same physical network infrastructure. This document also
introduces a Network Virtualization framework to illustrate the use
cases, but the focus is on specifying the data-plane aspect of NVGRE.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7637.
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Garg & Wang Informational [Page 1]
^L
RFC 7637 NVGRE September 2015
Table of Contents
1. Introduction ....................................................2
1.1. Terminology ................................................4
2. Conventions Used in This Document ...............................4
3. Network Virtualization Using GRE (NVGRE) ........................4
3.1. NVGRE Endpoint .............................................5
3.2. NVGRE Frame Format .........................................5
3.3. Inner Tag as Defined by IEEE 802.1Q ........................8
3.4. Reserved VSID ..............................................8
4. NVGRE Deployment Considerations .................................9
4.1. ECMP Support ...............................................9
4.2. Broadcast and Multicast Traffic ............................9
4.3. Unicast Traffic ............................................9
4.4. IP Fragmentation ..........................................10
4.5. Address/Policy Management and Routing .....................10
4.6. Cross-Subnet, Cross-Premise Communication .................10
4.7. Internet Connectivity .....................................12
4.8. Management and Control Planes .............................12
4.9. NVGRE-Aware Devices .......................................12
4.10. Network Scalability with NVGRE ...........................13
5. Security Considerations ........................................14
6. Normative References ...........................................14
Contributors ......................................................16
Authors' Addresses ................................................17
1. Introduction
Conventional data center network designs cater to largely static
workloads and cause fragmentation of network and server capacity [6]
[7]. There are several issues that limit dynamic allocation and
consolidation of capacity. Layer 2 networks use the Rapid Spanning
Tree Protocol (RSTP), which is designed to eliminate loops by
blocking redundant paths. These eliminated paths translate to wasted
capacity and a highly oversubscribed network. There are alternative
approaches such as the Transparent Interconnection of Lots of Links
(TRILL) that address this problem [13].
The network utilization inefficiencies are exacerbated by network
fragmentation due to the use of VLANs for broadcast isolation. VLANs
are used for traffic management and also as the mechanism for
providing security and performance isolation among services belonging
to different tenants. The Layer 2 network is carved into smaller-
sized subnets (typically, one subnet per VLAN), with VLAN tags
configured on all the Layer 2 switches connected to server racks that
host a given tenant's services. The current VLAN limits
theoretically allow for 4,000 such subnets to be created. The size
Garg & Wang Informational [Page 2]
^L
RFC 7637 NVGRE September 2015
of the broadcast domain is typically restricted due to the overhead
of broadcast traffic. The 4,000-subnet limit on VLANs is no longer
sufficient in a shared infrastructure servicing multiple tenants.
Data center operators must be able to achieve high utilization of
server and network capacity. In order to achieve efficiency, it
should be possible to assign workloads that operate in a single Layer
2 network to any server in any rack in the network. It should also
be possible to migrate workloads to any server anywhere in the
network while retaining the workloads' addresses. This can be
achieved today by stretching VLANs; however, when workloads migrate,
the network needs to be reconfigured and that is typically error
prone. By decoupling the workload's location on the LAN from its
network address, the network administrator configures the network
once, not every time a service migrates. This decoupling enables any
server to become part of any server resource pool.
The following are key design objectives for next-generation data
centers:
a) location-independent addressing
b) the ability to a scale the number of logical Layer 2 / Layer 3
networks, irrespective of the underlying physical topology or
the number of VLANs
c) preserving Layer 2 semantics for services and allowing them to
retain their addresses as they move within and across data
centers
d) providing broadcast isolation as workloads move around without
burdening the network control plane
This document describes use of the Generic Routing Encapsulation
(GRE) header [3] [4] for network virtualization. Network
virtualization decouples a virtual network from the underlying
physical network infrastructure by virtualizing network addresses.
Combined with a management and control plane for the virtual-to-
physical mapping, network virtualization can enable flexible virtual
machine placement and movement and provide network isolation for a
multi-tenant data center.
Network virtualization enables customers to bring their own address
spaces into a multi-tenant data center, while the data center
administrators can place the customer virtual machines anywhere in
the data center without reconfiguring their network switches or
routers, irrespective of the customer address spaces.
Garg & Wang Informational [Page 3]
^L
RFC 7637 NVGRE September 2015
1.1. Terminology
Please refer to RFCs 7364 [10] and 7365 [11] for more formal
definitions of terminology. The following terms are used in this
document.
Customer Address (CA): This is the virtual IP address assigned and
configured on the virtual Network Interface Controller (NIC) within
each VM. This is the only address visible to VMs and applications
running within VMs.
Network Virtualization Edge (NVE): This is an entity that performs
the network virtualization encapsulation and decapsulation.
Provider Address (PA): This is the IP address used in the physical
network. PAs are associated with VM CAs through the network
virtualization mapping policy.
Virtual Machine (VM): This is an instance of an OS running on top of
the hypervisor over a physical machine or server. Multiple VMs can
share the same physical server via the hypervisor, yet are completely
isolated from each other in terms of CPU usage, storage, and other OS
resources.
Virtual Subnet Identifier (VSID): This is a 24-bit ID that uniquely
identifies a virtual subnet or virtual Layer 2 broadcast domain.
2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [1].
In this document, these words will appear with that interpretation
only when in ALL CAPS. Lowercase uses of these words are not to be
interpreted as carrying the significance defined in RFC 2119.
3. Network Virtualization Using GRE (NVGRE)
This section describes Network Virtualization using GRE (NVGRE).
Network virtualization involves creating virtual Layer 2 topologies
on top of a physical Layer 3 network. Connectivity in the virtual
topology is provided by tunneling Ethernet frames in GRE over IP over
the physical network.
In NVGRE, every virtual Layer 2 network is associated with a 24-bit
identifier, called a Virtual Subnet Identifier (VSID). A VSID is
carried in an outer header as defined in Section 3.2. This allows
Garg & Wang Informational [Page 4]
^L
RFC 7637 NVGRE September 2015
unique identification of a tenant's virtual subnet to various devices
in the network. A 24-bit VSID supports up to 16 million virtual
subnets in the same management domain, in contrast to only 4,000 that
is achievable with VLANs. Each VSID represents a virtual Layer 2
broadcast domain, which can be used to identify a virtual subnet of a
given tenant. To support multi-subnet virtual topology, data center
administrators can configure routes to facilitate communication
between virtual subnets of the same tenant.
GRE is a Proposed Standard from the IETF [3] [4] and provides a way
for encapsulating an arbitrary protocol over IP. NVGRE leverages the
GRE header to carry VSID information in each packet. The VSID
information in each packet can be used to build multi-tenant-aware
tools for traffic analysis, traffic inspection, and monitoring.
The following sections detail the packet format for NVGRE; describe
the functions of an NVGRE endpoint; illustrate typical traffic flow
both within and across data centers; and discuss address/policy
management, and deployment considerations.
3.1. NVGRE Endpoint
NVGRE endpoints are the ingress/egress points between the virtual and
the physical networks. The NVGRE endpoints are the NVEs as defined
in the Network Virtualization over Layer 3 (NVO3) Framework document
[11]. Any physical server or network device can be an NVGRE
endpoint. One common deployment is for the endpoint to be part of a
hypervisor. The primary function of this endpoint is to
encapsulate/decapsulate Ethernet data frames to and from the GRE
tunnel, ensure Layer 2 semantics, and apply isolation policy scoped
on VSID. The endpoint can optionally participate in routing and
function as a gateway in the virtual topology. To encapsulate an
Ethernet frame, the endpoint needs to know the location information
for the destination address in the frame. This information can be
provisioned via a management plane or obtained via a combination of
control-plane distribution or data-plane learning approaches. This
document assumes that the location information, including VSID, is
available to the NVGRE endpoint.
3.2. NVGRE Frame Format
The GRE header format as specified in RFCs 2784 [3] and 2890 [4] is
used for communication between NVGRE endpoints. NVGRE leverages the
Key extension specified in RFC 2890 [4] to carry the VSID. The
packet format for Layer 2 encapsulation in GRE is shown in Figure 1.
Garg & Wang Informational [Page 5]
^L
RFC 7637 NVGRE September 2015
Outer Ethernet Header:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (Outer) Destination MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|(Outer)Destination MAC Address | (Outer)Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (Outer) Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Optional Ethertype=C-Tag 802.1Q| Outer VLAN Tag Information |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethertype 0x0800 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Outer IPv4 Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| HL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol 0x2F | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (Outer) Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (Outer) Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
GRE Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0| |1|0| Reserved0 | Ver | Protocol Type 0x6558 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Virtual Subnet ID (VSID) | FlowID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Inner Ethernet Header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (Inner) Destination MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|(Inner)Destination MAC Address | (Inner)Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (Inner) Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethertype 0x0800 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Garg & Wang Informational [Page 6]
^L
RFC 7637 NVGRE September 2015
Inner IPv4 Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| HL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Original IP Payload |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: GRE Encapsulation Frame Format
Note: HL stands for Header Length.
The outer/delivery headers include the outer Ethernet header and the
outer IP header:
o The outer Ethernet header: The source Ethernet address in the
outer frame is set to the MAC address associated with the NVGRE
endpoint. The destination endpoint may or may not be on the same
physical subnet. The destination Ethernet address is set to the
MAC address of the next-hop IP address for the destination NVE.
The outer VLAN tag information is optional and can be used for
traffic management and broadcast scalability on the physical
network.
o The outer IP header: Both IPv4 and IPv6 can be used as the
delivery protocol for GRE. The IPv4 header is shown for
illustrative purposes. Henceforth, the IP address in the outer
frame is referred to as the Provider Address (PA). There can be
one or more PA associated with an NVGRE endpoint, with policy
controlling the choice of which PA to use for a given Customer
Address (CA) for a customer VM.
In the GRE header:
o The C (Checksum Present) and S (Sequence Number Present) bits in
the GRE header MUST be zero.
Garg & Wang Informational [Page 7]
^L
RFC 7637 NVGRE September 2015
o The K (Key Present) bit in the GRE header MUST be set to one. The
32-bit Key field in the GRE header is used to carry the Virtual
Subnet ID (VSID) and the FlowID:
- Virtual Subnet ID (VSID): This is a 24-bit value that is used
to identify the NVGRE-based Virtual Layer 2 Network.
- FlowID: This is an 8-bit value that is used to provide per-flow
entropy for flows in the same VSID. The FlowID MUST NOT be
modified by transit devices. The encapsulating NVE SHOULD
provide as much entropy as possible in the FlowID. If a FlowID
is not generated, it MUST be set to all zeros.
o The Protocol Type field in the GRE header is set to 0x6558
(Transparent Ethernet Bridging) [2].
In the inner headers (headers of the GRE payload):
o The inner Ethernet frame comprises an inner Ethernet header
followed by optional inner IP header, followed by the IP payload.
The inner frame could be any Ethernet data frame not just IP.
Note that the inner Ethernet frame's Frame Check Sequence (FCS) is
not encapsulated.
o For illustrative purposes, IPv4 headers are shown as the inner IP
headers, but IPv6 headers may be used. Henceforth, the IP address
contained in the inner frame is referred to as the Customer
Address (CA).
3.3. Inner Tag as Defined by IEEE 802.1Q
The inner Ethernet header of NVGRE MUST NOT contain the tag as
defined by IEEE 802.1Q [5]. The encapsulating NVE MUST remove any
existing IEEE 802.1Q tag before encapsulation of the frame in NVGRE.
A decapsulating NVE MUST drop the frame if the inner Ethernet frame
contains an IEEE 802.1Q tag.
3.4. Reserved VSID
The VSID range from 0-0xFFF is reserved for future use.
The VSID 0xFFFFFF is reserved for vendor-specific NVE-to-NVE
communication. The sender NVE SHOULD verify the receiver NVE's
vendor before sending a packet using this VSID; however, such a
verification mechanism is out of scope of this document.
Implementations SHOULD choose a mechanism that meets their
requirements.
Garg & Wang Informational [Page 8]
^L
RFC 7637 NVGRE September 2015
4. NVGRE Deployment Considerations
4.1. ECMP Support
Equal-Cost Multipath (ECMP) may be used to provide load balancing.
If ECMP is used, it is RECOMMENDED that the ECMP hash is calculated
either using the outer IP frame fields and entire Key field (32 bits)
or the inner IP and transport frame fields.
4.2. Broadcast and Multicast Traffic
To support broadcast and multicast traffic inside a virtual subnet,
one or more administratively scoped multicast addresses [8] [9] can
be assigned for the VSID. All multicast or broadcast traffic
originating from within a VSID is encapsulated and sent to the
assigned multicast address. From an administrative standpoint, it is
possible for network operators to configure a PA multicast address
for each multicast address that is used inside a VSID; this
facilitates optimal multicast handling. Depending on the hardware
capabilities of the physical network devices and the physical network
architecture, multiple virtual subnets may use the same physical IP
multicast address.
Alternatively, based upon the configuration at the NVE, broadcast and
multicast in the virtual subnet can be supported using N-way unicast.
In N-way unicast, the sender NVE would send one encapsulated packet
to every NVE in the virtual subnet. The sender NVE can encapsulate
and send the packet as described in Section 4.3 ("Unicast Traffic").
This alleviates the need for multicast support in the physical
network.
4.3. Unicast Traffic
The NVGRE endpoint encapsulates a Layer 2 packet in GRE using the
source PA associated with the endpoint with the destination PA
corresponding to the location of the destination endpoint. As
outlined earlier, there can be one or more PAs associated with an
endpoint and policy will control which ones get used for
communication. The encapsulated GRE packet is bridged and routed
normally by the physical network to the destination PA. Bridging
uses the outer Ethernet encapsulation for scope on the LAN. The only
requirement is bidirectional IP connectivity from the underlying
physical network. On the destination, the NVGRE endpoint
decapsulates the GRE packet to recover the original Layer 2 frame.
Traffic flows similarly on the reverse path.
Garg & Wang Informational [Page 9]
^L
RFC 7637 NVGRE September 2015
4.4. IP Fragmentation
Section 5.1 of RFC 2003 [12] specifies mechanisms for handling
fragmentation when encapsulating IP within IP. The subset of
mechanisms NVGRE selects are intended to ensure that NVGRE-
encapsulated frames are not fragmented after encapsulation en route
to the destination NVGRE endpoint and that traffic sources can
leverage Path MTU discovery.
A sender NVE MUST NOT fragment NVGRE packets. A receiver NVE MAY
discard fragmented NVGRE packets. It is RECOMMENDED that the MTU of
the physical network accommodates the larger frame size due to
encapsulation. Path MTU or configuration via control plane can be
used to meet this requirement.
4.5. Address/Policy Management and Routing
Address acquisition is beyond the scope of this document and can be
obtained statically, dynamically, or using stateless address
autoconfiguration. CA and PA space can be either IPv4 or IPv6. In
fact, the address families don't have to match; for example, a CA can
be IPv4 while the PA is IPv6, and vice versa.
4.6. Cross-Subnet, Cross-Premise Communication
One application of this framework is that it provides a seamless path
for enterprises looking to expand their virtual machine hosting
capabilities into public clouds. Enterprises can bring their entire
IP subnet(s) and isolation policies, thus making the transition to or
from the cloud simpler. It is possible to move portions of an IP
subnet to the cloud; however, that requires additional configuration
on the enterprise network and is not discussed in this document.
Enterprises can continue to use existing communications models like
site-to-site VPN to secure their traffic.
A VPN gateway is used to establish a secure site-to-site tunnel over
the Internet, and all the enterprise services running in virtual
machines in the cloud use the VPN gateway to communicate back to the
enterprise. For simplicity, we use a VPN gateway configured as a VM
(shown in Figure 2) to illustrate cross-subnet, cross-premise
communication.
Garg & Wang Informational [Page 10]
^L
RFC 7637 NVGRE September 2015
+-----------------------+ +-----------------------+
| Server 1 | | Server 2 |
| +--------+ +--------+ | | +-------------------+ |
| | VM1 | | VM2 | | | | VPN Gateway | |
| | IP=CA1 | | IP=CA2 | | | | Internal External| |
| | | | | | | | IP=CAg IP=GAdc | |
| +--------+ +--------+ | | +-------------------+ |
| Hypervisor | | | Hypervisor| ^ |
+-----------------------+ +-------------------:---+
| IP=PA1 | IP=PA4 | :
| | | :
| +-------------------------+ | : VPN
+-----| Layer 3 Network |------+ : Tunnel
+-------------------------+ :
| :
+-----------------------------------------------:--+
| : |
| Internet : |
| : |
+-----------------------------------------------:--+
| v
| +-------------------+
| | VPN Gateway |
|---| |
IP=GAcorp| External IP=GAcorp|
+-------------------+
|
+-----------------------+
| Corp Layer 3 Network |
| (In CA Space) |
+-----------------------+
|
+---------------------------+
| Server X |
| +----------+ +----------+ |
| | Corp VMe1| | Corp VMe2| |
| | IP=CAe1 | | IP=CAe2 | |
| +----------+ +----------+ |
| Hypervisor |
+---------------------------+
Figure 2: Cross-Subnet, Cross-Premise Communication
The packet flow is similar to the unicast traffic flow between VMs;
the key difference in this case is that the packet needs to be sent
to a VPN gateway before it gets forwarded to the destination. As
part of routing configuration in the CA space, a per-tenant VPN
gateway is provisioned for communication back to the enterprise. The
Garg & Wang Informational [Page 11]
^L
RFC 7637 NVGRE September 2015
example illustrates an outbound connection between VM1 inside the
data center and VMe1 inside the enterprise network. When the
outbound packet from CA1 to CAe1 reaches the hypervisor on Server 1,
the NVE in Server 1 can perform the equivalent of a route lookup on
the packet. The cross-premise packet will match the default gateway
rule, as CAe1 is not part of the tenant virtual network in the data
center. The virtualization policy will indicate the packet to be
encapsulated and sent to the PA of the tenant VPN gateway (PA4)
running as a VM on Server 2. The packet is decapsulated on Server 2
and delivered to the VM gateway. The gateway in turn validates and
sends the packet on the site-to-site VPN tunnel back to the
enterprise network. As the communication here is external to the
data center, the PA address for the VPN tunnel is globally routable.
The outer header of this packet is sourced from GAdc destined to
GAcorp. This packet is routed through the Internet to the enterprise
VPN gateway, which is the other end of the site-to-site tunnel; at
that point, the VPN gateway decapsulates the packet and sends it
inside the enterprise where the CAe1 is routable on the network. The
reverse path is similar once the packet reaches the enterprise VPN
gateway.
4.7. Internet Connectivity
To enable connectivity to the Internet, an Internet gateway is needed
that bridges the virtualized CA space to the public Internet address
space. The gateway needs to perform translation between the
virtualized world and the Internet. For example, the NVGRE endpoint
can be part of a load balancer or a NAT that replaces the VPN Gateway
on Server 2 shown in Figure 2.
4.8. Management and Control Planes
There are several protocols that can manage and distribute policy;
however, it is outside the scope of this document. Implementations
SHOULD choose a mechanism that meets their scale requirements.
4.9. NVGRE-Aware Devices
One example of a typical deployment consists of virtualized servers
deployed across multiple racks connected by one or more layers of
Layer 2 switches, which in turn may be connected to a Layer 3 routing
domain. Even though routing in the physical infrastructure will work
without any modification with NVGRE, devices that perform specialized
processing in the network need to be able to parse GRE to get access
to tenant-specific information. Devices that understand and parse
the VSID can provide rich multi-tenant-aware services inside the data
center. As outlined earlier, it is imperative to exploit multiple
paths inside the network through techniques such as ECMP. The Key
Garg & Wang Informational [Page 12]
^L
RFC 7637 NVGRE September 2015
field (a 32-bit field, including both the VSID and the optional
FlowID) can provide additional entropy to the switches to exploit
path diversity inside the network. A diverse ecosystem is expected
to emerge as more and more devices become multi-tenant aware. In the
interim, without requiring any hardware upgrades, there are
alternatives to exploit path diversity with GRE by associating
multiple PAs with NVGRE endpoints with policy controlling the choice
of which PA to use.
It is expected that communication can span multiple data centers and
also cross the virtual/physical boundary. Typical scenarios that
require virtual-to-physical communication include access to storage
and databases. Scenarios demanding lossless Ethernet functionality
may not be amenable to NVGRE, as traffic is carried over an IP
network. NVGRE endpoints mediate between the network-virtualized and
non-network-virtualized environments. This functionality can be
incorporated into Top-of-Rack switches, storage appliances, load
balancers, routers, etc., or built as a stand-alone appliance.
It is imperative to consider the impact of any solution on host
performance. Today's server operating systems employ sophisticated
acceleration techniques such as checksum offload, Large Send Offload
(LSO), Receive Segment Coalescing (RSC), Receive Side Scaling (RSS),
Virtual Machine Queue (VMQ), etc. These technologies should become
NVGRE aware. IPsec Security Associations (SAs) can be offloaded to
the NIC so that computationally expensive cryptographic operations
are performed at line rate in the NIC hardware. These SAs are based
on the IP addresses of the endpoints. As each packet on the wire
gets translated, the NVGRE endpoint SHOULD intercept the offload
requests and do the appropriate address translation. This will
ensure that IPsec continues to be usable with network virtualization
while taking advantage of hardware offload capabilities for improved
performance.
4.10. Network Scalability with NVGRE
One of the key benefits of using NVGRE is the IP address scalability
and in turn MAC address table scalability that can be achieved. An
NVGRE endpoint can use one PA to represent multiple CAs. This lowers
the burden on the MAC address table sizes at the Top-of-Rack
switches. One obvious benefit is in the context of server
virtualization, which has increased the demands on the network
infrastructure. By embedding an NVGRE endpoint in a hypervisor, it
is possible to scale significantly. This framework enables location
information to be preconfigured inside an NVGRE endpoint, thus
allowing broadcast ARP traffic to be proxied locally. This approach
can scale to large-sized virtual subnets. These virtual subnets can
be spread across multiple Layer 3 physical subnets. It allows
Garg & Wang Informational [Page 13]
^L
RFC 7637 NVGRE September 2015
workloads to be moved around without imposing a huge burden on the
network control plane. By eliminating most broadcast traffic and
converting others to multicast, the routers and switches can function
more optimally by building efficient multicast trees. By using
server and network capacity efficiently, it is possible to drive down
the cost of building and managing data centers.
5. Security Considerations
This proposal extends the Layer 2 subnet across the data center and
increases the scope for spoofing attacks. Mitigations of such
attacks are possible with authentication/encryption using IPsec or
any other IP-based mechanism. The control plane for policy
distribution is expected to be secured by using any of the existing
security protocols. Further management traffic can be isolated in a
separate subnet/VLAN.
The checksum in the GRE header is not supported. The mitigation of
this is to deploy an NVGRE-based solution in a network that provides
error detection along the NVGRE packet path, for example, using
Ethernet Cyclic Redundancy Check (CRC) or IPsec or any other error
detection mechanism.
6. Normative References
[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[2] IANA, "IEEE 802 Numbers",
<http://www.iana.org/assignments/ieee-802-numbers>.
[3] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina,
"Generic Routing Encapsulation (GRE)", RFC 2784,
DOI 10.17487/RFC2784, March 2000,
<http://www.rfc-editor.org/info/rfc2784>.
[4] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,
<http://www.rfc-editor.org/info/rfc2890>.
[5] IEEE, "IEEE Standard for Local and metropolitan area
networks--Media Access Control (MAC) Bridges and Virtual Bridged
Local Area Networks", IEEE Std 802.1Q.
[6] Greenberg, A., et al., "VL2: A Scalable and Flexible Data Center
Network", Communications of the ACM,
DOI 10.1145/1897852.1897877, 2011.
Garg & Wang Informational [Page 14]
^L
RFC 7637 NVGRE September 2015
[7] Greenberg, A., et al., "The Cost of a Cloud: Research Problems
in Data Center Networks", ACM SIGCOMM Computer Communication
Review, DOI 10.1145/1496091.1496103, 2009.
[8] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, DOI 10.17487/RFC4291, February 2006,
<http://www.rfc-editor.org/info/rfc4291>.
[9] Meyer, D., "Administratively Scoped IP Multicast", BCP 23,
RFC 2365, DOI 10.17487/RFC2365, July 1998,
<http://www.rfc-editor.org/info/rfc2365>.
[10] Narten, T., Ed., Gray, E., Ed., Black, D., Fang, L., Kreeger,
L., and M. Napierala, "Problem Statement: Overlays for Network
Virtualization", RFC 7364, DOI 10.17487/RFC7364, October 2014,
<http://www.rfc-editor.org/info/rfc7364>.
[11] Lasserre, M., Balus, F., Morin, T., Bitar, N., and Y. Rekhter,
"Framework for Data Center (DC) Network Virtualization",
RFC 7365, DOI 10.17487/RFC7365, October 2014,
<http://www.rfc-editor.org/info/rfc7365>.
[12] Perkins, C., "IP Encapsulation within IP", RFC 2003,
DOI 10.17487/RFC2003, October 1996,
<http://www.rfc-editor.org/info/rfc2003>.
[13] Touch, J. and R. Perlman, "Transparent Interconnection of Lots
of Links (TRILL): Problem and Applicability Statement",
RFC 5556, DOI 10.17487/RFC5556, May 2009,
<http://www.rfc-editor.org/info/rfc5556>.
Garg & Wang Informational [Page 15]
^L
RFC 7637 NVGRE September 2015
Contributors
Murari Sridharan
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052
United States
Email: muraris@microsoft.com
Albert Greenberg
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052
United States
Email: albert@microsoft.com
Narasimhan Venkataramiah
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052
United States
Email: navenkat@microsoft.com
Kenneth Duda
Arista Networks, Inc.
5470 Great America Pkwy
Santa Clara, CA 95054
United States
Email: kduda@aristanetworks.com
Ilango Ganga
Intel Corporation
2200 Mission College Blvd.
M/S: SC12-325
Santa Clara, CA 95054
United States
Email: ilango.s.ganga@intel.com
Geng Lin
Google
1600 Amphitheatre Parkway
Mountain View, CA 94043
United States
Email: genglin@google.com
Garg & Wang Informational [Page 16]
^L
RFC 7637 NVGRE September 2015
Mark Pearson
Hewlett-Packard Co.
8000 Foothills Blvd.
Roseville, CA 95747
United States
Email: mark.pearson@hp.com
Patricia Thaler
Broadcom Corporation
3151 Zanker Road
San Jose, CA 95134
United States
Email: pthaler@broadcom.com
Chait Tumuluri
Emulex Corporation
3333 Susan Street
Costa Mesa, CA 92626
United States
Email: chait@emulex.com
Authors' Addresses
Pankaj Garg (editor)
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052
United States
Email: pankajg@microsoft.com
Yu-Shun Wang (editor)
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052
United States
Email: yushwang@microsoft.com
Garg & Wang Informational [Page 17]
^L
|