1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
|
Internet Engineering Task Force (IETF) M. Zhang
Request for Comments: 7727 H. Wen
Category: Standards Track Huawei
ISSN: 2070-1721 J. Hu
China Telecom
January 2016
Spanning Tree Protocol (STP) Application
of the Inter-Chassis Communication Protocol (ICCP)
Abstract
The Inter-Chassis Communication Protocol (ICCP) supports an inter-
chassis redundancy mechanism that is used to support high network
availability.
In this document, Provider Edge (PE) devices in a Redundancy Group
(RG) running ICCP are used to offer multihomed connectivity to
Spanning Tree Protocol (STP) networks to improve availability of the
STP networks. The ICCP TLVs and usage for the ICCP STP application
are defined.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7727.
Zhang, et al. Standards Track [Page 1]
^L
RFC 7727 STP Application of ICCP January 2016
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Zhang, et al. Standards Track [Page 2]
^L
RFC 7727 STP Application of ICCP January 2016
Table of Contents
1. Introduction ....................................................4
1.1. Conventions Used in This Document ..........................4
1.2. Terminology ................................................4
2. Use Case ........................................................5
3. Spanning Tree Protocol Application TLVs .........................6
3.1. STP Connect TLV ............................................6
3.2. STP Disconnect TLV .........................................7
3.2.1. STP Disconnect Cause Sub-TLV ........................8
3.3. STP Configuration TLVs .....................................8
3.3.1. STP System Config ...................................9
3.3.2. STP Region Name ....................................10
3.3.3. STP Revision Level .................................10
3.3.4. STP Instance Priority ..............................11
3.3.5. STP Configuration Digest ...........................12
3.4. STP State TLVs ............................................12
3.4.1. STP Topology Changed Instances .....................12
3.4.2. STP CIST Root Time Parameters ......................14
3.4.3. STP MSTI Root Time Parameter .......................15
3.5. STP Synchronization Request TLV ...........................16
3.6. STP Synchronization Data TLV ..............................17
4. Operations .....................................................18
4.1. Common AC Procedures ......................................18
4.1.1. Remote PE Node Failure or Isolation ................19
4.1.2. Local PE Isolation .................................19
4.2. ICCP STP Application Procedures ...........................19
4.2.1. Initial Setup ......................................19
4.2.2. Configuration Synchronization ......................20
4.2.3. State Synchronization ..............................21
4.2.4. Failure and Recovery ...............................22
5. Security Considerations ........................................22
6. IANA Considerations ............................................23
7. References .....................................................23
7.1. Normative References ......................................23
7.2. Informative References ....................................24
Acknowledgements ................................................. 24
Authors' Addresses ............................................... 25
Zhang, et al. Standards Track [Page 3]
^L
RFC 7727 STP Application of ICCP January 2016
1. Introduction
Inter-Chassis Communication Protocol (ICCP [RFC7275]) specifies a
multi-chassis redundancy mechanism that enables Provider Edge (PE)
devices located in a multi-chassis arrangement to act as a single
Redundancy Group (RG).
With the Spanning Tree Protocol (STP), a spanning tree will be formed
over connected bridges by blocking some links between these bridges
so that forwarding loops are avoided. This document introduces
support of STP as a new application of ICCP. When a bridged STP
network is connected to an RG, this STP application of ICCP enables
the RG members to act as a single root bridge participating in the
operations of STP.
STP-relevant information needs to be exchanged and synchronized among
the RG members. New ICCP TLVs for the ICCP STP application are
specified for this purpose.
From the point of view of the customer, the Service Provider is
providing a Virtual Private LAN Service (VPLS) [RFC4762].
1.1. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
1.2. Terminology
ICCP: Inter-Chassis Communication Protocol
VPLS: Virtual Private LAN Service
STP: Spanning Tree Protocol
MSTP: Multiple Spanning Tree Protocol
MST: Multiple Spanning Trees
CIST: Common and Internal Spanning Tree ([802.1q], Section 3.27)
MSTI: Multiple Spanning Tree Instance ([802.1q], Section 3.138)
BPDU: Bridge Protocol Data Unit
In this document, unless otherwise explicitly noted, the term "STP"
also covers MSTP.
Zhang, et al. Standards Track [Page 4]
^L
RFC 7727 STP Application of ICCP January 2016
2. Use Case
Customers widely use Ethernet as an access technology [RFC4762].
It's common that one customer's Local Area Network (LAN) has multiple
bridges connected to a carrier's network at different locations for
reliability purposes. Requirements for this use case are listed as
follows.
o Customers desire to balance the load among their available
connections to the carrier's network; therefore, all the
connections need to be active.
o When one connection to the carrier network fails, customers
require a connection in another location to continue to work after
the reconvergence of the STP rather than compromising the whole
STP network. The failure of the connection may be due to the
failure of the PE, the attachment circuit (AC), or even the
Customer Edge (CE) device itself.
In order to meet these requirements, the 'ICCP-STP' model is
proposed. It introduces STP as a new application of ICCP.
+--------------+ +=============+
| | | |
| | | |
| +---+ | | +-----+|<--|--Pseudowire-->|
| +---+CE1+<6>-------<5>+ PE1 || | |
| <1> +---+ | | +-----+|<--|--Pseudowire-->|
| +-+-+ | | || |
| |CE3| | | ||ICCP |--> Towards the Core
| +-+-+ | | || |
| <2> +---+ | | +-----+|<--|--Pseudowire-->|
| +---+CE2+<3>-------<4>+ PE2 || | |
| +---+ | | +-----+|<--|--Pseudowire-->|
| | | |
| Multihomed | | Redundancy |
| STP Network | | Group |
+--------------+ +=============+
Figure 1: A STP network is multihomed to an RG running ICCP
Figure 1 shows an example topology of this model. With ICCP, the
whole RG will be virtualized to be a single bridge. Each RG member
has its BridgeIdentifier (the MAC address). The numerically lowest
one is used as the BridgeIdentifier of the 'virtualized root bridge'.
The RG acts as if the ports connected to the STP network (ports <4>
and <5>) are for the same root bridge. All these ports send the
configuration BPDU with the highest root priority to trigger the
Zhang, et al. Standards Track [Page 5]
^L
RFC 7727 STP Application of ICCP January 2016
construction of the spanning tree. The link between the peering PEs
is not visible to the bridge domains of the STP network. In this
way, the STP will always break a possible loop within the multihomed
STP network by breaking the whole network into separate islands so
that each is attached to one PE. That forces all PEs in the RG to be
active. This is different from a generic VPLS [RFC4762] where the
root bridge resides in the customer network and the multihomed PEs
act in the active-standby mode. Note that the specification of VPLS
remains unchanged other than for this operation. For instance, a
full-mesh of pseudowires (PWs) is established between PEs, and the
"split horizon" rule is still used to perform the loop-breaking
through the core.
3. Spanning Tree Protocol Application TLVs
This section specifies the ICCP TLVs for the ICCP STP application.
The Unknown TLV bit (U-bit) and the Forward unknown TLV bit (F-bit)
of the following TLVs MUST be sent as cleared and processed on
receipt as specified in [RFC7275].
3.1. STP Connect TLV
This TLV is included in the RG Connect Message to signal the
initiation of an ICCP STP application connection.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2000 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Protocol Version |A| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optional Sub-TLVs |
~ ~
| |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2000 for "STP Connect TLV"
Zhang, et al. Standards Track [Page 6]
^L
RFC 7727 STP Application of ICCP January 2016
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields.
- Protocol Version
The version of ICCP STP application protocol. This document
defines version 0x0001.
- A bit
Acknowledgement Bit. Set to 1 if the sender has received a STP
Connect TLV from the recipient. Otherwise, set to 0.
- Reserved
Reserved for future use. These bits MUST be sent as 0 and
ignored on receipt.
- Optional Sub-TLVs
There are no optional Sub-TLVs defined for this version of the
protocol.
3.2. STP Disconnect TLV
This TLV is used in the RG Disconnect Message to indicate that the
connection for the ICCP STP application is to be terminated.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2001 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optional Sub-TLVs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2001 for "STP Disconnect TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields.
Zhang, et al. Standards Track [Page 7]
^L
RFC 7727 STP Application of ICCP January 2016
- Optional Sub-TLVs
The only optional Sub-TLV defined for this version of the
protocol is the "STP Disconnect Cause" sub-TLV, defined below:
3.2.1. STP Disconnect Cause Sub-TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x200C | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Disconnect Cause String |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x200C for "STP Disconnect Cause TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields.
- Disconnect Cause String
Variable-length string specifying the reason for the disconnect,
encoded in UTF-8 [RFC3629] format. Used for operational
purposes.
3.3. STP Configuration TLVs
The STP Configuration TLVs are sent in the RG Application Data
Message. When an STP Config TLV is received by a peer RG member, the
member MUST synchronize with the configuration information contained
in the TLV. TLVs specified in Sections 3.3.1 to 3.3.5 define
specific configuration information.
Zhang, et al. Standards Track [Page 8]
^L
RFC 7727 STP Application of ICCP January 2016
3.3.1. STP System Config
This TLV announces the local node's STP System Parameters to the RG
peers.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2002 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ROID |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2002 for "STP System Config TLV"
- Length
Length of the ROID plus the MAC address in octets. Always set
to 14.
- ROID
Redundant Object Identifier; format defined in Section 6.1.3 of
[RFC7275].
- MAC Address
The MAC address of the sender. This MAC address is set to the
BridgeIdentifier of the sender, as defined in [802.1q], Section
13.26.2. The numerically lowest 48-bit unsigned value of
BridgeIdentifier is used as the MAC address of the Virtual Root
Bridge mentioned in Section 2.
Zhang, et al. Standards Track [Page 9]
^L
RFC 7727 STP Application of ICCP January 2016
3.3.2. STP Region Name
This TLV carries the value of Region Name.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2003 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Region Name |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2003 for "STP Region Name TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields.
- Region Name
The Name of the MST Region as specified in [802.1q], Section
3.142.
3.3.3. STP Revision Level
This TLV carries the value of Revision Level.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2004 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Revision Level |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2004 for "STP Revision Level TLV".
Zhang, et al. Standards Track [Page 10]
^L
RFC 7727 STP Application of ICCP January 2016
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields. Always set to 2.
- Revision Level
The Revision Level as specified in [802.1q], Section 13.8, item
c.
3.3.4. STP Instance Priority
This TLV carries the value of Instance Priority to other members in
the RG.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2005 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pri | InstanceID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2005 for "STP Instance Priority TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields.
- Pri
The Instance Priority. It is interpreted as unsigned integer
with higher value indicating a higher priority.
- InstanceID
The 12-bit Instance Identifier of the CIST or MSTI. This
parameter takes a value in the range 1 through 4094 for MSTI (as
defined in [802.1q], Section 12.8.1.2.2) and takes value of 0
for CIST.
Zhang, et al. Standards Track [Page 11]
^L
RFC 7727 STP Application of ICCP January 2016
3.3.5. STP Configuration Digest
This TLV carries the value of STP VLAN Instance Mapping.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2006 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Configuration Digest |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2006 for "STP Configuration Digest TLV"
- Length
Length of the STP Configuration Digest in octets. Always set to
16.
- Configuration Digest
As specified in [802.1q], Section 13.8, item d.
3.4. STP State TLVs
The STP State TLVs are sent in the RG Application Data Message. They
are used by a PE device to report its STP status to other members in
the RG. Such TLVs are specified in the following subsections.
3.4.1. STP Topology Changed Instances
This TLV is used to report the Topology Changed Instances to other
members of the RG. The sender monitors Topology Change Notification
(TCN) messages and generates this list. The receiving RG member MUST
initiate the Topology Change event, including sending BPDU with the
Topology Change flag set to 1 out of the designated port(s) of the
Topology Changed bridge domains of the STP network, and flushing out
MAC addresses relevant to the instances listed in this TLV.
If the PE device supports MAC Address Withdrawal (see Section 6.2 of
[RFC4762]), it SHOULD send a Label Distribution Protocol (LDP)
Address Withdraw Message with the list of MAC addresses towards the
core over the corresponding LDP sessions. It is not necessary to
Zhang, et al. Standards Track [Page 12]
^L
RFC 7727 STP Application of ICCP January 2016
send such a message to PEs of the same RG since the flushing of their
MAC address tables should have been performed upon receipt of the STP
Topology Changed Instances TLV.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2007 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| InstanceID List |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2007 for "STP Topology Changed Instances TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields.
- InstanceID List
The list of the InstanceIDs of the CIST or MSTIs whose
topologies have changed as indicated by the TCN messages as
specified in [802.1q], Section 13.14. The list is formatted by
padding each InstanceID value to the 16-bit boundary as follows,
where the bits in the "R" fields MUST be sent as 0 and ignored
on receipt.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R|R|R|R| InstanceID#1 |R|R|R|R| InstanceID#2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ... ... ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Zhang, et al. Standards Track [Page 13]
^L
RFC 7727 STP Application of ICCP January 2016
3.4.2. STP CIST Root Time Parameters
This TLV is used to report the Value of CIST Root Time Parameters
([802.1q], Section 13.26.7) to other members of the RG. All time
parameter values are in seconds with a granularity of 1. For ranges
and default values of these parameter values, refer to [802.1d1998],
Section 8.10.2, Table 8-3; [802.1d2004] Section 17.14, Table 17-1;
and [802.1q], Section 13.26.7.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2008 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MaxAge | MessageAge |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| FwdDelay | HelloTime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RemainingHops |
+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2008 for "STP CIST Root Time TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields. Always set to 9.
- MaxAge
The Max Age of the CIST. It is the maximum age of the
information transmitted by the bridge when it is the Root Bridge
([802.1d2004], Section 17.13.8).
- MessageAge
The Message Age of the CIST (see [802.1q], Section 13.26.7).
- FwdDelay
The Forward Delay of the CIST. It is the delay used by STP
Bridges to transition Root and Designated Ports to Forwarding
([802.1d2004], Section 17.13.5).
Zhang, et al. Standards Track [Page 14]
^L
RFC 7727 STP Application of ICCP January 2016
- HelloTime
The Hello Time of the CIST. It is the interval between periodic
transmissions of Configuration Messages by Designated Ports
([802.1d2004], Section 17.13.6).
- RemainingHops
The remainingHops of the CIST ([802.1q], Section 13.26.7).
3.4.3. STP MSTI Root Time Parameter
This TLV is used to report the parameter value of MSTI Root Time to
other members of the RG. As defined in [802.1q], Section 13.26.7, it
is the value of remainingHops for the given MSTI.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x2009 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pri | InstanceID | RemainingHops |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x2009 for "STP MSTI Root Time TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields. Always set to 3.
- Pri
The Instance Priority. It is interpreted as an unsigned integer
with higher value indicating a higher priority.
- InstanceID
The 12-bit Instance Identifier of the Multiple Spanning Tree
Instance (MSTID). As defined in [802.1q], Section 12.8.1.2.2,
this parameter takes a value in the range 1 through 4094.
Zhang, et al. Standards Track [Page 15]
^L
RFC 7727 STP Application of ICCP January 2016
- RemainingHops
The remainingHops of the MSTI. It is encoded in the same way as
in [802.1q], Section 14.4.1, item f.
3.5. STP Synchronization Request TLV
The STP Synchronization Request TLV is used in the RG Application
Data Message. This TLV is used by a device to request that its peer
retransmit configuration or operational state. The following
information can be requested:
- configuration and/or state of the STP system,
- configuration and/or state for a given list of instances.
The format of the TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x200A | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Request Number |C|S| Request Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| InstanceID List |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
Set to 0x200A for "STP Synchronization Request TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields. Always set to 4.
- Request Number
2 octets. Unsigned integer uniquely identifying the request.
Used to match the request with a corresponding response. The
value of 0 is reserved for unsolicited synchronization, and it
MUST NOT be used in the STP Synchronization Request TLV. As
indicated in [RFC7275], given the use of TCP, there are no
issues associated with the wrap-around of the Request Number.
Zhang, et al. Standards Track [Page 16]
^L
RFC 7727 STP Application of ICCP January 2016
- C-bit
Set to 1 if the request is for configuration data. Otherwise,
set to 0.
- S-bit
Set to 1 if the request is for running state data. Otherwise,
set to 0.
- Request Type
14 bits specifying the request type, encoded as follows:
0x00 Request System Data
0x01 Request data of the listed instances
0x3FFF Request System Data and data of all instances
- InstanceID List
The InstanceIDs of the CIST or MSTIs; format specified in
Section 3.4.1.
3.6. STP Synchronization Data TLV
The pair of STP Synchronization Data TLVs are used by the sender to
delimit a set of TLVs that are being transmitted in response to an
STP Synchronization Request TLV. The delimiting TLVs signal the
start and end of the synchronization data, and they associate the
response with its corresponding request via the Request Number field.
It's REQUIRED that each pair of STP Synchronization Data TLVs occur
in the same fragment. When the total size of the TLVs to be
transmitted exceeds the maximal size of a fragment, these TLVs MUST
be divided into multiple sets, delimited by multiple pairs of STP
Synchronization Data TLVs, and filled into multiple fragments. With
the Request Number, lost fragments can be identified and
re-requested.
The STP Synchronization Data TLVs are also used for unsolicited
advertisements of complete STP configuration and operational state
data. The Request Number field MUST be set to 0 in this case.
Zhang, et al. Standards Track [Page 17]
^L
RFC 7727 STP Application of ICCP January 2016
STP Synchronization Data TLV has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type=0x200B | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Request Number | Reserved |S|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- U=F=0
- Type
set to 0x200B for "STP Synchronization Data TLV"
- Length
Length of the TLV in octets excluding the U-bit, F-bit, Type,
and Length fields. Always set to 4.
- Request Number
2 octets. Unsigned integer identifying the Request Number of
the "STP Synchronization Request TLV" that initiated this
synchronization data response.
- Reserved
Reserved bits for future use. These MUST be sent as 0 and
ignored on receipt.
- S
S = 0: Synchronization Data Start
S = 1: Synchronization Data End
4. Operations
Operational procedures for AC redundancy applications have been
specified in Section 9.2 of [RFC7275]. The operational procedures of
the ICCP STP application should follow those procedures, with the
changes presented in this section.
4.1. Common AC Procedures
The following changes are introduced to the generic procedures of AC
redundancy applications defined in Section 9.2.1 of [RFC7275].
Zhang, et al. Standards Track [Page 18]
^L
RFC 7727 STP Application of ICCP January 2016
4.1.1. Remote PE Node Failure or Isolation
When a local PE device detects that a remote PE device that is a
member of the same RG is no longer reachable (using the mechanisms
described in Section 5 of [RFC7275]), the local PE device checks if
it has redundancy ACs for the affected services. If redundant ACs
are present, and if the local PE device has the new highest bridge
priority, the local PE device becomes the virtual root bridge for
corresponding ACs.
4.1.2. Local PE Isolation
When a PE device detects that it has been isolated from the core
network, then it needs to ensure that its AC redundancy mechanism
will change the status of all active ACs to standby. The AC
redundancy application SHOULD then send an RG Application Data
Message in order to trigger failover to another active PE device in
the RG. Note that this works only in the case of dedicated
interconnect (Sections 3.2.1 and 3.2.3), since ICCP will still have
the path to the peer, even though the PE device is isolated from the
MPLS core network.
4.2. ICCP STP Application Procedures
This section defines the procedures of the ICCP STP application that
are applicable for Ethernet ACs.
4.2.1. Initial Setup
When an RG is configured on a system that supports the ICCP STP
application, such systems MUST send an RG Connect Message with an STP
Connect TLV to each PE device that is a member of the RG. The
sending PE device MUST set the A bit to 1 in that TLV if it has
received a corresponding STP Connect TLV from its peer PE; otherwise,
the sending PE device MUST set the A bit to 0. If a PE device
receives an STP Connect TLV from its peer after sending its own TLV
with the A bit set to 0, it MUST resend the TLV with the A bit set to
1. A system considers the ICCP STP application connection to be
operational when it has both sent and received STP Connect TLVs with
the A bit set to 1. When the ICCP STP application connection between
a pair of PEs is operational, the two devices can start exchanging RG
Application Data Messages for the ICCP STP application. This
involves having each PE device advertise its STP configuration and
operational state in an unsolicited manner. A PE device SHOULD
follow the order below when advertising its STP state upon initial
application connection setup:
Zhang, et al. Standards Track [Page 19]
^L
RFC 7727 STP Application of ICCP January 2016
- Advertise the STP System Config TLV
- Advertise remaining Configuration TLVs
- Advertise State TLVs
The update of the information contained in the State TLVs depends on
that in the Configuration TLVs. By sending the TLVs in the above
order, the two peers may begin to update STP state as early as
possible in the middle of exchanging these TLVs.
A PE device MUST use a pair of STP Synchronization Data TLVs to
delimit the entire set of TLVs that are being sent as part of this
unsolicited advertisement.
If a system receives an RG Connect Message with an STP Connect TLV
that has a differing Protocol Version, it MUST follow the procedures
outlined in the Section 4.4.1 ("Application Versioning") of
[RFC7275].
After the ICCP STP application connection has been established, every
PE device MUST communicate its system-level configuration to its
peers via the use of STP System Config TLV.
When the ICCP STP application is administratively disabled on the PE,
or on the particular RG, the system MUST send an RG Disconnect
Message containing STP Disconnect TLV.
4.2.2. Configuration Synchronization
A system that supports ICCP STP application MUST synchronize the
configuration with other RG members. This is achieved via the use of
STP Configuration TLVs. The PEs in the RG MUST all agree on the
common MAC address to be associated with the virtual root bridge. It
is possible to achieve this via consistent configuration on member
PEs. However, in order to protect against possible
misconfigurations, a virtual root bridge identifier MUST be set to
the MAC address advertised by the PE device with the numerically
lowest BridgeIdentifier (i.e., the MAC address of the bridge) in the
RG.
Furthermore, for a given ICCP STP application, an implementation MUST
advertise the configuration prior to advertising its corresponding
state. If a PE device receives any STP State TLV that it had not
learned of before via an appropriate STP Configuration TLV, then the
PE device MUST request synchronization of the configuration and state
from its peer. If during such synchronization a PE device receives a
State TLV that it has not learned before, then the PE device MUST
send a NAK TLV for that particular TLV. The PE device MUST NOT
request resynchronization in this case.
Zhang, et al. Standards Track [Page 20]
^L
RFC 7727 STP Application of ICCP January 2016
4.2.3. State Synchronization
PEs within the RG need to synchronize their state for proper STP
operation. This is achieved by having each system advertise its
running state in STP State TLVs. Whenever any STP parameter either
on the CE or PE side is changed, the system MUST transmit an updated
TLV for the affected STP instances. Moreover, when the
administrative or operational state changes, the system MUST transmit
an updated State TLV to its peers.
A PE device MAY request its peer to retransmit previously advertised
state. This is useful in case the PE device is recovering from a
soft failure and attempting to relearn state. To request such
retransmissions, a PE device MUST send a set of one or more STP
Synchronization Request TLVs.
A PE device MUST respond to a STP Synchronization Request TLV by
sending the requested data in a set of one or more STP Configuration
or State TLVs delimited by a pair of STP Synchronization Data TLVs.
Note that the response may span across multiple RG Application Data
Messages, for example, when MTU limits are exceeded; however, the
above ordering MUST be retained across messages, and only a single
pair of Synchronization Data TLVs MUST be used to delimit the
response across all RG Application Data Messages.
A PE device MAY readvertise its STP state in an unsolicited manner.
This is done by sending the appropriate State TLVs delimited by a
pair of STP Synchronization Data TLVs and using a Request Number of
0.
While a PE device has sent out a synchronization request for a
particular PE device, it SHOULD silently ignore all TLVs that are
from that node, are received prior to the synchronization response,
and carry the same type of information being requested. This saves
the system from the burden of updating state that will ultimately be
overwritten by the synchronization response. Note that TLVs
pertaining to other systems should continue to be processed normally.
If a PE device receives a synchronization request for an instance
that doesn't exist or is not known to the PE, then it MUST trigger
the unsolicited synchronization of all information by restarting the
initialization.
If during the synchronization operation a PE device receives an
advertisement of a Node ID value that is different from the value
previously advertised, then the PE device MUST purge all state data
previously received from that peer prior to the last synchronization.
Zhang, et al. Standards Track [Page 21]
^L
RFC 7727 STP Application of ICCP January 2016
4.2.4. Failure and Recovery
When a PE device that is active for the ICCP STP application
encounters a core isolation fault [RFC7275], it SHOULD attempt to
fail over to a peer PE device that hosts the same RG. The default
failover procedure is to have the failed PE device bring down the
link(s) towards the multihomed STP network. This will cause the STP
network to reconverge and to use the other links that are connected
to the other PE devices in the RG. Other procedures for triggering
failover are possible and are outside the scope of this document.
If the isolated PE device is the one that has the numerically lowest
BridgeIdentifier, PEs in the RG MUST synchronize STP Configuration
and State TLVs and determine a new virtual root bridge as specified
in Section 4.2.2.
Upon recovery from a previous fault, a PE device SHOULD NOT reclaim
the role of the virtual root for the STP network even if it has the
numerically lowest BridgeIdentifier among the RG. This minimizes
traffic disruption.
Whenever the virtual root bridge changes, the STP Topology Changed
Instances TLV lists the instances that are affected by the change.
These instances MUST undergo a STP reconvergence procedure when this
TLV is received as defined in Section 3.4.1.
5. Security Considerations
This document specifies an application running on the channel
provided by ICCP [RFC7275]. The security considerations on ICCP
apply in this document as well.
For the ICCP STP application, an attack on a channel (running in the
provider's network) can break not only the ability to deliver traffic
across the provider's network, but also the ability to route traffic
within the customer's network. That is, a careful attack on a
channel (such as the DoS attacks as described in [RFC7275]) can break
STP within the customer network. Implementations need to provide
mechanisms to mitigate these types of attacks. For example, the port
between the PE device and the malicious CE device may be blocked.
Zhang, et al. Standards Track [Page 22]
^L
RFC 7727 STP Application of ICCP January 2016
6. IANA Considerations
The IANA maintains a top-level registry called "Pseudowire Name
Spaces (PWE3)". It has a subregistry called "ICC RG Parameter
Types".
IANA has made 13 allocations from this registry as shown below. IANA
has allocated the codepoints from the range marked for assignment by
IETF Review (0x2000-0x2FFF) [RFC5226]. Each assignment references
this document.
Parameter Type Description
-------------- ---------------------------------
0x2000 STP Connect TLV
0x2001 STP Disconnect TLV
0x2002 STP System Config TLV
0x2003 STP Region Name TLV
0x2004 STP Revision Level TLV
0x2005 STP Instance Priority TLV
0x2006 STP Configuration Digest TLV
0x2007 STP Topology Changed Instances TLV
0x2008 STP CIST Root Time TLV
0x2009 STP MSTI Root Time TLV
0x200A STP Synchronization Request TLV
0x200B STP Synchronization Data TLV
0x200C STP Disconnect Cause TLV
7. References
7.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
2003, <http://www.rfc-editor.org/info/rfc3629>.
[RFC4762] Lasserre, M., Ed., and V. Kompella, Ed., "Virtual
Private LAN Service (VPLS) Using Label Distribution
Protocol (LDP) Signaling", RFC 4762,
DOI 10.17487/RFC4762, January 2007,
<http://www.rfc-editor.org/info/rfc4762>.
Zhang, et al. Standards Track [Page 23]
^L
RFC 7727 STP Application of ICCP January 2016
[RFC7275] Martini, L., Salam, S., Sajassi, A., Bocci, M.,
Matsushima, S., and T. Nadeau, "Inter-Chassis
Communication Protocol for Layer 2 Virtual Private
Network (L2VPN) Provider Edge (PE) Redundancy",
RFC 7275, DOI 10.17487/RFC7275, June 2014,
<http://www.rfc-editor.org/info/rfc7275>.
[802.1q] IEEE, "IEEE Standard for Local and Metropolitan Area
Networks -- Bridges and Bridged Networks", IEEE Std
802.1Q-2014, DOI 10.1109/IEEESTD.2014.6991462, 2014.
[802.1d1998] IEEE, "Information technology -- Telecommunications and
information exchange between systems -- Local and
metropolitan area networks -- Common specifications --
Part 3: Media Access Control (MAC) Bridges", ANSI/IEEE
Std 802.1D-1998, DOI 10.1109/IEEESTD.1998.95619, 1998.
[802.1d2004] IEEE, "IEEE Standard for Local and metropolitan area
networks -- Media Access Control (MAC) Bridges", IEEE
Std 802.1D-2004, DOI 10.1109/ieeestd.2004.94569, 2004.
7.2. Informative References
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<http://www.rfc-editor.org/info/rfc5226>.
Acknowledgements
The authors would like to thank the comments and suggestions from
Ignas Bagdonas, Adrian Farrel, Andrew G. Malis, Gregory Mirsky, and
Alexander Vainshtein.
Zhang, et al. Standards Track [Page 24]
^L
RFC 7727 STP Application of ICCP January 2016
Authors' Addresses
Mingui Zhang
Huawei Technologies
No. 156 Beiqing Rd. Haidian District,
Beijing 100095
China
Email: zhangmingui@huawei.com
Huafeng Wen
Huawei Technologies
101 Software Avenue,
Nanjing 210012
China
Email: wenhuafeng@huawei.com
Jie Hu
China Telecom
Beijing Information Science & Technology Innovation Park
Beiqijia Town Changping District,
Beijing 102209
China
Email: hujie@ctbri.com.cn
Zhang, et al. Standards Track [Page 25]
^L
|