1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
|
Internet Engineering Task Force (IETF) J. Howlett
Request for Comments: 7831 Jisc
Category: Informational S. Hartman
ISSN: 2070-1721 Painless Security
H. Tschofenig
ARM Ltd.
J. Schaad
August Cellars
May 2016
Application Bridging for Federated Access Beyond Web (ABFAB)
Architecture
Abstract
Over the last decade, a substantial amount of work has occurred in
the space of federated access management. Most of this effort has
focused on two use cases: network access and web-based access.
However, the solutions to these use cases that have been proposed and
deployed tend to have few building blocks in common.
This memo describes an architecture that makes use of extensions to
the commonly used security mechanisms for both federated and non-
federated access management, including the Remote Authentication
Dial-In User Service (RADIUS), the Generic Security Service
Application Program Interface (GSS-API), the Extensible
Authentication Protocol (EAP), and the Security Assertion Markup
Language (SAML). The architecture addresses the problem of federated
access management to primarily non-web-based services, in a manner
that will scale to large numbers of Identity Providers, Relying
Parties, and federations.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7831.
Howlett, et al. Informational [Page 1]
^L
RFC 7831 ABFAB Architecture May 2016
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Howlett, et al. Informational [Page 2]
^L
RFC 7831 ABFAB Architecture May 2016
Table of Contents
1. Introduction ....................................................4
1.1. Terminology ................................................5
1.1.1. Channel Binding .....................................6
1.2. An Overview of Federation ..................................8
1.3. Challenges for Contemporary Federation ....................11
1.4. An Overview of ABFAB-Based Federation .....................11
1.5. Design Goals ..............................................14
2. Architecture ...................................................15
2.1. Relying Party to Identity Provider ........................16
2.1.1. AAA, RADIUS, and Diameter ..........................17
2.1.2. Discovery and Rules Determination ..................19
2.1.3. Routing and Technical Trust ........................20
2.1.4. AAA Security .......................................21
2.1.5. SAML Assertions ....................................22
2.2. Client to Identity Provider ...............................24
2.2.1. Extensible Authentication Protocol (EAP) ...........24
2.2.2. EAP Channel Binding ................................26
2.3. Client to Relying Party ...................................26
2.3.1. GSS-API ............................................27
2.3.2. Protocol Transport .................................28
2.3.3. Re-authentication ..................................29
3. Application Security Services ..................................29
3.1. Authentication ............................................29
3.2. GSS-API Channel Binding ...................................31
3.3. Host-Based Service Names ..................................32
3.4. Additional GSS-API Services ...............................33
4. Privacy Considerations .........................................34
4.1. Entities and Their Roles ..................................35
4.2. Privacy Aspects of ABFAB Communication Flows ..............36
4.2.1. Client to RP .......................................36
4.2.2. Client to IdP (via Federation Substrate) ...........37
4.2.3. IdP to RP (via Federation Substrate) ...............38
4.3. Relationship between User and Entities ....................39
4.4. Accounting Information ....................................39
4.5. Collection and Retention of Data and Identifiers ..........39
4.6. User Participation ........................................40
5. Security Considerations ........................................40
6. References .....................................................41
6.1. Normative References ......................................41
6.2. Informative References ....................................42
Acknowledgments ...................................................46
Authors' Addresses ................................................46
Howlett, et al. Informational [Page 3]
^L
RFC 7831 ABFAB Architecture May 2016
1. Introduction
Numerous security mechanisms have been deployed on the Internet to
manage access to various resources. These mechanisms have been
generalized and scaled over the last decade through mechanisms such
as the Simple Authentication and Security Layer (SASL) with the
Generic Security Server Application Program Interface (GSS-API)
(known as the GS2 family) [RFC5801]; the Security Assertion Markup
Language (SAML) [OASIS.saml-core-2.0-os]; and the Authentication,
Authorization, and Accounting (AAA) architecture as embodied in
RADIUS [RFC2865] and Diameter [RFC6733].
A Relying Party (RP) is the entity that manages access to some
resource. The entity that is requesting access to that resource is
often described as the client. Many security mechanisms are
manifested as an exchange of information between these entities.
The RP is therefore able to decide whether the client is authorized
or not.
Some security mechanisms allow the RP to delegate aspects of the
access management decision to an entity called the Identity Provider
(IdP). This delegation requires technical signaling, trust, and a
common understanding of semantics between the RP and IdP. These
aspects are generally managed within a relationship known as a
"federation". This style of access management is accordingly
described as "federated access management".
Federated access management has evolved over the last decade through
specifications like SAML [OASIS.saml-core-2.0-os], OpenID
(http://www.openid.net), OAuth [RFC6749], and WS-Trust [WS-TRUST].
The benefits of federated access management include:
Single or simplified sign-on:
An Internet service can delegate access management, and the
associated responsibilities such as identity management and
credentialing, to an organization that already has a long-term
relationship with the client. This is often attractive, as RPs
frequently do not want these responsibilities. The client also
requires fewer credentials, which is also desirable.
Howlett, et al. Informational [Page 4]
^L
RFC 7831 ABFAB Architecture May 2016
Data minimization and user participation:
Often, an RP does not need to know the identity of a client to
reach an access management decision. It is frequently only
necessary for the RP to know specific attributes about the client
-- for example, that the client is affiliated with a particular
organization or has a certain role or entitlement. Sometimes, the
RP only needs to know a pseudonym of the client.
Prior to the release of attributes to the RP from the IdP, the IdP
will check configuration and policy to determine if the attributes
are to be released. There is currently no direct client
participation in this decision.
Provisioning:
Sometimes, an RP needs, or would like, to know more about a client
than an affiliation or a pseudonym. For example, an RP may want
the client's email address or name. Some federated access
management technologies provide the ability for the IdP to supply
this information, either on request by the RP or unsolicited.
This memo describes the Application Bridging for Federated Access
Beyond web (ABFAB) architecture. This architecture addresses the
problem of federated access management primarily for non-web-based
services. This architecture makes use of extensions to the commonly
used security mechanisms for both federated and non-federated access
management, including RADIUS, the Generic Security Service (GSS), the
Extensible Authentication Protocol (EAP), and SAML. The architecture
should be extended to use Diameter in the future. It does so in a
manner that is designed to scale to large numbers of IdPs, RPs, and
federations.
1.1. Terminology
This document uses identity management and privacy terminology from
[RFC6973]. In particular, this document uses the terms
"identity provider", "relying party", "identifier", "pseudonymity",
"unlinkability", and "anonymity".
In this architecture, the IdP consists of the following components:
an EAP server, a RADIUS server, and, optionally, a SAML Assertion
service.
This document uses the term "Network Access Identifier" (NAI) as
defined in [RFC7542]. An NAI consists of a realm identifier, which
is associated with a AAA server, and thus an IdP and a username, that
are associated with a specific client of the IdP.
Howlett, et al. Informational [Page 5]
^L
RFC 7831 ABFAB Architecture May 2016
One of the problems some people have found with reading this document
is that the terminology sometimes appears to be inconsistent. This
is because the various standards that we refer to use different terms
for the same concept. In general, this document uses either the
ABFAB term or the term associated with the standard under discussion,
as appropriate. For reference, we include Table 1 below, which
provides a mapping for these different terms. (Note that items
marked "N/A" (not applicable) indicate that there is no name that
represents the entity.)
+----------+-----------+--------------------+-----------------------+
| Protocol | Client | Relying Party | Identity Provider |
+----------+-----------+--------------------+-----------------------+
| ABFAB | N/A | Relying Party (RP) | Identity Provider |
| | | | (IdP) |
| | | | |
| | Initiator | Acceptor | N/A |
| | | | |
| | Client | Server | N/A |
| | | | |
| SAML | Subject | Service provider | Issuer |
| | | | |
| GSS-API | Initiator | Acceptor | N/A |
| | | | |
| EAP | EAP peer | EAP authenticator | EAP server |
| | | | |
| AAA | N/A | AAA client | AAA server |
| | | | |
| RADIUS | user | NAS | N/A |
| | | | |
| | N/A | RADIUS client | RADIUS server |
+----------+-----------+--------------------+-----------------------+
Table 1: Terminology
1.1.1. Channel Binding
This document uses the term "channel binding" in two different
contexts; this term has a different meaning in each of these
contexts.
EAP channel binding is used to implement GSS-API naming semantics.
EAP channel binding sends a set of attributes from the peer to the
EAP server either as part of the EAP conversation or as part of a
secure association protocol. In addition, attributes are sent in the
back-end protocol from the EAP authenticator to the EAP server. The
Howlett, et al. Informational [Page 6]
^L
RFC 7831 ABFAB Architecture May 2016
EAP server confirms the consistency of these attributes and provides
the confirmation back to the peer. In this document, channel binding
without qualification refers to EAP channel binding.
GSS-API channel binding provides protection against man-in-the-middle
attacks when GSS-API is used for authentication inside of some
tunnel; it is similar to a facility called "cryptographic binding" in
EAP. The binding works by each side deriving a cryptographic value
from the tunnel itself and then using that cryptographic value to
prove to the other side that it knows the value.
See [RFC5056] for a discussion of the differences between these two
facilities. These differences can be summarized as follows:
o GSS-API channel binding specifies that there is nobody between the
client and the EAP authenticator.
o EAP channel binding allows the client to have knowledge of such
EAP authenticator attributes as the EAP authenticator's name.
Typically, when considering both EAP and GSS-API channel binding,
people think of channel binding in combination with mutual
authentication. This is sufficiently common that, without additional
qualification, channel binding should be assumed to imply mutual
authentication. In GSS-API, without mutual authentication, only the
acceptor has authenticated the initiator. Similarly, in EAP, only
the EAP server has authenticated the peer. Sometimes, one-way
authentication is useful. Consider, for example, a user who wishes
to access a protected resource for a shared whiteboard in a
conference room. The whiteboard is the acceptor; it knows that the
initiator is authorized to give it a presentation, and the user can
validate that the whiteboard got the correct presentation by visual
means. (The presentation should not be confidential in this case.)
If channel binding is used without mutual authentication, it is
effectively a request to disclose the resource in the context of a
particular channel. Such an authentication would be similar in
concept to a holder-of-key SAML Assertion. However, note also that
although it is not happening in the protocol, mutual authentication
is happening in the overall system: the user is able to visually
authenticate the content. This is consistent with all uses of
channel binding without protocol-level mutual authentication found
so far.
Howlett, et al. Informational [Page 7]
^L
RFC 7831 ABFAB Architecture May 2016
1.2. An Overview of Federation
In the previous section, we introduced the following entities:
o the client,
o the IdP, and
o the RP.
The final entity that needs to be introduced is the Individual. An
Individual is a human being that is using the client. In any given
situation, an Individual may or may not exist. Clients can act as
front ends for Individuals, or clients may be independent entities
that are set up and allowed to run autonomously. An example of such
an independent entity can be found in the Trust Router Protocol
(https://www.ietf.org/proceedings/86/slides/slides-86-rtgarea-0.pdf),
where the routers use ABFAB to authenticate to each other.
These entities and their relationships are illustrated graphically in
Figure 1.
,----------\ ,---------\
| Identity | Federation | Relying |
| Provider + <--------------------> + Party |
`----------' '---------'
<
\
\ Authentication
\
\
\
\
\ +---------+
\ | | O
v| Client | \|/ Individual
| | |
+---------+ / \
Figure 1: Entities and Their Relationships
Howlett, et al. Informational [Page 8]
^L
RFC 7831 ABFAB Architecture May 2016
The relationships between the entities in Figure 1 are as follows:
Federation
The IdP and the RPs are part of a federation. The relationship
may be direct (they have an explicit trust relationship) or
transitive (the trust relationship is mediated by one or more
entities). The federation relationship is governed by a
federation agreement. Within a single federation, there may be
multiple IdPs as well as multiple RPs.
Authentication
There is a direct relationship between the client and the IdP.
This relationship provides the means by which they trust each
other and can securely authenticate each other.
A federation agreement typically encompasses operational
specifications and legal rules:
Operational Specifications:
The goal of operational specifications is to provide enough
definition that the system works and interoperability is possible.
These include the technical specifications (e.g., protocols used
to communicate between the three parties), process standards,
policies, identity proofing, credential and authentication
algorithm requirements, performance requirements, assessment and
audit criteria, etc.
Legal Rules:
The legal rules take the legal framework into consideration and
provide contractual obligations for each entity. The rules define
the responsibilities of each party and provide further
clarification of the operational specifications. These legal
rules regulate the operational specifications, make operational
specifications legally binding to the participants, and define and
govern the rights and responsibilities of the participants. The
legal rules may, for example, describe liability for losses,
termination rights, enforcement mechanisms, measures of damage,
dispute resolution, warranties, etc.
Howlett, et al. Informational [Page 9]
^L
RFC 7831 ABFAB Architecture May 2016
The operational specifications can demand the usage of a specific
technical infrastructure, including requirements on the message
routing intermediaries, to offer the required technical
functionality. In other environments, the operational specifications
require fewer technical components in order to meet the required
technical functionality.
The legal rules include many non-technical aspects of federation,
such as business practices and legal arrangements, which are outside
the scope of the IETF. The legal rules can still have an impact on
the architectural setup or on how to ensure the dynamic establishment
of trust.
While a federation agreement is often discussed within the context of
formal relationships, such as between an enterprise and an employee
or between a government and a citizen, a federation agreement does
not have to require any particular level of formality. For an IdP
and a client, it is sufficient for a relationship to be established
by something as simple as using a web form and confirmation email.
For an IdP and an RP, it is sufficient for the IdP to publish contact
information along with a public key and for the RP to use that data.
Within the framework of ABFAB, it will generally be required that a
mechanism exist for the IdP to be able to trust the identity of the
RP; if this is not present, then the IdP cannot provide the
assurances to the client that the identity of the RP has been
established.
The nature of federation dictates that there exists some form of
relationship between the IdP and the RP. This is particularly
important when the RP wants to use information obtained from the IdP
for access management decisions and when the IdP does not want to
release information to every RP (or only under certain conditions).
While it is possible to have a bilateral agreement between every IdP
and every RP, on an Internet scale, this setup requires the
introduction of the multilateral federation concept, as the
management of such pair-wise relationships would otherwise prove
burdensome.
The IdP will typically have a long-term relationship with the client.
This relationship typically involves the IdP positively identifying
and credentialing the client (for example, at the time of employment
within an organization). When dealing with Individuals, this process
is called "identity proofing" [NIST-SP.800-63-2]. The relationship
will often be instantiated within an agreement between the IdP and
the client (for example, within an employment contract or terms of
use that stipulate the appropriate use of credentials and so forth).
Howlett, et al. Informational [Page 10]
^L
RFC 7831 ABFAB Architecture May 2016
The nature and quality of the relationship between the client and the
IdP are important contributors to the level of trust that an RP may
assign to an assertion describing a client made by an IdP. This is
sometimes described as the level of assurance [NIST-SP.800-63-2].
Federation does not require an a priori relationship or a long-term
relationship between the RP and the client; it is this property of
federation that yields many of its benefits. However, federation
does not preclude the possibility of a pre-existing relationship
between the RP and the client or the possibility that the RP and
client may use the introduction to create a new long-term
relationship independent of the federation.
Finally, it is important to reiterate that in some scenarios there
might indeed be an Individual behind the client and in other cases
the client may be autonomous.
1.3. Challenges for Contemporary Federation
As federated IdPs and RPs (services) proliferate, the role of an
Individual can become ambiguous in certain circumstances. For
example, a school might provide online access for a student's grades
to their parents for review and to the student's teacher for
modification. A teacher who is also a parent must clearly
distinguish their role upon access.
Similarly, as federations proliferate, it becomes increasingly
difficult to discover which IdP(s) a user is associated with. This
is true for both the web and non-web case but is particularly acute
for the latter, as many non-web authentication systems are not
semantically rich enough on their own to allow for such ambiguities.
For instance, in the case of an email provider, SMTP and IMAP do not
have the ability for the server to request information from the
client, beyond the client NAI, that the server would then use to
decide between the multiple federations it is associated with.
However, the building blocks do exist to add this functionality.
1.4. An Overview of ABFAB-Based Federation
The previous section described the general model of federation and
the application of access management within the federation. This
section provides a brief overview of ABFAB in the context of this
model.
Howlett, et al. Informational [Page 11]
^L
RFC 7831 ABFAB Architecture May 2016
In this example, a client is attempting to connect to a server in
order to either get access to some data or perform some type of
transaction. In order for the client to mutually authenticate with
the server, the following steps are taken in an ABFAB architecture (a
graphical view of the steps can be found in Figure 2):
1. Client configuration: The client is configured with an NAI
assigned by the IdP. It is also configured with any keys,
certificates, passwords, or other secret and public information
needed to run the EAP protocols between it and the IdP.
2. Authentication mechanism selection: The client is configured to
use the GSS-EAP GSS-API mechanism for authentication/
authorization.
3. Client provides an NAI to RP: The client sets up a transport to
the RP and begins GSS-EAP authentication. In response, the RP
sends an EAP request message (nested in GSS-EAP) asking for the
client's name. The client sends an EAP response with an NAI
name form that, at a minimum, contains the realm portion of its
full NAI.
4. Discovery of federated IdP: The RP uses preconfigured
information or a federation proxy to determine what IdP to use,
based on policy and the realm portion of the provided client
NAI. This is discussed in detail below (Section 2.1.2).
5. Request from RP to IdP: Once the RP knows who the IdP is, it (or
its agent) will send a RADIUS request to the IdP. The RADIUS
Access-Request encapsulates the EAP response. At this stage,
the RP will likely have no idea who the client is. The RP sends
its identity to the IdP in AAA attributes, and it may send a
SAML request in a AAA attribute. The AAA network checks to see
that the identity claimed by the RP is valid.
6. IdP begins EAP with the client: The IdP sends an EAP message to
the client with an EAP method to be used. The IdP should not
re-request the client's name in this message, but clients need
to be able to handle it. In this case, the IdP must accept a
realm only in order to protect the client's name from the RP.
The available and appropriate methods are discussed below
(Section 2.2.1).
7. EAP is run: A bunch of EAP messages are passed between the
client (EAP peer) and the IdP (EAP server), until the result of
the authentication protocol is determined. The number and
content of those messages depend on the EAP method selected. If
the IdP is unable to authenticate the client, the IdP sends an
Howlett, et al. Informational [Page 12]
^L
RFC 7831 ABFAB Architecture May 2016
EAP failure message to the RP. As part of the EAP method, the
client sends an EAP channel-binding message to the IdP
(Section 2.2.2). In the channel-binding message, the client
identifies, among other things, the RP to which it is attempting
to authenticate. The IdP checks the channel-binding data from
the client against the data provided by the RP via the AAA
protocol. If the bindings do not match, the IdP sends an EAP
failure message to the RP.
8. Successful EAP authentication: At this point, the IdP (EAP
server) and client (EAP peer) have mutually authenticated each
other. As a result, the client and the IdP hold two
cryptographic keys: a Master Session Key (MSK) and an Extended
MSK (EMSK). At this point, the client has a level of assurance
regarding the identity of the RP, based on the name checking the
IdP has done, using the RP naming information from the AAA
framework and from the client (by the channel-binding data).
9. Local IdP policy check: At this stage, the IdP checks local
policy to determine whether the RP and client are authorized for
a given transaction/service and, if so, what attributes, if any,
will be released to the RP. If the IdP gets a policy failure,
it sends an EAP failure message to the RP and client. (The RP
will have done its policy checks during the discovery process.)
10. IdP provides the RP with the MSK: The IdP sends a success result
EAP to the RP, along with an optional set of AAA attributes
associated with the client (usually as one or more SAML
Assertions). In addition, the EAP MSK is returned to the RP.
11. RP processes results: When the RP receives the result from the
IdP, it should have enough information to either grant or refuse
a resource Access-Request. It may have information that
associates the client with specific authorization identities.
If additional attributes are needed from the IdP, the RP may
make a new SAML request to the IdP. It will apply these results
in an application-specific way.
12. RP returns results to client: Once the RP has a response, it
must inform the client of the result. If all has gone well, all
are authenticated, and the application proceeds with appropriate
authorization levels. The client can now complete the
authentication of the RP by using the EAP MSK value.
Howlett, et al. Informational [Page 13]
^L
RFC 7831 ABFAB Architecture May 2016
Relying Client Identity
Party Provider
| (1) | Client configuration
| | |
|<-----(2)----->| | Mechanism selection
| | |
|<-----(3)-----<| | NAI transmitted to RP
| | |
|<=====(4)====================>| IdP Discovery
| | |
|>=====(5)====================>| Access-Request from RP to IdP
| | |
| |< - - (6) - -<| EAP method to client
| | |
| |< - - (7) - ->| EAP exchange to authenticate
| | | client
| | |
| | (8 & 9) Local policy check
| | |
|<====(10)====================<| Results to RP
| | |
(11) | | RP processes results
| | |
|>----(12)----->| | Results to client
Legend:
-----: Between client and RP
=====: Between RP and IdP
- - -: Between client and IdP (via RP)
Figure 2: ABFAB Authentication Steps
1.5. Design Goals
Our key design goals are as follows:
o Each party in a transaction will be authenticated, although
perhaps not identified, and the client will be authorized for
access to a specific resource.
o The means of authentication is decoupled from the application
protocol so as to allow for multiple authentication methods with
minimal changes to the application.
o The architecture requires no sharing of long-term private keys
between clients and RPs.
Howlett, et al. Informational [Page 14]
^L
RFC 7831 ABFAB Architecture May 2016
o The system will scale to large numbers of IdPs, RPs, and users.
o The system will be designed primarily for non-web-based
authentication.
o The system will build upon existing standards, components, and
operational practices.
Designing new three-party authentication and authorization protocols
is difficult and fraught with the risk of cryptographic flaws.
Achieving widespread deployment is even more difficult. A lot of
attention on federated access has been devoted to the web. This
document instead focuses on a non-web-based environment and focuses
on those protocols where HTTP is not used. Despite the growing trend
to layer every protocol on top of HTTP, there are still a number of
protocols available that do not use HTTP-based transports. Many of
these protocols are lacking a native authentication and authorization
framework of the style shown in Figure 1.
2. Architecture
We have already introduced the federated access architecture, with
the illustration of the different actors that need to interact. This
section expands on the specifics of providing support for
non-web-based applications and provides motivations for design
decisions. The main theme of the work described in this document is
focused on reusing existing building blocks that have been deployed
already and to rearrange them in a novel way.
Although this architecture assumes updates to the RP, the client, and
the IdP, those changes are kept at a minimum. A mechanism that can
demonstrate deployment benefits (based on ease of updates to existing
software, low implementation effort, etc.) is preferred, and there
may be a need to specify multiple mechanisms to support the range of
different deployment scenarios.
There are a number of ways to encapsulate EAP into an application
protocol. For ease of integration with a wide range of non-web-based
application protocols, GSS-API was chosen. The technical
specification of GSS-EAP can be found in [RFC7055].
The architecture consists of several building blocks, as shown
graphically in Figure 3. In the following sections, we discuss the
data flow between each of the entities, the protocols used for that
data flow, and some of the trade-offs made in choosing the protocols.
Howlett, et al. Informational [Page 15]
^L
RFC 7831 ABFAB Architecture May 2016
+--------------+
| Identity |
| Provider |
| (IdP) |
+-^----------^-+
* EAP o RADIUS
* o
--v----------v--
/// \\\
// \\
| Federation |
| Substrate |
\\ //
\\\ ///
--^----------^--
* EAP o RADIUS
* o
+-------------+ +-v----------v--+
| | | |
| Client | EAP/EAP Method | Relying Party |
| Application |<****************>| (RP) |
| | GSS-API | |
| |<---------------->| |
| | Application | |
| | Protocol | |
| |<================>| |
+-------------+ +---------------+
Legend:
<****>: Client-to-IdP Exchange
<---->: Client-to-RP Exchange
<oooo>: RP-to-IdP Exchange
<====>: Protocol through which GSS-API/GS2 exchanges are tunneled
Figure 3: ABFAB Protocol Instantiation
2.1. Relying Party to Identity Provider
Communication between the RP and the IdP is done by the Federation
Substrate. This communication channel is responsible for:
o Establishing the trust relationship between the RP and the IdP.
o Determining the rules governing the relationship.
o Conveying authentication packets from the client to the IdP
and back.
Howlett, et al. Informational [Page 16]
^L
RFC 7831 ABFAB Architecture May 2016
o Providing the means of establishing a trust relationship between
the RP and the client.
o Providing a means for the RP to obtain attributes about the client
from the IdP.
The ABFAB working group has chosen the AAA framework for the messages
transported between the RP and IdP. The AAA framework supports the
requirements stated above, as follows:
o The AAA backbone supplies the trust relationship between the RP
and the IdP.
o The agreements governing a specific AAA backbone contain the rules
governing the relationships within the AAA federation.
o A method exists for carrying EAP packets within RADIUS [RFC3579]
and Diameter [RFC4072].
o The use of EAP channel binding [RFC6677] along with the core ABFAB
protocol provide the pieces necessary to establish the identities
of the RP and the client, while EAP provides the cryptographic
methods for the RP and the client to validate that they are
talking to each other.
o A method exists for carrying SAML packets within RADIUS [RFC7833];
this method allows the RP to query attributes about the client
from the IdP.
Protocols that support the same framework but do different routing
are expected to be defined and used in the future. One such effort,
called the Trust Router, is to set up a framework that creates a
trusted point-to-point channel on the fly
(https://www.ietf.org/proceedings/86/slides/slides-86-rtgarea-0.pdf).
2.1.1. AAA, RADIUS, and Diameter
The usage of the AAA framework with RADIUS [RFC2865] and Diameter
[RFC6733] for network access authentication has been successful from
a deployment point of view. To map the terminology used in Figure 1
to the AAA framework, the IdP corresponds to the AAA server; the RP
corresponds to the AAA client; and the technical building blocks of a
federation are AAA proxies, relays, and redirect agents (particularly
if they are operated by third parties, such as AAA brokers and
clearinghouses). In the case of network access authentication, the
front end, i.e., the communication path between the end host and the
AAA client, is offered by link-layer protocols that forward
Howlett, et al. Informational [Page 17]
^L
RFC 7831 ABFAB Architecture May 2016
authentication protocol exchanges back and forth. An example of a
large-scale RADIUS-based federation is eduroam
(https://www.eduroam.org).
By using the AAA framework, ABFAB can be built on the federation
agreements that already exist; the agreements can then merely be
expanded to cover the ABFAB architecture. The AAA framework has
already addressed some of the problems outlined above. For example,
o It already has a method for routing requests based on a domain.
o It already has an extensible architecture allowing for new
attributes to be defined and transported.
o Pre-existing relationships can be reused.
The astute reader will notice that RADIUS and Diameter have
substantially similar characteristics. Why not pick one? RADIUS and
Diameter are deployed in different environments. RADIUS can often be
found in enterprise and university networks; RADIUS is also used by
operators of fixed networks. Diameter, on the other hand, is
deployed by operators of mobile networks. Another key difference is
that today RADIUS is largely transported over UDP. The decision
regarding which protocol will be appropriate to deploy is left to
implementers. The protocol defines all the necessary new AAA
attributes as RADIUS attributes. A future document could define the
same AAA attributes for a Diameter environment. We also note that
there exist proxies that convert from RADIUS to Diameter and back.
This makes it possible for both to be deployed in a single Federation
Substrate.
Through the integrity-protection mechanisms in the AAA framework, the
IdP can establish technical trust that messages are being sent by the
appropriate RP. Any given interaction will be associated with one
federation at the policy level. The legal or business relationship
defines what statements the IdP is trusted to make and how these
statements are interpreted by the RP. The AAA framework also permits
the RP or elements between the RP and IdP to make statements about
the RP.
The AAA framework provides transport for attributes. Statements made
about the client by the IdP, statements made about the RP, and other
information are transported as attributes.
One demand that the AAA substrate makes of the upper layers is that
they must properly identify the endpoints of the communication. It
must be possible for the AAA client at the RP to determine where to
send each RADIUS or Diameter message. Without this requirement, it
Howlett, et al. Informational [Page 18]
^L
RFC 7831 ABFAB Architecture May 2016
would be the RP's responsibility to determine the identity of the
client on its own, without the assistance of an IdP. This
architecture makes use of the Network Access Identifier (NAI), where
the IdP is indicated by the realm component [RFC7542]. The NAI is
represented and consumed by the GSS-API layer as GSS_C_NT_USER_NAME,
as specified in [RFC2743]. The GSS-API EAP mechanism includes the
NAI in the EAP Response/Identity message.
At the time of this writing, no profiles for the use of Diameter have
been created.
2.1.2. Discovery and Rules Determination
While we are using the AAA protocols to communicate with the IdP, the
RP may have multiple Federation Substrates to select from. The RP
has a number of criteria that it will use in selecting which of the
different federations to use. The federation selected must
o be able to communicate with the IdP.
o match the business rules and technical policies required for the
RP security requirements.
The RP needs to discover which federation will be used to contact the
IdP. The first selection criterion used during discovery is going to
be the name of the IdP to be contacted. The second selection
criterion used during discovery is going to be the set of business
rules and technical policies governing the relationship; this is
called "rules determination". The RP also needs to establish
technical trust in the communications with the IdP.
Rules determination covers a broad range of decisions about the
exchange. One of these is whether the given RP is permitted to talk
to the IdP using a given federation at all, so rules determination
encompasses the basic authorization decision. Other factors are
included, such as what policies govern release of information about
the client to the RP and what policies govern the RP's use of this
information. While rules determination is ultimately a business
function, it has a significant impact on the technical exchanges.
The protocols need to communicate the result of authorization. When
multiple sets of rules are possible, the protocol must disambiguate
which set of rules are in play. Some rules have technical
enforcement mechanisms; for example, in some federations,
intermediaries validate information that is being communicated within
the federation.
Howlett, et al. Informational [Page 19]
^L
RFC 7831 ABFAB Architecture May 2016
At the time of this writing, no protocol mechanism has been specified
to allow a AAA client to determine whether a AAA proxy will indeed be
able to route AAA requests to a specific IdP. The AAA routing is
impacted by business rules and technical policies that may be quite
complex; at the present time, the route selection is based on manual
configuration.
2.1.3. Routing and Technical Trust
Several approaches to having messages routed through the Federation
Substrate are possible. These routing methods can most easily be
classified based on the mechanism for technical trust that is used.
The choice of technical trust mechanism constrains how rules
determination is implemented. Regardless of what deployment strategy
is chosen, it is important that the technical trust mechanism be able
to validate the identities of both parties to the exchange. The
trust mechanism must ensure that the entity acting as the IdP for a
given NAI is permitted to be the IdP for that realm and that any
service name claimed by the RP is permitted to be claimed by that
entity. Here are the categories of technical trust determination:
AAA Proxy:
The simplest model is that an RP is a AAA client and can send the
request directly to a AAA proxy. The hop-by-hop integrity
protection of the AAA fabric provides technical trust. An RP can
submit a request directly to the correct federation.
Alternatively, a federation disambiguation fabric can be used.
Such a fabric takes information about what federations the RP is
part of and what federations the IdP is part of, and it routes a
message to the appropriate federation. The routing of messages
across the fabric, plus attributes added to requests and
responses, together provide rules determination. For example,
when a disambiguation fabric routes a message to a given
federation, that federation's rules are chosen. Name validation
is enforced as messages travel across the fabric. The entities
near the RP confirm its identity and validate names it claims.
The fabric routes the message towards the appropriate IdP,
validating the name of the IdP in the process. The routing can be
statically configured. Alternatively, a routing protocol could be
developed to exchange reachability information about a given IdP
and to apply policy across the AAA fabric. Such a routing
protocol could flood naming constraints to the appropriate points
in the fabric.
Howlett, et al. Informational [Page 20]
^L
RFC 7831 ABFAB Architecture May 2016
Trust Broker:
Instead of routing messages through AAA proxies, some trust broker
could establish keys between entities near the RP and entities
near the IdP. The advantage of this approach is efficiency of
message handling. Fewer entities are needed to be involved for
each message. Security may be improved by sending individual
messages over fewer hops. Rules determination involves decisions
made by trust brokers about what keys to grant. Also, associated
with each credential is context about rules and about other
aspects of technical trust, including names that may be claimed.
A routing protocol similar to the one for AAA proxies is likely to
be useful to trust brokers in flooding rules and naming
constraints.
Global Credential:
A global credential such as a public key and certificate in a
public key infrastructure can be used to establish technical
trust. A directory or distributed database such as the Domain
Name System is used by the RP to discover the endpoint to contact
for a given NAI. Either the database or certificates can provide
a place to store information about rules determination and naming
constraints. Provided that no intermediates are required (or
appear to be required) and that the RP and IdP are sufficient to
enforce and determine rules, rules determination is reasonably
simple. However, applying certain rules is likely to be quite
complex. For example, if multiple sets of rules are possible
between an IdP and RP, confirming that the correct set is used may
be difficult. This is particularly true if intermediates are
involved in making the decision. Also, to the extent that
directory information needs to be trusted, rules determination may
be more complex.
Real-world deployments are likely to be mixtures of these basic
approaches. For example, it will be quite common for an RP to route
traffic to a AAA proxy within an organization. That proxy could then
use any of the above three methods to get closer to the IdP. It is
also likely that, rather than being directly reachable, the IdP may
have a proxy on the edge of its organization. Federations will
likely provide a traditional AAA proxy interface even if they also
provide another mechanism for increased efficiency or security.
2.1.4. AAA Security
For the AAA framework, there are two different places where security
needs to be examined. The first is the security that is in place for
the links in the AAA backbone being used. The second are the nodes
that form the AAA backbone.
Howlett, et al. Informational [Page 21]
^L
RFC 7831 ABFAB Architecture May 2016
The default link security for RADIUS is showing its age, as it uses
MD5 and a shared secret to both obfuscate passwords and provide
integrity on the RADIUS messages. While some EAP methods include the
ability to protect the client authentication credentials, the MSK
returned from the IdP to the RP is protected only by RADIUS security.
In many environments, this is considered to be insufficient,
especially as not all attributes are obfuscated and can thus leak
information to a passive eavesdropper. The use of RADIUS with
Transport Layer Security (TLS) [RFC6614] and/or Datagram Transport
Layer Security (DTLS) [RFC7360] addresses these attacks. The same
level of security is included in the base Diameter specifications.
2.1.5. SAML Assertions
For the traditional use of AAA frameworks, i.e., granting access to a
network, an affirmative response from the IdP is sufficient. In the
ABFAB world, the RP may need to get significantly more additional
information about the client before granting access. ABFAB therefore
has a requirement that it can transport an arbitrary set of
attributes about the client from the IdP to the RP.
The Security Assertion Markup Language (SAML)
[OASIS.saml-core-2.0-os] was designed in order to carry an extensible
set of attributes about a subject. Since SAML is extensible in the
attribute space, ABFAB has no immediate needs to update the core SAML
specifications for our work. It will be necessary to update IdPs
that need to return SAML Assertions to RPs and for both the IdP and
the RP to implement a new SAML profile designed to carry SAML
Assertions in AAA. The new profile can be found in [RFC7833]. As
SAML statements will frequently be large, RADIUS servers and clients
that deal with SAML statements will need to implement [RFC7499].
There are several issues that need to be highlighted:
o The security of SAML Assertions.
o Namespaces and mapping of SAML attributes.
o Subject naming of entities.
o Making multiple queries about the subject(s).
o Level of assurance for authentication.
SAML Assertions have an optional signature that can be used to
protect and provide the origination of the assertion. These
signatures are normally based on asymmetric key operations and
require that the verifier be able to check not only the cryptographic
Howlett, et al. Informational [Page 22]
^L
RFC 7831 ABFAB Architecture May 2016
operation but also the binding of the originator's name and the
public key. In a federated environment, it will not always be
possible for the RP to validate the binding; for this reason, the
technical trust established in the federation is used as an alternate
method of validating the origination and integrity of the SAML
Assertion.
Attributes in a SAML Assertion are identified by a name string. The
name string is either assigned by the SAML issuer context or scoped
by a namespace (for example, a URI or object identifier (OID)). This
means that the same attribute can have different name strings used to
identify it. In many cases, but not all, the federation agreements
will determine what attributes and names can be used in a SAML
statement. This means that the RP needs to map from the SAML issuer
or federation name, type, and semantic to the name, type, and
semantics that the policies of the RP are written in. In other
cases, the Federation Substrate, in the form of proxies, will modify
the SAML Assertions in transit to do the necessary name, type, and
value mappings as the assertion crosses boundaries in the federation.
If the proxies are modifying the SAML Assertion, then they will
remove any signatures on the SAML Assertion, as changing the content
of the SAML Assertion would invalidate the signature. In this case,
the technical trust is the required mechanism for validating the
integrity of the assertion. (The proxy could re-sign the SAML
Assertion, but the same issues of establishing trust in the proxy
would still exist.) Finally, the attributes may still be in the
namespace of the originating IdP. When this occurs, the RP will need
to get the required mapping operations from the federation agreements
and do the appropriate mappings itself.
[RFC7833] has defined a new SAML name format that corresponds to the
NAI name form defined by [RFC7542]. This allows for easy name
matching in many cases, as the name form in the SAML statement and
the name form used in RADIUS or Diameter will be the same. In
addition to the NAI name form, [RFC7833] also defines a pair of
implicit name forms corresponding to the client and the client's
machine. These implicit name forms are based on the Identity-Type
enumeration defined in the Tunnel Extensible Authentication Protocol
(TEAP) specification [RFC7170]. If the name form returned in a SAML
statement is not based on the NAI, then it is a requirement on the
EAP server that it validate that the subject of the SAML Assertion,
if any, is equivalent to the subject identified by the NAI used in
the RADIUS or Diameter session.
RADIUS has the ability to deal with multiple SAML queries for those
EAP servers that follow [RFC5080]. In this case, a State attribute
will always be returned with the Access-Accept. The EAP client can
then send a new Access-Request with the State attribute and the new
Howlett, et al. Informational [Page 23]
^L
RFC 7831 ABFAB Architecture May 2016
SAML request. Multiple SAML queries can then be done by making a new
Access-Request, using the State attribute returned in the last
Access-Accept to link together the different RADIUS sessions.
Some RPs need to ensure that specific criteria are met during the
authentication process. This need is met by using levels of
assurance. A level of assurance is communicated to the RP from the
EAP server by using a SAML Authentication Request, using the
Authentication Profile described in [RFC7833]. When crossing
boundaries between different federations, (1) the policy specified
will need to be shared between the two federations, (2) the policy
will need to be mapped by the proxy server on the boundary, or
(3) the proxy server on the boundary will need to supply information
to the EAP server so that the EAP server can do the required mapping.
If this mapping is not done, then the EAP server will not be able to
enforce the desired level of assurance, as it will not understand the
policy requirements.
2.2. Client to Identity Provider
Looking at the communications between the client and the IdP, the
following items need to be dealt with:
o The client and the IdP need to mutually authenticate each other.
o The client and the IdP need to mutually agree on the identity of
the RP.
ABFAB selected EAP for the purposes of mutual authentication and
assisted in creating some new EAP channel-binding documents for
dealing with determining the identity of the RP. A framework for the
channel-binding mechanism has been defined in [RFC6677] that allows
the IdP to check the identity of the RP provided by the AAA framework
against the identity provided by the client.
2.2.1. Extensible Authentication Protocol (EAP)
Traditional web federation does not describe how a client interacts
with an IdP for authentication. As a result, this communication is
not standardized. There are several disadvantages to this approach.
Since the communication is not standardized, it is difficult for
machines to recognize which entity is going to do the authentication,
and thus which credentials to use and where in the authentication
form the credentials are to be entered. It is much easier for humans
to correctly deal with these problems. The use of browsers for
authentication restricts the deployment of more secure forms of
authentication beyond plaintext usernames and passwords known by the
server. In a number of cases, the authentication interface may be
Howlett, et al. Informational [Page 24]
^L
RFC 7831 ABFAB Architecture May 2016
presented before the client has adequately validated that they are
talking to the intended server. By giving control of the
authentication interface to a potential attacker, the security of the
system may be reduced, and opportunities for phishing may be
introduced.
As a result, it is desirable to choose some standardized approach for
communication between the client's end host and the IdP. There are a
number of requirements this approach must meet, as noted below.
Experience has taught us one key security and scalability
requirement: it is important that the RP not get possession of the
long-term secret of the client. Aside from a valuable secret being
exposed, a synchronization problem can develop when the client
changes keys with the IdP.
Since there is no single authentication mechanism that will be used
everywhere, another associated requirement is that the authentication
framework must allow for the flexible integration of authentication
mechanisms. For instance, some IdPs require hardware tokens, while
others use passwords. A service provider wants to provide support
for both authentication methods and also for other methods from IdPs
not yet seen.
These requirements can be met by utilizing standardized and
successfully deployed technology, namely the EAP framework [RFC3748].
Figure 3 illustrates the integration graphically.
EAP is an end-to-end framework; it provides for two-way communication
between a peer (i.e., client or Individual) through the EAP
authenticator (i.e., RP) to the back end (i.e., IdP). This is
precisely -- and conveniently -- the communication path that is
needed for federated identity. Although EAP support is already
integrated in AAA systems (see [RFC3579] and [RFC4072]), several
challenges remain:
o The first is how to carry EAP payloads from the end host to
the RP.
o Another is to verify statements the RP has made to the client,
confirm that these statements are consistent with statements made
to the IdP, and confirm that all of the above are consistent with
the federation and any federation-specific policy or
configuration.
o Another challenge is choosing which IdP to use for which service.
Howlett, et al. Informational [Page 25]
^L
RFC 7831 ABFAB Architecture May 2016
The EAP method used for ABFAB needs to meet the following
requirements:
o It needs to provide mutual authentication of the client and IdP.
o It needs to support channel binding.
As of this writing, the only EAP method that meets these criteria is
TEAP [RFC7170], either alone (if client certificates are used) or
with an inner EAP method that does mutual authentication.
2.2.2. EAP Channel Binding
EAP channel binding is easily confused with a facility in GSS-API
that is also called "channel binding". GSS-API channel binding
provides protection against man-in-the-middle attacks when GSS-API is
used for authentication inside of some tunnel; it is similar to a
facility called "cryptographic binding" in EAP. See [RFC5056] for a
discussion of the differences between these two facilities.
The client knows, in theory, the name of the RP that it attempted to
connect to; however, in the event that an attacker has intercepted
the protocol, the client and the IdP need to be able to detect this
situation. A general overview of the problem, along with a
recommended way to deal with the channel-binding issues, can be found
in [RFC6677].
Since the time that [RFC6677] was published, a number of possible
attacks were found. Methods to address these attacks have been
outlined in [RFC7029].
2.3. Client to Relying Party
The final set of interactions between the parties to consider are
those between the client and the RP. In some ways, this is the most
complex set, since at least part of it is outside the scope of the
ABFAB work. The interactions between these parties include:
o Running the protocol that implements the service that is provided
by the RP and desired by the client.
o Authenticating the client to the RP and the RP to the client.
o Providing the necessary security services to the service protocol
that it needs, beyond authentication.
o Dealing with client re-authentication where desired.
Howlett, et al. Informational [Page 26]
^L
RFC 7831 ABFAB Architecture May 2016
2.3.1. GSS-API
One of the remaining layers is responsible for integration of
federated authentication with the application. Applications have
adopted a number of approaches for providing security, so multiple
strategies for integration of federated authentication with
applications may be needed. To this end, we start with a strategy
that provides integration with a large number of application
protocols.
Many applications, such as Secure Shell (SSH) [RFC4462], NFS
[RFC7530], DNS [RFC3645], and several non-IETF applications, support
GSS-API [RFC2743]. Many applications, such as IMAP, SMTP, the
Extensible Messaging and Presence Protocol (XMPP), and the
Lightweight Directory Access Protocol (LDAP), support the Simple
Authentication and Security Layer (SASL) [RFC4422] framework. These
two approaches work together nicely: by creating a GSS-API mechanism,
SASL integration is also addressed. In effect, using a GSS-API
mechanism with SASL simply requires placing some headers before the
mechanism's messages and constraining certain GSS-API options.
GSS-API is specified in terms of an abstract set of operations that
can be mapped into a programming language to form an API. When
people are first introduced to GSS-API, they focus on it as an API.
However, from the perspective of authentication for non-web
applications, GSS-API should be thought of as a protocol as well as
an API. When looked at as a protocol, it consists of abstract
operations such as the initial context exchange, which includes two
sub-operations (GSS_Init_sec_context and GSS_Accept_sec_context)
[RFC2743]. An application defines which abstract operations it is
going to use and where messages produced by these operations fit into
the application architecture. A GSS-API mechanism will define what
actual protocol messages result from that abstract message for a
given abstract operation. So, since this work is focusing on a
particular GSS-API mechanism, we generally focus on protocol elements
rather than the API view of GSS-API.
The API view of GSS-API does have significant value as well; since
the abstract operations are well defined, the information that a
mechanism gets from the application is well defined. Also, the set
of assumptions the application is permitted to make is generally well
defined. As a result, an application protocol that supports GSS-API
or SASL is very likely to be usable with a new approach to
authentication, including the authentication mechanism defined in
this document, with no required modifications. In some cases,
support for a new authentication mechanism has been added using
plugin interfaces to applications without the application being
modified at all. Even when modifications are required, they can
Howlett, et al. Informational [Page 27]
^L
RFC 7831 ABFAB Architecture May 2016
often be limited to supporting a new naming and authorization model.
For example, this work focuses on privacy; an application that
assumes that it will always obtain an identifier for the client will
need to be modified to support anonymity, unlinkability, or
pseudonymity.
So, we use GSS-API and SASL because a number of the application
protocols we wish to federate support these strategies for security
integration. What does this mean from a protocol standpoint, and how
does this relate to other layers? This means that we need to design
a concrete GSS-API mechanism. We have chosen to use a GSS-API
mechanism that encapsulates EAP authentication. So, GSS-API (and
SASL) encapsulates EAP between the end host and the service. The AAA
framework encapsulates EAP between the RP and the IdP. The GSS-API
mechanism includes rules about how initiators and services are named
as well as per-message security and other facilities required by the
applications we wish to support.
2.3.2. Protocol Transport
The transport of data between the client and the RP is not provided
by GSS-API. GSS-API creates and consumes messages, but it does not
provide the transport itself; instead, the protocol using GSS-API
needs to provide the transport. In many cases, HTTP or HTTPS is used
for this transport, but other transports are perfectly acceptable.
The core GSS-API document [RFC2743] provides some details on what
requirements exist.
In addition, we highlight the following:
o The transport does not need to provide either confidentiality or
integrity. After GSS-EAP has finished negotiation, GSS-API can be
used to provide both services. If the negotiation process itself
needs protection from eavesdroppers, then the transport would need
to provide the necessary services.
o The transport needs to provide reliable transport of the messages.
o The transport needs to ensure that tokens are delivered in order
during the negotiation process.
o GSS-API messages need to be delivered atomically. If the
transport breaks up a message, it must also reassemble the message
before delivery.
Howlett, et al. Informational [Page 28]
^L
RFC 7831 ABFAB Architecture May 2016
2.3.3. Re-authentication
There are circumstances where the RP will want to have the client
re-authenticate itself. These include very long sessions, where the
original authentication is time limited or cases where in order to
complete an operation a different authentication is required.
GSS-EAP does not have any mechanism for the server to initiate a
re-authentication, as all authentication operations start from the
client. If a protocol using GSS-EAP needs to support
re-authentication that is initiated by the server, then a request
from the server to the client for the re-authentication to start
needs to be placed in the protocol.
Clients can reuse the existing secure connection established by
GSS-API, and run the new authentication in that connection, by
calling GSS_Init_sec_context. At this point, a full
re-authentication will be done.
3. Application Security Services
One of the key goals is to integrate federated authentication with
existing application protocols and, where possible, existing
implementations of these protocols. Another goal is to perform this
integration while meeting the best security practices of the
technologies used to perform the integration. This section describes
security services and properties required by the EAP GSS-API
mechanism in order to meet these goals. This information could be
viewed as specific to that mechanism. However, other future
application integration strategies are very likely to need similar
services. So, it is likely that these services will be expanded
across application integration strategies if new application
integration strategies are adopted.
3.1. Authentication
GSS-API provides an optional security service called "mutual
authentication". This service means that in addition to the
initiator providing (potentially anonymous or pseudonymous) identity
to the acceptor, the acceptor confirms its identity to the initiator.
In the context of ABFAB in particular, the naming of this service is
confusing. We still say that mutual authentication is provided when
the identity of an acceptor is strongly authenticated to an anonymous
initiator.
Howlett, et al. Informational [Page 29]
^L
RFC 7831 ABFAB Architecture May 2016
Unfortunately, [RFC2743] does not explicitly talk about what mutual
authentication means. Within this document, we therefore define
mutual authentication as follows:
o If a target name is configured for the initiator, then the
initiator trusts that the supplied target name describes the
acceptor. This implies that (1) appropriate cryptographic
exchanges took place for the initiator to make such a trust
decision and (2) after evaluating the results of these exchanges,
the initiator's policy trusts that the target name is accurate.
o If no target name is configured for the initiator, then the
initiator trusts that the acceptor name, supplied by the acceptor,
correctly names the entity it is communicating with.
o Both the initiator and acceptor have the same key material for
per-message keys, and both parties have confirmed that they
actually have the key material. In EAP terms, there is a
protected indication of success.
Mutual authentication is an important defense against certain aspects
of phishing. Intuitively, clients would like to assume that if some
party asks for their credentials as part of authentication,
successfully gaining access to the resource means that they are
talking to the expected party. Without mutual authentication, the
server could "grant access" regardless of what credentials are
supplied. Mutual authentication better matches this user intuition.
It is important, therefore, that the GSS-EAP mechanism implement
mutual authentication. That is, an initiator needs to be able to
request mutual authentication. When mutual authentication is
requested, only EAP methods capable of providing the necessary
service can be used, and appropriate steps need to be taken to
provide mutual authentication. While a broader set of EAP methods
could be supported by not requiring mutual authentication, it was
decided that the client needs to always have the ability to request
it. In some cases, the IdP and the RP will not support mutual
authentication; however, the client will always be able to detect
this and make an appropriate security decision.
The AAA infrastructure may hide the initiator's identity from the
GSS-API acceptor, providing anonymity between the initiator and the
acceptor. At this time, whether the identity is disclosed is
determined by EAP server policy rather than by an indication from the
initiator. Also, initiators are unlikely to be able to determine
whether anonymous communication will be provided. For this reason,
initiators are unlikely to set the anonymous return flag from
GSS_Init_sec_context (Section 2.2.1 of [RFC2743]).
Howlett, et al. Informational [Page 30]
^L
RFC 7831 ABFAB Architecture May 2016
3.2. GSS-API Channel Binding
[RFC5056] defines a concept of channel binding that is used to
prevent man-in-the-middle attacks. This type of channel binding
works by taking a cryptographic value from the transport security
layer and checks to see that both sides of the GSS-API conversation
know this value. Transport Layer Security (TLS) [RFC5246] is the
most common transport security layer used for this purpose.
It needs to be stressed that channel binding as described in
[RFC5056] (also called "GSS-API channel binding" when GSS-API is
involved) is not the same thing as EAP channel binding. GSS-API
channel binding is used for detecting man-in-the-middle attacks. EAP
channel binding is used for mutual authentication and acceptor naming
checks. See [RFC7055] for details. A more detailed description of
the differences between the facilities can be found in [RFC5056].
The use of TLS can provide both encryption and integrity on the
channel. It is common to provide SASL and GSS-API with these other
security services.
One of the benefits that the use of TLS provides is that a client has
the ability to validate the name of the server. However, this
validation is predicated on a couple of things. The TLS session
needs to be using certificates and not be an anonymous session. The
client and the TLS server need to share a common trust point for the
certificate used in validating the server. TLS provides its own
server authentication. However, there are a variety of situations
where, for policy or usability reasons, this authentication is not
checked. When the TLS authentication is checked, if the trust
infrastructure behind the TLS authentication is different from the
trust infrastructure behind the GSS-API mutual authentication, then
confirming the endpoints using both trust infrastructures is likely
to enhance security. If the endpoints of the GSS-API authentication
are different than the endpoints of the lower layer, this is a strong
indication of a problem, such as a man-in-the-middle attack. Channel
binding provides a facility to determine whether these endpoints are
the same.
The GSS-EAP mechanism needs to support channel binding. When an
application provides channel-binding data, the mechanism needs to
confirm that this is the same on both sides, consistent with the
GSS-API specification.
Howlett, et al. Informational [Page 31]
^L
RFC 7831 ABFAB Architecture May 2016
3.3. Host-Based Service Names
IETF security mechanisms typically take a host name and perhaps a
service, entered by a user, and make some trust decision about
whether the remote party in the interaction is the intended party.
This decision can be made via the use of certificates, preconfigured
key information, or a previous leap of trust. GSS-API has defined a
relatively flexible naming convention; however, most of the IETF
applications that use GSS-API (including SSH, NFS, IMAP, LDAP, and
XMPP) have chosen to use a more restricted naming convention based on
the host name. The GSS-EAP mechanism needs to support host-based
service names in order to work with existing IETF protocols.
The use of host-based service names leads to a challenging trust
delegation problem. Who is allowed to decide whether a particular
host name maps to a specific entity? Possible solutions to this
problem have been looked at.
o The Public Key Infrastructure (PKI) used by the web has chosen to
have a number of trust anchors (root certificate authorities),
each of which can map any host name to a public key.
o A number of GSS-API mechanisms, such as Kerberos [RFC1964], have
split the problem into two parts. [RFC1964] introduced a new
concept called a realm; the realm is responsible for host mapping
within itself. The mechanism then decides what realm is
responsible for a given name. This is the approach adopted by
ABFAB.
GSS-EAP defines a host naming convention that takes into account the
host name, the realm, the service, and the service parameters. An
example of a GSS-API service name is "xmpp/foo@example.com". This
identifies the XMPP service on the host foo in the realm example.com.
Any of the components, except for the service name, may be omitted
from a name. When omitted, a local default would be used for that
component of the name.
While there is no requirement that realm names map to Fully Qualified
Domain Names (FQDNs) within DNS, in practice this is normally true.
Doing so allows the realm portion of service names and the portion of
NAIs to be the same. It also allows for the use of DNS in locating
the host of a service while establishing the transport channel
between the client and the RP.
It is the responsibility of the application to determine the server
that it is going to communicate with; GSS-API has the ability to help
confirm that the server is the desired server but not to determine
the name of the server to use. It is also the responsibility of the
Howlett, et al. Informational [Page 32]
^L
RFC 7831 ABFAB Architecture May 2016
application to determine how much of the information identifying the
service needs to be validated by the ABFAB system. The information
that needs to be validated is used to construct the service name
passed into the GSS-EAP mechanism. What information is to be
validated will depend on (1) what information was provided by the
client and (2) what information is considered significant. If the
client only cares about getting a specific service, then it does not
need to validate the host and realm that provides the service.
Applications may retrieve information about providers of services
from DNS. Service Records (SRVs) [RFC2782] and Naming Authority
Pointer (NAPTR) [RFC3401] records are used to help find a host that
provides a service; however, the necessity of having DNSSEC on the
queries depends on how the information is going to be used. If the
host name returned is not going to be validated by EAP channel
binding because only the service is being validated, then DNSSEC
[RFC4033] is not required. However, if the host name is going to be
validated by EAP channel binding, then DNSSEC needs to be used to
ensure that the correct host name is validated. In general, if the
information that is returned from the DNS query is to be validated,
then it needs to be obtained in a secure manner.
Another issue that needs to be addressed for host-based service names
is that they do not work ideally when different instances of a
service are running on different ports. If the services are
equivalent, then it does not matter. However, if there are
substantial differences in the quality of the service, that
information needs to be part of the validation process. If one has
just a host name and not a port in the information being validated,
then this is not going to be a successful strategy.
3.4. Additional GSS-API Services
GSS-API provides per-message security services that can provide
confidentiality and/or integrity. Some IETF protocols, such as NFS
and SSH, take advantage of these services. As a result, GSS-EAP
needs to support these services. As with mutual authentication,
per-message security services will limit the set of EAP methods that
can be used to those that generate a Master Session Key (MSK). Any
EAP method that produces an MSK is able to support per-message
security services as described in [RFC2743].
GSS-API provides a pseudorandom function. This function generates a
pseudorandom sequence using the shared session key as the seed for
the bytes generated. This provides an algorithm that both the
initiator and acceptor can run in order to arrive at the same key
value. The use of this feature allows an application to generate
keys or other shared secrets for use in other places in the protocol.
Howlett, et al. Informational [Page 33]
^L
RFC 7831 ABFAB Architecture May 2016
In this regard, it is similar in concept to the mechanism (formerly
known as "TLS Extractors") described in [RFC5705]. While no current
IETF protocols require this feature, non-IETF protocols are expected
to take advantage of it in the near future. Additionally, a number
of protocols have found the mechanism described in [RFC5705] to be
useful in this regard, so it is highly probable that IETF protocols
may also start using this feature.
4. Privacy Considerations
As an architecture designed to enable federated authentication and
allow for the secure transmission of identity information between
entities, ABFAB obviously requires careful consideration regarding
privacy and the potential for privacy violations.
This section examines the privacy-related information presented in
this document, summarizing the entities that are involved in ABFAB
communications and what exposure they have to identity information.
In discussing these privacy considerations in this section, we use
terminology and ideas from [RFC6973].
Note that the ABFAB architecture uses at its core several existing
technologies and protocols; detailed privacy discussion regarding
these topics is not examined. This section instead focuses on
privacy considerations specifically related to the overall
architecture and usage of ABFAB.
+--------+ +---------------+ +--------------+
| Client | <---> | RP | <---> | AAA Client |
+--------+ +---------------+ +--------------+
^
|
v
+---------------+ +----------------+
| SAML Server | | AAA Proxy |
+---------------+ | (or Proxies) |
^ +----------------+
| ^
| |
v v
+------------+ +---------------+ +--------------+
| EAP Server | <---> | IdP | <---> | AAA Server |
+------------+ +---------------+ +--------------+
Figure 4: Entities and Data Flow
Howlett, et al. Informational [Page 34]
^L
RFC 7831 ABFAB Architecture May 2016
4.1. Entities and Their Roles
Categorizing the ABFAB entities shown in Figure 4 according to the
taxonomy of terms from [RFC6973] is somewhat complicated, as the
roles of each entity will change during the various phases of ABFAB
communications. The three main phases of relevance are the
client-to-RP communication phase, the client-to-IdP (via the
Federation Substrate) communication phase, and the IdP-to-RP (via the
Federation Substrate) communication phase.
In the client-to-RP communication phase, we have:
Initiator: Client.
Observers: Client, RP.
Recipient: RP.
In the client-to-IdP (via the Federation Substrate) communication
phase, we have:
Initiator: Client.
Observers: Client, RP, AAA Client, AAA Proxy (or Proxies), AAA
Server, IdP.
Recipient: IdP
In the IdP-to-RP (via the Federation Substrate) communication phase,
we have:
Initiator: RP.
Observers: IdP, AAA Server, AAA Proxy (or Proxies), AAA Client, RP.
Recipient: IdP
Eavesdroppers and attackers can reside on any or all communication
links between the entities shown in Figure 4.
Howlett, et al. Informational [Page 35]
^L
RFC 7831 ABFAB Architecture May 2016
The various entities in the system might also collude or be coerced
into colluding. Some of the significant collusions to look at are as
follows:
o If two RPs are colluding, they have the information available to
both nodes. This can be analyzed as if a single RP were offering
multiple services.
o If an RP and a AAA proxy are colluding, then the trust of the
system is broken, as the RP would be able to lie about its own
identity to the IdP. There is no known way to deal with this
situation.
o If multiple AAA proxies are colluding, they can be treated as a
single node for analysis.
The Federation Substrate consists of all of the AAA entities. In
some cases, the AAA proxies may not exist, as the AAA client can talk
directly to the AAA server. Specifications such as the Trust Router
Protocol (https://www.ietf.org/proceedings/86/slides/
slides-86-rtgarea-0.pdf) and RADIUS dynamic discovery [RFC7585] can
be used to shorten the path between the AAA client and the AAA server
(and thus stop these AAA proxies from being observers); however, even
in these circumstances, there may be AAA proxies in the path.
In Figure 4, the IdP has been divided into multiple logical pieces;
in actual implementations, these pieces will frequently be tightly
coupled. The links between these pieces provide the greatest
opportunity for attackers and eavesdroppers to acquire information;
however, as they are all under the control of a single entity, they
are also the easiest to have tightly secured.
4.2. Privacy Aspects of ABFAB Communication Flows
In the ABFAB architecture, there are a few different types of data
and identifiers in use. The best way to understand them, and their
potential privacy impacts, is to look at each phase of communication
in ABFAB.
4.2.1. Client to RP
The flow of data between the client and the RP is divided into two
parts. The first part consists of all of the data exchanged as part
of the ABFAB authentication process. The second part consists of all
of the data exchanged after the authentication process has been
finished.
Howlett, et al. Informational [Page 36]
^L
RFC 7831 ABFAB Architecture May 2016
During the initial communication phase, the client sends an NAI (see
[RFC7542]) to the RP. Many EAP methods (but not all) allow the
client to disclose an NAI to the RP in a form that includes only a
realm component during this communication phase. This is the minimum
amount of identity information necessary for ABFAB to work -- it
indicates an IdP that the principal has a relationship with. EAP
methods that do not allow this will necessarily also reveal an
identifier for the principal in the IdP realm (e.g., a username).
The data shared during the initial communication phase may be
protected by a channel protocol such as TLS. This will prevent the
leakage of information to passive eavesdroppers; however, an active
attacker may still be able to set itself up as a man-in-the-middle.
The client may not be able to validate the certificates (if any)
provided by the service, deferring the check of the identity of the
RP until the completion of the ABFAB authentication protocol (using
EAP channel binding rather than certificates).
The data exchanged after the authentication process can have privacy
and authentication using the GSS-API services. If the overall
application protocol allows for the process of re-authentication,
then the same privacy implications as those discussed in previous
paragraphs apply.
4.2.2. Client to IdP (via Federation Substrate)
This phase includes a secure TLS tunnel set up between the client and
the IdP via the RP and Federation Substrate. The process is
initiated by the RP using the realm information given to it by the
client. Once set up, the tunnel is used to send credentials to the
IdP to authenticate.
Various operational information is transported between the RP and the
IdP over the AAA infrastructure -- for example, using RADIUS headers.
As no end-to-end security is provided by AAA, all AAA entities on the
path between the RP and IdP have the ability to eavesdrop on this
information. Some of this information may form identifiers or
explicit identity information:
o The RP knows the IP address of the client. It is possible that
the RP could choose to expose this IP address by including it in a
RADIUS header (e.g., using the Calling-Station-Id). This is a
privacy consideration to take into account for the application
protocol.
o The EAP MSK is transported between the IdP and the RP over the AAA
infrastructure -- for example, through RADIUS headers. This is a
particularly important privacy consideration, as any AAA proxy
Howlett, et al. Informational [Page 37]
^L
RFC 7831 ABFAB Architecture May 2016
that has access to the EAP MSK is able to decrypt and eavesdrop on
any traffic encrypted using that EAP MSK (i.e., all communications
between the client and RP). This problem can be mitigated if the
application protocol sets up a secure tunnel between the client
and the RP and performs a cryptographic binding between the tunnel
and EAP MSK.
o Related to the bullet point above, the AAA server has access to
the material necessary to derive the session key; thus, the AAA
server can observe any traffic encrypted between the client and
RP. This "feature" was chosen as a simplification and to make
performance faster; if it was decided that this trade-off was not
desirable for privacy and security reasons, then extensions to
ABFAB that make use of techniques such as Diffie-Hellman key
exchange would mitigate this.
The choice of EAP method used has other potential privacy
implications. For example, if the EAP method in use does not
support mutual authentication, then there are no guarantees that the
IdP is who it claims to be, and thus the full NAI, including a
username and a realm, might be sent to any entity masquerading as a
particular IdP.
Note that ABFAB has not specified any AAA accounting requirements.
Implementations that use the accounting portion of AAA should
consider privacy appropriately when designing this aspect.
4.2.3. IdP to RP (via Federation Substrate)
In this phase, the IdP communicates with the RP, informing it as to
the success or failure of authentication of the user and, optionally,
the sending of identity information about the principal.
As in the previous flow (client to IdP), various operation
information is transported between the IdP and RP over the AAA
infrastructure, and the same privacy considerations apply. However,
in this flow, explicit identity information about the authenticated
principal can be sent from the IdP to the RP. This information can
be sent through RADIUS headers, or using SAML [RFC7833]. This can
include protocol-specific identifiers, such as SAML NameIDs, as well
as arbitrary attribute information about the principal. What
information will be released is controlled by policy on the IdP. As
before, when sending this information through RADIUS headers, all AAA
entities on the path between the RP and IdP have the ability to
eavesdrop, unless additional security measures are taken (such as the
use of TLS for RADIUS [RFC6614]). However, when sending this
Howlett, et al. Informational [Page 38]
^L
RFC 7831 ABFAB Architecture May 2016
information using SAML as specified in [RFC7833], confidentiality of
the information should be guaranteed, as [RFC7833] requires the use
of TLS for RADIUS.
4.3. Relationship between User and Entities
o Between user and IdP - The IdP is an entity the user will have a
direct relationship with, created when the organization that
operates the entity provisioned and exchanged the user's
credentials. Privacy and data protection guarantees may form a
part of this relationship.
o Between user and RP - The RP is an entity the user may or may not
have a direct relationship with, depending on the service in
question. Some services may only be offered to those users where
such a direct relationship exists (for particularly sensitive
services, for example), while some may not require this and would
instead be satisfied with basic federation trust guarantees
between themselves and the IdP. This may well include the option
that the user stays anonymous with respect to the RP (though,
obviously, never anonymous to the IdP). If attempting to preserve
privacy via data minimization (Section 1), then the only attribute
information about Individuals exposed to the RP should be
attribute information that is strictly necessary for the operation
of the service.
o Between user and Federation Substrate - The user is highly likely
to have no knowledge of, or relationship with, any entities
involved with the Federation Substrate (not that the IdP and/or RP
may, however). Knowledge of attribute information about
Individuals for these entities is not necessary, and thus such
information should be protected in such a way as to prevent the
possibility of access to this information.
4.4. Accounting Information
Alongside the core authentication and authorization that occur in AAA
communications, accounting information about resource consumption may
be delivered as part of the accounting exchange during the lifetime
of the granted application session.
4.5. Collection and Retention of Data and Identifiers
In cases where RPs are not required to identify a particular
Individual when an Individual wishes to make use of their service,
the ABFAB architecture enables anonymous or pseudonymous access.
Thus, data and identifiers other than pseudonyms and unlinkable
attribute information need not be stored and retained.
Howlett, et al. Informational [Page 39]
^L
RFC 7831 ABFAB Architecture May 2016
However, in cases where RPs require the ability to identify a
particular Individual (e.g., so they can link this identity
information to a particular account in their service, or where
identity information is required for audit purposes), the service
will need to collect and store such information, and to retain it for
as long as they require. The de-provisioning of such accounts and
information is out of scope for ABFAB, but for privacy protection, it
is obvious that any identifiers collected should be deleted when they
are no longer needed.
4.6. User Participation
In the ABFAB architecture, by its very nature users are active
participants in the sharing of their identifiers, as they initiate
the communications exchange every time they wish to access a server.
They are, however, not involved in the control of information related
to them that is transmitted from the IdP to the RP for authorization
purposes; rather, this is under the control of policy on the IdP.
Due to the nature of the AAA communication flows, with the current
ABFAB architecture there is no place for a process of gaining user
consent for the information to be released from the IdP to the RP.
5. Security Considerations
This document describes the architecture for Application Bridging for
Federated Access Beyond web (ABFAB), and security is therefore the
main focus. Many of the items that are security considerations have
already been discussed in Section 4 ("Privacy Considerations").
Readers should be sure to read that section as well.
There are many places in this document where TLS is used. While in
some places (e.g., client to RP) anonymous connections can be used,
it is very important that TLS connections within the AAA
infrastructure and between the client and the IdP be fully
authenticated and, if using certificates, that revocation be checked
as well. When using anonymous connections between the client and the
RP, all messages and data exchanged between those two entities will
be visible to an active attacker. In situations where the client is
not yet on the network, the status_request extension [RFC6066] can be
used to obtain revocation-checking data inside of the TLS protocol.
Clients also need to get the trust anchor for the IdP configured
correctly in order to prevent attacks; this is a difficult problem in
general and is going to be even more difficult for kiosk
environments.
Selection of the EAP methods to be permitted by clients and IdPs is
important. The use of a tunneling method such as TEAP [RFC7170]
allows other EAP methods to be used while hiding the contents of
Howlett, et al. Informational [Page 40]
^L
RFC 7831 ABFAB Architecture May 2016
those EAP exchanges from the RP and the AAA framework. When
considering inner EAP methods, the considerations outlined in
[RFC7029] about binding the inner and outer EAP methods need to be
taken into account. Finally, one wants to have the ability to
support channel binding in those cases where the client needs to
validate that it is talking to the correct RP.
In those places where SAML statements are used, RPs will generally be
unable to validate signatures on the SAML statement, either because
the signature has been stripped off by the IdP or because the RP is
unable to validate the binding between the signer, the key used to
sign, and the realm represented by the IdP. For these reasons, it is
required that IdPs do the necessary trust checking on the SAML
statements and that RPs can trust the AAA infrastructure to keep the
SAML statements valid.
When a pseudonym is generated as a unique long-term identifier for a
client by an IdP, care must be taken in the algorithm that it cannot
easily be reverse-engineered by the service provider. If it can be
reverse-engineered, then the service provider can consult an oracle
to determine if a given unique long-term identifier is associated
with a different known identifier.
6. References
6.1. Normative References
[RFC2743] Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743,
DOI 10.17487/RFC2743, January 2000,
<http://www.rfc-editor.org/info/rfc2743>.
[RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
"Remote Authentication Dial In User Service (RADIUS)",
RFC 2865, DOI 10.17487/RFC2865, June 2000,
<http://www.rfc-editor.org/info/rfc2865>.
[RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
Dial In User Service) Support For Extensible
Authentication Protocol (EAP)", RFC 3579,
DOI 10.17487/RFC3579, September 2003,
<http://www.rfc-editor.org/info/rfc3579>.
[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
Levkowetz, Ed., "Extensible Authentication Protocol
(EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
<http://www.rfc-editor.org/info/rfc3748>.
Howlett, et al. Informational [Page 41]
^L
RFC 7831 ABFAB Architecture May 2016
[RFC4072] Eronen, P., Ed., Hiller, T., and G. Zorn, "Diameter
Extensible Authentication Protocol (EAP) Application",
RFC 4072, DOI 10.17487/RFC4072, August 2005,
<http://www.rfc-editor.org/info/rfc4072>.
[RFC6677] Hartman, S., Ed., Clancy, T., and K. Hoeper, "Channel-
Binding Support for Extensible Authentication Protocol
(EAP) Methods", RFC 6677, DOI 10.17487/RFC6677, July 2012,
<http://www.rfc-editor.org/info/rfc6677>.
[RFC7055] Hartman, S., Ed., and J. Howlett, "A GSS-API Mechanism for
the Extensible Authentication Protocol", RFC 7055,
DOI 10.17487/RFC7055, December 2013,
<http://www.rfc-editor.org/info/rfc7055>.
[RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
DOI 10.17487/RFC7542, May 2015,
<http://www.rfc-editor.org/info/rfc7542>.
[RFC7833] Howlett, J., Hartman, S., and A. Perez-Mendez, Ed., "A
RADIUS Attribute, Binding, Profiles, Name Identifier
Format, and Confirmation Methods for the Security
Assertion Markup Language (SAML)", RFC 7833,
DOI 10.17487/RFC7833, May 2016,
<http://www.rfc-editor.org/info/rfc7833>.
6.2. Informative References
[NIST-SP.800-63-2]
Burr, W., Dodson, D., Newton, E., Perlner, R., Polk, W.,
Gupta, S., and E. Nabbus, "Electronic Authentication
Guideline", NIST Special Publication 800-63-2,
August 2013, <http://dx.doi.org/10.6028/NIST.SP.800-63-2>.
[OASIS.saml-core-2.0-os]
Cantor, S., Kemp, J., Philpott, R., and E. Maler,
"Assertions and Protocols for the OASIS Security
Assertion Markup Language (SAML) V2.0", OASIS
Standard saml-core-2.0-os, March 2005,
<http://docs.oasis-open.org/security/saml/v2.0/
saml-core-2.0-os.pdf>.
[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
RFC 1964, DOI 10.17487/RFC1964, June 1996,
<http://www.rfc-editor.org/info/rfc1964>.
Howlett, et al. Informational [Page 42]
^L
RFC 7831 ABFAB Architecture May 2016
[RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
specifying the location of services (DNS SRV)", RFC 2782,
DOI 10.17487/RFC2782, February 2000,
<http://www.rfc-editor.org/info/rfc2782>.
[RFC3401] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
Part One: The Comprehensive DDDS", RFC 3401,
DOI 10.17487/RFC3401, October 2002,
<http://www.rfc-editor.org/info/rfc3401>.
[RFC3645] Kwan, S., Garg, P., Gilroy, J., Esibov, L., Westhead, J.,
and R. Hall, "Generic Security Service Algorithm for
Secret Key Transaction Authentication for DNS (GSS-TSIG)",
RFC 3645, DOI 10.17487/RFC3645, October 2003,
<http://www.rfc-editor.org/info/rfc3645>.
[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements",
RFC 4033, DOI 10.17487/RFC4033, March 2005,
<http://www.rfc-editor.org/info/rfc4033>.
[RFC4422] Melnikov, A., Ed., and K. Zeilenga, Ed., "Simple
Authentication and Security Layer (SASL)", RFC 4422,
DOI 10.17487/RFC4422, June 2006,
<http://www.rfc-editor.org/info/rfc4422>.
[RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
"Generic Security Service Application Program Interface
(GSS-API) Authentication and Key Exchange for the Secure
Shell (SSH) Protocol", RFC 4462, DOI 10.17487/RFC4462,
May 2006, <http://www.rfc-editor.org/info/rfc4462>.
[RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
<http://www.rfc-editor.org/info/rfc5056>.
[RFC5080] Nelson, D. and A. DeKok, "Common Remote Authentication
Dial In User Service (RADIUS) Implementation Issues and
Suggested Fixes", RFC 5080, DOI 10.17487/RFC5080,
December 2007, <http://www.rfc-editor.org/info/rfc5080>.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<http://www.rfc-editor.org/info/rfc5246>.
Howlett, et al. Informational [Page 43]
^L
RFC 7831 ABFAB Architecture May 2016
[RFC5705] Rescorla, E., "Keying Material Exporters for Transport
Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
March 2010, <http://www.rfc-editor.org/info/rfc5705>.
[RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
Service Application Program Interface (GSS-API) Mechanisms
in Simple Authentication and Security Layer (SASL): The
GS2 Mechanism Family", RFC 5801, DOI 10.17487/RFC5801,
July 2010, <http://www.rfc-editor.org/info/rfc5801>.
[RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
Extensions: Extension Definitions", RFC 6066,
DOI 10.17487/RFC6066, January 2011,
<http://www.rfc-editor.org/info/rfc6066>.
[RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
"Transport Layer Security (TLS) Encryption for RADIUS",
RFC 6614, DOI 10.17487/RFC6614, May 2012,
<http://www.rfc-editor.org/info/rfc6614>.
[RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
Ed., "Diameter Base Protocol", RFC 6733,
DOI 10.17487/RFC6733, October 2012,
<http://www.rfc-editor.org/info/rfc6733>.
[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
<http://www.rfc-editor.org/info/rfc6749>.
[RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
Morris, J., Hansen, M., and R. Smith, "Privacy
Considerations for Internet Protocols", RFC 6973,
DOI 10.17487/RFC6973, July 2013,
<http://www.rfc-editor.org/info/rfc6973>.
[RFC7029] Hartman, S., Wasserman, M., and D. Zhang, "Extensible
Authentication Protocol (EAP) Mutual Cryptographic
Binding", RFC 7029, DOI 10.17487/RFC7029, October 2013,
<http://www.rfc-editor.org/info/rfc7029>.
[RFC7170] Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
"Tunnel Extensible Authentication Protocol (TEAP)
Version 1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
<http://www.rfc-editor.org/info/rfc7170>.
Howlett, et al. Informational [Page 44]
^L
RFC 7831 ABFAB Architecture May 2016
[RFC7360] DeKok, A., "Datagram Transport Layer Security (DTLS) as a
Transport Layer for RADIUS", RFC 7360,
DOI 10.17487/RFC7360, September 2014,
<http://www.rfc-editor.org/info/rfc7360>.
[RFC7499] Perez-Mendez, A., Ed., Marin-Lopez, R., Pereniguez-Garcia,
F., Lopez-Millan, G., Lopez, D., and A. DeKok, "Support of
Fragmentation of RADIUS Packets", RFC 7499,
DOI 10.17487/RFC7499, April 2015,
<http://www.rfc-editor.org/info/rfc7499>.
[RFC7530] Haynes, T., Ed., and D. Noveck, Ed., "Network File System
(NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
March 2015, <http://www.rfc-editor.org/info/rfc7530>.
[RFC7585] Winter, S. and M. McCauley, "Dynamic Peer Discovery for
RADIUS/TLS and RADIUS/DTLS Based on the Network Access
Identifier (NAI)", RFC 7585, DOI 10.17487/RFC7585,
October 2015, <http://www.rfc-editor.org/info/rfc7585>.
[WS-TRUST] Lawrence, K., Kaler, C., Nadalin, A., Goodner, M., Gudgin,
M., Turner, D., Barbir, A., and H. Granqvist,
"WS-Trust 1.4", OASIS Standard ws-trust-2012-04,
April 2012, <http://docs.oasis-open.org/ws-sx/ws-trust/
v1.4/ws-trust.html>.
Howlett, et al. Informational [Page 45]
^L
RFC 7831 ABFAB Architecture May 2016
Acknowledgments
We would like to thank Mayutan Arumaithurai, Klaas Wierenga, and Rhys
Smith for their feedback. Additionally, we would like to thank Eve
Maler, Nicolas Williams, Bob Morgan, Scott Cantor, Jim Fenton, Paul
Leach, and Luke Howard for their feedback on the federation
terminology question.
Furthermore, we would like to thank Klaas Wierenga for his review of
the first draft version of this document. We also thank Eliot Lear
for his work on early draft versions of this document.
Authors' Addresses
Josh Howlett
Jisc
Lumen House, Library Avenue, Harwell
Oxford OX11 0SG
United Kingdom
Phone: +44 1235 822363
Email: Josh.Howlett@ja.net
Sam Hartman
Painless Security
Email: hartmans-ietf@mit.edu
Hannes Tschofenig
ARM Ltd.
110 Fulbourn Road
Cambridge CB1 9NJ
United Kingdom
Email: Hannes.tschofenig@gmx.net
URI: http://www.tschofenig.priv.at
Jim Schaad
August Cellars
Email: ietf@augustcellars.com
Howlett, et al. Informational [Page 46]
^L
|