1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
|
Independent Submission S. Smyshlyaev, Ed.
Request for Comments: 7836 E. Alekseev
Category: Informational I. Oshkin
ISSN: 2070-1721 V. Popov
S. Leontiev
CRYPTO-PRO
V. Podobaev
FACTOR-TS
D. Belyavsky
TCI
March 2016
Guidelines on the Cryptographic Algorithms to
Accompany the Usage of Standards GOST R 34.10-2012 and GOST R 34.11-2012
Abstract
The purpose of this document is to make the specifications of the
cryptographic algorithms defined by the Russian national standards
GOST R 34.10-2012 and GOST R 34.11-2012 available to the Internet
community for their implementation in the cryptographic protocols
based on the accompanying algorithms.
These specifications define the pseudorandom functions, the key
agreement algorithm based on the Diffie-Hellman algorithm and a hash
function, the parameters of elliptic curves, the key derivation
functions, and the key export functions.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7836.
Smyshlyaev, et al. Informational [Page 1]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Conventions Used in This Document . . . . . . . . . . . . . . 3
3. Basic Terms, Definitions, and Notations . . . . . . . . . . . 3
4. Algorithm Descriptions . . . . . . . . . . . . . . . . . . . 6
4.1. HMAC Functions . . . . . . . . . . . . . . . . . . . . . 6
4.2. Pseudorandom Functions . . . . . . . . . . . . . . . . . 7
4.3. VKO Algorithms for Key Agreement . . . . . . . . . . . . 8
4.4. The Key Derivation Function KDF_TREE_GOSTR3411_2012_256 . 10
4.5. The Key Derivation Function KDF_GOSTR3411_2012_256 . . . 11
4.6. Key Wrap and Key Unwrap . . . . . . . . . . . . . . . . . 11
5. The Parameters of Elliptic Curves . . . . . . . . . . . . . . 12
5.1. Canonical Form . . . . . . . . . . . . . . . . . . . . . 13
5.2. Twisted Edwards Form . . . . . . . . . . . . . . . . . . 14
6. Security Considerations . . . . . . . . . . . . . . . . . . . 15
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1. Normative References . . . . . . . . . . . . . . . . . . 16
7.2. Informative References . . . . . . . . . . . . . . . . . 17
Appendix A. Values of the Parameter Sets . . . . . . . . . . . . 18
A.1. Canonical Form Parameters . . . . . . . . . . . . . . . . 18
A.2. Twisted Edwards Form Parameters . . . . . . . . . . . . . 20
Appendix B. Test Examples . . . . . . . . . . . . . . . . . . . 22
Appendix C. GOST 28147-89 Parameter Set . . . . . . . . . . . . 30
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 30
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 30
Smyshlyaev, et al. Informational [Page 2]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
1. Introduction
The accompanying algorithms are intended for the implementation of
cryptographic protocols. This memo contains a description of the
accompanying algorithms based on the Russian national standards GOST
R 34.10-2012 [GOST3410-2012] and GOST R 34.11-2012 [GOST3411-2012].
The English versions of these standards can be found in [RFC7091] and
[RFC6986]; the English version of the encryption standard GOST
28147-89 [GOST28147-89] (which is used in the key export functions)
can be found in [RFC5830].
The specifications of algorithms and parameters proposed in this memo
are provided on the basis of experience in the development of the
cryptographic protocols, as described in [RFC4357], [RFC4490], and
[RFC4491].
This memo describes the pseudorandom functions, the key agreement
algorithm based on the Diffie-Hellman algorithm and a hash function,
the parameters of elliptic curves, the key derivation functions, and
the key export functions necessary to ensure interoperability of
security protocols that make use of the Russian cryptographic
standards GOST R 34.10-2012 [GOST3410-2012] digital signature
algorithm and GOST R 34.11-2012 [GOST3411-2012] cryptographic hash
function.
2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
3. Basic Terms, Definitions, and Notations
This document uses the following terms and definitions for the sets
and operations on the elements of these sets:
(xor) Exclusive-or of two binary vectors of the same length.
V_n The finite vector space over GF(2) of dimension n, n >= 0,
with the (xor) operation. For n = 0, the V_0 space consists
of a single empty element of size 0.
If U is an element of V_n, then U = (u_(n-1), u_(n-2), ...,
u_1, u_0), where u_i in {0, 1}.
Smyshlyaev, et al. Informational [Page 3]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
V_(8, r)
The set of byte vectors of size r, r >= 0, for r = 0 the
V_(8, r) set consists of a single empty element of size 0.
If W is an element of V_(8, r), r > 0, then W = (w^0, w^1,
..., w^(r-1)), where w^0, w^1, ..., w^(r-1) are elements of
V_8.
Bit representation
The bit representation of the element W = (w^0, w^1, ...,
w^(r-1)) of V_(8, r) is an element (w_(8r-1), w_(8r-2), ...,
w_1, w_0) of V_(8*r), where w^0 = (w_7, w_6, ..., w_0),
w^1 = (w_15, w_14, ..., w_8), ..., w^(r-1) = (w_(8r-1),
w_(8r-2), ..., w_(8r-8)) are elements of V_8.
Byte representation
If n is a multiple of 8, r = n/8, then the byte
representation of the element W = (w_(n-1), w_(n-2), ...,
w_0) of V_n is a byte vector (w^0, w^1, ..., w^(r-1)) of
V_(8, r), where w^0 = (w_7, w_6, ..., w_0), w^1 = (w_15,
w_14, ..., w_8), ..., w^(r-1) = (w_(8r-1), w_(8r-2), ...,
w_(8r-8)) are elements of V_8.
A|B Concatenation of byte vectors A and B, i.e., if A in
V_(8, r1), B in V_(8, r2), A = (a^0, a^1, ..., a^(r1-1)) and
B = (b^0, b^1, ..., b^(r2-1)), then A|B = (a^0, a^1, ...,
a^(r1-1), b^0, b^1, ..., b^(r2-1)) is an element of V_(8,
r1+r2).
K (key) An arbitrary element of V_n. If K in V_n, then its size (in
bits) is equal to n, where n can be an arbitrary natural
number.
Smyshlyaev, et al. Informational [Page 4]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
This memo uses the following abbreviations and symbols:
+---------+---------------------------------------------------------+
| Symbols | Meaning |
+---------+---------------------------------------------------------+
| H_256 | GOST R 34.11-2012 hash function with 256-bit output |
| | |
| H_512 | GOST R 34.11-2012 hash function with 512-bit output |
| | |
| HMAC | Hashed-based Message Authentication Code. A function |
| | for calculating a message authentication code, based on |
| | a hash function in accordance with [RFC2104] |
| | |
| PRF | A pseudorandom function, i.e., a transformation that |
| | allows generation of a pseudorandom sequence of bytes |
| | |
| KDF | A key derivation function, i.e., a transformation that |
| | allows keys and keying material to be derived from the |
| | root key and additional input using a pseudorandom |
| | function |
| | |
| VKO | A key agreement algorithm based on the Diffie-Hellman |
| | algorithm and a hash function |
+---------+---------------------------------------------------------+
To generate a byte sequence of the size r with functions that give a
longer output, the output is truncated to the first r bytes. This
remark applies to the following functions:
o the functions described in Section 4.2;
o KDF_TREE_GOSTR3411_2012_256 described in Section 4.4;
o KDF_GOSTR3411_2012_256 described in Section 4.5.
Hereinafter, all data are provided in byte representation unless
otherwise specified.
If a function is defined outside this document (e.g., H_256) and its
definition requires arguments in bit representation, it is assumed
that the bit representations of the arguments are formed immediately
before the calculation of the function (in particular, immediately
after the application of the operation (|) to the byte representation
of the arguments).
If the output of another function defined outside of this document is
used as an argument of the functions defined below and it has the bit
representation, then it is assumed that an output MUST have a length
Smyshlyaev, et al. Informational [Page 5]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
that is a multiple of 8 and that it will be translated into the byte
representation in advance.
When a point on an elliptic curve is given to an input of a hash
function, affine coordinates for short Weierstrass form are used (see
Section 5): an x coordinate value is fed first, a y coordinate value
is fed second, both in little-endian format.
4. Algorithm Descriptions
4.1. HMAC Functions
This section defines the HMAC transformations based on the GOST R
34.11-2012 [GOST3411-2012] algorithm.
4.1.1. HMAC_GOSTR3411_2012_256
This HMAC transformation is based on the GOST R 34.11-2012
[GOST3411-2012] hash function with 256-bit output. The object
identifier of this transformation is shown below:
id-tc26-hmac-gost-3411-12-256::= {iso(1) member-body(2) ru(643)
rosstandart(7) tc26(1) algorithms(1) mac(4) hmac-gost-
3411-12-256(1)}.
This algorithm uses H_256 as a hash function for HMAC, described in
[RFC2104]. The method of forming the values of ipad and opad is also
specified in [RFC2104]. The size of HMAC_GOSTR3411_2012_256 output
is equal to 32 bytes, the block size of the iterative procedure for
the H_256 compression function is equal to 64 bytes (in the notation
of [RFC2104], L = 32 and B = 64, respectively).
4.1.2. HMAC_GOSTR3411_2012_512
This HMAC transformation is based on the GOST R 34.11-2012
[GOST3411-2012] hash function with 512-bit output. The object
identifier of this transformation is shown below:
id-tc26-hmac-gost-3411-12-512::= {iso(1) member-body(2) ru(643)
rosstandart(7) tc26(1) algorithms(1) mac(4) hmac-gost-
3411-12-512(2)}.
This algorithm uses H_512 as a hash function for HMAC, described in
[RFC2104]. The method of forming the values of ipad and opad is also
specified in [RFC2104]. The size of HMAC_GOSTR3411_2012_512 output
is equal to 64 bytes, the block size of the iterative procedure for
the H_512 compression function is equal to 64 bytes (in the notation
of [RFC2104], L = 64 and B = 64, respectively).
Smyshlyaev, et al. Informational [Page 6]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
4.2. Pseudorandom Functions
This section defines four HMAC-based PRF transformations recommended
for usage. Two of them are designed for the Transport Layer Security
(TLS) protocol and two are designed for the IPsec protocol.
4.2.1. PRFs for the TLS Protocol
4.2.1.1. PRF_TLS_GOSTR3411_2012_256
This is the transformation providing the pseudorandom function for
the TLS protocol (1.0 and higher versions) in accordance with GOST R
34.11-2012 [GOST3411-2012]. It uses the P_GOSTR3411_2012_256
function that is similar to the P_hash function defined in Section 5
of [RFC5246], where the HMAC_GOSTR3411_2012_256 function (defined in
Section 4.1.1 of this document) is used as the HMAC_hash function.
PRF_TLS_GOSTR3411_2012_256 (secret, label, seed) =
= P_GOSTR3411_2012_256 (secret, label | seed).
Label and seed values MUST be assigned by a protocol, their lengths
SHOULD be fixed by a protocol in order to avoid possible collisions.
4.2.1.2. PRF_TLS_GOSTR3411_2012_512
This is the transformation providing the pseudorandom function for
the TLS protocol (1.0 and higher versions) in accordance with GOST R
34.11-2012 [GOST3411-2012]. It uses the P_GOSTR3411_2012_512
function that is similar to the P_hash function defined in Section 5
of [RFC5246], where the HMAC_GOSTR3411_2012_512 function (defined in
Section 4.1.2 of this document) is used as the HMAC_hash function.
PRF_TLS_GOSTR3411_2012_512 (secret, label, seed) =
= P_GOSTR3411_2012_512 (secret, label | seed).
Label and seed values MUST be assigned by a protocol, their lengths
SHOULD be fixed by a protocol in order to avoid possible collisions.
4.2.2. PRFs for the IKEv2 Protocol Based on GOST R 34.11-2012
The specification for the Internet Key Exchange protocol version 2
(IKEv2) [RFC7296] defines the usage of PRFs in various parts of the
protocol for the purposes of generating and authenticating keying
material.
IKEv2 has no default PRF. This document specifies that
HMAC_GOSTR3411_2012_256 may be used as the "prf" function in the
"prf+" function for the IKEv2 protocol
Smyshlyaev, et al. Informational [Page 7]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
(PRF_IPSEC_PRFPLUS_GOSTR3411_2012_256). Also, this document
specifies that HMAC_GOSTR3411_2012_512 may be used as the "prf"
function in the "prf+" function for the IKEv2 protocol
(PRF_IPSEC_PRFPLUS_GOSTR3411_2012_512).
4.3. VKO Algorithms for Key Agreement
This section specifies the key agreement algorithms based on GOST R
34.10-2012 [GOST3410-2012].
4.3.1. VKO_GOSTR3410_2012_256
The VKO_GOSTR3410_2012_256 transformation is used for agreement of
256-bit keys and is based on the 256-bit version of GOST R 34.11-2012
[GOST3411-2012]. This algorithm can be applied for a key agreement
using GOST R 34.10-2012 [GOST3410-2012] with 256-bit or 512-bit
private keys.
The algorithm is designed to produce an encryption key or a keying
material of size 256 bits to be used in various cryptographic
protocols. A key or a keying material KEK_VKO (x, y, UKM) is
produced from the private key x of one side, the public key y*P of
the opposite side and the User Keying Material (UKM) value.
The algorithm can be used for static and ephemeral keys with the
public key size n >= 512 bits including the case where one side uses
a static key and the other uses an ephemeral one.
The UKM parameter is optional (the default UKM = 1) and can take any
integer value from 1 to 2^(n/2)-1. It is allowed to use a non-zero
UKM of an arbitrary size that does not exceed n/2 bits. If at least
one of the parties uses static keys, the RECOMMENDED length of UKM is
64 bits or more.
KEK_VKO (x, y, UKM) is calculated using the formulas:
KEK_VKO (x, y, UKM) = H_256 (K (x, y, UKM)),
K (x, y, UKM) = (m/q*UKM*x mod q)*(y*P),
where m and q are the parameters of an elliptic curve defined in the
GOST R 34.10-2012 [GOST3411-2012] standard (m is an elliptic curve
points group order, q is an order of a cyclic subgroup), P is a non-
zero point of the subgroup; P is defined by a protocol.
This algorithm is defined similar to the one specified in Section 5.2
of [RFC4357], but applies the hash function H_256 instead of the hash
function GOST R 34.11-94 [GOST3411-94] (referred to as "gostR3411").
Smyshlyaev, et al. Informational [Page 8]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
In addition, K(x, y, UKM) is calculated with public key size n >= 512
bits and UKM has a size up to n/2 bits.
4.3.2. VKO_GOSTR3410_2012_512
The VKO_GOSTR3410_2012_512 transformation is used for agreement of
512-bit keys and is based on the 512-bit version of GOST R 34.11-2012
[GOST3411-2012]. This algorithm can be applied for a key agreement
using GOST R 34.10-2012 [GOST3410-2012] with 512-bit private keys.
The algorithm is designed to produce an encryption key or a keying
material of size 512 bits to be used in various cryptographic
protocols. A key or a keying material KEK_VKO (x, y, UKM) is
produced from the private key x of one side, the public key y*P of
the opposite side and the UKM value, considered as an integer.
The algorithm can be used for static and ephemeral keys with the
public key size n >= 1024 bits including the case where one side uses
a static key and the other uses an ephemeral one.
The UKM parameter is optional (the default UKM = 1) and can take any
integer value from 1 to 2^(n/2)-1. It is allowed to use a non-zero
UKM of an arbitrary size that does not exceed n/2 bits. If at least
one of the parties uses static keys, the RECOMMENDED length of UKM is
128 bits or more.
KEK_VKO (x, y, UKM) is calculated using the formulas:
KEK_VKO (x, y, UKM) = H_512 (K (x, y, UKM)),
K (x, y, UKM) = (m/q*UKM*x mod q)*(y*P),
where m and q are the parameters of an elliptic curve defined in the
GOST R 34.10-2012 [GOST3411-2012] standard (m is an elliptic curve
points group order, q is an order of a cyclic subgroup), P is a non-
zero point of the subgroup; P is defined by a protocol.
This algorithm is defined similar to the one specified in Section 5.2
of [RFC4357], but applies the hash function H_512 instead of the hash
function GOST R 34.11-94 [GOST3411-94] (referred to as "gostR3411").
In addition, K(x, y, UKM) is calculated with public key size n >=
1024 bits and UKM has a size up to n/2 bits.
Smyshlyaev, et al. Informational [Page 9]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
4.4. The Key Derivation Function KDF_TREE_GOSTR3411_2012_256
The key derivation function KDF_TREE_GOSTR3411_2012_256 based on the
HMAC_GOSTR3411_2012_256 function is given by:
KDF_TREE_GOSTR3411_2012_256 (K_in, label, seed, R) = K(1) | K(2) |
K(3) | K(4) |...,
K(i) = HMAC_GOSTR3411_2012_256 (K_in, [i]_b | label | 0x00 | seed
| [L]_b), i >= 1,
where:
K_in Derivation key.
label, seed
The parameters that MUST be assigned by a protocol; their
lengths SHOULD be fixed by a protocol.
R A fixed external parameter, with possible values of 1, 2, 3,
or 4.
i Iteration counter.
[i]_b Byte representation of the iteration counter (in the network
byte order); the number of bytes in the representation [i]_b
is equal to R (no more than 4 bytes).
L The required size (in bits) of the generated keying material
(an integer, not exceeding 256*(2^(8*R)-1)).
[L]_b Byte representation of L, in network byte order (variable
length: no leading zero bytes added).
The key derivation function KDF_TREE_GOSTR3411_2012_256 is intended
for generating a keying material of size L, not exceeding
256*(2^(8*R)-1) bits, and utilizing general principles of the input
and output for the key derivation function outlined in Section 5.1 of
NIST SP 800-108 [NISTSP800-108]. The HMAC_GOSTR3411_2012_256
algorithm described in Section 4.1.1 is selected as a pseudorandom
function.
Each key derived from the keying material formed using the derivation
key K_in (0-level key) may be a 1-level derivation key and may be
used to generate a new keying material. The keying material derived
from the first level derivation key can be split down into the second
level derivation keys. The application of this procedure leads to
the construction of the key tree with the root key and the formation
Smyshlyaev, et al. Informational [Page 10]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
of the keying material to the hierarchy of the levels, as described
in Section 6 of NIST SP 800-108 [NISTSP800-108]. The partitioning
procedure for keying material at each level is defined in accordance
with a specific protocol.
4.5. The Key Derivation Function KDF_GOSTR3411_2012_256
The KDF_GOSTR3411_2012_256 function is equivalent to the function
KDF_TREE_GOSTR3411_2012_256, when R = 1, L = 256, and is given by:
KDF_GOSTR3411_2012_256 (K_in, label, seed) =
HMAC_GOSTR3411_2012_256 (K_in, 0x01 | label | 0x00 | seed | 0x01 |
0x00),
where:
K_in Derivation key.
label, seed
The parameters that MUST be assigned by a protocol; their
lengths SHOULD be fixed by a protocol.
4.6. Key Wrap and Key Unwrap
Wrapped representation of a secret key K (256-bit GOST 28147-89
[GOST28147-89] key, 256-bit or 512-bit GOST R 34.10-2012
[GOST3410-2012] private key) is formed as follows by using a given
export key K_e (GOST 28147-89 [GOST28147-89] key) and a random seed
vector:
1. Generate a random seed vector from 8 up to 16 bytes.
2. With the key derivation function, using an export key K_e as a
derivation key, produce a key KEK_e (K_e, seed), where:
KEK_e (K_e, seed) = KDF_GOSTR3411_2012_256 (K_e, label, seed),
where the KDF_GOSTR3411_2012_256 function (see Section 4.5) is
used as a key derivation function for the fixed label value
label = (0x26 | 0xBD | 0xB8 | 0x78).
3. GOST 28147-89 [GOST28147-89] Message Authentication Code (MAC)
value (4-byte) for the data K and the key KEK_e (K_e, seed) is
calculated; the initialization vector (IV) in this case is equal
to the first 8 bytes of seed. The resulting value is denoted as
CEK_MAC.
Smyshlyaev, et al. Informational [Page 11]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
4. The key K is encrypted with the GOST 28147-89 [GOST28147-89]
algorithm in the Electronic Codebook (ECB) mode with the key
KEK_e (K_e, seed). The result is denoted as CEK_ENC.
5. The wrapped representation of the key is (seed | CEK_ENC |
CEK_MAC).
The value of key K is restored from the wrapped representation of the
key and the export key K_e as follows:
1. Obtain the seed, CEK_ENC and CEK_MAC values from the wrapped
representation of the key.
2. With the key derivation function, using the export key K_e as a
derivation key, produce a key KEK_e(K_e, seed), where:
KEK_e (K_e, seed) = KDF_GOSTR3411_2012_256 (K_e, label, seed),
where the KDF_GOSTR3411_2012_256 function (see Section 4.5) is
used as a key derivation function for the fixed label value
label = (0x26 | 0xBD | 0xB8 | 0x78).
3. The CEK_ENC field is decrypted with the GOST 28147-89
[GOST28147-89] algorithm in the Electronic Codebook (ECB) mode
with the key KEK_e(K_e, seed). The unwrapped key K is assumed to
be equal to the result of decryption.
4. GOST 28147-89 [GOST28147-89] MAC value (4-byte) for the data K
and the key KEK_e(K_e, seed) is calculated; the initialization
vector (IV) in this case is equal to the first 8 bytes of seed.
If the result is not equal to CEK_MAC, an error is returned.
The GOST 28147-89 [GOST28147-89] algorithm is used with the parameter
set defined in Appendix C of this document.
5. The Parameters of Elliptic Curves
This section defines the elliptic curves parameters and object
identifiers that are RECOMMENDED for usage with the signature and
verification algorithms of the digital signature in accordance with
the GOST R 34.10-2012 [GOST3410-2012] standard and with the key
agreement algorithms VKO_GOSTR3410_2012_256 and
VKO_GOSTR3410_2012_512.
This document does not negate the use of other parameters of elliptic
curves.
Smyshlyaev, et al. Informational [Page 12]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
5.1. Canonical Form
This section defines the elliptic curves parameters of the GOST R
34.10-2012 [GOST3410-2012] standard for the case of elliptic curves
with prime 512-bit moduli in canonical (short Weierstrass) form, that
is given by the following equation defined in GOST R 34.10-2012
[GOST3410-2012]:
y^2 = x^3 + ax + b (mod p).
In case of elliptic curves with 256-bit prime moduli, the parameters
defined in [RFC4357] are proposed for use.
5.1.1. Parameters and Object Identifiers
The parameters for each elliptic curve are represented by the
following values, which are defined in GOST R 34.10-2012
[GOST3410-2012]:
p the characteristic of the underlying prime field;
a, b the coefficients of the equation of the elliptic curve in the
canonical form;
m the elliptic curve group order;
q the elliptic curve subgroup order;
(x, y) the coordinates of the point P (generator of the subgroup of
order q) of the elliptic curve in the canonical form.
Both sets of the parameters are presented as structures of the form:
SEQUENCE {
p INTEGER,
a INTEGER,
b INTEGER,
m INTEGER,
q INTEGER,
x INTEGER,
y INTEGER
}
The parameter sets have the following object identifiers:
1. id-tc26-gost-3410-12-512-paramSetA::= {iso(1) member-body(2)
ru(643) rosstandart(7) tc26(1) constants(2) sign-constants(1)
gost-3410-12-512-constants(2) paramSetA(1)};
Smyshlyaev, et al. Informational [Page 13]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
2. id-tc26-gost-3410-12-512-paramSetB::= {iso(1) member-body(2)
ru(643) rosstandart(7) tc26(1) constants(2) sign-constants(1)
gost-3410-12-512-constants(2) paramSetB(2)}.
The corresponding values of the parameter sets can be found in
Appendix A.1.
5.2. Twisted Edwards Form
This section defines the elliptic curves parameters and object
identifiers of the GOST R 34.10-2012 [GOST3410-2012] standard for the
case of elliptic curves that have a representation in the twisted
Edwards form with prime 256-bit and 512-bit moduli.
A twisted Edwards curve E over a finite prime field F_p, p > 3, is an
elliptic curve defined by the equation:
e*u^2 + v^2 = 1 + d*u^2*v^2 (mod p),
where e, d are in F_p, ed(e-d) != 0.
A twisted Edwards curve has an equivalent representation in the short
Weierstrass form defined by parameters a, b. The parameters a, b, e,
and d are related as follows:
a = s^2 - 3*t^2 (mod p),
b = 2*t^3 - t*s^2 (mod p),
where:
s = (e - d)/4 (mod p),
t = (e + d)/6 (mod p).
Coordinate transformations are defined as follows:
(u,v) --> (x,y) = (s(1 + v)/(1 - v) + t, s(1 + v)/((1 - v)u)),
(x,y) --> (u,v) = ((x - t)/y, (x - t - s)/(x - t + s)).
5.2.1. Parameters and Object Identifiers
The parameters for each elliptic curve are represented by the
following values, which are defined in GOST R 34.10-2012
[GOST3410-2012]:
p The characteristic of the underlying prime field.
a, b The coefficients of the equation of the elliptic curve in the
canonical form.
Smyshlyaev, et al. Informational [Page 14]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
e, d The coefficients of the equation of the elliptic curve in the
twisted Edwards form.
m The elliptic curve group order.
q The elliptic curve subgroup order.
(x, y) The coordinates of the point P (generator of the subgroup of
order q) of the elliptic curve in the canonical form.
(u, v) The coordinates of the point P (generator of the subgroup of
order q) of the elliptic curve in the twisted Edwards form.
Both sets of the parameters are presented as ASN structures of the
form:
SEQUENCE {
p INTEGER,
a INTEGER,
b INTEGER,
e INTEGER,
d INTEGER,
m INTEGER,
q INTEGER,
x INTEGER,
y INTEGER,
u INTEGER,
v INTEGER
}
The parameter sets have the following object identifiers:
1. id-tc26-gost-3410-2012-256-paramSetA ::= {iso(1) member-body(2)
ru(643) rosstandart(7) tc26(1) constants(2) sign-constants(1)
gost-3410-12-256-constants(1) paramSetA(1)};
2. id-tc26-gost-3410-2012-512-paramSetC ::= {iso(1) member-body(2)
ru(643) rosstandart(7) tc26(1) constants(2) sign-constants(1)
gost-3410-12-512-constants(2) paramSetC(3)}.
The corresponding values of the parameter sets can be found in
Appendix A.2.
6. Security Considerations
This entire document is about security considerations.
Smyshlyaev, et al. Informational [Page 15]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
7. References
7.1. Normative References
[GOST28147-89]
"Systems of information processing. Cryptographic data
security. Algorithms of cryptographic transformation",
GOST 28147-89 Gosudarstvennyi Standard of USSR, Government
Committee of the USSR for Standards, 1989.
[GOST3410-2012]
"Information technology. Cryptographic data security.
Signature and verification processes of [electronic]
digital signature", GOST R 34.10-2012 Federal Agency on
Technical Regulating and Metrology (In Russian), 2012.
[GOST3411-2012]
"Information technology. Cryptographic Data Security.
Hashing function", GOST R 34.11-2012 Federal Agency on
Technical Regulating and Metrology (In Russian), 2012.
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104,
DOI 10.17487/RFC2104, February 1997,
<http://www.rfc-editor.org/info/rfc2104>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC4357] Popov, V., Kurepkin, I., and S. Leontiev, "Additional
Cryptographic Algorithms for Use with GOST 28147-89, GOST
R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94
Algorithms", RFC 4357, DOI 10.17487/RFC4357, January 2006,
<http://www.rfc-editor.org/info/rfc4357>.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<http://www.rfc-editor.org/info/rfc5246>.
[RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
Kivinen, "Internet Key Exchange Protocol Version 2
(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
2014, <http://www.rfc-editor.org/info/rfc7296>.
Smyshlyaev, et al. Informational [Page 16]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
7.2. Informative References
[GOST3411-94]
"Information technology. Cryptographic Data Security.
Hashing function", GOST R 34.11-94 Federal Agency on
Technical Regulating and Metrology (In Russian), 1994.
[NISTSP800-108]
National Institute of Standards and Technology,
"Recommendation for Key Derivation Using Pseudorandom
Functions", NIST SP 800-108, October 2009,
<http://csrc.nist.gov/publications/nistpubs/800-108/
sp800-108.pdf>.
[RFC4490] Leontiev, S., Ed. and G. Chudov, Ed., "Using the GOST
28147-89, GOST R 34.11-94, GOST R 34.10-94, and GOST R
34.10-2001 Algorithms with Cryptographic Message Syntax
(CMS)", RFC 4490, DOI 10.17487/RFC4490, May 2006,
<http://www.rfc-editor.org/info/rfc4490>.
[RFC4491] Leontiev, S., Ed. and D. Shefanovski, Ed., "Using the GOST
R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94
Algorithms with the Internet X.509 Public Key
Infrastructure Certificate and CRL Profile", RFC 4491,
DOI 10.17487/RFC4491, May 2006,
<http://www.rfc-editor.org/info/rfc4491>.
[RFC5830] Dolmatov, V., Ed., "GOST 28147-89: Encryption, Decryption,
and Message Authentication Code (MAC) Algorithms",
RFC 5830, DOI 10.17487/RFC5830, March 2010,
<http://www.rfc-editor.org/info/rfc5830>.
[RFC6986] Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
2013, <http://www.rfc-editor.org/info/rfc6986>.
[RFC7091] Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.10-2012:
Digital Signature Algorithm", RFC 7091,
DOI 10.17487/RFC7091, December 2013,
<http://www.rfc-editor.org/info/rfc7091>.
Smyshlyaev, et al. Informational [Page 17]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Appendix A. Values of the Parameter Sets
A.1. Canonical Form Parameters
Parameter set: id-tc26-gost-3410-12-512-paramSetA
SEQUENCE
{
OBJECT IDENTIFIER
id-tc26-gost-3410-12-512-paramSetA
SEQUENCE
{
INTEGER
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FD
C7
INTEGER
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FD
C4
INTEGER
00 E8 C2 50 5D ED FC 86 DD C1 BD 0B 2B 66 67 F1
DA 34 B8 25 74 76 1C B0 E8 79 BD 08 1C FD 0B 62
65 EE 3C B0 90 F3 0D 27 61 4C B4 57 40 10 DA 90
DD 86 2E F9 D4 EB EE 47 61 50 31 90 78 5A 71 C7
60
INTEGER
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF 27 E6 95 32 F4 8D 89 11 6F F2 2B 8D 4E 05 60
60 9B 4B 38 AB FA D2 B8 5D CA CD B1 41 1F 10 B2
75
INTEGER
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF 27 E6 95 32 F4 8D 89 11 6F F2 2B 8D 4E 05 60
60 9B 4B 38 AB FA D2 B8 5D CA CD B1 41 1F 10 B2
75
INTEGER
03
Smyshlyaev, et al. Informational [Page 18]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
INTEGER
75 03 CF E8 7A 83 6A E3 A6 1B 88 16 E2 54 50 E6
CE 5E 1C 93 AC F1 AB C1 77 80 64 FD CB EF A9 21
DF 16 26 BE 4F D0 36 E9 3D 75 E6 A5 0E 3A 41 E9
80 28 FE 5F C2 35 F5 B8 89 A5 89 CB 52 15 F2 A4
}
}
Parameter set: id-tc26-gost-3410-12-512-paramSetB
SEQUENCE
{
OBJECT IDENTIFIER
id-tc26-gost-3410-12-512-paramSetB
SEQUENCE
{
INTEGER
00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6F
INTEGER
00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6C
INTEGER
68 7D 1B 45 9D C8 41 45 7E 3E 06 CF 6F 5E 25 17
B9 7C 7D 61 4A F1 38 BC BF 85 DC 80 6C 4B 28 9F
3E 96 5D 2D B1 41 6D 21 7F 8B 27 6F AD 1A B6 9C
50 F7 8B EE 1F A3 10 6E FB 8C CB C7 C5 14 01 16
INTEGER
00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 49 A1 EC 14 25 65 A5 45 AC FD B7 7B D9 D4 0C
FA 8B 99 67 12 10 1B EA 0E C6 34 6C 54 37 4F 25
BD
INTEGER
00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 49 A1 EC 14 25 65 A5 45 AC FD B7 7B D9 D4 0C
FA 8B 99 67 12 10 1B EA 0E C6 34 6C 54 37 4F 25
BD
INTEGER
02
Smyshlyaev, et al. Informational [Page 19]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
INTEGER
1A 8F 7E DA 38 9B 09 4C 2C 07 1E 36 47 A8 94 0F
3C 12 3B 69 75 78 C2 13 BE 6D D9 E6 C8 EC 73 35
DC B2 28 FD 1E DF 4A 39 15 2C BC AA F8 C0 39 88
28 04 10 55 F9 4C EE EC 7E 21 34 07 80 FE 41 BD
}
}
A.2. Twisted Edwards Form Parameters
Parameter set: id-tc26-gost-3410-2012-256-paramSetA
SEQUENCE
{
OBJECT IDENTIFIER
id-tc26-gost-3410-2012-256-paramSetA
SEQUENCE
{
INTEGER
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FD
97
INTEGER
00 C2 17 3F 15 13 98 16 73 AF 48 92 C2 30 35 A2
7C E2 5E 20 13 BF 95 AA 33 B2 2C 65 6F 27 7E 73
35
INTEGER
29 5F 9B AE 74 28 ED 9C CC 20 E7 C3 59 A9 D4 1A
22 FC CD 91 08 E1 7B F7 BA 93 37 A6 F8 AE 95 13
INTEGER
01
INTEGER
06 05 F6 B7 C1 83 FA 81 57 8B C3 9C FA D5 18 13
2B 9D F6 28 97 00 9A F7 E5 22 C3 2D 6D C7 BF FB
INTEGER
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 3F 63 37 7F 21 ED 98 D7 04 56 BD 55 B0 D8 31
9C
INTEGER
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0F D8 CD DF C8 7B 66 35 C1 15 AF 55 6C 36 0C 67
INTEGER
00 91 E3 84 43 A5 E8 2C 0D 88 09 23 42 57 12 B2
BB 65 8B 91 96 93 2E 02 C7 8B 25 82 FE 74 2D AA
28
Smyshlyaev, et al. Informational [Page 20]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
INTEGER
32 87 94 23 AB 1A 03 75 89 57 86 C4 BB 46 E9 56
5F DE 0B 53 44 76 67 40 AF 26 8A DB 32 32 2E 5C
INTEGER
0D
INTEGER
60 CA 1E 32 AA 47 5B 34 84 88 C3 8F AB 07 64 9C
E7 EF 8D BE 87 F2 2E 81 F9 2B 25 92 DB A3 00 E7
}
}
Parameter set: id-tc26-gost-3410-2012-512-paramSetC
SEQUENCE
{
OBJECT IDENTIFIER
id-tc26-gost-3410-2012-512-paramSetC
SEQUENCE
{
INTEGER
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FD
C7
INTEGER
00 DC 92 03 E5 14 A7 21 87 54 85 A5 29 D2 C7 22
FB 18 7B C8 98 0E B8 66 64 4D E4 1C 68 E1 43 06
45 46 E8 61 C0 E2 C9 ED D9 2A DE 71 F4 6F CF 50
FF 2A D9 7F 95 1F DA 9F 2A 2E B6 54 6F 39 68 9B
D3
INTEGER
00 B4 C4 EE 28 CE BC 6C 2C 8A C1 29 52 CF 37 F1
6A C7 EF B6 A9 F6 9F 4B 57 FF DA 2E 4F 0D E5 AD
E0 38 CB C2 FF F7 19 D2 C1 8D E0 28 4B 8B FE F3
B5 2B 8C C7 A5 F5 BF 0A 3C 8D 23 19 A5 31 25 57
E1
INTEGER
01
INTEGER
00 9E 4F 5D 8C 01 7D 8D 9F 13 A5 CF 3C DF 5B FE
4D AB 40 2D 54 19 8E 31 EB DE 28 A0 62 10 50 43
9C A6 B3 9E 0A 51 5C 06 B3 04 E2 CE 43 E7 9E 36
9E 91 A0 CF C2 BC 2A 22 B4 CA 30 2D BB 33 EE 75
50
Smyshlyaev, et al. Informational [Page 21]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
INTEGER
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF 26 33 6E 91 94 1A AC 01 30 CE A7 FD 45 1D 40
B3 23 B6 A7 9E 9D A6 84 9A 51 88 F3 BD 1F C0 8F
B4
INTEGER
3F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
C9 8C DB A4 65 06 AB 00 4C 33 A9 FF 51 47 50 2C
C8 ED A9 E7 A7 69 A1 26 94 62 3C EF 47 F0 23 ED
INTEGER
00 E2 E3 1E DF C2 3D E7 BD EB E2 41 CE 59 3E F5
DE 22 95 B7 A9 CB AE F0 21 D3 85 F7 07 4C EA 04
3A A2 72 72 A7 AE 60 2B F2 A7 B9 03 3D B9 ED 36
10 C6 FB 85 48 7E AE 97 AA C5 BC 79 28 C1 95 01
48
INTEGER
00 F5 CE 40 D9 5B 5E B8 99 AB BC CF F5 91 1C B8
57 79 39 80 4D 65 27 37 8B 8C 10 8C 3D 20 90 FF
9B E1 8E 2D 33 E3 02 1E D2 EF 32 D8 58 22 42 3B
63 04 F7 26 AA 85 4B AE 07 D0 39 6E 9A 9A DD C4
0F
INTEGER
12
INTEGER
46 9A F7 9D 1F B1 F5 E1 6B 99 59 2B 77 A0 1E 2A
0F DF B0 D0 17 94 36 8D 9A 56 11 7F 7B 38 66 95
22 DD 4B 65 0C F7 89 EE BF 06 8C 5D 13 97 32 F0
90 56 22 C0 4B 2B AA E7 60 03 03 EE 73 00 1A 3D
}
}
Appendix B. Test Examples
1) HMAC_GOSTR3411_2012_256
Key K:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
T:
01 26 bd b8 78 00 af 21 43 41 45 65 63 78 01 00
Smyshlyaev, et al. Informational [Page 22]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
HMAC_GOSTR3411_2012_256 (K, T) value:
a1 aa 5f 7d e4 02 d7 b3 d3 23 f2 99 1c 8d 45 34
01 31 37 01 0a 83 75 4f d0 af 6d 7c d4 92 2e d9
2) HMAC_GOSTR3411_2012_512
Key K:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
T:
01 26 bd b8 78 00 af 21 43 41 45 65 63 78 01 00
HMAC_GOSTR3411_2012_512 (K, T) value:
a5 9b ab 22 ec ae 19 c6 5f bd e6 e5 f4 e9 f5 d8
54 9d 31 f0 37 f9 df 9b 90 55 00 e1 71 92 3a 77
3d 5f 15 30 f2 ed 7e 96 4c b2 ee dc 29 e9 ad 2f
3a fe 93 b2 81 4f 79 f5 00 0f fc 03 66 c2 51 e6
3) PRF_TLS_GOSTR3411_2012_256
Key K:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
Seed:
18 47 1d 62 2d c6 55 c4 d2 d2 26 96 91 ca 4a 56
0b 50 ab a6 63 55 3a f2 41 f1 ad a8 82 c9 f2 9a
Label:
11 22 33 44 55
Output T1:
ff 09 66 4a 44 74 58 65 94 4f 83 9e bb 48 96 5f
15 44 ff 1c c8 e8 f1 6f 24 7e e5 f8 a9 eb e9 7f
Smyshlyaev, et al. Informational [Page 23]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Output T2:
c4 e3 c7 90 0e 46 ca d3 db 6a 01 64 30 63 04 0e
c6 7f c0 fd 5c d9 f9 04 65 23 52 37 bd ff 2c 02
4) PRF_TLS_GOSTR3411_2012_512
Key K:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
Seed:
18 47 1d 62 2d c6 55 c4 d2 d2 26 96 91 ca 4a 56
0b 50 ab a6 63 55 3a f2 41 f1 ad a8 82 c9 f2 9a
Label:
11 22 33 44 55
Output T1:
f3 51 87 a3 dc 96 55 11 3a 0e 84 d0 6f d7 52 6c
5f c1 fb de c1 a0 e4 67 3d d6 d7 9d 0b 92 0e 65
ad 1b c4 7b b0 83 b3 85 1c b7 cd 8e 7e 6a 91 1a
62 6c f0 2b 29 e9 e4 a5 8e d7 66 a4 49 a7 29 6d
Output T2:
e6 1a 7a 26 c4 d1 ca ee cf d8 0c ca 65 c7 1f 0f
88 c1 f8 22 c0 e8 c0 ad 94 9d 03 fe e1 39 57 9f
72 ba 0c 3d 32 c5 f9 54 f1 cc cd 54 08 1f c7 44
02 78 cb a1 fe 7b 7a 17 a9 86 fd ff 5b d1 5d 1f
5) PRF_IPSEC_PRFPLUS_GOSTR3411_2012_256
Key K:
c9 a9 a7 73 20 e2 cc 55 9e d7 2d ce 6f 47 e2 19
2c ce a9 5f a6 48 67 05 82 c0 54 c0 ef 36 c2 21
Data S:
01 26 bd b8 78 00 1d 80 60 3c 85 44 c7 27 01 00
Smyshlyaev, et al. Informational [Page 24]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Output T1:
2d e5 ee 84 e1 3d 7b e5 36 16 67 39 13 37 0a b0
54 c0 74 b7 9b 69 a8 a8 46 82 a9 f0 4f ec d5 87
Output T2:
29 f6 0d da 45 7b f2 19 aa 2e f9 5d 7a 59 be 95
4d e0 08 f4 a5 0d 50 4d bd b6 90 be 68 06 01 53
6) PRF_IPSEC_PRFPLUS_GOSTR3411_2012_512
Key K:
c9 a9 a7 73 20 e2 cc 55 9e d7 2d ce 6f 47 e2 19
2c ce a9 5f a6 48 67 05 82 c0 54 c0 ef 36 c2 21
Data S:
01 26 bd b8 78 00 1d 80 60 3c 85 44 c7 27 01 00
Output T1:
5d a6 71 43 a5 f1 2a 6d 6e 47 42 59 6f 39 24 3f
cc 61 57 45 91 5b 32 59 10 06 ff 78 a2 08 63 d5
f8 8e 4a fc 17 fb be 70 b9 50 95 73 db 00 5e 96
26 36 98 46 cb 86 19 99 71 6c 16 5d d0 6a 15 85
Output T2:
48 34 49 5a 43 74 6c b5 3f 0a ba 3b c4 6e bc f8
77 3c a6 4a d3 43 c1 22 ee 2a 57 75 57 03 81 57
ee 9c 38 8d 96 ef 71 d5 8b e5 c1 ef a1 af a9 5e
be 83 e3 9d 00 e1 9a 5d 03 dc d6 0a 01 bc a8 e3
7) VKO_GOSTR3410_2012_256 with 256-bit output on the GOST
R 34.10-2012 512-bit keys with id-tc26-gost-3410-12-512-paramSetA
UKM value:
1d 80 60 3c 85 44 c7 27
Private key x of A:
c9 90 ec d9 72 fc e8 4e c4 db 02 27 78 f5 0f ca
c7 26 f4 67 08 38 4b 8d 45 83 04 96 2d 71 47 f8
c2 db 41 ce f2 2c 90 b1 02 f2 96 84 04 f9 b9 be
6d 47 c7 96 92 d8 18 26 b3 2b 8d ac a4 3c b6 67
Smyshlyaev, et al. Informational [Page 25]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Public key x*P of A (curve point (X, Y)):
aa b0 ed a4 ab ff 21 20 8d 18 79 9f b9 a8 55 66
54 ba 78 30 70 eb a1 0c b9 ab b2 53 ec 56 dc f5
d3 cc ba 61 92 e4 64 e6 e5 bc b6 de a1 37 79 2f
24 31 f6 c8 97 eb 1b 3c 0c c1 43 27 b1 ad c0 a7
91 46 13 a3 07 4e 36 3a ed b2 04 d3 8d 35 63 97
1b d8 75 8e 87 8c 9d b1 14 03 72 1b 48 00 2d 38
46 1f 92 47 2d 40 ea 92 f9 95 8c 0f fa 4c 93 75
64 01 b9 7f 89 fd be 0b 5e 46 e4 a4 63 1c db 5a
Private key y of part B:
48 c8 59 f7 b6 f1 15 85 88 7c c0 5e c6 ef 13 90
cf ea 73 9b 1a 18 c0 d4 66 22 93 ef 63 b7 9e 3b
80 14 07 0b 44 91 85 90 b4 b9 96 ac fe a4 ed fb
bb cc cc 8c 06 ed d8 bf 5b da 92 a5 13 92 d0 db
Public key y*P of B (curve point (X, Y)):
19 2f e1 83 b9 71 3a 07 72 53 c7 2c 87 35 de 2e
a4 2a 3d bc 66 ea 31 78 38 b6 5f a3 25 23 cd 5e
fc a9 74 ed a7 c8 63 f4 95 4d 11 47 f1 f2 b2 5c
39 5f ce 1c 12 91 75 e8 76 d1 32 e9 4e d5 a6 51
04 88 3b 41 4c 9b 59 2e c4 dc 84 82 6f 07 d0 b6
d9 00 6d da 17 6c e4 8c 39 1e 3f 97 d1 02 e0 3b
b5 98 bf 13 2a 22 8a 45 f7 20 1a ba 08 fc 52 4a
2d 77 e4 3a 36 2a b0 22 ad 40 28 f7 5b de 3b 79
KEK_VKO value:
c9 a9 a7 73 20 e2 cc 55 9e d7 2d ce 6f 47 e2 19
2c ce a9 5f a6 48 67 05 82 c0 54 c0 ef 36 c2 21
8) VKO_GOSTR3410_2012_512 with 512-bit output on the GOST
R 34.10-2012 512-bit keys with id-tc26-gost-3410-12-512-paramSetA
UKM value:
1d 80 60 3c 85 44 c7 27
Private key x of A:
c9 90 ec d9 72 fc e8 4e c4 db 02 27 78 f5 0f ca
c7 26 f4 67 08 38 4b 8d 45 83 04 96 2d 71 47 f8
c2 db 41 ce f2 2c 90 b1 02 f2 96 84 04 f9 b9 be
6d 47 c7 96 92 d8 18 26 b3 2b 8d ac a4 3c b6 67
Smyshlyaev, et al. Informational [Page 26]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Public key x*P of A (curve point (X, Y)):
aa b0 ed a4 ab ff 21 20 8d 18 79 9f b9 a8 55 66
54 ba 78 30 70 eb a1 0c b9 ab b2 53 ec 56 dc f5
d3 cc ba 61 92 e4 64 e6 e5 bc b6 de a1 37 79 2f
24 31 f6 c8 97 eb 1b 3c 0c c1 43 27 b1 ad c0 a7
91 46 13 a3 07 4e 36 3a ed b2 04 d3 8d 35 63 97
1b d8 75 8e 87 8c 9d b1 14 03 72 1b 48 00 2d 38
46 1f 92 47 2d 40 ea 92 f9 95 8c 0f fa 4c 93 75
64 01 b9 7f 89 fd be 0b 5e 46 e4 a4 63 1c db 5a
Private key y of B:
48 c8 59 f7 b6 f1 15 85 88 7c c0 5e c6 ef 13 90
cf ea 73 9b 1a 18 c0 d4 66 22 93 ef 63 b7 9e 3b
80 14 07 0b 44 91 85 90 b4 b9 96 ac fe a4 ed fb
bb cc cc 8c 06 ed d8 bf 5b da 92 a5 13 92 d0 db
Public key y*P of B (curve point (X, Y)):
19 2f e1 83 b9 71 3a 07 72 53 c7 2c 87 35 de 2e
a4 2a 3d bc 66 ea 31 78 38 b6 5f a3 25 23 cd 5e
fc a9 74 ed a7 c8 63 f4 95 4d 11 47 f1 f2 b2 5c
39 5f ce 1c 12 91 75 e8 76 d1 32 e9 4e d5 a6 51
04 88 3b 41 4c 9b 59 2e c4 dc 84 82 6f 07 d0 b6
d9 00 6d da 17 6c e4 8c 39 1e 3f 97 d1 02 e0 3b
b5 98 bf 13 2a 22 8a 45 f7 20 1a ba 08 fc 52 4a
2d 77 e4 3a 36 2a b0 22 ad 40 28 f7 5b de 3b 79
KEK_VKO value:
79 f0 02 a9 69 40 ce 7b de 32 59 a5 2e 01 52 97
ad aa d8 45 97 a0 d2 05 b5 0e 3e 17 19 f9 7b fa
7e e1 d2 66 1f a9 97 9a 5a a2 35 b5 58 a7 e6 d9
f8 8f 98 2d d6 3f c3 5a 8e c0 dd 5e 24 2d 3b df
9) Key derivation function KDF_GOSTR3411_2012_256
K_in key:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
Label:
26 bd b8 78
Smyshlyaev, et al. Informational [Page 27]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Seed:
af 21 43 41 45 65 63 78
KDF(K_in, label, seed) value:
a1 aa 5f 7d e4 02 d7 b3 d3 23 f2 99 1c 8d 45 34
01 31 37 01 0a 83 75 4f d0 af 6d 7c d4 92 2e d9
10) Key derivation function KDF_TREE_GOSTR3411_2012_256
Output size of L:
512
K_in key:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
Label:
26 bd b8 78
Seed:
af 21 43 41 45 65 63 78
K1:
22 b6 83 78 45 c6 be f6 5e a7 16 72 b2 65 83 10
86 d3 c7 6a eb e6 da e9 1c ad 51 d8 3f 79 d1 6b
K2:
07 4c 93 30 59 9d 7f 8d 71 2f ca 54 39 2f 4d dd
e9 37 51 20 6b 35 84 c8 f4 3f 9e 6d c5 15 31 f9
R:
1
Smyshlyaev, et al. Informational [Page 28]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
11) Key wrap and unwrap with the szOID_Gost28147_89_TC26_Z_ParamSet
parameters
Key K_e:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
Key K:
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
Seed:
af 21 43 41 45 65 63 78
Label:
26 bd b8 78
KEK_e(seed) = KDF_GOSTR3411_2012_256(K_e, label, seed):
a1 aa 5f 7d e4 02 d7 b3 d3 23 f2 99 1c 8d 45 34
01 31 37 01 0a 83 75 4f d0 af 6d 7c d4 92 2e d9
CEK_MAC:
be 33 f0 52
CEK_ENC:
d1 55 47 f8 ee 85 12 1b c8 7d 4b 10 27 d2 60 27
ec c0 71 bb a6 e7 2f 3f ec 6f 62 0f 56 83 4c 5a
Smyshlyaev, et al. Informational [Page 29]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Appendix C. GOST 28147-89 Parameter Set
The parameter set has the following object identifier:
id-tc26-gost-28147-param-Z::= {iso(1) member-body(2) ru(643)
rosstandart(7) tc26(1) constants(2) cipher-constants(5)
gost-28147-constants(1) param-Z(1)}
The parameter set is defined below:
x K1(x) K2(x) K3(x) K4(x) K5(x) K6(x) K7(x) K8(x)
------------------------------------------------------------
0 | c 6 b c 7 5 8 1
1 | 4 8 3 8 f d e 7
2 | 6 2 5 2 5 f 2 e
3 | 2 3 8 1 a 6 5 d
4 | a 9 2 d 8 9 6 0
5 | 5 a f 4 1 2 9 5
6 | b 5 a f 6 c 1 8
7 | 9 c d 6 d a c 3
8 | e 1 e 7 0 b f 4
9 | 8 e 1 0 9 7 4 f
a | d 4 7 a 3 8 b a
b | 7 7 4 5 e 1 0 6
c | 0 b c 3 b 4 d 9
d | 3 d 9 e 4 3 a c
e | f 0 6 9 2 e 3 b
f | 1 f 0 b c 0 7 2
Acknowledgments
We thank Valery Smyslov, Igor Ustinov, Basil Dolmatov, Russ Housley,
Dmitry Khovratovich, Oleksandr Kazymyrov, Ekaterina Smyshlyaeva,
Vasily Nikolaev, and Lolita Sonina for their careful readings and
useful comments.
Authors' Addresses
Stanislav Smyshlyaev (editor)
CRYPTO-PRO
18, Suschevsky val
Moscow 127018
Russian Federation
Phone: +7 (495) 995-48-20
Email: svs@cryptopro.ru
Smyshlyaev, et al. Informational [Page 30]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Evgeny Alekseev
CRYPTO-PRO
18, Suschevsky val
Moscow 127018
Russian Federation
Phone: +7 (495) 995-48-20
Email: alekseev@cryptopro.ru
Igor Oshkin
CRYPTO-PRO
18, Suschevsky val
Moscow 127018
Russian Federation
Phone: +7 (495) 995-48-20
Email: oshkin@cryptopro.ru
Vladimir Popov
CRYPTO-PRO
18, Suschevsky val
Moscow 127018
Russian Federation
Phone: +7 (495) 995-48-20
Email: vpopov@cryptopro.ru
Serguei Leontiev
CRYPTO-PRO
18, Suschevsky val
Moscow 127018
Russian Federation
Phone: +7 (495) 995-48-20
Email: lse@cryptopro.ru
Vladimir Podobaev
FACTOR-TS
11A, 1st Magistralny proezd
Moscow 123290
Russian Federation
Phone: +7 (495) 644-31-30
Email: v_podobaev@factor-ts.ru
Smyshlyaev, et al. Informational [Page 31]
^L
RFC 7836 Cryptographic Algorithms for GOST March 2016
Dmitry Belyavsky
TCI
8, Zoologicheskaya st
Moscow 117218
Russian Federation
Phone: +7 (499) 254-24-50
Email: beldmit@gmail.com
Smyshlyaev, et al. Informational [Page 32]
^L
|