1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
|
Internet Engineering Task Force (IETF) C. Percival
Request for Comments: 7914 Tarsnap
Category: Informational S. Josefsson
ISSN: 2070-1721 SJD AB
August 2016
The scrypt Password-Based Key Derivation Function
Abstract
This document specifies the password-based key derivation function
scrypt. The function derives one or more secret keys from a secret
string. It is based on memory-hard functions, which offer added
protection against attacks using custom hardware. The document also
provides an ASN.1 schema.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7914.
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Percival & Josefsson Informational [Page 1]
^L
RFC 7914 scrypt PBKDF August 2016
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. scrypt Parameters . . . . . . . . . . . . . . . . . . . . . . 3
3. The Salsa20/8 Core Function . . . . . . . . . . . . . . . . . 4
4. The scryptBlockMix Algorithm . . . . . . . . . . . . . . . . 5
5. The scryptROMix Algorithm . . . . . . . . . . . . . . . . . . 6
6. The scrypt Algorithm . . . . . . . . . . . . . . . . . . . . 7
7. ASN.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . 8
7.1. ASN.1 Module . . . . . . . . . . . . . . . . . . . . . . 9
8. Test Vectors for Salsa20/8 Core . . . . . . . . . . . . . . . 9
9. Test Vectors for scryptBlockMix . . . . . . . . . . . . . . . 10
10. Test Vectors for scryptROMix . . . . . . . . . . . . . . . . 11
11. Test Vectors for PBKDF2 with HMAC-SHA-256 . . . . . . . . . . 12
12. Test Vectors for scrypt . . . . . . . . . . . . . . . . . . . 13
13. Test Vectors for PKCS#8 . . . . . . . . . . . . . . . . . . . 14
14. Security Considerations . . . . . . . . . . . . . . . . . . . 14
15. References . . . . . . . . . . . . . . . . . . . . . . . . . 15
15.1. Normative References . . . . . . . . . . . . . . . . . . 15
15.2. Informative References . . . . . . . . . . . . . . . . . 15
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 16
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 16
1. Introduction
Password-based key derivation functions are used in cryptography and
security protocols for deriving one or more secret keys from a secret
value. Over the years, several password-based key derivation
functions have been used, including the original DES-based UNIX
Crypt-function, FreeBSD MD5 crypt, Public-Key Cryptography
Standards#5 (PKCS#5) PBKDF2 [RFC2898] (typically used with SHA-1),
GNU SHA-256/512 crypt [SHA2CRYPT], Windows NT LAN Manager (NTLM)
[NTLM] hash, and the Blowfish-based bcrypt [BCRYPT]. These
algorithms are all based on a cryptographic primitive combined with
salting and/or iteration. The iteration count is used to slow down
the computation, and the salt is used to make pre-computation
costlier.
All password-based key derivation functions mentioned above share the
same weakness against powerful attackers. Provided that the number
of iterations used is increased as computer systems get faster, this
allows legitimate users to spend a constant amount of time on key
derivation without losing ground to attackers' ever-increasing
computing power -- as long as attackers are limited to the same
software implementations as legitimate users. While parallelized
hardware implementations may not change the number of operations
performed compared to software implementations, this does not prevent
them from dramatically changing the asymptotic cost, since in many
Percival & Josefsson Informational [Page 2]
^L
RFC 7914 scrypt PBKDF August 2016
contexts -- including the embarrassingly parallel task of performing
a brute-force search for a passphrase -- dollar-seconds are the most
appropriate units for measuring the cost of a computation. As
semiconductor technology develops, circuits do not merely become
faster; they also become smaller, allowing for a larger amount of
parallelism at the same cost.
Consequently, with existing key derivation algorithms, even when the
iteration count is increased so that the time taken to verify a
password remains constant, the cost of finding a password by using a
brute-force attack implemented in hardware drops each year.
The scrypt function aims to reduce the advantage that attackers can
gain by using custom-designed parallel circuits for breaking
password-based key derivation functions.
This document does not introduce scrypt for the first time. The
original scrypt paper [SCRYPT] was published as a peer-reviewed
scientific paper and contains further background and discussions.
The purpose of this document is to serve as a stable reference for
documents making use of scrypt. The rest of this document is divided
into sections that each describe parameter choices and algorithm
steps needed for the final "scrypt" algorithm.
2. scrypt Parameters
The scrypt function takes several parameters. The passphrase P is
typically a human-chosen password. The salt is normally uniquely and
randomly generated [RFC4086]. The parameter r ("blockSize")
specifies the block size. The CPU/Memory cost parameter N
("costParameter") must be larger than 1, a power of 2, and less than
2^(128 * r / 8). The parallelization parameter p
("parallelizationParameter") is a positive integer less than or equal
to ((2^32-1) * 32) / (128 * r). The intended output length dkLen is
the length in octets of the key to be derived ("keyLength"); it is a
positive integer less than or equal to (2^32 - 1) * 32.
Users of scrypt can tune the parameters N, r, and p according to the
amount of memory and computing power available, the latency-bandwidth
product of the memory subsystem, and the amount of parallelism
desired. At the current time, r=8 and p=1 appears to yield good
results, but as memory latency and CPU parallelism increase, it is
likely that the optimum values for both r and p will increase. Note
also that since the computations of SMix are independent, a large
value of p can be used to increase the computational cost of scrypt
Percival & Josefsson Informational [Page 3]
^L
RFC 7914 scrypt PBKDF August 2016
without increasing the memory usage; so we can expect scrypt to
remain useful even if the growth rates of CPU power and memory
capacity diverge.
3. The Salsa20/8 Core Function
Salsa20/8 Core is a round-reduced variant of the Salsa20 Core. It is
a hash function from 64-octet strings to 64-octet strings. Note that
Salsa20/8 Core is not a cryptographic hash function since it is not
collision resistant. See Section 8 of [SALSA20SPEC] for its
specification and [SALSA20CORE] for more information. The algorithm
description, in C language, is included below as a stable reference,
without endianness conversion and alignment.
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
void salsa20_word_specification(uint32 out[16],uint32 in[16])
{
int i;
uint32 x[16];
for (i = 0;i < 16;++i) x[i] = in[i];
for (i = 8;i > 0;i -= 2) {
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
}
for (i = 0;i < 16;++i) out[i] = x[i] + in[i];
}
Percival & Josefsson Informational [Page 4]
^L
RFC 7914 scrypt PBKDF August 2016
4. The scryptBlockMix Algorithm
The scryptBlockMix algorithm is the same as the BlockMix algorithm
described in [SCRYPT] but with Salsa20/8 Core used as the hash
function H. Below, Salsa(T) corresponds to the Salsa20/8 Core
function applied to the octet vector T.
Algorithm scryptBlockMix
Parameters:
r Block size parameter.
Input:
B[0] || B[1] || ... || B[2 * r - 1]
Input octet string (of size 128 * r octets),
treated as 2 * r 64-octet blocks,
where each element in B is a 64-octet block.
Output:
B'[0] || B'[1] || ... || B'[2 * r - 1]
Output octet string.
Steps:
1. X = B[2 * r - 1]
2. for i = 0 to 2 * r - 1 do
T = X xor B[i]
X = Salsa (T)
Y[i] = X
end for
3. B' = (Y[0], Y[2], ..., Y[2 * r - 2],
Y[1], Y[3], ..., Y[2 * r - 1])
Percival & Josefsson Informational [Page 5]
^L
RFC 7914 scrypt PBKDF August 2016
5. The scryptROMix Algorithm
The scryptROMix algorithm is the same as the ROMix algorithm
described in [SCRYPT] but with scryptBlockMix used as the hash
function H and the Integerify function explained inline.
Algorithm scryptROMix
Input:
r Block size parameter.
B Input octet vector of length 128 * r octets.
N CPU/Memory cost parameter, must be larger than 1,
a power of 2, and less than 2^(128 * r / 8).
Output:
B' Output octet vector of length 128 * r octets.
Steps:
1. X = B
2. for i = 0 to N - 1 do
V[i] = X
X = scryptBlockMix (X)
end for
3. for i = 0 to N - 1 do
j = Integerify (X) mod N
where Integerify (B[0] ... B[2 * r - 1]) is defined
as the result of interpreting B[2 * r - 1] as a
little-endian integer.
T = X xor V[j]
X = scryptBlockMix (T)
end for
4. B' = X
Percival & Josefsson Informational [Page 6]
^L
RFC 7914 scrypt PBKDF August 2016
6. The scrypt Algorithm
The PBKDF2-HMAC-SHA-256 function used below denotes the PBKDF2
algorithm [RFC2898] used with HMAC-SHA-256 [RFC6234] as the
Pseudorandom Function (PRF). The HMAC-SHA-256 function generates
32-octet outputs.
Algorithm scrypt
Input:
P Passphrase, an octet string.
S Salt, an octet string.
N CPU/Memory cost parameter, must be larger than 1,
a power of 2, and less than 2^(128 * r / 8).
r Block size parameter.
p Parallelization parameter, a positive integer
less than or equal to ((2^32-1) * hLen) / MFLen
where hLen is 32 and MFlen is 128 * r.
dkLen Intended output length in octets of the derived
key; a positive integer less than or equal to
(2^32 - 1) * hLen where hLen is 32.
Output:
DK Derived key, of length dkLen octets.
Steps:
1. Initialize an array B consisting of p blocks of 128 * r octets
each:
B[0] || B[1] || ... || B[p - 1] =
PBKDF2-HMAC-SHA256 (P, S, 1, p * 128 * r)
2. for i = 0 to p - 1 do
B[i] = scryptROMix (r, B[i], N)
end for
3. DK = PBKDF2-HMAC-SHA256 (P, B[0] || B[1] || ... || B[p - 1],
1, dkLen)
Percival & Josefsson Informational [Page 7]
^L
RFC 7914 scrypt PBKDF August 2016
7. ASN.1 Syntax
This section defines ASN.1 syntax for the scrypt key derivation
function (KDF). This is intended to operate on the same abstraction
level as PKCS#5's PBKDF2. The OID id-scrypt below can be used where
id-PBKDF2 is used, with scrypt-params corresponding to PBKDF2-params.
The intended application of these definitions includes PKCS #8 and
other syntax for key management.
The object identifier id-scrypt identifies the scrypt key derivation
function.
id-scrypt OBJECT IDENTIFIER ::= {1 3 6 1 4 1 11591 4 11}
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type scrypt-params:
scrypt-params ::= SEQUENCE {
salt OCTET STRING,
costParameter INTEGER (1..MAX),
blockSize INTEGER (1..MAX),
parallelizationParameter INTEGER (1..MAX),
keyLength INTEGER (1..MAX) OPTIONAL }
The fields of type scrypt-params have the following meanings:
- salt specifies the salt value. It shall be an octet string.
- costParameter specifies the CPU/Memory cost parameter N.
- blockSize specifies the block size parameter r.
- parallelizationParameter specifies the parallelization parameter.
- keyLength, an optional field, is the length in octets of the
derived key. The maximum key length allowed depends on the
implementation; it is expected that implementation profiles may
further constrain the bounds. This field only provides convenience;
the key length is not cryptographically protected.
To be usable in PKCS#8 [RFC5208] and Asymmetric Key Packages
[RFC5958], the following extension of the PBES2-KDFs type is needed:
PBES2-KDFs ALGORITHM-IDENTIFIER ::=
{ {scrypt-params IDENTIFIED BY id-scrypt}, ... }
Percival & Josefsson Informational [Page 8]
^L
RFC 7914 scrypt PBKDF August 2016
7.1. ASN.1 Module
For reference purposes, the ASN.1 syntax is presented as an ASN.1
module here.
-- scrypt ASN.1 Module
scrypt-0 {1 3 6 1 4 1 11591 4 10}
DEFINITIONS ::= BEGIN
id-scrypt OBJECT IDENTIFIER ::= {1 3 6 1 4 1 11591 4 11}
scrypt-params ::= SEQUENCE {
salt OCTET STRING,
costParameter INTEGER (1..MAX),
blockSize INTEGER (1..MAX),
parallelizationParameter INTEGER (1..MAX),
keyLength INTEGER (1..MAX) OPTIONAL
}
PBES2-KDFs ALGORITHM-IDENTIFIER ::=
{ {scrypt-params IDENTIFIED BY id-scrypt}, ... }
END
8. Test Vectors for Salsa20/8 Core
Below is a sequence of octets that illustrate input and output values
for the Salsa20/8 Core. The octets are hex encoded and whitespace is
inserted for readability. The value corresponds to the first input
and output pair generated by the first scrypt test vector below.
INPUT:
7e 87 9a 21 4f 3e c9 86 7c a9 40 e6 41 71 8f 26
ba ee 55 5b 8c 61 c1 b5 0d f8 46 11 6d cd 3b 1d
ee 24 f3 19 df 9b 3d 85 14 12 1e 4b 5a c5 aa 32
76 02 1d 29 09 c7 48 29 ed eb c6 8d b8 b8 c2 5e
OUTPUT:
a4 1f 85 9c 66 08 cc 99 3b 81 ca cb 02 0c ef 05
04 4b 21 81 a2 fd 33 7d fd 7b 1c 63 96 68 2f 29
b4 39 31 68 e3 c9 e6 bc fe 6b c5 b7 a0 6d 96 ba
e4 24 cc 10 2c 91 74 5c 24 ad 67 3d c7 61 8f 81
Percival & Josefsson Informational [Page 9]
^L
RFC 7914 scrypt PBKDF August 2016
9. Test Vectors for scryptBlockMix
Below is a sequence of octets that illustrate input and output values
for scryptBlockMix. The test vector uses an r value of 1. The
octets are hex encoded and whitespace is inserted for readability.
The value corresponds to the first input and output pair generated by
the first scrypt test vector below.
INPUT
B[0] = f7 ce 0b 65 3d 2d 72 a4 10 8c f5 ab e9 12 ff dd
77 76 16 db bb 27 a7 0e 82 04 f3 ae 2d 0f 6f ad
89 f6 8f 48 11 d1 e8 7b cc 3b d7 40 0a 9f fd 29
09 4f 01 84 63 95 74 f3 9a e5 a1 31 52 17 bc d7
B[1] = 89 49 91 44 72 13 bb 22 6c 25 b5 4d a8 63 70 fb
cd 98 43 80 37 46 66 bb 8f fc b5 bf 40 c2 54 b0
67 d2 7c 51 ce 4a d5 fe d8 29 c9 0b 50 5a 57 1b
7f 4d 1c ad 6a 52 3c da 77 0e 67 bc ea af 7e 89
OUTPUT
B'[0] = a4 1f 85 9c 66 08 cc 99 3b 81 ca cb 02 0c ef 05
04 4b 21 81 a2 fd 33 7d fd 7b 1c 63 96 68 2f 29
b4 39 31 68 e3 c9 e6 bc fe 6b c5 b7 a0 6d 96 ba
e4 24 cc 10 2c 91 74 5c 24 ad 67 3d c7 61 8f 81
B'[1] = 20 ed c9 75 32 38 81 a8 05 40 f6 4c 16 2d cd 3c
21 07 7c fe 5f 8d 5f e2 b1 a4 16 8f 95 36 78 b7
7d 3b 3d 80 3b 60 e4 ab 92 09 96 e5 9b 4d 53 b6
5d 2a 22 58 77 d5 ed f5 84 2c b9 f1 4e ef e4 25
Percival & Josefsson Informational [Page 10]
^L
RFC 7914 scrypt PBKDF August 2016
10. Test Vectors for scryptROMix
Below is a sequence of octets that illustrate input and output values
for scryptROMix. The test vector uses an r value of 1 and an N value
of 16. The octets are hex encoded and whitespace is inserted for
readability. The value corresponds to the first input and output
pair generated by the first scrypt test vector below.
INPUT:
B = f7 ce 0b 65 3d 2d 72 a4 10 8c f5 ab e9 12 ff dd
77 76 16 db bb 27 a7 0e 82 04 f3 ae 2d 0f 6f ad
89 f6 8f 48 11 d1 e8 7b cc 3b d7 40 0a 9f fd 29
09 4f 01 84 63 95 74 f3 9a e5 a1 31 52 17 bc d7
89 49 91 44 72 13 bb 22 6c 25 b5 4d a8 63 70 fb
cd 98 43 80 37 46 66 bb 8f fc b5 bf 40 c2 54 b0
67 d2 7c 51 ce 4a d5 fe d8 29 c9 0b 50 5a 57 1b
7f 4d 1c ad 6a 52 3c da 77 0e 67 bc ea af 7e 89
OUTPUT:
B = 79 cc c1 93 62 9d eb ca 04 7f 0b 70 60 4b f6 b6
2c e3 dd 4a 96 26 e3 55 fa fc 61 98 e6 ea 2b 46
d5 84 13 67 3b 99 b0 29 d6 65 c3 57 60 1f b4 26
a0 b2 f4 bb a2 00 ee 9f 0a 43 d1 9b 57 1a 9c 71
ef 11 42 e6 5d 5a 26 6f dd ca 83 2c e5 9f aa 7c
ac 0b 9c f1 be 2b ff ca 30 0d 01 ee 38 76 19 c4
ae 12 fd 44 38 f2 03 a0 e4 e1 c4 7e c3 14 86 1f
4e 90 87 cb 33 39 6a 68 73 e8 f9 d2 53 9a 4b 8e
Percival & Josefsson Informational [Page 11]
^L
RFC 7914 scrypt PBKDF August 2016
11. Test Vectors for PBKDF2 with HMAC-SHA-256
Below is a sequence of octets that illustrate input and output values
for PBKDF2-HMAC-SHA-256. The octets are hex encoded and whitespace
is inserted for readability. The test vectors below can be used to
verify the PBKDF2-HMAC-SHA-256 [RFC2898] function. The password and
salt strings are passed as sequences of ASCII [RFC20] octets.
PBKDF2-HMAC-SHA-256 (P="passwd", S="salt",
c=1, dkLen=64) =
55 ac 04 6e 56 e3 08 9f ec 16 91 c2 25 44 b6 05
f9 41 85 21 6d de 04 65 e6 8b 9d 57 c2 0d ac bc
49 ca 9c cc f1 79 b6 45 99 16 64 b3 9d 77 ef 31
7c 71 b8 45 b1 e3 0b d5 09 11 20 41 d3 a1 97 83
PBKDF2-HMAC-SHA-256 (P="Password", S="NaCl",
c=80000, dkLen=64) =
4d dc d8 f6 0b 98 be 21 83 0c ee 5e f2 27 01 f9
64 1a 44 18 d0 4c 04 14 ae ff 08 87 6b 34 ab 56
a1 d4 25 a1 22 58 33 54 9a db 84 1b 51 c9 b3 17
6a 27 2b de bb a1 d0 78 47 8f 62 b3 97 f3 3c 8d
Percival & Josefsson Informational [Page 12]
^L
RFC 7914 scrypt PBKDF August 2016
12. Test Vectors for scrypt
For reference purposes, we provide the following test vectors for
scrypt, where the password and salt strings are passed as sequences
of ASCII [RFC20] octets.
The parameters to the scrypt function below are, in order, the
password P (octet string), the salt S (octet string), the CPU/Memory
cost parameter N, the block size parameter r, the parallelization
parameter p, and the output size dkLen. The output is hex encoded
and whitespace is inserted for readability.
scrypt (P="", S="",
N=16, r=1, p=1, dklen=64) =
77 d6 57 62 38 65 7b 20 3b 19 ca 42 c1 8a 04 97
f1 6b 48 44 e3 07 4a e8 df df fa 3f ed e2 14 42
fc d0 06 9d ed 09 48 f8 32 6a 75 3a 0f c8 1f 17
e8 d3 e0 fb 2e 0d 36 28 cf 35 e2 0c 38 d1 89 06
scrypt (P="password", S="NaCl",
N=1024, r=8, p=16, dkLen=64) =
fd ba be 1c 9d 34 72 00 78 56 e7 19 0d 01 e9 fe
7c 6a d7 cb c8 23 78 30 e7 73 76 63 4b 37 31 62
2e af 30 d9 2e 22 a3 88 6f f1 09 27 9d 98 30 da
c7 27 af b9 4a 83 ee 6d 83 60 cb df a2 cc 06 40
scrypt (P="pleaseletmein", S="SodiumChloride",
N=16384, r=8, p=1, dkLen=64) =
70 23 bd cb 3a fd 73 48 46 1c 06 cd 81 fd 38 eb
fd a8 fb ba 90 4f 8e 3e a9 b5 43 f6 54 5d a1 f2
d5 43 29 55 61 3f 0f cf 62 d4 97 05 24 2a 9a f9
e6 1e 85 dc 0d 65 1e 40 df cf 01 7b 45 57 58 87
scrypt (P="pleaseletmein", S="SodiumChloride",
N=1048576, r=8, p=1, dkLen=64) =
21 01 cb 9b 6a 51 1a ae ad db be 09 cf 70 f8 81
ec 56 8d 57 4a 2f fd 4d ab e5 ee 98 20 ad aa 47
8e 56 fd 8f 4b a5 d0 9f fa 1c 6d 92 7c 40 f4 c3
37 30 40 49 e8 a9 52 fb cb f4 5c 6f a7 7a 41 a4
Percival & Josefsson Informational [Page 13]
^L
RFC 7914 scrypt PBKDF August 2016
13. Test Vectors for PKCS#8
PKCS#8 [RFC5208] and Asymmetric Key Packages [RFC5958] encode
encrypted private-keys. Using PBES2 with scrypt as the KDF, the
following illustrates an example of a PKCS#8-encoded private-key.
The password is "Rabbit" (without the quotes) with N=1048576, r=8,
and p=1. The salt is "Mouse" and the encryption algorithm used is
aes256-CBC. The derived key is: E2 77 EA 2C AC B2 3E DA-FC 03 9D 22
9B 79 DC 13 EC ED B6 01 D9 9B 18 2A-9F ED BA 1E 2B FB 4F 58.
-----BEGIN ENCRYPTED PRIVATE KEY-----
MIHiME0GCSqGSIb3DQEFDTBAMB8GCSsGAQQB2kcECzASBAVNb3VzZQIDEAAAAgEI
AgEBMB0GCWCGSAFlAwQBKgQQyYmguHMsOwzGMPoyObk/JgSBkJb47EWd5iAqJlyy
+ni5ftd6gZgOPaLQClL7mEZc2KQay0VhjZm/7MbBUNbqOAXNM6OGebXxVp6sHUAL
iBGY/Dls7B1TsWeGObE0sS1MXEpuREuloZjcsNVcNXWPlLdZtkSH6uwWzR0PyG/Z
+ZXfNodZtd/voKlvLOw5B3opGIFaLkbtLZQwMiGtl42AS89lZg==
-----END ENCRYPTED PRIVATE KEY-----
14. Security Considerations
This document specifies a cryptographic algorithm, and there is
always a risk that someone will find a weakness in it. By following
the cryptographic research area, you may learn of publications
relevant to scrypt.
ROMix has been proven sequential memory-hard under the random oracle
model for the hash function. The security of scrypt relies on the
assumption that BlockMix with Salsa20/8 Core does not exhibit any
"shortcuts" that would allow it to be iterated more easily than a
random oracle. For other claims about the security properties, see
[SCRYPT].
Passwords and other sensitive data, such as intermediate values, may
continue to be stored in memory, core dumps, swap areas, etc., for a
long time after the implementation has processed them. This makes
attacks on the implementation easier. Thus, implementation should
consider storing sensitive data in protected memory areas. How to
achieve this is system dependent.
By nature and depending on parameters, running the scrypt algorithm
may require large amounts of memory. Systems should protect against
a denial-of-service attack resulting from attackers presenting
unreasonably large parameters.
Poor parameter choices can be harmful for security; for example, if
you tune the parameters so that memory use is reduced to small
amounts that will affect the properties of the algorithm.
Percival & Josefsson Informational [Page 14]
^L
RFC 7914 scrypt PBKDF August 2016
15. References
15.1. Normative References
[RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
Specification Version 2.0", RFC 2898,
DOI 10.17487/RFC2898, September 2000,
<http://www.rfc-editor.org/info/rfc2898>.
[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", RFC 6234,
DOI 10.17487/RFC6234, May 2011,
<http://www.rfc-editor.org/info/rfc6234>.
15.2. Informative References
[BCRYPT] Provos, N. and D. Mazieres, "A Future-Adaptable Password
Scheme", USENIX 1999, June 1999,
<https://www.usenix.org/legacy/event/usenix99/provos/
provos.pdf>.
[NTLM] Microsoft, "[MS-NLMP]: NT LAN Manager (NTLM)
Authentication Protocol", 2015,
<https://msdn.microsoft.com/en-us/library/cc236621.aspx>.
[RFC20] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,
<http://www.rfc-editor.org/info/rfc20>.
[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC 4086,
DOI 10.17487/RFC4086, June 2005,
<http://www.rfc-editor.org/info/rfc4086>.
[RFC5208] Kaliski, B., "Public-Key Cryptography Standards (PKCS) #8:
Private-Key Information Syntax Specification Version 1.2",
RFC 5208, DOI 10.17487/RFC5208, May 2008,
<http://www.rfc-editor.org/info/rfc5208>.
[RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958,
DOI 10.17487/RFC5958, August 2010,
<http://www.rfc-editor.org/info/rfc5958>.
[SALSA20CORE]
Bernstein, D., "The Salsa20 Core", March 2005,
<http://cr.yp.to/salsa20.html>.
Percival & Josefsson Informational [Page 15]
^L
RFC 7914 scrypt PBKDF August 2016
[SALSA20SPEC]
Bernstein, D., "Salsa20 specification", April 2005,
<http://cr.yp.to/snuffle/spec.pdf>.
[SCRYPT] Percival, C., "STRONGER KEY DERIVATION VIA SEQUENTIAL
MEMORY-HARD FUNCTIONS", BSDCan'09, May 2009,
<http://www.tarsnap.com/scrypt/scrypt.pdf>.
[SHA2CRYPT]
Drepper, U., "Unix crypt using SHA-256 and SHA-512", April
2008, <http://www.akkadia.org/drepper/SHA-crypt.txt>.
Acknowledgements
Text in this document was borrowed from [SCRYPT] and [RFC2898]. The
PKCS#8 test vector was provided by Stephen N. Henson.
Feedback on this document was received from Dmitry Chestnykh,
Alexander Klink, Rob Kendrick, Royce Williams, Ted Rolle, Jr., Eitan
Adler, Stephen Farrel, Nikos Mavrogiannopoulos, and Paul Kyzivat.
Authors' Addresses
Colin Percival
Tarsnap
Email: cperciva@tarsnap.com
Simon Josefsson
SJD AB
Email: simon@josefsson.org
URI: http://josefsson.org/
Percival & Josefsson Informational [Page 16]
^L
|