summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8029.txt
blob: cf4ff52ae412765620069d001a14522360288361 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
Internet Engineering Task Force (IETF)                       K. Kompella
Request for Comments: 8029                        Juniper Networks, Inc.
Obsoletes: 4379, 6424, 6829, 7537                             G. Swallow
Updates: 1122                                          C. Pignataro, Ed.
Category: Standards Track                                       N. Kumar
ISSN: 2070-1721                                                    Cisco
                                                               S. Aldrin
                                                                  Google
                                                                 M. Chen
                                                                  Huawei
                                                              March 2017


   Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures

Abstract

   This document describes a simple and efficient mechanism to detect
   data-plane failures in Multiprotocol Label Switching (MPLS) Label
   Switched Paths (LSPs).  It defines a probe message called an "MPLS
   echo request" and a response message called an "MPLS echo reply" for
   returning the result of the probe.  The MPLS echo request is intended
   to contain sufficient information to check correct operation of the
   data plane and to verify the data plane against the control plane,
   thereby localizing faults.

   This document obsoletes RFCs 4379, 6424, 6829, and 7537, and updates
   RFC 1122.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc8029.









Kompella, et al.             Standards Track                    [Page 1]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

























Kompella, et al.             Standards Track                    [Page 2]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   5
     1.1.  Conventions . . . . . . . . . . . . . . . . . . . . . . .   5
     1.2.  Structure of This Document  . . . . . . . . . . . . . . .   6
     1.3.  Scope of This Specification . . . . . . . . . . . . . . .   6
   2.  Motivation  . . . . . . . . . . . . . . . . . . . . . . . . .   7
     2.1.  Use of Address Range 127/8  . . . . . . . . . . . . . . .   8
     2.2.  Router Alert Option . . . . . . . . . . . . . . . . . . .  10
   3.  Packet Format . . . . . . . . . . . . . . . . . . . . . . . .  11
     3.1.  Return Codes  . . . . . . . . . . . . . . . . . . . . . .  16
     3.2.  Target FEC Stack  . . . . . . . . . . . . . . . . . . . .  17
       3.2.1.  LDP IPv4 Prefix . . . . . . . . . . . . . . . . . . .  19
       3.2.2.  LDP IPv6 Prefix . . . . . . . . . . . . . . . . . . .  19
       3.2.3.  RSVP IPv4 LSP . . . . . . . . . . . . . . . . . . . .  20
       3.2.4.  RSVP IPv6 LSP . . . . . . . . . . . . . . . . . . . .  20
       3.2.5.  VPN IPv4 Prefix . . . . . . . . . . . . . . . . . . .  21
       3.2.6.  VPN IPv6 Prefix . . . . . . . . . . . . . . . . . . .  22
       3.2.7.  L2 VPN Endpoint . . . . . . . . . . . . . . . . . . .  23
       3.2.8.  FEC 128 Pseudowire - IPv4 (Deprecated)  . . . . . . .  23
       3.2.9.  FEC 128 Pseudowire - IPv4 (Current) . . . . . . . . .  24
       3.2.10. FEC 129 Pseudowire - IPv4 . . . . . . . . . . . . . .  25
       3.2.11. FEC 128 Pseudowire - IPv6 . . . . . . . . . . . . . .  26
       3.2.12. FEC 129 Pseudowire - IPv6 . . . . . . . . . . . . . .  27
       3.2.13. BGP Labeled IPv4 Prefix . . . . . . . . . . . . . . .  28
       3.2.14. BGP Labeled IPv6 Prefix . . . . . . . . . . . . . . .  28
       3.2.15. Generic IPv4 Prefix . . . . . . . . . . . . . . . . .  29
       3.2.16. Generic IPv6 Prefix . . . . . . . . . . . . . . . . .  29
       3.2.17. Nil FEC . . . . . . . . . . . . . . . . . . . . . . .  29
     3.3.  Downstream Mapping (Deprecated) . . . . . . . . . . . . .  30
     3.4.  Downstream Detailed Mapping TLV . . . . . . . . . . . . .  30
       3.4.1.  Sub-TLVs  . . . . . . . . . . . . . . . . . . . . . .  34
       3.4.2.  Downstream Router and Interface . . . . . . . . . . .  40
     3.5.  Pad TLV . . . . . . . . . . . . . . . . . . . . . . . . .  41
     3.6.  Vendor Enterprise Number  . . . . . . . . . . . . . . . .  41
     3.7.  Interface and Label Stack . . . . . . . . . . . . . . . .  42
     3.8.  Errored TLVs  . . . . . . . . . . . . . . . . . . . . . .  43
     3.9.  Reply TOS Octet TLV . . . . . . . . . . . . . . . . . . .  44
   4.  Theory of Operation . . . . . . . . . . . . . . . . . . . . .  44
     4.1.  Dealing with Equal-Cost Multipath (ECMP)  . . . . . . . .  44
     4.2.  Testing LSPs That Are Used to Carry MPLS Payloads . . . .  45
     4.3.  Sending an MPLS Echo Request  . . . . . . . . . . . . . .  46
     4.4.  Receiving an MPLS Echo Request  . . . . . . . . . . . . .  47
       4.4.1.  FEC Validation  . . . . . . . . . . . . . . . . . . .  53







Kompella, et al.             Standards Track                    [Page 3]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


     4.5.  Sending an MPLS Echo Reply  . . . . . . . . . . . . . . .  54
       4.5.1.  Addition of a New Tunnel  . . . . . . . . . . . . . .  55
       4.5.2.  Transition between Tunnels  . . . . . . . . . . . . .  56
     4.6.  Receiving an MPLS Echo Reply  . . . . . . . . . . . . . .  56
     4.7.  Issue with VPN IPv4 and IPv6 Prefixes . . . . . . . . . .  58
     4.8.  Non-compliant Routers . . . . . . . . . . . . . . . . . .  59
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  59
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  61
     6.1.  TCP and UDP Port Number . . . . . . . . . . . . . . . . .  61
     6.2.  MPLS LSP Ping Parameters  . . . . . . . . . . . . . . . .  61
       6.2.1.  Message Types, Reply Modes, Return Codes  . . . . . .  61
       6.2.2.  TLVs  . . . . . . . . . . . . . . . . . . . . . . . .  62
       6.2.3.  Global Flags  . . . . . . . . . . . . . . . . . . . .  64
       6.2.4.  Downstream Detailed Mapping Address Type  . . . . . .  64
       6.2.5.  DS Flags  . . . . . . . . . . . . . . . . . . . . . .  65
       6.2.6.  Multipath         Types . . . . . . . . . . . . . . .  66
       6.2.7.  Pad Type  . . . . . . . . . . . . . . . . . . . . . .  66
       6.2.8.  Interface and Label Stack Address Type  . . . . . . .  67
     6.3.  IPv4 Special-Purpose Address Registry . . . . . . . . . .  67
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  67
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  67
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  68
   Appendix A.  Deprecated TLVs and Sub-TLVs (Non-normative) . . . .  72
     A.1.  Target FEC Stack  . . . . . . . . . . . . . . . . . . . .  72
       A.1.1.  FEC 128 Pseudowire - IPv4 (Deprecated)  . . . . . . .  72
     A.2.  Downstream Mapping (Deprecated) . . . . . . . . . . . . .  72
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  77
   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  77
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  78






















Kompella, et al.             Standards Track                    [Page 4]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


1.  Introduction

   This document describes a simple and efficient mechanism to detect
   data-plane failures in MPLS Label Switched Paths (LSPs).  It defines
   a probe message called an "MPLS echo request" and a response message
   called an "MPLS echo reply" for returning the result of the probe.
   The MPLS echo request is intended to contain sufficient information
   to check correct operation of the data plane, as well as a mechanism
   to verify the data plane against the control plane, thereby
   localizing faults.

   An important consideration in this design is that MPLS echo requests
   follow the same data path that normal MPLS packets would traverse.
   MPLS echo requests are meant primarily to validate the data plane and
   secondarily to verify the data plane against the control plane.
   Mechanisms to check the control plane are valuable but are not
   covered in this document.

   This document makes special use of the address range 127/8.  This is
   an exception to the behavior defined in RFC 1122 [RFC1122], and this
   specification updates that RFC.  The motivation for this change and
   the details of this exceptional use are discussed in Section 2.1
   below.

   This document obsoletes RFC 4379 [RFC4379], RFC 6424 [RFC6424], RFC
   6829 [RFC6829], and RFC 7537 [RFC7537].

1.1.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   The term "Must Be Zero" (MBZ) is used in object descriptions for
   reserved fields.  These fields MUST be set to zero when sent and
   ignored on receipt.

   Terminology pertaining to L2 and L3 Virtual Private Networks (VPNs)
   is defined in [RFC4026].

   Since this document refers to the MPLS Time to Live (TTL) far more
   frequently than the IP TTL, the authors have chosen the convention of
   using the unqualified "TTL" to mean "MPLS TTL" and using "IP TTL" for
   the TTL value in the IP header.







Kompella, et al.             Standards Track                    [Page 5]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


1.2.  Structure of This Document

   The body of this memo contains four main parts: motivation, MPLS echo
   request/reply packet format, LSP ping operation, and a reliable
   return path.  It is suggested that first-time readers skip the actual
   packet formats and read the "Theory of Operation" (Section 4) first;
   the document is structured the way it is to avoid forward references.

1.3.  Scope of This Specification

   The primary goal of this document is to provide a clean and updated
   LSP ping specification.

   [RFC4379] defines the basic mechanism for MPLS LSP validation that
   can be used for fault detection and isolation.  The scope of this
   document also includes various updates to MPLS LSP ping, including:

   o  Update all references and citations.

      *  Obsoleted RFCs 2434, 2030, and 3036 are respectively replaced
         with RFCs 5226, 5905, and 5036.

      *  Additionally, some informative references were published as
         RFCs: RFCs 4761, 5085, 5885, and 8077.

   o  Incorporate all outstanding RFC errata.

      *  See [Err108], [Err742], [Err1418], [Err1714], [Err1786],
         [Err2978], [Err3399].

   o  Replace EXP with Traffic Class (TC), based on the update from RFC
      5462.

   o  Incorporate the updates from RFC 6829, by adding the pseudowire
      (PW) Forwarding Equivalence Classes (FECs) advertised over IPv6
      and obsoleting RFC 6829.

   o  Incorporate the updates from RFC 7506, by adding the IPv6 Router
      Alert Option (RAO) for MPLS Operations, Administration, and
      Maintenance (OAM).

   o  Incorporate newly defined bits on the Global Flags field from RFCs
      6425 and 6426.

   o  Update the IPv4 addresses used in examples to utilize the
      documentation prefix.  Add examples with IPv6 addresses.





Kompella, et al.             Standards Track                    [Page 6]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   o  Incorporate the updates from RFC 6424, by deprecating the
      Downstream Mapping TLV (DSMAP) and adding the Downstream Detailed
      Mapping TLV (DDMAP); updating two new Return Codes; adding the
      motivations of tunneled or stitched LSPs; updating the procedures,
      IANA considerations, and security considerations; and obsoleting
      RFC 6424.

   o  Incorporate the updates from RFC 7537, by updating the IANA
      Considerations section and obsoleting RFC 7537.

   o  Finally, obsolete RFC 4379.

2.  Motivation

   When an LSP fails to deliver user traffic, the failure cannot always
   be detected by the MPLS control plane.  There is a need to provide a
   tool that would enable users to detect such traffic "black holes" or
   misrouting within a reasonable period of time and a mechanism to
   isolate faults.

   In this document, we describe a mechanism that accomplishes these
   goals.  This mechanism is modeled after the ping/traceroute paradigm:
   ping (ICMP echo request [RFC0792]) is used for connectivity checks,
   and traceroute is used for hop-by-hop fault localization as well as
   path tracing.  This document specifies a "ping" mode and a
   "traceroute" mode for testing MPLS LSPs.

   The basic idea is to verify that packets that belong to a particular
   FEC actually end their MPLS path on a Label Switching Router (LSR)
   that is an egress for that FEC.  This document proposes that this
   test be carried out by sending a packet (called an "MPLS echo
   request") along the same data path as other packets belonging to this
   FEC.  An MPLS echo request also carries information about the FEC
   whose MPLS path is being verified.  This echo request is forwarded
   just like any other packet belonging to that FEC.  In "ping" mode
   (basic connectivity check), the packet should reach the end of the
   path, at which point it is sent to the control plane of the egress
   LSR, which then verifies whether it is indeed an egress for the FEC.
   In "traceroute" mode (fault isolation), the packet is sent to the
   control plane of each transit LSR, which performs various checks to
   confirm that it is indeed a transit LSR for this path; this LSR also
   returns further information that helps check the control plane
   against the data plane, i.e., that forwarding matches what the
   routing protocols determined as the path.







Kompella, et al.             Standards Track                    [Page 7]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   An LSP traceroute may cross a tunneled or stitched LSP en route to
   the destination.  While performing end-to-end LSP validation in such
   scenarios, the FEC information included in the packet by the
   Initiator may be different from the one assigned by the transit node
   in a different segment of a stitched LSP or tunnel.  Let us consider
   a simple case.

   A          B          C           D           E
   o -------- o -------- o --------- o --------- o
     \_____/  | \______/   \______/  | \______/
       LDP    |   RSVP       RSVP    |    LDP
              |                      |
               \____________________/
                       LDP

   When an LSP traceroute is initiated from Router A to Router E, the
   FEC information included in the packet will be LDP while Router C
   along the path is a pure RSVP node and does not run LDP.
   Consequently, node C will be unable to perform FEC validation.  The
   MPLS echo request should contain sufficient information to allow any
   transit node within a stitched or tunneled LSP to perform FEC
   validations to detect any misrouted echo requests.

   One way these tools can be used is to periodically ping a FEC to
   ensure connectivity.  If the ping fails, one can then initiate a
   traceroute to determine where the fault lies.  One can also
   periodically traceroute FECs to verify that forwarding matches the
   control plane; however, this places a greater burden on transit LSRs
   and thus should be used with caution.

2.1.  Use of Address Range 127/8

   As described above, LSP ping is intended as a diagnostic tool.  It is
   intended to enable providers of an MPLS-based service to isolate
   network faults.  In particular, LSP ping needs to diagnose situations
   where the control and data planes are out of sync.  It performs this
   by routing an MPLS echo request packet based solely on its label
   stack.  That is, the IP destination address is never used in a
   forwarding decision.  In fact, the sender of an MPLS echo request
   packet may not know, a priori, the address of the router at the end
   of the LSP.

   Providers of MPLS-based services also need the ability to trace all
   of the possible paths that an LSP may take.  Since most MPLS services
   are based on IP unicast forwarding, these paths are subject to Equal-
   Cost Multipath (ECMP) load sharing.





Kompella, et al.             Standards Track                    [Page 8]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   This leads to the following requirements:

   1.  Although the LSP in question may be broken in unknown ways, the
       likelihood of a diagnostic packet being delivered to a user of an
       MPLS service MUST be held to an absolute minimum.

   2.  If an LSP is broken in such a way that it prematurely terminates,
       the diagnostic packet MUST NOT be IP forwarded.

   3.  A means of varying the diagnostic packets such that they exercise
       all ECMP paths is thus REQUIRED.

   Clearly, using general unicast addresses satisfies neither of the
   first two requirements.  A number of other options for addresses were
   considered, including a portion of the private address space (as
   determined by the network operator) and the IPv4 link-local
   addresses.  Use of the private address space was deemed ineffective
   since the leading MPLS-based service is an IPv4 VPN.  VPNs often use
   private addresses.

   The IPv4 link-local addresses are more attractive in that the scope
   over which they can be forwarded is limited.  However, if one were to
   use an address from this range, it would still be possible for the
   first recipient of a diagnostic packet that "escaped" from a broken
   LSP to have that address assigned to the interface on which it
   arrived and thus could mistakenly receive such a packet.  Older
   deployed routers may not (correctly) implement IPv4 link-local
   addresses and would forward a packet with an address from that range
   toward the default route.

   The 127/8 range for IPv4 and that same range embedded in an
   IPv4-mapped IPv6 address for IPv6 was chosen for a number of reasons.

   RFC 1122 allocates the 127/8 as the "Internal host loopback address"
   and states: "Addresses of this form MUST NOT appear outside a host."
   Thus, the default behavior of hosts is to discard such packets.  This
   helps to ensure that if a diagnostic packet is misdirected to a host,
   it will be silently discarded.

   RFC 1812 [RFC1812] states:

      A router SHOULD NOT forward, except over a loopback interface, any
      packet that has a destination address on network 127.  A router
      MAY have a switch that allows the network manager to disable these
      checks.  If such a switch is provided, it MUST default to
      performing the checks.

   This helps to ensure that diagnostic packets are never IP forwarded.



Kompella, et al.             Standards Track                    [Page 9]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   The 127/8 address range provides 16M addresses allowing wide
   flexibility in varying addresses to exercise ECMP paths.  Finally, as
   an implementation optimization, the 127/8 range provides an easy
   means of identifying possible LSP packets.

2.2.  Router Alert Option

   This document requires the use of the RAO set in an IP header in
   order to have the transit node process the MPLS OAM payload.

   [RFC2113] defines a generic Option Value 0x0 for IPv4 RAO that alerts
   the transit router to examine the IPv4 packet.  [RFC7506] defines
   MPLS OAM Option Value 69 for IPv6 RAO to alert transit routers to
   examine the IPv6 packet more closely for MPLS OAM purposes.

   The use of the Router Alert IP Option in this document is as follows:

      In case of an IPv4 header, the generic IPv4 RAO value 0x0
      [RFC2113] SHOULD be used.  In case of an IPv6 header, the IPv6 RAO
      value (69) for MPLS OAM [RFC7506] MUST be used.































Kompella, et al.             Standards Track                   [Page 10]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.  Packet Format

   An MPLS echo request/reply is a (possibly labeled) IPv4 or IPv6 UDP
   packet; the contents of the UDP packet have the following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Version Number        |         Global Flags          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Message Type |   Reply Mode  |  Return Code  | Return Subcode|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Sender's Handle                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Sequence Number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    TimeStamp Sent (seconds)                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                TimeStamp Sent (seconds fraction)              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  TimeStamp Received (seconds)                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              TimeStamp Received (seconds fraction)            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            TLVs ...                           |
      .                                                               .
      .                                                               .
      .                                                               .
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Version Number is currently 1.  (Note: the version number is to
   be incremented whenever a change is made that affects the ability of
   an implementation to correctly parse or process an MPLS echo request/
   reply.  These changes include any syntactic or semantic changes made
   to any of the fixed fields, or to any Type-Length-Value (TLV) or
   sub-TLV assignment or format that is defined at a certain version
   number.  The version number may not need to be changed if an optional
   TLV or sub-TLV is added.)












Kompella, et al.             Standards Track                   [Page 11]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   The Global Flags field is a bit vector with the following format:

       0                   1
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           MBZ           |R|T|V|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   At the time of writing, three flags are defined: the R, T, and V
   bits; the rest MUST be set to zero when sending and ignored on
   receipt.

   The V (Validate FEC Stack) flag is set to 1 if the sender wants the
   receiver to perform FEC Stack validation; if V is 0, the choice is
   left to the receiver.

   The T (Respond Only If TTL Expired) flag MUST be set only in the echo
   request packet by the sender.  If the T flag is set to 1 in an
   incoming echo request, and the TTL of the incoming MPLS label is more
   than 1, then the receiving node MUST drop the incoming echo request
   and MUST NOT send any echo reply to the sender.  This flag MUST NOT
   be set in the echo reply packet.  If this flag is set in an echo
   reply packet, then it MUST be ignored.  The T flag is defined in
   Section 3.4 of [RFC6425].

   The R (Validate Reverse Path) flag is defined in [RFC6426].  When
   this flag is set in the echo request, the Responder SHOULD return
   reverse-path FEC information, as described in Section 3.4.2 of
   [RFC6426].

   The Message Type is one of the following:

      Value    Meaning
      -----    -------
          1    MPLS Echo Request
          2    MPLS Echo Reply

   The Reply Mode can take one of the following values:

      Value    Meaning
      -----    -------
          1    Do not reply
          2    Reply via an IPv4/IPv6 UDP packet
          3    Reply via an IPv4/IPv6 UDP packet with Router Alert
          4    Reply via application-level control channel






Kompella, et al.             Standards Track                   [Page 12]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   An MPLS echo request with 1 (Do not reply) in the Reply Mode field
   may be used for one-way connectivity tests; the receiving router may
   log gaps in the Sequence Numbers and/or maintain delay/jitter
   statistics.  An MPLS echo request would normally have 2 (Reply via an
   IPv4/IPv6 UDP packet) in the Reply Mode field.  If the normal IP
   return path is deemed unreliable, one may use 3 (Reply via an IPv4/
   IPv6 UDP packet with Router Alert).  Note that this requires that all
   intermediate routers understand and know how to forward MPLS echo
   replies.  The echo reply uses the same IP version number as the
   received echo request, i.e., an IPv4 encapsulated echo reply is sent
   in response to an IPv4 encapsulated echo request.

   Some applications support an IP control channel.  One such example is
   the associated control channel defined in Virtual Circuit
   Connectivity Verification (VCCV) [RFC5085][RFC5885].  Any application
   that supports an IP control channel between its control entities may
   set the Reply Mode to 4 (Reply via application-level control channel)
   to ensure that replies use that same channel.  Further definition of
   this code point is application specific and thus beyond the scope of
   this document.

   Return Codes and Subcodes are described in Section 3.1.

   The Sender's Handle is filled in by the sender and returned unchanged
   by the receiver in the echo reply (if any).  There are no semantics
   associated with this handle, although a sender may find this useful
   for matching up requests with replies.

   The Sequence Number is assigned by the sender of the MPLS echo
   request and can be (for example) used to detect missed replies.

   The TimeStamp Sent is the time of day (according to the sender's
   clock) in 64-bit NTP timestamp format [RFC5905] when the MPLS echo
   request is sent.  The TimeStamp Received in an echo reply is the time
   of day (according to the receiver's clock) in 64-bit NTP timestamp
   format in which the corresponding echo request was received.















Kompella, et al.             Standards Track                   [Page 13]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   TLVs (Type-Length-Value tuples) have the following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |            Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             Value                             |
      .                                                               .
      .                                                               .
      .                                                               .
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Types are defined below; Length is the length of the Value field in
   octets.  The Value field depends on the Type; it is zero padded to
   align to a 4-octet boundary.  TLVs may be nested within other TLVs,
   in which case the nested TLVs are called sub-TLVs.  Sub-TLVs have
   independent types and MUST also be 4-octet aligned.

   Two examples of how TLV and sub-TLV lengths are computed, and how
   sub-TLVs are padded to be 4-octet aligned, are as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Type = 1 (LDP IPv4 FEC)    |          Length = 5           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IPv4 prefix                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |         Must Be Zero                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



















Kompella, et al.             Standards Track                   [Page 14]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   The Length for this TLV is 5.  A Target FEC Stack TLV that contains
   an LDP IPv4 FEC sub-TLV and a VPN IPv4 prefix sub-TLV has the
   following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Type = 1 (FEC TLV)       |          Length = 32          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Sub-Type = 1 (LDP IPv4 FEC)  |          Length = 5           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IPv4 prefix                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |         Must Be Zero                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Sub-Type = 6 (VPN IPv4 prefix)|          Length = 13          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Route Distinguisher                      |
      |                          (8 octets)                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         IPv4 prefix                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |                 Must Be Zero                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   A description of the Types and Values of the top-level TLVs for LSP
   ping are given below:

          Type #                  Value Field
          ------                  -----------
               1                  Target FEC Stack
               2                  Downstream Mapping (Deprecated)
               3                  Pad
               4                  Unassigned
               5                  Vendor Enterprise Number
               6                  Unassigned
               7                  Interface and Label Stack
               8                  Unassigned
               9                  Errored TLVs
              10                  Reply TOS Byte
              20                  Downstream Detailed Mapping

   Types less than 32768 (i.e., with the high-order bit equal to 0) are
   mandatory TLVs that MUST either be supported by an implementation or
   result in the Return Code of 2 ("One or more of the TLVs was not
   understood") being sent in the echo response.





Kompella, et al.             Standards Track                   [Page 15]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Types greater than or equal to 32768 (i.e., with the high-order bit
   equal to 1) are optional TLVs that SHOULD be ignored if the
   implementation does not understand or support them.

   In Sections 3.2 through 3.9 and their various subsections, only the
   Value field of the TLV is included.

3.1.  Return Codes

   The Return Code is set to zero by the sender of an echo request.  The
   receiver of said echo request can set it to one of the values listed
   below in the corresponding echo reply that it generates.  The
   notation <RSC> refers to the Return Subcode.  This field is filled in
   with the stack-depth for those codes that specify that.  For all
   other codes, the Return Subcode MUST be set to zero.

   Value    Meaning
   -----    -------
       0    No Return Code
       1    Malformed echo request received
       2    One or more of the TLVs was not understood
       3    Replying router is an egress for the FEC at
            stack-depth <RSC>
       4    Replying router has no mapping for the FEC at
            stack-depth <RSC>
       5    Downstream Mapping Mismatch (See Note 1)
       6    Upstream Interface Index Unknown (See Note 1)
       7    Reserved
       8    Label switched at stack-depth <RSC>
       9    Label switched but no MPLS forwarding at stack-depth <RSC>
      10    Mapping for this FEC is not the given label at
            stack-depth <RSC>
      11    No label entry at stack-depth <RSC>
      12    Protocol not associated with interface at FEC
            stack-depth <RSC>
      13    Premature termination of ping due to label stack
            shrinking to a single label
      14    See DDMAP TLV for meaning of Return Code and Return
            Subcode (See Note 2)
      15    Label switched with FEC change

   Note 1

      The Return Subcode (RSC) contains the point in the label stack
      where processing was terminated.  If the RSC is 0, no labels were
      processed.  Otherwise, the packet was label switched at depth RSC.





Kompella, et al.             Standards Track                   [Page 16]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Note 2

      The Return Code is per "Downstream Detailed Mapping TLV"
      (Section 3.4).  This Return Code MUST be used only in the message
      header and MUST be set only in the MPLS echo reply message.  If
      the Return Code is set in the MPLS echo request message, then it
      MUST be ignored.  When this Return Code is set, each Downstream
      Detailed Mapping TLV MUST have an appropriate Return Code and
      Return Subcode.  This Return Code MUST be used when there are
      multiple downstreams for a given node (such as Point-to-Multipoint
      (P2MP) or ECMP), and the node needs to return a Return Code/Return
      Subcode for each downstream.  This Return Code MAY be used even
      when there is only one downstream for a given node.

3.2.  Target FEC Stack

   A Target FEC Stack is a list of sub-TLVs.  The number of elements is
   determined by looking at the sub-TLV length fields.

    Sub-Type     Length         Value Field
    --------     ------         -----------
           1          5         LDP IPv4 prefix
           2         17         LDP IPv6 prefix
           3         20         RSVP IPv4 LSP
           4         56         RSVP IPv6 LSP
           5                    Unassigned
           6         13         VPN IPv4 prefix
           7         25         VPN IPv6 prefix
           8         14         L2 VPN endpoint
           9         10         "FEC 128" Pseudowire - IPv4 (deprecated)
          10         14         "FEC 128" Pseudowire - IPv4
          11        16+         "FEC 129" Pseudowire - IPv4
          12          5         BGP labeled IPv4 prefix
          13         17         BGP labeled IPv6 prefix
          14          5         Generic IPv4 prefix
          15         17         Generic IPv6 prefix
          16          4         Nil FEC
          24         38         "FEC 128" Pseudowire - IPv6
          25         40+        "FEC 129" Pseudowire - IPv6

   Other FEC types have been defined and will be defined as needed.

   Note that this TLV defines a stack of FECs, the first FEC element
   corresponding to the top of the label stack, etc.







Kompella, et al.             Standards Track                   [Page 17]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   An MPLS echo request MUST have a Target FEC Stack that describes the
   FEC Stack being tested.  For example, if an LSR X has an LDP mapping
   [RFC5036] for 192.0.2.1 (say, label 1001), then to verify that label
   1001 does indeed reach an egress LSR that announced this prefix via
   LDP, X can send an MPLS echo request with a FEC Stack TLV with one
   FEC in it, namely, of type LDP IPv4 prefix, with prefix 192.0.2.1/32,
   and send the echo request with a label of 1001.

   Say LSR X wanted to verify that a label stack of <1001, 23456> is the
   right label stack to use to reach a VPN IPv4 prefix (see
   Section 3.2.5) of 203.0.113.0/24 in VPN foo.  Say further that LSR Y
   with loopback address 192.0.2.1 announced prefix 203.0.113.0/24 with
   Route Distinguisher (RD) RD-foo-Y (which may in general be different
   from the RD that LSR X uses in its own advertisements for VPN foo),
   label 23456, and BGP next hop 192.0.2.1 [RFC4271].  Finally, suppose
   that LSR X receives a label binding of 1001 for 192.0.2.1 via LDP.  X
   has two choices in sending an MPLS echo request: X can send an MPLS
   echo request with a FEC Stack TLV with a single FEC of type VPN IPv4
   prefix with a prefix of 203.0.113.0/24 and an RD of RD-foo-Y.
   Alternatively, X can send a FEC Stack TLV with two FECs, the first of
   type LDP IPv4 with a prefix of 192.0.2.1/32 and the second of type of
   IP VPN with a prefix 203.0.113.0/24 with an RD of RD-foo-Y.  In
   either case, the MPLS echo request would have a label stack of <1001,
   23456>.  (Note: in this example, 1001 is the "outer" label and 23456
   is the "inner" label.)

   If, for example, an LSR Y has an LDP mapping for the IPv6 address
   2001:db8::1 (say, label 2001), then to verify that label 2001 does
   reach an egress LSR that announced this prefix via LDP, LSR Y can
   send an MPLS echo request with a FEC Stack TLV with one LDP IPv6
   prefix FEC, with prefix 2001:db8::1/128, and with a label of 2001.

   If an end-to-end path comprises of one or more tunneled or stitched
   LSPs, each transit node that is the originating point of a new tunnel
   or segment SHOULD reply back notifying the FEC stack change along
   with the new FEC details, for example, if LSR X has an LDP mapping
   for IPv4 prefix 192.0.2.10 on LSR Z (say, label 3001).  Say further
   that LSR A and LSR B are transit nodes along the path, which also
   have an RSVP tunnel over which LDP is enabled.  While replying back,
   A SHOULD notify that the FEC changes from LDP to <RSVP, LDP>.  If the
   new tunnel is a transparent pipe, i.e., the data-plane trace will not
   expire in the middle of the tunnel, then the transit node SHOULD NOT
   reply back notifying the FEC stack change or the new FEC details.  If
   the transit node wishes to hide the nature of the tunnel from the
   ingress of the echo request, then the transit node MAY notify the FEC
   stack change and include Nil FEC as the new FEC.





Kompella, et al.             Standards Track                   [Page 18]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.1.  LDP IPv4 Prefix

   The IPv4 Prefix FEC is defined in [RFC5036].  When an LDP IPv4 prefix
   is encoded in a label stack, the following format is used.  The value
   consists of 4 octets of an IPv4 prefix followed by 1 octet of prefix
   length in bits; the format is given below.  The IPv4 prefix is in
   network byte order; if the prefix is shorter than 32 bits, trailing
   bits SHOULD be set to zero.  See [RFC5036] for an example of a
   Mapping for an IPv4 FEC.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IPv4 prefix                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |         Must Be Zero                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.2.2.  LDP IPv6 Prefix

   The IPv6 Prefix FEC is defined in [RFC5036].  When an LDP IPv6 prefix
   is encoded in a label stack, the following format is used.  The value
   consists of 16 octets of an IPv6 prefix followed by 1 octet of prefix
   length in bits; the format is given below.  The IPv6 prefix is in
   network byte order; if the prefix is shorter than 128 bits, the
   trailing bits SHOULD be set to zero.  See [RFC5036] for an example of
   a Mapping for an IPv6 FEC.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IPv6 prefix                          |
      |                          (16 octets)                          |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |         Must Be Zero                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+













Kompella, et al.             Standards Track                   [Page 19]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.3.  RSVP IPv4 LSP

   The value has the format below.  The Value fields are taken from RFC
   3209 [RFC3209], Sections 4.6.1.1 and 4.6.2.1.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 IPv4 Tunnel Endpoint Address                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Must Be Zero         |     Tunnel ID                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Extended Tunnel ID                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   IPv4 Tunnel Sender Address                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Must Be Zero         |            LSP ID             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.2.4.  RSVP IPv6 LSP

   The value has the format below.  The Value fields are taken from RFC
   3209 [RFC3209], Sections 4.6.1.2 and 4.6.2.2.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 IPv6 Tunnel Endpoint Address                  |
      |                                                               |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Must Be Zero         |          Tunnel ID            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Extended Tunnel ID                      |
      |                                                               |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   IPv6 Tunnel Sender Address                  |
      |                                                               |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Must Be Zero         |            LSP ID             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Kompella, et al.             Standards Track                   [Page 20]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.5.  VPN IPv4 Prefix

   VPN-IPv4 Network Layer Routing Information (NLRI) is defined in
   [RFC4365].  This document uses the term VPN IPv4 prefix for a
   VPN-IPv4 NLRI that has been advertised with an MPLS label in BGP.
   See [RFC3107].

   When a VPN IPv4 prefix is encoded in a label stack, the following
   format is used.  The Value field consists of the RD advertised with
   the VPN IPv4 prefix, the IPv4 prefix (with trailing 0 bits to make 32
   bits in all), and a prefix length, as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Route Distinguisher                      |
      |                          (8 octets)                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         IPv4 prefix                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |                 Must Be Zero                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The RD is an 8-octet identifier; it does not contain any inherent
   information.  The purpose of the RD is solely to allow one to create
   distinct routes to a common IPv4 address prefix.  The encoding of the
   RD is not important here.  When matching this field to the local FEC
   information, it is treated as an opaque value.























Kompella, et al.             Standards Track                   [Page 21]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.6.  VPN IPv6 Prefix

   VPN-IPv6 NLRI is defined in [RFC4365].  This document uses the term
   VPN IPv6 prefix for a VPN-IPv6 NLRI that has been advertised with an
   MPLS label in BGP.  See [RFC3107].

   When a VPN IPv6 prefix is encoded in a label stack, the following
   format is used.  The Value field consists of the RD advertised with
   the VPN IPv6 prefix, the IPv6 prefix (with trailing 0 bits to make
   128 bits in all), and a prefix length, as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Route Distinguisher                      |
      |                          (8 octets)                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         IPv6 prefix                           |
      |                                                               |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |                 Must Be Zero                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The RD is identical to the VPN IPv4 Prefix RD, except that it
   functions here to allow the creation of distinct routes to IPv6
   prefixes.  See Section 3.2.5.  When matching this field to local FEC
   information, it is treated as an opaque value.






















Kompella, et al.             Standards Track                   [Page 22]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.7.  L2 VPN Endpoint

   VPLS stands for Virtual Private LAN Service.  The terms VPLS BGP NLRI
   and VPLS Edge Identifier (VE ID) are defined in [RFC4761].  This
   document uses the simpler term L2 VPN endpoint when referring to a
   VPLS BGP NLRI.  The RD is an 8-octet identifier used to distinguish
   information about various L2 VPNs advertised by a node.  The VE ID is
   a 2-octet identifier used to identify a particular node that serves
   as the service attachment point within a VPLS.  The structure of
   these two identifiers is unimportant here; when matching these fields
   to local FEC information, they are treated as opaque values.  The
   encapsulation type is identical to the Pseudowire (PW) Type in
   Section 3.2.9.

   When an L2 VPN endpoint is encoded in a label stack, the following
   format is used.  The Value field consists of an RD (8 octets), the
   sender's (of the ping) VE ID (2 octets), the receiver's VE ID (2
   octets), and an encapsulation type (2 octets), formatted as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Route Distinguisher                      |
      |                          (8 octets)                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Sender's VE ID        |       Receiver's VE ID        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Encapsulation Type       |         Must Be Zero          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.2.8.  FEC 128 Pseudowire - IPv4 (Deprecated)

   See Appendix A.1.1 for details.


















Kompella, et al.             Standards Track                   [Page 23]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.9.  FEC 128 Pseudowire - IPv4 (Current)

   FEC 128 (0x80) is defined in [RFC8077], as are the terms PW ID
   (Pseudowire ID) and PW Type (Pseudowire Type).  A PW ID is a non-zero
   32-bit connection ID.  The PW Type is a 15-bit number indicating the
   encapsulation type.  It is carried right justified in the field below
   termed "encapsulation type" with the high-order bit set to zero.

   Both of these fields are treated in this protocol as opaque values.
   When matching these fields to the local FEC information, the match
   MUST be exact.

   When a FEC 128 is encoded in a label stack, the following format is
   used.  The Value field consists of the Sender's Provider Edge (PE)
   IPv4 Address (the source address of the targeted LDP session), the
   Remote PE IPv4 Address (the destination address of the targeted LDP
   session), the PW ID, and the encapsulation type as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Sender's PE IPv4 Address                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Remote PE IPv4 Address                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             PW ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            PW Type            |          Must Be Zero         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






















Kompella, et al.             Standards Track                   [Page 24]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.10.  FEC 129 Pseudowire - IPv4

   FEC 129 (0x81) and the terms PW Type, Attachment Group Identifier
   (AGI), Attachment Group Identifier Type (AGI Type), Attachment
   Individual Identifier Type (AII Type), Source Attachment Individual
   Identifier (SAII), and Target Attachment Individual Identifier (TAII)
   are defined in [RFC8077].  The PW Type is a 15-bit number indicating
   the encapsulation type.  It is carried right justified in the field
   below PW Type with the high-order bit set to zero.  All the other
   fields are treated as opaque values and copied directly from the FEC
   129 format.  All of these values together uniquely define the FEC
   within the scope of the LDP session identified by the source and
   remote PE IPv4 addresses.

   When a FEC 129 is encoded in a label stack, the following format is
   used.  The Length of this TLV is 16 + AGI length + SAII length + TAII
   length.  Padding is used to make the total length a multiple of 4;
   the length of the padding is not included in the Length field.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Sender's PE IPv4 Address                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Remote PE IPv4 Address                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            PW Type            |   AGI Type    |  AGI Length   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                           AGI Value                           ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   AII Type    |  SAII Length  |      SAII Value               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                    SAII Value (continued)                     ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   AII Type    |  TAII Length  |      TAII Value               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                    TAII Value (continued)                     ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  TAII (cont.) |  0-3 octets of zero padding                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+









Kompella, et al.             Standards Track                   [Page 25]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.11.  FEC 128 Pseudowire - IPv6

   The FEC 128 Pseudowire IPv6 sub-TLV has a structure consistent with
   the FEC 128 Pseudowire IPv4 sub-TLV as described in Section 3.2.9.
   The Value field consists of the Sender's PE IPv6 Address (the source
   address of the targeted LDP session), the Remote PE IPv6 Address (the
   destination address of the targeted LDP session), the PW ID, and the
   encapsulation type as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                     Sender's PE IPv6 Address                  ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                      Remote PE IPv6 Address                   ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             PW ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            PW Type            |          Must Be Zero         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Sender's PE IPv6 Address: The source IP address of the target IPv6
   LDP session. 16 octets.

   Remote PE IPv6 Address: The destination IP address of the target IPv6
   LDP session. 16 octets.

   PW ID: Same as FEC 128 Pseudowire IPv4 in Section 3.2.9.

   PW Type: Same as FEC 128 Pseudowire IPv4 in Section 3.2.9.





















Kompella, et al.             Standards Track                   [Page 26]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.12.  FEC 129 Pseudowire - IPv6

   The FEC 129 Pseudowire IPv6 sub-TLV has a structure consistent with
   the FEC 129 Pseudowire IPv4 sub-TLV as described in Section 3.2.10.
   When a FEC 129 is encoded in a label stack, the following format is
   used.  The length of this TLV is 40 + AGI (Attachment Group
   Identifier) length + SAII (Source Attachment Individual Identifier)
   length + TAII (Target Attachment Individual Identifier) length.
   Padding is used to make the total length a multiple of 4; the length
   of the padding is not included in the Length field.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                   Sender's PE IPv6 Address                    ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                    Remote PE IPv6 Address                     ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |            PW Type            |   AGI Type    |  AGI Length   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                           AGI Value                           ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   AII Type    |  SAII Length  |      SAII Value               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                    SAII Value (continued)                     ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   AII Type    |  TAII Length  |      TAII Value               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                    TAII Value (continued)                     ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |  TAII (cont.) |  0-3 octets of zero padding                   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Sender's PE IPv6 Address: The source IP address of the target IPv6
   LDP session. 16 octets.

   Remote PE IPv6 Address: The destination IP address of the target IPv6
   LDP session. 16 octets.

   The other fields are the same as FEC 129 Pseudowire IPv4 in
   Section 3.2.10.










Kompella, et al.             Standards Track                   [Page 27]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.13.  BGP Labeled IPv4 Prefix

   BGP labeled IPv4 prefixes are defined in [RFC3107].  When a BGP
   labeled IPv4 prefix is encoded in a label stack, the following format
   is used.  The Value field consists of the IPv4 prefix (with trailing
   0 bits to make 32 bits in all) and the prefix length, as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IPv4 prefix                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |                 Must Be Zero                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.2.14.  BGP Labeled IPv6 Prefix

   BGP labeled IPv6 prefixes are defined in [RFC3107].  When a BGP
   labeled IPv6 prefix is encoded in a label stack, the following format
   is used.  The value consists of 16 octets of an IPv6 prefix followed
   by 1 octet of prefix length in bits; the format is given below.  The
   IPv6 prefix is in network byte order; if the prefix is shorter than
   128 bits, the trailing bits SHOULD be set to zero.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IPv6 prefix                          |
      |                          (16 octets)                          |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |         Must Be Zero                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

















Kompella, et al.             Standards Track                   [Page 28]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.2.15.  Generic IPv4 Prefix

   The value consists of 4 octets of an IPv4 prefix followed by 1 octet
   of prefix length in bits; the format is given below.  The IPv4 prefix
   is in network byte order; if the prefix is shorter than 32 bits, the
   trailing bits SHOULD be set to zero.  This FEC is used if the
   protocol advertising the label is unknown or may change during the
   course of the LSP.  An example is an inter-AS LSP that may be
   signaled by LDP in one Autonomous System (AS), by RSVP-TE [RFC3209]
   in another AS, and by BGP between the ASes, such as is common for
   inter-AS VPNs.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IPv4 prefix                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |         Must Be Zero                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.2.16.  Generic IPv6 Prefix

   The value consists of 16 octets of an IPv6 prefix followed by 1 octet
   of prefix length in bits; the format is given below.  The IPv6 prefix
   is in network byte order; if the prefix is shorter than 128 bits, the
   trailing bits SHOULD be set to zero.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IPv6 prefix                          |
      |                          (16 octets)                          |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Prefix Length |         Must Be Zero                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.2.17.  Nil FEC

   At times, labels from the reserved range, e.g., Router Alert and
   Explicit-null, may be added to the label stack for various diagnostic
   purposes such as influencing load-balancing.  These labels may have
   no explicit FEC associated with them.  The Nil FEC Stack is defined
   to allow a Target FEC Stack sub-TLV to be added to the Target FEC
   Stack to account for such labels so that proper validation can still
   be performed.




Kompella, et al.             Standards Track                   [Page 29]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   The Length is 4.  Labels are 20-bit values treated as numbers.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Label                 |          MBZ          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Label is the actual label value inserted in the label stack; the MBZ
   fields MUST be zero when sent and ignored on receipt.

3.3.  Downstream Mapping (Deprecated)

   See Appendix A.2 for more details.

3.4.  Downstream Detailed Mapping TLV

   The Downstream Detailed Mapping object is a TLV that MAY be included
   in an MPLS echo request message.  Only one Downstream Detailed
   Mapping object may appear in an echo request.  The presence of a
   Downstream Detailed Mapping object is a request that Downstream
   Detailed Mapping objects be included in the MPLS echo reply.  If the
   replying router is the destination (Label Edge Router) of the FEC,
   then a Downstream Detailed Mapping TLV SHOULD NOT be included in the
   MPLS echo reply.  Otherwise, the replying router SHOULD include a
   Downstream Detailed Mapping object for each interface over which this
   FEC could be forwarded.  For a more precise definition of the notion
   of "downstream", see Section 3.4.2, "Downstream Router and
   Interface".

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |               MTU             | Address Type  |    DS Flags   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |               Downstream Address (4 or 16 octets)             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |         Downstream Interface Address (4 or 16 octets)         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |  Return Code  | Return Subcode|        Sub-TLV Length         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       .                                                               .
       .                      List of Sub-TLVs                         .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Kompella, et al.             Standards Track                   [Page 30]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   The Downstream Detailed Mapping TLV format is derived from the
   deprecated Downstream Mapping TLV format (see Appendix A.2.)  The key
   change is that variable length and optional fields have been
   converted into sub-TLVs.

   Maximum Transmission Unit (MTU)

      The MTU is the size in octets of the largest MPLS frame (including
      label stack) that fits on the interface to the downstream LSR.

   Address Type

      The Address Type indicates if the interface is numbered or
      unnumbered.  It also determines the length of the Downstream IP
      Address and Downstream Interface fields.  The Address Type is set
      to one of the following values:

       Type #        Address Type
       ------        ------------
            1        IPv4 Numbered
            2        IPv4 Unnumbered
            3        IPv6 Numbered
            4        IPv6 Unnumbered

   DS Flags

      The DS Flags field is a bit vector of various flags with the
      following format:

        0 1 2 3 4 5 6 7
       +-+-+-+-+-+-+-+-+
       | Rsvd(MBZ) |I|N|
       +-+-+-+-+-+-+-+-+

      Two flags are defined currently, I and N.  The remaining flags
      MUST be set to zero when sending and ignored on receipt.

       Flag  Name and Meaning
       ----  ----------------
          I  Interface and Label Stack Object Request

             When this flag is set, it indicates that the replying
             router SHOULD include an Interface and Label Stack
             Object in the echo reply message.







Kompella, et al.             Standards Track                   [Page 31]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


          N  Treat as a Non-IP Packet

             Echo request messages will be used to diagnose non-IP
             flows.  However, these messages are carried in IP
             packets.  For a router that alters its ECMP algorithm
             based on the FEC or deep packet examination, this flag
             requests that the router treat this as it would if the
             determination of an IP payload had failed.

   Downstream Address and Downstream Interface Address

      IPv4 addresses and interface indices are encoded in 4 octets; IPv6
      addresses are encoded in 16 octets.

      If the interface to the downstream LSR is numbered, then the
      Address Type MUST be set to IPv4 or IPv6, the Downstream Address
      MUST be set to either the downstream LSR's Router ID or the
      interface address of the downstream LSR, and the Downstream
      Interface Address MUST be set to the downstream LSR's interface
      address.

      If the interface to the downstream LSR is unnumbered, the Address
      Type MUST be IPv4 Unnumbered or IPv6 Unnumbered, the Downstream
      Address MUST be the downstream LSR's Router ID, and the Downstream
      Interface Address MUST be set to the index assigned by the
      upstream LSR to the interface.

      If an LSR does not know the IP address of its neighbor, then it
      MUST set the Address Type to either IPv4 Unnumbered or IPv6
      Unnumbered.  For IPv4, it must set the Downstream Address to
      127.0.0.1; for IPv6, the address is set to 0::1.  In both cases,
      the interface index MUST be set to 0.  If an LSR receives an Echo
      Request packet with either of these addresses in the Downstream
      Address field, this indicates that it MUST bypass interface
      verification but continue with label validation.

      If the originator of an echo request packet wishes to obtain
      Downstream Detailed Mapping information but does not know the
      expected label stack, then it SHOULD set the Address Type to
      either IPv4 Unnumbered or IPv6 Unnumbered.  For IPv4, it MUST set
      the Downstream Address to 224.0.0.2; for IPv6, the address MUST be
      set to FF02::2.  In both cases, the interface index MUST be set to
      0.  If an LSR receives an echo request packet with the all-routers
      multicast address, then this indicates that it MUST bypass both
      interface and label stack validation but return Downstream Mapping
      TLVs using the information provided.





Kompella, et al.             Standards Track                   [Page 32]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Return Code

      The Return Code is set to zero by the sender of an echo request.
      The receiver of said echo request can set it in the corresponding
      echo reply that it generates to one of the values specified in
      Section 3.1 other than 14.

      If the receiver sets a non-zero value of the Return Code field in
      the Downstream Detailed Mapping TLV, then the receiver MUST also
      set the Return Code field in the echo reply header to "See DDMAP
      TLV for Return Code and Return Subcode" (Section 3.1).  An
      exception to this is if the receiver is a bud node [RFC4461] and
      is replying as both an egress and a transit node with a Return
      Code of 3 ("Replying router is an egress for the FEC at stack-
      depth <RSC>") in the echo reply header.

      If the Return Code of the echo reply message is not set to either
      "See DDMAP TLV for Return Code and Return Subcode" (Section 3.1)
      or "Replying router is an egress for the FEC at stack-depth
      <RSC>", then the Return Code specified in the Downstream Detailed
      Mapping TLV MUST be ignored.

   Return Subcode

      The Return Subcode is set to zero by the sender.  The receiver can
      set this field to an appropriate value as specified in
      Section 3.1: The Return Subcode is filled in with the stack-depth
      for those codes that specify the stack-depth.  For all other
      codes, the Return Subcode MUST be set to zero.

      If the Return Code of the echo reply message is not set to either
      "See DDMAP TLV for Return Code and Return Subcode" (Section 3.1)
      or "Replying router is an egress for the FEC at stack-depth
      <RSC>", then the Return Subcode specified in the Downstream
      Detailed Mapping TLV MUST be ignored.

   Sub-TLV Length

      Total length in octets of the sub-TLVs associated with this TLV.












Kompella, et al.             Standards Track                   [Page 33]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.4.1.  Sub-TLVs

   This section defines the sub-TLVs that MAY be included as part of the
   Downstream Detailed Mapping TLV.

            Sub-Type    Value Field
           ---------   ------------
             1         Multipath data
             2         Label stack
             3         FEC stack change

3.4.1.1.  Multipath Data Sub-TLV

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Multipath Type |       Multipath Length        |Reserved (MBZ) |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                  (Multipath Information)                      |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The multipath data sub-TLV includes Multipath Information.

   Multipath Type

      The type of the encoding for the Multipath Information.

      The following Multipath Types are defined in this document:

      Key   Type                  Multipath Information
      ---   ----------------      ---------------------
       0    no multipath          Empty (Multipath Length = 0)
       2    IP address            IP addresses
       4    IP address range      low/high address pairs
       8    Bit-masked IP         IP address prefix and bit mask
              address set
       9    Bit-masked label set  Label prefix and bit mask

      Type 0 indicates that all packets will be forwarded out this one
      interface.

      Types 2, 4, 8, and 9 specify that the supplied Multipath
      Information will serve to exercise this path.






Kompella, et al.             Standards Track                   [Page 34]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Multipath Length

      The length in octets of the Multipath Information.

   MBZ

      MUST be set to zero when sending; MUST be ignored on receipt.

   Multipath Information

      Encoded multipath data (e.g., encoded address or label values),
      according to the Multipath Type.  See Section 3.4.1.1.1 for
      encoding details.

3.4.1.1.1.  Multipath Information Encoding

   The Multipath Information encodes labels or addresses that will
   exercise this path.  The Multipath Information depends on the
   Multipath Type.  The contents of the field are shown in the table
   above.  IPv4 addresses are drawn from the range 127/8; IPv6 addresses
   are drawn from the range 0:0:0:0:0:FFFF:7F00:0/104.  Labels are
   treated as numbers, i.e., they are right justified in the field.  For
   Type 4, ranges indicated by address pairs MUST NOT overlap and MUST
   be in ascending sequence.

   Type 8 allows a more dense encoding of IP addresses.  The IP prefix
   is formatted as a base IP address with the non-prefix low-order bits
   set to zero.  The maximum prefix length is 27.  Following the prefix
   is a mask of length 2^(32 - prefix length) bits for IPv4 and
   2^(128 - prefix length) bits for IPv6.  Each bit set to 1 represents
   a valid address.  The address is the base IPv4 address plus the
   position of the bit in the mask where the bits are numbered left to
   right beginning with zero.  For example, the IPv4 addresses
   127.2.1.0, 127.2.1.5-127.2.1.15, and 127.2.1.20-127.2.1.29 would be
   encoded as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Kompella, et al.             Standards Track                   [Page 35]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Those same addresses embedded in IPv6 would be encoded as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type 9 allows a more dense encoding of labels.  The label prefix is
   formatted as a base label value with the non-prefix low-order bits
   set to zero.  The maximum prefix (including leading zeros due to
   encoding) length is 27.  Following the prefix is a mask of length
   2^(32 - prefix length) bits.  Each bit set to one represents a valid
   label.  The label is the base label plus the position of the bit in
   the mask where the bits are numbered left to right beginning with
   zero.  Label values of all the odd numbers between 1152 and 1279
   would be encoded as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   If the received Multipath Information is non-null, the labels and IP
   addresses MUST be picked from the set provided.  If none of these
   labels or addresses map to a particular downstream interface, then
   for that interface, the type MUST be set to 0.  If the received
   Multipath Information is null (i.e., Multipath Length = 0, or for
   Types 8 and 9, a mask of all zeros), the type MUST be set to 0.





Kompella, et al.             Standards Track                   [Page 36]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   For example, suppose LSR X at hop 10 has two downstream LSRs, Y and
   Z, for the FEC in question.  The received X could return Multipath
   Type 4, with low/high IP addresses of 127.1.1.1->127.1.1.255 for
   downstream LSR Y and 127.2.1.1->127.2.1.255 for downstream LSR Z.
   The head end reflects this information to LSR Y.  Y, which has three
   downstream LSRs, U, V, and W, computes that 127.1.1.1->127.1.1.127
   would go to U and 127.1.1.128-> 127.1.1.255 would go to V.  Y would
   then respond with 3 Downstream Detailed Mapping TLVs: to U, with
   Multipath Type 4 (127.1.1.1->127.1.1.127); to V, with Multipath Type
   4 (127.1.1.127->127.1.1.255); and to W, with Multipath Type 0.

   Note that computing Multipath Information may impose a significant
   processing burden on the receiver.  A receiver MAY thus choose to
   process a subset of the received prefixes.  The sender, on receiving
   a reply to a Downstream Detailed Mapping with partial information,
   SHOULD assume that the prefixes missing in the reply were skipped by
   the receiver and MAY re-request information about them in a new echo
   request.

   The encoding of Multipath Information in scenarios where a few LSRs
   apply Entropy-label-based load-balancing while other LSRs are non-EL
   (IP-based) load balanced will be defined in a different document.

   The encoding of Multipath Information in scenarios where LSRs have
   Layer 2 ECMP over Link Aggregation Group (LAG) interfaces will be
   defined in a different document.

3.4.1.2.  Label Stack Sub-TLV

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Downstream Label                |    Protocol   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      .                                                               .
      .                                                               .
      .                                                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Downstream Label                |    Protocol   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Label Stack sub-TLV contains the set of labels in the label stack
   as it would have appeared if this router were forwarding the packet
   through this interface.  Any Implicit Null labels are explicitly
   included.  The number of label/protocol pairs present in the sub-TLV
   is determined based on the sub-TLV data length.  When the Downstream
   Detailed Mapping TLV is sent in the echo reply, this sub-TLV MUST be
   included.



Kompella, et al.             Standards Track                   [Page 37]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Downstream Label

      A downstream label is 24 bits, in the same format as an MPLS label
      minus the TTL field, i.e., the MSBit of the label is bit 0, the
      LSBit is bit 19, the TC field [RFC5462] is bits 20-22, and S is
      bit 23.  The replying router SHOULD fill in the TC field and S
      bit; the LSR receiving the echo reply MAY choose to ignore these.

   Protocol

      This specifies the label distribution protocol for the Downstream
      label.  Protocol values are taken from the following table:

      Protocol #        Signaling Protocol
      ----------        ------------------
               0        Unknown
               1        Static
               2        BGP
               3        LDP
               4        RSVP-TE

3.4.1.3.  FEC Stack Change Sub-TLV

   A router MUST include the FEC stack change sub-TLV when the
   downstream node in the echo reply has a different FEC Stack than the
   FEC Stack received in the echo request.  One or more FEC stack change
   sub-TLVs MAY be present in the Downstream Detailed Mapping TLV.  The
   format is as below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Operation Type | Address Type  | FEC-tlv length|  Reserved     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Remote Peer Address (0, 4, or 16 octets)            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .                         FEC TLV                               .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+











Kompella, et al.             Standards Track                   [Page 38]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Operation Type

      The operation type specifies the action associated with the FEC
      stack change.  The following operation types are defined:

            Type #     Operation
            ------     ---------
            1          Push
            2          Pop

   Address Type

      The Address Type indicates the remote peer's address type.  The
      Address Type is set to one of the following values.  The length of
      the peer address is determined based on the address type.  The
      address type MAY be different from the address type included in
      the Downstream Detailed Mapping TLV.  This can happen when the LSP
      goes over a tunnel of a different address family.  The address
      type MAY be set to Unspecified if the peer address is either
      unavailable or the transit router does not wish to provide it for
      security or administrative reasons.

           Type #   Address Type   Address length
           ------   ------------   --------------
           0        Unspecified    0
           1        IPv4           4
           2        IPv6           16

   FEC TLV Length

      Length in octets of the FEC TLV.

   Reserved

      This field is reserved for future use and MUST be set to zero.

   Remote Peer Address

      The remote peer address specifies the remote peer that is the next
      hop for the FEC being currently traced.  If the operation type is
      PUSH, the remote peer address is the address of the peer from
      which the FEC being pushed was learned.  If the operation type is
      pop, the remote peer address MAY be set to Unspecified.

      For upstream-assigned labels [RFC5331], an operation type of pop
      will have a remote peer address (the upstream node that assigned
      the label), and this SHOULD be included in the FEC stack change




Kompella, et al.             Standards Track                   [Page 39]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


      sub-TLV.  The remote peer address MAY be set to Unspecified if the
      address needs to be hidden.

   FEC TLV

      The FEC TLV is present only when the FEC-tlv length field is non-
      zero.  The FEC TLV specifies the FEC associated with the FEC stack
      change operation.  This TLV MAY be included when the operation
      type is pop.  It MUST be included when the operation type is PUSH.
      The FEC TLV contains exactly one FEC from the list of FECs
      specified in Section 3.2.  A Nil FEC MAY be associated with a PUSH
      operation if the responding router wishes to hide the details of
      the FEC being pushed.

   FEC stack change sub-TLV operation rules are as follows:

   a.  A FEC stack change sub-TLV containing a PUSH operation MUST NOT
       be followed by a FEC stack change sub-TLV containing a pop
       operation.

   b.  One or more pop operations MAY be followed by one or more PUSH
       operations.

   c.  One FEC stack change sub-TLV MUST be included per FEC stack
       change.  For example, if 2 labels are going to be pushed, then
       one FEC stack change sub-TLV MUST be included for each FEC.

   d.  A FEC splice operation (an operation where one FEC ends and
       another FEC starts, MUST be performed by including a pop type FEC
       stack change sub-TLV followed by a PUSH type FEC stack change
       sub-TLV.

   e.  A Downstream Detailed Mapping TLV containing only one FEC stack
       change sub-TLV with pop operation is equivalent to IS_EGRESS
       (Return Code 3, Section 3.1) for the outermost FEC in the FEC
       stack.  The ingress router performing the LSP traceroute MUST
       treat such a case as an IS_EGRESS for the outermost FEC.

3.4.2.  Downstream Router and Interface

   The notion of "downstream router" and "downstream interface" should
   be explained.  Consider an LSR X.  If a packet that was originated
   with TTL n>1 arrived with outermost label L and TTL=1 at LSR X, X
   must be able to compute which LSRs could receive the packet if it was
   originated with TTL=n+1, over which interface the request would
   arrive and what label stack those LSRs would see.  (It is outside the
   scope of this document to specify how this computation is done.)  The
   set of these LSRs/interfaces consists of the downstream routers/



Kompella, et al.             Standards Track                   [Page 40]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   interfaces (and their corresponding labels) for X with respect to L.
   Each pair of downstream router and interface requires a separate
   Downstream Detailed Mapping to be added to the reply.

   The case where X is the LSR originating the echo request is a special
   case.  X needs to figure out what LSRs would receive the MPLS echo
   request for a given FEC Stack that X originates with TTL=1.

   The set of downstream routers at X may be alternative paths (see the
   discussion below on ECMP) or simultaneous paths (e.g., for MPLS
   multicast).  In the former case, the Multipath Information is used as
   a hint to the sender as to how it may influence the choice of these
   alternatives.

3.5.  Pad TLV

   The value part of the Pad TLV contains a variable number (>= 1) of
   octets.  The first octet takes values from the following table; all
   the other octets (if any) are ignored.  The receiver SHOULD verify
   that the TLV is received in its entirety, but otherwise ignores the
   contents of this TLV, apart from the first octet.

      Value        Meaning
      -----        -------
          0        Reserved
          1        Drop Pad TLV from reply
          2        Copy Pad TLV to reply
      3-250        Unassigned
    251-254        Reserved for Experimental Use
        255        Reserved

   The Pad TLV can be added to an echo request to create a message of a
   specific length in cases where messages of various sizes are needed
   for troubleshooting.  The first octet allows for controlling the
   inclusion of this additional padding in the respective echo reply.

3.6.  Vendor Enterprise Number

   "Private Enterprise Numbers" [IANA-ENT] are maintained by IANA.  The
   Length of this TLV is always 4; the value is the Structure of
   Management Information (SMI) Private Enterprise Code, in network
   octet order, of the vendor with a Vendor Private extension to any of
   the fields in the fixed part of the message, in which case this TLV
   MUST be present.  If none of the fields in the fixed part of the
   message have Vendor Private extensions, inclusion of this TLV is
   OPTIONAL.  Vendor Private ranges for Message Types, Reply Modes, and
   Return Codes have been defined.  When any of these are used, the
   Vendor Enterprise Number TLV MUST be included in the message.



Kompella, et al.             Standards Track                   [Page 41]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.7.  Interface and Label Stack

   The Interface and Label Stack TLV MAY be included in a reply message
   to report the interface on which the request message was received and
   the label stack that was on the packet when it was received.  Only
   one such object may appear.  The purpose of the object is to allow
   the upstream router to obtain the exact interface and label stack
   information as it appears at the replying LSR.

   The Length is K + 4*N octets; N is the number of labels in the label
   stack.  Values for K are found in the description of Address Type
   below.  The Value field of this TLV has the following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Address Type  |             Must Be Zero                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   IP Address (4 or 16 octets)                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Interface (4 or 16 octets)                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      .                                                               .
      .                                                               .
      .                          Label Stack                          .
      .                                                               .
      .                                                               .
      .                                                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Address Type

      The Address Type indicates if the interface is numbered or
      unnumbered.  It also determines the length of the IP Address and
      Interface fields.  The resulting total for the initial part of the
      TLV is listed in the table below as "K Octets".  The Address Type
      is set to one of the following values:

         Type #        Address Type           K Octets
         ------        ------------           --------
              0        Reserved                      4
              1        IPv4 Numbered                12
              2        IPv4 Unnumbered              12
              3        IPv6 Numbered                36
              4        IPv6 Unnumbered              24
          5-250        Unassigned
        251-254        Reserved for Experimental Use
            255        Reserved



Kompella, et al.             Standards Track                   [Page 42]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   IP Address and Interface

      IPv4 addresses and interface indices are encoded in 4 octets; IPv6
      addresses are encoded in 16 octets.

      If the interface upon which the echo request message was received
      is numbered, then the Address Type MUST be set to IPv4 or IPv6,
      the IP Address MUST be set to either the LSR's Router ID or the
      interface address, and the Interface MUST be set to the interface
      address.

      If the interface is unnumbered, the Address Type MUST be either
      IPv4 Unnumbered or IPv6 Unnumbered, the IP Address MUST be the
      LSR's Router ID, and the Interface MUST be set to the index
      assigned to the interface.

   Label Stack

      The label stack of the received echo request message.  If any TTL
      values have been changed by this router, they SHOULD be restored.

3.8.  Errored TLVs

   The following TLV is a TLV that MAY be included in an echo reply to
   inform the sender of an echo request of mandatory TLVs either not
   supported by an implementation or parsed and found to be in error.

   The Value field contains the TLVs that were not understood, encoded
   as sub-TLVs.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type = 9          |            Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             Value                             |
      .                                                               .
      .                                                               .
      .                                                               .
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+










Kompella, et al.             Standards Track                   [Page 43]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


3.9.  Reply TOS Octet TLV

   This TLV MAY be used by the originator of the echo request to request
   that an echo reply be sent with the IP header Type of Service (TOS)
   octet set to the value specified in the TLV.  This TLV has a length
   of 4 with the following Value field.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Reply-TOS Byte|                 Must Be Zero                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.  Theory of Operation

   An MPLS echo request is used to test a particular LSP.  The LSP to be
   tested is identified by the "FEC Stack"; for example, if the LSP was
   set up via LDP, and a label is mapped to an egress IP address of
   198.51.100.1, the FEC Stack contains a single element, namely, an LDP
   IPv4 prefix sub-TLV with value 198.51.100.1/32.  If the LSP being
   tested is an RSVP LSP, the FEC Stack consists of a single element
   that captures the RSVP Session and Sender Template that uniquely
   identifies the LSP.

   FEC Stacks can be more complex.  For example, one may wish to test a
   VPN IPv4 prefix of 203.0.113.0/24 that is tunneled over an LDP LSP
   with egress 192.0.2.1.  The FEC Stack would then contain two
   sub-TLVs, the bottom being a VPN IPv4 prefix, and the top being an
   LDP IPv4 prefix.  If the underlying (LDP) tunnel were not known, or
   was considered irrelevant, the FEC Stack could be a single element
   with just the VPN IPv4 sub-TLV.

   When an MPLS echo request is received, the receiver is expected to
   verify that the control plane and data plane are both healthy (for
   the FEC Stack being pinged), and that the two planes are in sync.
   The procedures for this are in Section 4.4.

4.1.  Dealing with Equal-Cost Multipath (ECMP)

   LSPs need not be simple point-to-point tunnels.  Frequently, a single
   LSP may originate at several ingresses and terminate at several
   egresses; this is very common with LDP LSPs.  LSPs for a given FEC
   may also have multiple "next hops" at transit LSRs.  At an ingress,
   there may also be several different LSPs to choose from to get to the
   desired endpoint.  Finally, LSPs may have backup paths, detour paths,
   and other alternative paths to take should the primary LSP go down.





Kompella, et al.             Standards Track                   [Page 44]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Regarding the last two points stated above: it is assumed that the
   LSR sourcing MPLS echo requests can force the echo request into any
   desired LSP, so choosing among multiple LSPs at the ingress is not an
   issue.  The problem of probing the various flavors of backup paths
   that will typically not be used for forwarding data unless the
   primary LSP is down will not be addressed here.

   Since the actual LSP and path that a given packet may take may not be
   known a priori, it is useful if MPLS echo requests can exercise all
   possible paths.  This, although desirable, may not be practical
   because the algorithms that a given LSR uses to distribute packets
   over alternative paths may be proprietary.

   To achieve some degree of coverage of alternate paths, there is a
   certain latitude in choosing the destination IP address and source
   UDP port for an MPLS echo request.  This is clearly not sufficient;
   in the case of traceroute, more latitude is offered by means of the
   Multipath Information of the Downstream Detailed Mapping TLV.  This
   is used as follows.  An ingress LSR periodically sends an LSP
   traceroute message to determine whether there are multipaths for a
   given LSP.  If so, each hop will provide some information as to how
   each of its downstream paths can be exercised.  The ingress can then
   send MPLS echo requests that exercise these paths.  If several
   transit LSRs have ECMP, the ingress may attempt to compose these to
   exercise all possible paths.  However, full coverage may not be
   possible.

4.2.  Testing LSPs That Are Used to Carry MPLS Payloads

   To detect certain LSP breakages, it may be necessary to encapsulate
   an MPLS echo request packet with at least one additional label when
   testing LSPs that are used to carry MPLS payloads (such as LSPs used
   to carry L2VPN and L3VPN traffic.  For example, when testing LDP or
   RSVP-TE LSPs, just sending an MPLS echo request packet may not detect
   instances where the router immediately upstream of the destination of
   the LSP ping may forward the MPLS echo request successfully over an
   interface not configured to carry MPLS payloads because of the use of
   penultimate hop popping.  Since the receiving router has no means to
   ascertain whether the IP packet was sent unlabeled or implicitly
   labeled, the addition of labels shimmed above the MPLS echo request
   (using the Nil FEC) will prevent a router from forwarding such a
   packet out to unlabeled interfaces.









Kompella, et al.             Standards Track                   [Page 45]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


4.3.  Sending an MPLS Echo Request

   An MPLS echo request is a UDP packet.  The IP header is set as
   follows: the source IP address is a routable address of the sender;
   the destination IP address is a (randomly chosen) IPv4 address from
   the range 127/8 or an IPv6 address from the range
   0:0:0:0:0:FFFF:7F00:0/104.  The IP TTL is set to 1.  The source UDP
   port is chosen by the sender; the destination UDP port is set to 3503
   (assigned by IANA for MPLS echo requests).  The Router Alert IP
   Option of value 0x0 [RFC2113] for IPv4 or value 69 [RFC7506] for IPv6
   MUST be set in the IP header.

   An MPLS echo request is sent with a label stack corresponding to the
   FEC Stack being tested.  Note that further labels could be applied
   if, for example, the normal route to the topmost FEC in the stack is
   via a Traffic Engineered Tunnel [RFC3209].  If all of the FECs in the
   stack correspond to Implicit Null labels, the MPLS echo request is
   considered unlabeled even if further labels will be applied in
   sending the packet.

   If the echo request is labeled, one MAY (depending on what is being
   pinged) set the TTL of the innermost label to 1, to prevent the ping
   request going farther than it should.  Examples of where this SHOULD
   be done include pinging a VPN IPv4 or IPv6 prefix, an L2 VPN
   endpoint, or a pseudowire.  Preventing the ping request from going
   too far can also be accomplished by inserting a Router Alert label
   above this label; however, this may lead to the undesired side effect
   that MPLS echo requests take a different data path than actual data.
   For more information on how these mechanisms can be used for
   pseudowire connectivity verification, see [RFC5085][RFC5885].

   In "ping" mode (end-to-end connectivity check), the TTL in the
   outermost label is set to 255.  In "traceroute" mode (fault isolation
   mode), the TTL is set successively to 1, 2, and so on.

   The sender chooses a Sender's Handle and a Sequence Number.  When
   sending subsequent MPLS echo requests, the sender SHOULD increment
   the Sequence Number by 1.  However, a sender MAY choose to send a
   group of echo requests with the same Sequence Number to improve the
   chance of arrival of at least one packet with that Sequence Number.

   The TimeStamp Sent is set to the time of day in NTP format that the
   echo request is sent.  The TimeStamp Received is set to zero.

   An MPLS echo request MUST have a FEC Stack TLV.  Also, the Reply Mode
   must be set to the desired Reply Mode; the Return Code and Subcode
   are set to zero.  In the "traceroute" mode, the echo request SHOULD
   include a Downstream Detailed Mapping TLV.



Kompella, et al.             Standards Track                   [Page 46]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


4.4.  Receiving an MPLS Echo Request

   Sending an MPLS echo request to the control plane is triggered by one
   of the following packet processing exceptions: Router Alert option,
   IP TTL expiration, MPLS TTL expiration, MPLS Router Alert label, or
   the destination address in the 127/8 address range.  The control
   plane further identifies it by UDP destination port 3503.

   For reporting purposes, the bottom of the stack is considered to be a
   stack-depth of 1.  This is to establish an absolute reference for the
   case where the actual stack may have more labels than there are FECs
   in the Target FEC Stack.

   Furthermore, in all the Return Codes listed in this document, a
   stack-depth of 0 means "no value specified".  This allows
   compatibility with existing implementations that do not use the
   Return Subcode field.

   An LSR X that receives an MPLS echo request then processes it as
   follows.

   1.  General packet sanity is verified.  If the packet is not well-
       formed, LSR X SHOULD send an MPLS echo reply with the Return Code
       set to "Malformed echo request received" and the Subcode set to
       zero.  If there are any TLVs not marked as "Ignore" (i.e., if the
       TLV type is less than 32768, see Section 3) that LSR X does not
       understand, LSR X SHOULD send an MPLS "TLV not understood" (as
       appropriate), and set the Subcode to zero.  In the latter case,
       the misunderstood TLVs (only) are included as sub-TLVs in an
       Errored TLVs TLV in the reply.  The header field's Sender's
       Handle, Sequence Number, and Timestamp Sent are not examined but
       are included in the MPLS echo reply message.

   The algorithm uses the following variables and identifiers:

   Interface-I:        the interface on which the MPLS echo request was
                       received.

   Stack-R:            the label stack on the packet as it was received.

   Stack-D:            the label stack carried in the "Label stack
                       sub-TLV" in the Downstream Detailed Mapping TLV
                       (not always present).

   Label-L:            the label from the actual stack currently being
                       examined.  Requires no initialization.





Kompella, et al.             Standards Track                   [Page 47]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Label-stack-depth:  the depth of the label being verified.
                       Initialized to the number of labels in the
                       received label stack S.

   FEC-stack-depth:    depth of the FEC in the Target FEC Stack that
                       should be used to verify the current actual
                       label.  Requires no initialization.

   Best-return-code:   contains the Return Code for the echo reply
                       packet as currently best known.  As the algorithm
                       progresses, this code may change depending on the
                       results of further checks that it performs.

   Best-rtn-subcode:   similar to Best-return-code, but for the echo
                       reply Subcode.

   FEC-status:         result value returned by the FEC Checking
                       algorithm described in Section 4.4.1.

   /* Save receive context information */

   2.  If the echo request is good, LSR X stores the interface over
       which the echo was received in Interface-I, and the label stack
       with which it came in Stack-R.

   /* The rest of the algorithm iterates over the labels in Stack-R,
   verifies validity of label values, reports associated label switching
   operations (for traceroute), verifies correspondence between the
   Stack-R and the Target FEC Stack description in the body of the echo
   request, and reports any errors. */

   /* The algorithm iterates as follows. */

   3.  Label Validation:

      If Label-stack-depth is 0 {

      /* The LSR needs to report that it is a tail end for the LSP */

         Set FEC-stack-depth to 1, set Label-L to 3 (Implicit Null).
         Set Best-return-code to 3 ("Replying router is an egress for
         the FEC at stack-depth"), set Best-rtn-subcode to the value of
         FEC-stack-depth (1), and go to step 5 (Egress Processing).

      }

      /* This step assumes there is always an entry for well-known label
      values */



Kompella, et al.             Standards Track                   [Page 48]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


      Set Label-L to the value extracted from Stack-R at depth
      Label-stack-depth.  Look up Label-L in the Incoming Label Map
      (ILM) to determine if the label has been allocated and an
      operation is associated with it.

      If there is no entry for Label-L {

      /* Indicates a temporary or permanent label synchronization
      problem, and the LSR needs to report an error */

         Set Best-return-code to 11 ("No label entry at stack-depth")
         and Best-rtn-subcode to Label-stack-depth.  Go to step 7 (Send
         Reply Packet).

      }

      Else {

         Retrieve the associated label operation from the corresponding
         Next Hop Label Forwarding Entry (NHLFE), and proceed to step 4
         (Label Operation Check).

      }

   4.  Label Operation Check

      If the label operation is "Pop and Continue Processing" {

      /* Includes Explicit Null and Router Alert label cases */

         Iterate to the next label by decrementing Label-stack-depth,
         and loop back to step 3 (Label Validation).

      }

      If the label operation is "Swap or Pop and Switch based on Popped
      Label" {

         Set Best-return-code to 8 ("Label switched at stack-depth") and
         Best-rtn-subcode to Label-stack-depth to report transit
         switching.

         If a Downstream Detailed Mapping TLV is present in the received
         echo request {

            If the IP address in the TLV is 127.0.0.1 or 0::1 {





Kompella, et al.             Standards Track                   [Page 49]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


               Set Best-return-code to 6 ("Upstream Interface Index
               Unknown").  An Interface and Label Stack TLV SHOULD be
               included in the reply and filled with Interface-I and
               Stack-R.

            }

            Else {

               Verify that the IP address, interface address, and label
               stack in the Downstream Detailed Mapping TLV match
               Interface-I and Stack-R.  If there is a mismatch, set
               Best-return-code to 5, "Downstream Mapping Mismatch".  An
               Interface and Label Stack TLV SHOULD be included in the
               reply and filled in based on Interface-I and Stack-R.  Go
               to step 7 (Send Reply Packet).

            }

         }

         For each available downstream ECMP path {

            Retrieve output interface from the NHLFE entry.

            /* Note: this Return Code is set even if Label-stack-depth
            is one */

            If the output interface is not MPLS enabled {

               Set Best-return-code to Return Code 9, "Label switched
               but no MPLS forwarding at stack-depth" and set
               Best-rtn-subcode to Label-stack-depth and go to step 7
               (Send Reply Packet).

            }

            If a Downstream Detailed Mapping TLV is present {

               A Downstream Detailed Mapping TLV SHOULD be included in
               the echo reply (see Section 3.4) filled in with
               information about the current ECMP path.

            }

         }





Kompella, et al.             Standards Track                   [Page 50]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


         If no Downstream Detailed Mapping TLV is present, or the
         Downstream IP Address is set to the ALLROUTERS multicast
         address, go to step 7 (Send Reply Packet).

         If the "Validate FEC Stack" flag is not set and the LSR is not
         configured to perform FEC checking by default, go to step 7
         (Send Reply Packet).

         /* Validate the Target FEC Stack in the received echo request.

         First determine FEC-stack-depth from the Downstream Detailed
         Mapping TLV.  This is done by walking through Stack-D (the
         Downstream labels) from the bottom, decrementing the number of
         labels for each non-Implicit Null label, while incrementing
         FEC-stack-depth for each label.  If the Downstream Detailed
         Mapping TLV contains one or more Implicit Null labels,
         FEC-stack-depth may be greater than Label-stack-depth.  To be
         consistent with the above stack-depths, the bottom is
         considered to be entry 1.
         */

         Set FEC-stack-depth to 0.  Set i to Label-stack-depth.

         While (i > 0) do {

             ++FEC-stack-depth.
             if Stack-D [ FEC-stack-depth ] != 3 (Implicit Null)
             --i.
         }

         If the number of FECs in the FEC stack is greater than or equal
         to FEC-stack-depth {
         Perform the FEC Checking procedure (see Section 4.4.1).

            If FEC-status is 2, set Best-return-code to 10 ("Mapping for
            this FEC is not the given label at stack-depth").

            If the Return Code is 1, set Best-return-code to
            FEC-return-code and Best-rtn-subcode to FEC-stack-depth.
         }

         Go to step 7 (Send Reply Packet).
      }








Kompella, et al.             Standards Track                   [Page 51]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   5.  Egress Processing:

      /* These steps are performed by the LSR that identified itself as
      the tail-end LSR for an LSP. */

      If the received echo request contains no Downstream Detailed
      Mapping TLV, or the Downstream IP Address is set to 127.0.0.1 or
      0::1, go to step 6 (Egress FEC Validation).

      Verify that the IP address, interface address, and label stack in
      the Downstream Detailed Mapping TLV match Interface-I and Stack-R.
      If not, set Best-return-code to 5, "Downstream Mapping Mismatch".
      A Received Interface and Label Stack TLV SHOULD be created for the
      echo response packet.  Go to step 7 (Send Reply Packet).

   6.  Egress FEC Validation:

      /* This is a loop for all entries in the Target FEC Stack starting
      with FEC-stack-depth. */

      Perform FEC checking by following the algorithm described in
      Section 4.4.1 for Label-L and the FEC at FEC-stack-depth.

      Set Best-return-code to FEC-code and Best-rtn-subcode to the value
      in FEC-stack-depth.


      If FEC-status (the result of the check) is 1,
      go to step 7 (Send Reply Packet).

      /* Iterate to the next FEC entry */


      ++FEC-stack-depth.
      If FEC-stack-depth > the number of FECs in the FEC-stack,
      go to step 7 (Send Reply Packet).

      If FEC-status is 0 {

         ++Label-stack-depth.
         If Label-stack-depth > the number of labels in Stack-R,
         go to step 7 (Send Reply Packet).

         Label-L = extracted label from Stack-R at depth
         Label-stack-depth.
         Loop back to step 6 (Egress FEC Validation).
      }




Kompella, et al.             Standards Track                   [Page 52]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   7.  Send Reply Packet:

      Send an MPLS echo reply with a Return Code of Best-return-code and
      a Return Subcode of Best-rtn-subcode.  Include any TLVs created
      during the above process.  The procedures for sending the echo
      reply are found in Section 4.5.

4.4.1.  FEC Validation

   /* This section describes validation of a FEC entry within the Target
   FEC Stack and accepts a FEC, Label-L, and Interface-I.

   If the outermost FEC of the Target FEC stack is the Nil FEC, then the
   node MUST skip the Target FEC validation completely.  This is to
   support FEC hiding, in which the outer hidden FEC can be the Nil FEC.
   Else, the algorithm performs the following steps. */

   1.  Two return values, FEC-status and FEC-return-code, are
       initialized to 0.

   2.  If the FEC is the Nil FEC {

          If Label-L is either Explicit_Null or Router_Alert, return.

          Else {

             Set FEC-return-code to 10 ("Mapping for this FEC is not the
             given label at stack-depth").
             Set FEC-status to 1
             Return.
          }

       }

   3.  Check the FEC label mapping that describes how traffic received
       on the LSP is further switched or which application it is
       associated with.  If no mapping exists, set FEC-return-code to
       Return 4, "Replying router has no mapping for the FEC at stack-
       depth".  Set FEC-status to 1.  Return.

   4.  If the label mapping for FEC is Implicit Null, set FEC-status to
       2 and proceed to step 5.  Otherwise, if the label mapping for FEC
       is Label-L, proceed to step 5.  Otherwise, set FEC-return-code to
       10 ("Mapping for this FEC is not the given label at stack-
       depth"), set FEC-status to 1, and return.






Kompella, et al.             Standards Track                   [Page 53]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   5.  This is a protocol check.  Check what protocol would be used to
       advertise the FEC.  If it can be determined that no protocol
       associated with Interface-I would have advertised a FEC of that
       FEC-Type, set FEC-return-code to 12 ("Protocol not associated
       with interface at FEC stack-depth").  Set FEC-status to 1.

   6.  Return.

4.5.  Sending an MPLS Echo Reply

   An MPLS echo reply is a UDP packet.  It MUST ONLY be sent in response
   to an MPLS echo request.  The source IP address is a routable address
   of the replier; the source port is the well-known UDP port for LSP
   ping.  The destination IP address and UDP port are copied from the
   source IP address and UDP port of the echo request.  The IP TTL is
   set to 255.  If the Reply Mode in the echo request is "Reply via an
   IPv4 UDP packet with Router Alert", then the IP header MUST contain
   the Router Alert IP Option of value 0x0 [RFC2113] for IPv4 or 69
   [RFC7506] for IPv6.  If the reply is sent over an LSP, the topmost
   label MUST in this case be the Router Alert label (1) (see
   [RFC3032]).

   The format of the echo reply is the same as the echo request.  The
   Sender's Handle, the Sequence Number, and TimeStamp Sent are copied
   from the echo request; the TimeStamp Received is set to the time of
   day that the echo request is received (note that this information is
   most useful if the time-of-day clocks on the requester and the
   replier are synchronized).  The FEC Stack TLV from the echo request
   MAY be copied to the reply.

   The replier MUST fill in the Return Code and Subcode, as determined
   in the previous section.

   If the echo request contains a Pad TLV, the replier MUST interpret
   the first octet for instructions regarding how to reply.

   If the replying router is the destination of the FEC, then Downstream
   Detailed Mapping TLVs SHOULD NOT be included in the echo reply.

   If the echo request contains a Downstream Detailed Mapping TLV, and
   the replying router is not the destination of the FEC, the replier
   SHOULD compute its downstream routers and corresponding labels for
   the incoming label and add Downstream Detailed Mapping TLVs for each
   one to the echo reply it sends back.  A replying node should follow
   the procedures defined in Section 4.5.1 if there is a FEC stack
   change due to tunneled LSP.  If the FEC stack change is due to
   stitched LSP, it should follow the procedures defined in
   Section 4.5.2.



Kompella, et al.             Standards Track                   [Page 54]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   If the Downstream Detailed Mapping TLV contains Multipath Information
   requiring more processing than the receiving router is willing to
   perform, the responding router MAY choose to respond with only a
   subset of multipaths contained in the echo request Downstream
   Detailed Mapping.  (Note: The originator of the echo request MAY send
   another echo request with the Multipath Information that was not
   included in the reply.)

   Except in the case of Reply Mode 4, "Reply via application-level
   control channel", echo replies are always sent in the context of the
   IP/MPLS network.

4.5.1.  Addition of a New Tunnel

   A transit node knows when the FEC being traced is going to enter a
   tunnel at that node.  Thus, it knows about the new outer FEC.  All
   transit nodes that are the origination point of a new tunnel SHOULD
   add the FEC stack change sub-TLV (Section 3.4.1.3) to the Downstream
   Detailed Mapping TLV in the echo reply.  The transit node SHOULD add
   one FEC stack change sub-TLV of operation type PUSH, per new tunnel
   being originated at the transit node.

   A transit node that sends a Downstream FEC stack change sub-TLV in
   the echo reply SHOULD fill the address of the remote peer, which is
   the peer of the current LSP being traced.  If the transit node does
   not know the address of the remote peer, it MUST set the address type
   to Unspecified.

   The Label Stack sub-TLV MUST contain one additional label per FEC
   being PUSHed.  The label MUST be encoded as defined in
   Section 3.4.1.2.  The label value MUST be the value used to switch
   the data traffic.  If the tunnel is a transparent pipe to the node,
   i.e., the data-plane trace will not expire in the middle of the new
   tunnel, then a FEC stack change sub-TLV SHOULD NOT be added, and the
   Label Stack sub-TLV SHOULD NOT contain a label corresponding to the
   hidden tunnel.

   If the transit node wishes to hide the nature of the tunnel from the
   ingress of the echo request, then it MAY not want to send details
   about the new tunnel FEC to the ingress.  In such a case, the transit
   node SHOULD use the Nil FEC.  The echo reply would then contain a FEC
   stack change sub-TLV with operation type PUSH and a Nil FEC.  The
   value of the label in the Nil FEC MUST be set to zero.  The remote
   peer address type MUST be set to Unspecified.  The transit node
   SHOULD add one FEC stack change sub-TLV of operation type PUSH, per
   new tunnel being originated at the transit node.  The Label Stack
   sub-TLV MUST contain one additional label per FEC being PUSHed.  The
   label value MUST be the value used to switch the data traffic.



Kompella, et al.             Standards Track                   [Page 55]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


4.5.2.  Transition between Tunnels

   A transit node stitching two LSPs SHOULD include two FEC stack change
   sub-TLVs.  One with a pop operation for the old FEC (ingress) and one
   with the PUSH operation for the new FEC (egress).  The replying node
   SHOULD set the Return Code to "Label switched with FEC change" to
   indicate change in the FEC being traced.

   If the replying node wishes to perform FEC hiding, it SHOULD respond
   back with two FEC stack change sub-TLVs, one pop followed by one
   PUSH.  The pop operation MAY either exclude the FEC TLV (by setting
   the FEC TLV length to 0) or set the FEC TLV to contain the LDP FEC.
   The PUSH operation SHOULD have the FEC TLV containing the Nil FEC.
   The Return Code SHOULD be set to "Label switched with FEC change".

   If the replying node wishes to perform FEC hiding, it MAY choose to
   not send any FEC stack change sub-TLVs in the echo reply if the
   number of labels does not change for the downstream node and the FEC
   type also does not change (Nil FEC).  In such case, the replying node
   MUST NOT set the Return Code to "Label switched with FEC change".

4.6.  Receiving an MPLS Echo Reply

   An LSR X should only receive an MPLS echo reply in response to an
   MPLS echo request that it sent.  Thus, on receipt of an MPLS echo
   reply, X should parse the packet to ensure that it is well-formed,
   then attempt to match up the echo reply with an echo request that it
   had previously sent, using the destination UDP port and the Sender's
   Handle.  If no match is found, then X jettisons the echo reply;
   otherwise, it checks the Sequence Number to see if it matches.

   If the echo reply contains Downstream Detailed Mappings, and X wishes
   to traceroute further, it SHOULD copy the Downstream Detailed
   Mapping(s) into its next echo request(s) (with TTL incremented by
   one).

   If one or more FEC stack change sub-TLVs are received in the MPLS
   echo reply, the ingress node SHOULD process them and perform some
   validation.

   The FEC stack changes are associated with a downstream neighbor and
   along a particular path of the LSP.  Consequently, the ingress will
   need to maintain a FEC stack per path being traced (in case of
   multipath).  All changes to the FEC stack resulting from the
   processing of a FEC stack change sub-TLV(s) should be applied only
   for the path along a given downstream neighbor.  The following
   algorithm should be followed for processing FEC stack change
   sub-TLVs.



Kompella, et al.             Standards Track                   [Page 56]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


       push_seen = FALSE
       fec_stack_depth = current-depth-of-fec-stack-being-traced
       saved_fec_stack = current_fec_stack

       while (sub-tlv = get_next_sub_tlv(downstream_detailed_map_tlv))

           if (sub-tlv == NULL) break

           if (sub-tlv.type == FEC-Stack-Change) {

               if (sub-tlv.operation == POP) {
                   if (push_seen) {
                       Drop the echo reply
                       current_fec_stack = saved_fec_stack
                       return
                   }

                   if (fec_stack_depth == 0) {
                       Drop the echo reply
                       current_fec_stack = saved_fec_stack
                       return
                   }

                   Pop FEC from FEC stack being traced
                   fec_stack_depth--;
               }

               if (sub-tlv.operation == PUSH) {
                   push_seen = 1
                   Push FEC on FEC stack being traced
                   fec_stack_depth++;
               }
            }
        }


        if (fec_stack_depth == 0) {
            Drop the echo reply
            current_fec_stack = saved_fec_stack
            return
        }

   The next MPLS echo request along the same path should use the
   modified FEC stack obtained after processing the FEC stack change
   sub-TLVs.  A non-Nil FEC guarantees that the next echo request along
   the same path will have the Downstream Detailed Mapping TLV validated
   for IP address, interface address, and label stack mismatches.




Kompella, et al.             Standards Track                   [Page 57]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   If the top of the FEC stack is a Nil FEC and the MPLS echo reply does
   not contain any FEC stack change sub-TLVs, then it does not
   necessarily mean that the LSP has not started traversing a different
   tunnel.  It could be that the LSP associated with the Nil FEC
   terminated at a transit node, and at the same time, a new LSP started
   at the same transit node.  The Nil FEC would now be associated with
   the new LSP (and the ingress has no way of knowing this).  Thus, it
   is not possible to build an accurate hierarchical LSP topology if a
   traceroute contains Nil FECs.

   A reply from a downstream node with Return Code 3, may not
   necessarily be for the FEC being traced.  It could be for one of the
   new FECs that was added.  On receipt of an IS_EGRESS reply, the LSP
   ingress should check if the depth of Target FEC sent to the node that
   just responded was the same as the depth of the FEC that was being
   traced.  If it was not, then it should pop an entry from the Target
   FEC stack and resend the request with the same TTL (as previously
   sent).  The process of popping a FEC is to be repeated until either
   the LSP ingress receives a non-IS_EGRESS reply or until all the
   additional FECs added to the FEC stack have already been popped.
   Using an IS_EGRESS reply, an ingress can build a map of the
   hierarchical LSP structure traversed by a given FEC.

   When the MPLS echo reply Return Code is "Label switched with FEC
   change", the ingress node SHOULD manipulate the FEC stack as per the
   FEC stack change sub-TLVs contained in the Downstream Detailed
   Mapping TLV.  A transit node can use this Return Code for stitched
   LSPs and for hierarchical LSPs.  In case of ECMP or P2MP, there could
   be multiple paths and Downstream Detailed Mapping TLVs with different
   Return Codes (see Section 3.1, Note 2).  The ingress node should
   build the topology based on the Return Code per ECMP path/P2MP
   branch.

4.7.  Issue with VPN IPv4 and IPv6 Prefixes

   Typically, an LSP ping for a VPN IPv4 prefix or VPN IPv6 prefix is
   sent with a label stack of depth greater than 1, with the innermost
   label having a TTL of 1.  This is to terminate the ping at the egress
   PE, before it gets sent to the customer device.  However, under
   certain circumstances, the label stack can shrink to a single label
   before the ping hits the egress PE; this will result in the ping
   terminating prematurely.  One such scenario is a multi-AS Carrier's
   Carrier VPN.

   To get around this problem, one approach is for the LSR that receives
   such a ping to realize that the ping terminated prematurely and to
   send back Return Code 13.  In that case, the initiating LSR can retry




Kompella, et al.             Standards Track                   [Page 58]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   the ping after incrementing the TTL on the VPN label.  In this
   fashion, the ingress LSR will sequentially try TTL values until it
   finds one that allows the VPN ping to reach the egress PE.

4.8.  Non-compliant Routers

   If the egress for the FEC Stack being pinged does not support LSP
   ping, then no reply will be sent, resulting in possible "false
   negatives".  When in "traceroute" mode, if a transit LSR does not
   support LSP ping, then no reply will be forthcoming from that LSR for
   some TTL, say, n.  The LSR originating the echo request SHOULD try
   sending the echo request with TTL=n+1, n+2, ..., n+k to probe LSRs
   further down the path.  In such a case, the echo request for TTL > n
   SHOULD be sent with the Downstream Detailed Mapping TLV "Downstream
   IP Address" field set to the ALLROUTERs multicast address until a
   reply is received with a Downstream Detailed Mapping TLV.  The label
   Stack TLV MAY be omitted from the Downstream Detailed Mapping TLV.
   Furthermore, the "Validate FEC Stack" flag SHOULD NOT be set until an
   echo reply packet with a Downstream Detailed Mapping TLV is received.

5.  Security Considerations

   Overall, the security needs for LSP ping are similar to those of ICMP
   ping.

   There are at least three approaches to attacking LSRs using the
   mechanisms defined here.  One is a Denial-of-Service (DoS) attack, by
   sending MPLS echo requests/replies to LSRs and thereby increasing
   their workload.  The second is obfuscating the state of the MPLS
   data-plane liveness by spoofing, hijacking, replaying, or otherwise
   tampering with MPLS echo requests and replies.  The third is an
   unauthorized source using an LSP ping to obtain information about the
   network.

   To avoid potential DoS attacks, it is RECOMMENDED that
   implementations regulate the LSP ping traffic going to the control
   plane.  A rate limiter SHOULD be applied to the well-known UDP port
   defined in Section 6.1.

   Unsophisticated replay and spoofing attacks involving faking or
   replaying MPLS echo reply messages are unlikely to be effective.
   These replies would have to match the Sender's Handle and Sequence
   Number of an outstanding MPLS echo request message.  A non-matching
   replay would be discarded as the sequence has moved on, thus a spoof
   has only a small window of opportunity.  However, to provide a
   stronger defense, an implementation MAY also validate the TimeStamp
   Sent by requiring an exact match on this field.




Kompella, et al.             Standards Track                   [Page 59]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   To protect against unauthorized sources using MPLS echo request
   messages to obtain network information, it is RECOMMENDED that
   implementations provide a means of checking the source addresses of
   MPLS echo request messages against an access list before accepting
   the message.

   It is not clear how to prevent hijacking (non-delivery) of echo
   requests or replies; however, if these messages are indeed hijacked,
   LSP ping will report that the data plane is not working as it should.

   It does not seem vital (at this point) to secure the data carried in
   MPLS echo requests and replies, although knowledge of the state of
   the MPLS data plane may be considered confidential by some.
   Implementations SHOULD, however, provide a means of filtering the
   addresses to which echo reply messages may be sent.

   The value part of the Pad TLV contains a variable number of octets.
   With the exception of the first octet, these contents, if any, are
   ignored on receipt, and can therefore serve as a clandestine channel.

   When MPLS LSP ping is used within an administrative domain, a
   deployment can increase security by using border filtering of
   incoming LSP ping packets as well as outgoing LSP ping packets.

   Although this document makes special use of 127/8 addresses, these
   are used only in conjunction with the UDP port 3503.  Furthermore,
   these packets are only processed by routers.  All other hosts MUST
   treat all packets with a destination address in the range 127/8 in
   accordance to RFC 1122.  Any packet received by a router with a
   destination address in the range 127/8 without a destination UDP port
   of 3503 MUST be treated in accordance to RFC 1812.  In particular,
   the default behavior is to treat packets destined to a 127/8 address
   as "martians".

   If a network operator wants to prevent tracing inside a tunnel, one
   can use the Pipe Model [RFC3443], i.e., hide the outer MPLS tunnel by
   not propagating the MPLS TTL into the outer tunnel (at the start of
   the outer tunnel).  By doing this, LSP traceroute packets will not
   expire in the outer tunnel, and the outer tunnel will not get traced.

   If one doesn't wish to expose the details of the new outer LSP, then
   the Nil FEC can be used to hide those details.  Using the Nil FEC
   ensures that the trace progresses without false negatives and all
   transit nodes (of the new outer tunnel) perform some minimal
   validations on the received MPLS echo requests.






Kompella, et al.             Standards Track                   [Page 60]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


6.  IANA Considerations

6.1.  TCP and UDP Port Number

   The TCP and UDP port number 3503 has been allocated by IANA for LSP
   echo requests and replies.

6.2.  MPLS LSP Ping Parameters

   IANA maintains the "Multiprotocol Label Switching (MPLS) Label
   Switched Paths (LSPs) Ping Parameters" registry at
   [IANA-MPLS-LSP-PING].

   The following subsections detail the name spaces managed by IANA.
   For some of these name spaces, the space is divided into assignment
   ranges; the following terms are used in describing the procedures by
   which IANA allocates values: "Standards Action" (as defined in
   [RFC5226]), "Specification Required", and "Vendor Private Use".

   Values from "Specification Required" ranges MUST be registered with
   IANA.  The request MUST be made via an RFC that describes the format
   and procedures for using the code point; the actual assignment is
   made during the IANA actions for the RFC.

   Values from "Vendor Private" ranges MUST NOT be registered with IANA;
   however, the message MUST contain an enterprise code as registered
   with the IANA SMI Private Network Management Private Enterprise
   Numbers.  For each name space that has a Vendor Private range, it
   must be specified where exactly the SMI Private Enterprise Number
   resides; see below for examples.  In this way, several enterprises
   (vendors) can use the same code point without fear of collision.

6.2.1.  Message Types, Reply Modes, Return Codes

   IANA has created and will maintain registries for Message Types,
   Reply Modes, and Return Codes.  Each of these can take values in the
   range 0-255.  Assignments in the range 0-191 are via Standards
   Action; assignments in the range 192-251 are made via "Specification
   Required"; values in the range 252-255 are for Vendor Private Use and
   MUST NOT be allocated.

   If any of these fields fall in the Vendor Private range, a top-level
   Vendor Enterprise Number TLV MUST be present in the message.








Kompella, et al.             Standards Track                   [Page 61]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Message Types defined in this document are the following:

      Value    Meaning
      -----    -------
          1    MPLS Echo Request
          2    MPLS Echo Reply

   Reply Modes defined in this document are the following:

      Value    Meaning
      -----    -------
          1    Do not reply
          2    Reply via an IPv4/IPv6 UDP packet
          3    Reply via an IPv4/IPv6 UDP packet with Router Alert
          4    Reply via application-level control channel

   Return Codes defined in this document are listed in Section 3.1.

   IANA has updated the reference for each these values to this
   document.

6.2.2.  TLVs

   IANA has created and maintains a registry for the Type field of top-
   level TLVs as well as for any associated sub-TLVs.  Note that the
   meaning of a sub-TLV is scoped by the TLV.  The number spaces for the
   sub-TLVs of various TLVs are independent.

   The valid range for TLVs and sub-TLVs is 0-65535.  Assignments in the
   ranges 0-16383 and 32768-49161 are made via Standards Action as
   defined in [RFC5226]; assignments in the ranges 16384-31743 and
   49162-64511 are made via "Specification Required"; values in the
   ranges 31744-32767 and 64512-65535 are for Vendor Private Use and
   MUST NOT be allocated.

   If a TLV or sub-TLV has a Type that falls in the range for Vendor
   Private Use, the Length MUST be at least 4, and the first four octets
   MUST be that vendor's SMI Private Enterprise Number, in network octet
   order.  The rest of the Value field is private to the vendor.












Kompella, et al.             Standards Track                   [Page 62]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   TLVs and sub-TLVs defined in this document are the following:

      Type     Sub-Type        Value Field
      ----     --------        -----------
         1                     Target FEC Stack
                      1        LDP IPv4 prefix
                      2        LDP IPv6 prefix
                      3        RSVP IPv4 LSP
                      4        RSVP IPv6 LSP
                      5        Unassigned
                      6        VPN IPv4 prefix
                      7        VPN IPv6 prefix
                      8        L2 VPN endpoint
                      9        "FEC 128" Pseudowire - IPv4 (Deprecated)
                     10        "FEC 128" Pseudowire - IPv4
                     11        "FEC 129" Pseudowire -  IPv4
                     12        BGP labeled IPv4 prefix
                     13        BGP labeled IPv6 prefix
                     14        Generic IPv4 prefix
                     15        Generic IPv6 prefix
                     16        Nil FEC
                     24        "FEC 128" Pseudowire - IPv6
                     25        "FEC 129" Pseudowire - IPv6
         2                     Downstream Mapping (Deprecated)
         3                     Pad
         4                     Unassigned
         5                     Vendor Enterprise Number
         6                     Unassigned
         7                     Interface and Label Stack
         8                     Unassigned
         9                     Errored TLVs
              Any value        The TLV not understood
        10                     Reply TOS Byte
        20                     Downstream Detailed Mapping

   IANA has updated the reference for each of these values to this
   document.














Kompella, et al.             Standards Track                   [Page 63]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


6.2.3.  Global Flags

   IANA has created a "Global Flags" subregistry of the "Multiprotocol
   Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
   registry.

   This registry tracks the assignment of 16 flags in the Global Flags
   field of the MPLS LSP ping echo request message.  The flags are
   numbered from 0 (most significant bit, transmitted first) to 15.

   New entries are assigned by Standards Action.

   Initial entries in the registry are as follows:

      Bit number  |  Name                      | Reference
      ------------+----------------------------+--------------
        15        |  V Flag                    | [RFC8029]
        14        |  T Flag                    | [RFC6425]
        13        |  R Flag                    | [RFC6426]
        12-0      |  Unassigned                | [RFC8029]

6.2.4.  Downstream Detailed Mapping Address Type

   This document extends RFC 4379 by defining a new address type for use
   with the Downstream Mapping and Downstream Detailed Mapping TLVs.
   IANA has established a registry to assign address types for use with
   the Downstream Mapping and Downstream Detailed Mapping TLVs, which
   initially allocates the following assignments:

      Type #     Address Type      K Octets    Reference
      ------     ------------      --------    ---------
           1     IPv4 Numbered           16    [RFC8029]
           2     IPv4 Unnumbered         16    [RFC8029]
           3     IPv6 Numbered           40    [RFC8029]
           4     IPv6 Unnumbered         28    [RFC8029]
           5     Non IP                  12    [RFC6426]

             Downstream Detailed Mapping Address Type Registry

   Because the field in this case is an 8-bit field, the allocation
   policy for this registry is "Standards Action".










Kompella, et al.             Standards Track                   [Page 64]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


6.2.5.  DS Flags

   This document defines the Downstream Mapping (DSMAP) TLV and the
   Downstream Detailed Mapping (DDMAP) TLV, which have Type 2 and Type
   20, respectively, assigned from the "TLVs" subregistry of the
   "Multiprotocol Label Switching (MPLS) Label Switched Paths (LSPs)
   Ping Parameters" registry.

   DSMAP has been deprecated by DDMAP, but both TLVs share a field: DS
   Flags.

   IANA has created and now maintains a registry entitled "DS Flags".

   The registration policy for this registry is Standards Action
   [RFC5226].

   IANA has made the following assignments:

    Bit Number Name                                         Reference
    ---------- -------------------------------------------  ---------
          7    N: Treat as a Non-IP Packet                  [RFC8029]
          6    I: Interface and Label Stack Object Request  [RFC8029]
          5    E: ELI/EL push indicator                     [RFC8012]
          4    L: Label-based load balance indicator        [RFC8012]
        3-0    Unassigned


























Kompella, et al.             Standards Track                   [Page 65]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


6.2.6.  Multipath Types

   IANA has created and now maintains a registry entitled "Multipath
   Types".

   The registration policy [RFC5226] for this registry is Standards
   Action.

   IANA has made the following assignments:

    Value      Meaning                                  Reference
    ---------- ---------------------------------------- ---------
          0    no multipath                             [RFC8029]
          1    Unassigned
          2    IP address                               [RFC8029]
          3    Unassigned
          4    IP address range                         [RFC8029]
        5-7    Unassigned
          8    Bit-masked IP address set                [RFC8029]
          9    Bit-masked label set                     [RFC8029]
         10    IP and label set                         [RFC8012]
     11-250    Unassigned
    251-254    Reserved for Experimental Use            [RFC8029]
        255    Reserved                                 [RFC8029]

6.2.7.  Pad Type

   IANA has created and now maintains a registry entitled "Pad Types".

   The registration policy [RFC5226] for this registry is Standards
   Action.

   IANA has made the following initial assignments:

   Registry Name: Pad Types

    Value      Meaning                                  Reference
    ---------- ---------------------------------------- ---------
          0    Reserved                                 [RFC8029]
          1    Drop Pad TLV from reply                  [RFC8029]
          2    Copy Pad TLV to reply                    [RFC8029]
      3-250    Unassigned
    251-254    Experimental Use                         [RFC8029]
        255    Reserved                                 [RFC8029]







Kompella, et al.             Standards Track                   [Page 66]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


6.2.8.  Interface and Label Stack Address Type

   IANA has created and now maintains a registry entitled "Interface and
   Label Stack Address Types".

   The registration policy [RFC5226] for this registry is Standards
   Action.

   IANA has made the following initial assignments:

   Registry Name: Interface and Label Stack Address Types

    Value      Meaning                                  Reference
    ---------- ---------------------------------------- ---------
          0    Reserved                                 [RFC8029]
          1    IPv4 Numbered                            [RFC8029]
          2    IPv4 Unnumbered                          [RFC8029]
          3    IPv6 Numbered                            [RFC8029]
          4    IPv6 Unnumbered                          [RFC8029]
      5-250    Unassigned
    251-254    Experimental Use                         [RFC8029]
        255    Reserved                                 [RFC8029]

6.3.  IPv4 Special-Purpose Address Registry

   IANA has updated the reference in Note 1 of the "IANA IPv4 Special-
   Purpose Address Registry" [IANA-SPECIAL-IPv4] to point to this
   document.

7.  References

7.1.  Normative References

   [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
              Communication Layers", STD 3, RFC 1122,
              DOI 10.17487/RFC1122, October 1989,
              <http://www.rfc-editor.org/info/rfc1122>.

   [RFC1812]  Baker, F., Ed., "Requirements for IP Version 4 Routers",
              RFC 1812, DOI 10.17487/RFC1812, June 1995,
              <http://www.rfc-editor.org/info/rfc1812>.

   [RFC2113]  Katz, D., "IP Router Alert Option", RFC 2113,
              DOI 10.17487/RFC2113, February 1997,
              <http://www.rfc-editor.org/info/rfc2113>.






Kompella, et al.             Standards Track                   [Page 67]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
              Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
              Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
              <http://www.rfc-editor.org/info/rfc3032>.

   [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
              Border Gateway Protocol 4 (BGP-4)", RFC 4271,
              DOI 10.17487/RFC4271, January 2006,
              <http://www.rfc-editor.org/info/rfc4271>.

   [RFC4379]  Kompella, K. and G. Swallow, "Detecting Multi-Protocol
              Label Switched (MPLS) Data Plane Failures", RFC 4379,
              DOI 10.17487/RFC4379, February 2006,
              <http://www.rfc-editor.org/info/rfc4379>.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <http://www.rfc-editor.org/info/rfc5226>.

   [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <http://www.rfc-editor.org/info/rfc5905>.

   [RFC6424]  Bahadur, N., Kompella, K., and G. Swallow, "Mechanism for
              Performing Label Switched Path Ping (LSP Ping) over MPLS
              Tunnels", RFC 6424, DOI 10.17487/RFC6424, November 2011,
              <http://www.rfc-editor.org/info/rfc6424>.

   [RFC7506]  Raza, K., Akiya, N., and C. Pignataro, "IPv6 Router Alert
              Option for MPLS Operations, Administration, and
              Maintenance (OAM)", RFC 7506, DOI 10.17487/RFC7506, April
              2015, <http://www.rfc-editor.org/info/rfc7506>.

7.2.  Informative References

   [Err108]   RFC Errata, Erratum ID 108, RFC 4379.

   [Err742]   RFC Errata, Erratum ID 742, RFC 4379.

   [Err1418]  RFC Errata, Erratum ID 1418, RFC 4379.




Kompella, et al.             Standards Track                   [Page 68]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   [Err1714]  RFC Errata, Erratum ID 1714, RFC 4379.

   [Err1786]  RFC Errata, Erratum ID 1786, RFC 4379.

   [Err2978]  RFC Errata, Erratum ID 2978, RFC 4379.

   [Err3399]  RFC Errata, Erratum ID 3399, RFC 4379.

   [IANA-ENT] IANA, "PRIVATE ENTERPRISE NUMBERS",
              <http://www.iana.org/assignments/enterprise-numbers>.

   [IANA-MPLS-LSP-PING]
              IANA, "Multiprotocol Label Switching (MPLS) Label Switched
              Paths (LSPs) Ping Parameters",
              <http://www.iana.org/assignments/
              mpls-lsp-ping-parameters>.

   [IANA-SPECIAL-IPv4]
              IANA, "IANA IPv4 Special-Purpose Address Registry",
              <http://www.iana.org/assignments/
              iana-ipv4-special-registry>.

   [RFC0792]  Postel, J., "Internet Control Message Protocol", STD 5,
              RFC 792, DOI 10.17487/RFC0792, September 1981,
              <http://www.rfc-editor.org/info/rfc792>.

   [RFC3107]  Rekhter, Y. and E. Rosen, "Carrying Label Information in
              BGP-4", RFC 3107, DOI 10.17487/RFC3107, May 2001,
              <http://www.rfc-editor.org/info/rfc3107>.

   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
              <http://www.rfc-editor.org/info/rfc3209>.

   [RFC3443]  Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
              in Multi-Protocol Label Switching (MPLS) Networks",
              RFC 3443, DOI 10.17487/RFC3443, January 2003,
              <http://www.rfc-editor.org/info/rfc3443>.

   [RFC4026]  Andersson, L. and T. Madsen, "Provider Provisioned Virtual
              Private Network (VPN) Terminology", RFC 4026,
              DOI 10.17487/RFC4026, March 2005,
              <http://www.rfc-editor.org/info/rfc4026>.







Kompella, et al.             Standards Track                   [Page 69]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   [RFC4365]  Rosen, E., "Applicability Statement for BGP/MPLS IP
              Virtual Private Networks (VPNs)", RFC 4365,
              DOI 10.17487/RFC4365, February 2006,
              <http://www.rfc-editor.org/info/rfc4365>.

   [RFC4461]  Yasukawa, S., Ed., "Signaling Requirements for Point-to-
              Multipoint Traffic-Engineered MPLS Label Switched Paths
              (LSPs)", RFC 4461, DOI 10.17487/RFC4461, April 2006,
              <http://www.rfc-editor.org/info/rfc4461>.

   [RFC4761]  Kompella, K., Ed. and Y. Rekhter, Ed., "Virtual Private
              LAN Service (VPLS) Using BGP for Auto-Discovery and
              Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007,
              <http://www.rfc-editor.org/info/rfc4761>.

   [RFC5036]  Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
              "LDP Specification", RFC 5036, DOI 10.17487/RFC5036,
              October 2007, <http://www.rfc-editor.org/info/rfc5036>.

   [RFC5085]  Nadeau, T., Ed. and C. Pignataro, Ed., "Pseudowire Virtual
              Circuit Connectivity Verification (VCCV): A Control
              Channel for Pseudowires", RFC 5085, DOI 10.17487/RFC5085,
              December 2007, <http://www.rfc-editor.org/info/rfc5085>.

   [RFC5331]  Aggarwal, R., Rekhter, Y., and E. Rosen, "MPLS Upstream
              Label Assignment and Context-Specific Label Space",
              RFC 5331, DOI 10.17487/RFC5331, August 2008,
              <http://www.rfc-editor.org/info/rfc5331>.

   [RFC5462]  Andersson, L. and R. Asati, "Multiprotocol Label Switching
              (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
              Class" Field", RFC 5462, DOI 10.17487/RFC5462, February
              2009, <http://www.rfc-editor.org/info/rfc5462>.

   [RFC5885]  Nadeau, T., Ed. and C. Pignataro, Ed., "Bidirectional
              Forwarding Detection (BFD) for the Pseudowire Virtual
              Circuit Connectivity Verification (VCCV)", RFC 5885,
              DOI 10.17487/RFC5885, June 2010,
              <http://www.rfc-editor.org/info/rfc5885>.

   [RFC6425]  Saxena, S., Ed., Swallow, G., Ali, Z., Farrel, A.,
              Yasukawa, S., and T. Nadeau, "Detecting Data-Plane
              Failures in Point-to-Multipoint MPLS - Extensions to LSP
              Ping", RFC 6425, DOI 10.17487/RFC6425, November 2011,
              <http://www.rfc-editor.org/info/rfc6425>.






Kompella, et al.             Standards Track                   [Page 70]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   [RFC6426]  Gray, E., Bahadur, N., Boutros, S., and R. Aggarwal, "MPLS
              On-Demand Connectivity Verification and Route Tracing",
              RFC 6426, DOI 10.17487/RFC6426, November 2011,
              <http://www.rfc-editor.org/info/rfc6426>.

   [RFC6829]  Chen, M., Pan, P., Pignataro, C., and R. Asati, "Label
              Switched Path (LSP) Ping for Pseudowire Forwarding
              Equivalence Classes (FECs) Advertised over IPv6",
              RFC 6829, DOI 10.17487/RFC6829, January 2013,
              <http://www.rfc-editor.org/info/rfc6829>.

   [RFC7537]  Decraene, B., Akiya, N., Pignataro, C., Andersson, L., and
              S. Aldrin, "IANA Registries for LSP Ping Code Points",
              RFC 7537, DOI 10.17487/RFC7537, May 2015,
              <http://www.rfc-editor.org/info/rfc7537>.

   [RFC8012]  Akiya, N., Swallow, G., Pignataro, C., Malis, A., and S.
              Aldrin, "Label Switched Path (LSP) and Pseudowire (PW)
              Ping/Trace over MPLS Networks Using Entropy Labels (ELs)",
              RFC 8012, DOI 10.17487/RFC8012, November 2016,
              <http://www.rfc-editor.org/info/rfc8012>.

   [RFC8077]  Martini, L., Ed., and G. Heron, Ed., "Pseudowire Setup and
              Maintenance Using the Label Distribution Protocol (LDP)",
              STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017,
              <http://www.rfc-editor.org/info/rfc8077>.

























Kompella, et al.             Standards Track                   [Page 71]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


Appendix A.  Deprecated TLVs and Sub-TLVs (Non-normative)

   This appendix describes deprecated elements, which are non-normative
   for an implementation.  They are included in this document for
   historical and informational purposes.

A.1.  Target FEC Stack

A.1.1.  FEC 128 Pseudowire - IPv4 (Deprecated)

   FEC 128 (0x80) is defined in [RFC4447], as are the terms PW ID
   (Pseudowire ID) and PW Type (Pseudowire Type).  A PW ID is a non-zero
   32-bit connection ID.  The PW Type is a 15-bit number indicating the
   encapsulation type.  It is carried right justified in the field below
   termed encapsulation type with the high-order bit set to zero.  Both
   of these fields are treated in this protocol as opaque values.

   When a FEC 128 is encoded in a label stack, the following format is
   used.  The Value field consists of the Remote PE IPv4 Address (the
   destination address of the targeted LDP session), the PW ID, and the
   encapsulation type as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Remote PE IPv4 Address                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             PW ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            PW Type            |          Must Be Zero         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   This FEC is deprecated and is retained only for backward
   compatibility.  Implementations of LSP ping SHOULD accept and process
   this TLV, but SHOULD send LSP ping echo requests with the new TLV
   (see Section 3.2.9), unless explicitly configured to use the old TLV.

   An LSR receiving this TLV SHOULD use the source IP address of the LSP
   echo request to infer the sender's PE address.

A.2.  Downstream Mapping (Deprecated)

   The Downstream Mapping object is a TLV that MAY be included in an
   echo request message.  Only one Downstream Mapping object may appear
   in an echo request.  The presence of a Downstream Mapping object is a
   request that Downstream Mapping objects be included in the echo
   reply.  If the replying router is the destination of the FEC, then a
   Downstream Mapping TLV SHOULD NOT be included in the echo reply.



Kompella, et al.             Standards Track                   [Page 72]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Otherwise, the replying router SHOULD include a Downstream Mapping
   object for each interface over which this FEC could be forwarded.
   For a more precise definition of the notion of "downstream", see
   Section 3.4.2, "Downstream Router and Interface".

   The Length is K + M + 4*N octets, where M is the Multipath Length,
   and N is the number of downstream labels.  Values for K are found in
   the description of Address Type below.  The Value field of a
   Downstream Mapping has the following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               MTU             | Address Type  |    DS Flags   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Downstream IP Address (4 or 16 octets)            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Downstream Interface Address (4 or 16 octets)         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Multipath Type| Depth Limit   |        Multipath Length       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      .                                                               .
      .                     (Multipath Information)                   .
      .                                                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Downstream Label                |    Protocol   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      .                                                               .
      .                                                               .
      .                                                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Downstream Label                |    Protocol   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Maximum Transmission Unit (MTU)

      The MTU is the size in octets of the largest MPLS frame (including
      label stack) that fits on the interface to the downstream LSR.













Kompella, et al.             Standards Track                   [Page 73]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Address Type

      The Address Type indicates if the interface is numbered or
      unnumbered.  It also determines the length of the Downstream IP
      Address and Downstream Interface fields.  The resulting total for
      the initial part of the TLV is listed in the table below as "K
      Octets".  The Address Type is set to one of the following values:

       Type #        Address Type           K Octets
       ------        ------------           --------
            1        IPv4 Numbered                16
            2        IPv4 Unnumbered              16
            3        IPv6 Numbered                40
            4        IPv6 Unnumbered              28
            5        Non IP                       12

   DS Flags

      The DS Flags field is a bit vector with the following format:

        0 1 2 3 4 5 6 7
       +-+-+-+-+-+-+-+-+
       | Rsvd(MBZ) |I|N|
       +-+-+-+-+-+-+-+-+

   Two flags are defined currently, I and N.  The remaining flags MUST
   be set to zero when sending and ignored on receipt.

   Flag  Name and Meaning
   ----  ----------------
      I  Interface and Label Stack Object Request

         When this flag is set, it indicates that the replying
         router SHOULD include an Interface and Label Stack
         Object in the echo reply message.

      N  Treat as a Non-IP Packet

         Echo request messages will be used to diagnose non-IP
         flows.  However, these messages are carried in IP
         packets.  For a router that alters its ECMP algorithm
         based on the FEC or deep packet examination, this flag
         requests that the router treat this as it would if the
         determination of an IP payload had failed.







Kompella, et al.             Standards Track                   [Page 74]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Downstream IP Address and Downstream Interface Address

      IPv4 addresses and interface indices are encoded in 4 octets; IPv6
      addresses are encoded in 16 octets.

      If the interface to the downstream LSR is numbered, then the
      Address Type MUST be set to IPv4 or IPv6, the Downstream IP
      Address MUST be set to either the downstream LSR's Router ID or
      the interface address of the downstream LSR, and the Downstream
      Interface Address MUST be set to the downstream LSR's interface
      address.

      If the interface to the downstream LSR is unnumbered, the Address
      Type MUST be IPv4 Unnumbered or IPv6 Unnumbered, the Downstream IP
      Address MUST be the downstream LSR's Router ID, and the Downstream
      Interface Address MUST be set to the index assigned by the
      upstream LSR to the interface.

      If an LSR does not know the IP address of its neighbor, then it
      MUST set the Address Type to either IPv4 Unnumbered or IPv6
      Unnumbered.  For IPv4, it must set the Downstream IP Address to
      127.0.0.1; for IPv6, the address is set to 0::1.  In both cases,
      the interface index MUST be set to 0.  If an LSR receives an Echo
      Request packet with either of these addresses in the Downstream IP
      Address field, this indicates that it MUST bypass interface
      verification but continue with label validation.

      If the originator of an echo request packet wishes to obtain
      Downstream Mapping information but does not know the expected
      label stack, then it SHOULD set the Address Type to either IPv4
      Unnumbered or IPv6 Unnumbered.  For IPv4, it MUST set the
      Downstream IP Address to 224.0.0.2; for IPv6, the address MUST be
      set to FF02::2.  In both cases, the interface index MUST be set to
      0.  If an LSR receives an echo request packet with the all-routers
      multicast address, then this indicates that it MUST bypass both
      interface and label stack validation, but return Downstream
      Mapping TLVs using the information provided.














Kompella, et al.             Standards Track                   [Page 75]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Multipath Type

      The following Multipath Types are defined:

      Key   Type                  Multipath Information
      ---   ----------------      ---------------------
       0    no multipath          Empty (Multipath Length = 0)
       2    IP address            IP addresses
       4    IP address range      low/high address pairs
       8    Bit-masked IP         IP address prefix and bit mask
              address set
       9    Bit-masked label set  Label prefix and bit mask

      Type 0 indicates that all packets will be forwarded out this one
      interface.

      Types 2, 4, 8, and 9 specify that the supplied Multipath
      Information will serve to exercise this path.

   Depth Limit

      The Depth Limit is applicable only to a label stack and is the
      maximum number of labels considered in the hash; this SHOULD be
      set to zero if unspecified or unlimited.

   Multipath Length

      The length in octets of the Multipath Information.

   Multipath Information

      Address or label values encoded according to the Multipath Type.
      See Section 3.4.1.1.1 for encoding details.

   Downstream Label(s)

      The set of labels in the label stack as it would have appeared if
      this router were forwarding the packet through this interface.
      Any Implicit Null labels are explicitly included.  Labels are
      treated as numbers, i.e., they are right justified in the field.

      A downstream label is 24 bits, in the same format as an MPLS label
      minus the TTL field, i.e., the MSBit of the label is bit 0, the
      LSBit is bit 19, the TC bits are bits 20-22, and bit 23 is the S
      bit.  The replying router SHOULD fill in the TC and S bits; the
      LSR receiving the echo reply MAY choose to ignore these bits.





Kompella, et al.             Standards Track                   [Page 76]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


   Protocol

      The protocol is taken from the following table:

      Protocol #        Signaling Protocol
      ----------        ------------------
               0        Unknown
               1        Static
               2        BGP
               3        LDP
               4        RSVP-TE

Acknowledgements

   The original acknowledgements from RFC 4379 state the following:

      This document is the outcome of many discussions among many
      people, including Manoj Leelanivas, Paul Traina, Yakov Rekhter,
      Der-Hwa Gan, Brook Bailey, Eric Rosen, Ina Minei, Shivani
      Aggarwal, and Vanson Lim.

      The description of the Multipath Information sub-field of the
      Downstream Mapping TLV was adapted from text suggested by Curtis
      Villamizar.

   We would like to thank Loa Andersson for motivating the advancement
   of this specification.

   We also would like to thank Alexander Vainshtein, Yimin Shen, Curtis
   Villamizar, David Allan, Vincent Roca, Mirja Kuhlewind, and Elwyn
   Davies for their review and useful comments.

Contributors

   A mechanism used to detect data-plane failures in MPLS LSPs was
   originally published as RFC 4379 in February 2006.  It was produced
   by the MPLS Working Group of the IETF and was jointly authored by
   Kireeti Kompella and George Swallow.

   The following made vital contributions to all aspects of the original
   RFC 4379, and much of the material came out of debate and discussion
   among this group.

      Ronald P. Bonica, Juniper Networks, Inc.
      Dave Cooper, Global Crossing
      Ping Pan, Hammerhead Systems
      Nischal Sheth, Juniper Networks, Inc.
      Sanjay Wadhwa, Juniper Networks, Inc.



Kompella, et al.             Standards Track                   [Page 77]
^L
RFC 8029           Detecting MPLS Data-Plane Failures         March 2017


Authors' Addresses

   Kireeti Kompella
   Juniper Networks, Inc.

   Email: kireeti.kompella@gmail.com


   George Swallow
   Cisco Systems, Inc.

   Email: swallow.ietf@gmail.com


   Carlos Pignataro (editor)
   Cisco Systems, Inc.

   Email: cpignata@cisco.com


   Nagendra Kumar
   Cisco Systems, Inc.

   Email: naikumar@cisco.com


   Sam Aldrin
   Google

   Email: aldrin.ietf@gmail.com


   Mach(Guoyi) Chen
   Huawei

   Email: mach.chen@huawei.com















Kompella, et al.             Standards Track                   [Page 78]
^L