summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8037.txt
blob: f09dabe6c94e9ba7f379eef137d381c22f2d9ed4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
Internet Engineering Task Force (IETF)                      I. Liusvaara
Request for Comments: 8037                                   Independent
Category: Standards Track                                   January 2017
ISSN: 2070-1721


        CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures
              in JSON Object Signing and Encryption (JOSE)

Abstract

   This document defines how to use the Diffie-Hellman algorithms
   "X25519" and "X448" as well as the signature algorithms "Ed25519" and
   "Ed448" from the IRTF CFRG elliptic curves work in JSON Object
   Signing and Encryption (JOSE).

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc8037.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.







Liusvaara                    Standards Track                    [Page 1]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Key Type "OKP"  . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  Signatures  . . . . . . . . . . . . . . . . . . . . . . .   4
       3.1.1.  Signing . . . . . . . . . . . . . . . . . . . . . . .   4
       3.1.2.  Verification  . . . . . . . . . . . . . . . . . . . .   4
     3.2.  ECDH-ES . . . . . . . . . . . . . . . . . . . . . . . . .   4
       3.2.1.  Performing the ECDH Operation . . . . . . . . . . . .   5
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .   5
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   6
   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     6.1.  Normative References  . . . . . . . . . . . . . . . . . .   8
     6.2.  Informative References  . . . . . . . . . . . . . . . . .   8
   Appendix A.  Examples . . . . . . . . . . . . . . . . . . . . . .   9
     A.1.  Ed25519 Private Key . . . . . . . . . . . . . . . . . . .   9
     A.2.  Ed25519 Public Key  . . . . . . . . . . . . . . . . . . .   9
     A.3.  JWK Thumbprint Canonicalization . . . . . . . . . . . . .   9
     A.4.  Ed25519 Signing . . . . . . . . . . . . . . . . . . . . .  10
     A.5.  Ed25519 Validation  . . . . . . . . . . . . . . . . . . .  11
     A.6.  ECDH-ES with X25519 . . . . . . . . . . . . . . . . . . .  11
     A.7.  ECDH-ES with X448 . . . . . . . . . . . . . . . . . . . .  12
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  14
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  14

1.  Introduction

   The Internet Research Task Force (IRTF) Crypto Forum Research Group
   (CFRG) selected new Diffie-Hellman algorithms ("X25519" and "X448";
   [RFC7748]) and signature algorithms ("Ed25519" and "Ed448";
   [RFC8032]) for asymmetric key cryptography.  This document defines
   how to use those algorithms in JOSE in an interoperable manner.

   This document defines the conventions to use in the context of
   [RFC7515], [RFC7516], and [RFC7517].

   While the CFRG also defined two pairs of isogenous elliptic curves
   that underlie these algorithms, these curves are not directly
   exposed, as the algorithms laid on top are sufficient for the
   purposes of JOSE and are much easier to use.

   All inputs to and outputs from the Elliptic Curve Diffie-Hellman
   (ECDH) and signature functions are defined to be octet strings, with
   the exception of outputs of verification functions, which are
   booleans.




Liusvaara                    Standards Track                    [Page 2]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   "JWS Signing Input" and "JWS Signature" are defined by [RFC7515].

   "Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static"
   is defined by Section 4.6 of [RFC7518].

   The JOSE key format ("JSON Web Key (JWK)") is defined by [RFC7517]
   and thumbprints for it ("JSON Web Key (JWK) Thumbprint") in
   [RFC7638].

2.  Key Type "OKP"

   A new key type (kty) value "OKP" (Octet Key Pair) is defined for
   public key algorithms that use octet strings as private and public
   keys.  It has the following parameters:

   o  The parameter "kty" MUST be "OKP".

   o  The parameter "crv" MUST be present and contain the subtype of the
      key (from the "JSON Web Elliptic Curve" registry).

   o  The parameter "x" MUST be present and contain the public key
      encoded using the base64url [RFC4648] encoding.

   o  The parameter "d" MUST be present for private keys and contain the
      private key encoded using the base64url encoding.  This parameter
      MUST NOT be present for public keys.

   Note: Do not assume that there is an underlying elliptic curve,
   despite the existence of the "crv" and "x" parameters.  (For
   instance, this key type could be extended to represent Diffie-Hellman
   (DH) algorithms based on hyperelliptic surfaces.)

   When calculating JWK Thumbprints [RFC7638], the three public key
   fields are included in the hash input in lexicographic order: "crv",
   "kty", and "x".










Liusvaara                    Standards Track                    [Page 3]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


3.  Algorithms

3.1.  Signatures

   For the purpose of using the Edwards-curve Digital Signature
   Algorithm (EdDSA) for signing data using "JSON Web Signature (JWS)"
   [RFC7515], algorithm "EdDSA" is defined here, to be applied as the
   value of the "alg" parameter.

   The following key subtypes are defined here for use with EdDSA:

      "crv"             EdDSA Variant
      Ed25519           Ed25519
      Ed448             Ed448

   The key type used with these keys is "OKP" and the algorithm used for
   signing is "EdDSA".  These subtypes MUST NOT be used for Elliptic
   Curve Diffie-Hellman Ephemeral Static (ECDH-ES).

   The EdDSA variant used is determined by the subtype of the key
   (Ed25519 for "Ed25519" and Ed448 for "Ed448").

3.1.1.  Signing

   Signing for these is performed by applying the signing algorithm
   defined in [RFC8032] to the private key (as private key), public key
   (as public key), and the JWS Signing Input (as message).  The
   resulting signature is the JWS Signature.  All inputs and outputs are
   octet strings.

3.1.2.  Verification

   Verification is performed by applying the verification algorithm
   defined in [RFC8032] to the public key (as public key), the JWS
   Signing Input (as message), and the JWS Signature (as signature).
   All inputs are octet strings.  If the algorithm accepts, the
   signature is valid; otherwise, the signature is invalid.

3.2.  ECDH-ES

   The following key subtypes are defined here for purpose of "Key
   Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static"
   (ECDH-ES):

      "crv"             ECDH Function Applied
      X25519            X25519
      X448              X448




Liusvaara                    Standards Track                    [Page 4]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


   The key type used with these keys is "OKP".  These subtypes MUST NOT
   be used for signing.

   Section 4.6 of [RFC7518] defines the ECDH-ES algorithms
   "ECDH-ES+A128KW", "ECDH-ES+A192KW", "ECDH-ES+A256KW", and "ECDH-ES".

3.2.1.  Performing the ECDH Operation

   The "x" parameter of the "epk" field is set as follows:

   Apply the appropriate ECDH function to the ephemeral private key (as
   scalar input) and the standard base point (as u-coordinate input).
   The base64url encoding of the output is the value for the "x"
   parameter of the "epk" field.  All inputs and outputs are octet
   strings.

   The Z value (raw key agreement output) for key agreement (to be used
   in subsequent Key Derivation Function (KDF) as per Section 4.6.2 of
   [RFC7518]) is determined as follows:

   Apply the appropriate ECDH function to the ephemeral private key (as
   scalar input) and receiver public key (as u-coordinate input).  The
   output is the Z value.  All inputs and outputs are octet strings.

4.  Security Considerations

   Security considerations from [RFC7748] and [RFC8032] apply here.

   Do not separate key material from information about what key subtype
   it is for.  When using keys, check that the algorithm is compatible
   with the key subtype for the key.  To do otherwise opens the system
   up to attacks via mixing up algorithms.  It is particularly dangerous
   to mix up signature and Message Authentication Code (MAC) algorithms.

   Although for Ed25519 and Ed448, the signature binds the key used for
   signing, do not assume this, as there are many signature algorithms
   that fail to make such a binding.  If key-binding is desired, include
   the key used for signing either inside the JWS protected header or
   the data to sign.

   If key generation or batch signature verification is performed, a
   well-seeded cryptographic random number generator is REQUIRED.
   Signing and non-batch signature verification are deterministic
   operations and do not need random numbers of any kind.







Liusvaara                    Standards Track                    [Page 5]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


   The JSON Web Algorithm (JWA) ECDH-ES KDF construction does not mix
   keys into the final shared secret.  In key exchange, such mixing
   could be a bad mistake; whereas here either the receiver public key
   has to be chosen maliciously or the sender has to be malicious in
   order to cause problems.  In either case, all security evaporates.

   The nominal security strengths of X25519 and X448 are ~126 and ~223
   bits.  Therefore, using 256-bit symmetric encryption (especially key
   wrapping and encryption) with X448 is RECOMMENDED.

5.  IANA Considerations

   The following has been added to the "JSON Web Key Types" registry:

   o  "kty" Parameter Value: "OKP"
   o  Key Type Description: Octet string key pairs
   o  JOSE Implementation Requirements: Optional
   o  Change Controller: IESG
   o  Specification Document(s): Section 2 of RFC 8037

   The following has been added to the "JSON Web Key Parameters"
   registry:

   o  Parameter Name: "crv"
   o  Parameter Description: The subtype of key pair
   o  Parameter Information Class: Public
   o  Used with "kty" Value(s): "OKP"
   o  Change Controller: IESG
   o  Specification Document(s): Section 2 of RFC 8037

   o  Parameter Name: "d"
   o  Parameter Description: The private key
   o  Parameter Information Class: Private
   o  Used with "kty" Value(s): "OKP"
   o  Change Controller: IESG
   o  Specification Document(s): Section 2 of RFC 8037

   o  Parameter Name: "x"
   o  Parameter Description: The public key
   o  Parameter Information Class: Public
   o  Used with "kty" Value(s): "OKP"
   o  Change Controller: IESG
   o  Specification Document(s): Section 2 of RFC 8037








Liusvaara                    Standards Track                    [Page 6]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


   The following has been added to the "JSON Web Signature and
   Encryption Algorithms" registry:

   o  Algorithm Name: "EdDSA"
   o  Algorithm Description: EdDSA signature algorithms
   o  Algorithm Usage Location(s): "alg"
   o  JOSE Implementation Requirements: Optional
   o  Change Controller: IESG

   o  Specification Document(s): Section 3.1 of RFC 8037
   o  Algorithm Analysis Documents(s): [RFC8032]

   The following has been added to the "JSON Web Key Elliptic Curve"
   registry:

   o  Curve Name: "Ed25519"
   o  Curve Description: Ed25519 signature algorithm key pairs
   o  JOSE Implementation Requirements: Optional
   o  Change Controller: IESG
   o  Specification Document(s): Section 3.1 of RFC 8037

   o  Curve Name: "Ed448"
   o  Curve Description: Ed448 signature algorithm key pairs
   o  JOSE Implementation Requirements: Optional
   o  Change Controller: IESG
   o  Specification Document(s): Section 3.1 of RFC 8037

   o  Curve name: "X25519"
   o  Curve Description: X25519 function key pairs
   o  JOSE Implementation Requirements: Optional
   o  Change Controller: IESG
   o  Specification Document(s): Section 3.2 of RFC 8037
   o  Analysis Documents(s): [RFC7748]

   o  Curve Name: "X448"
   o  Curve Description: X448 function key pairs
   o  JOSE Implementation Requirements: Optional
   o  Change Controller: IESG
   o  Specification Document(s): Section 3.2 of RFC 8037
   o  Analysis Documents(s): [RFC7748]











Liusvaara                    Standards Track                    [Page 7]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


6.  References

6.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <http://www.rfc-editor.org/info/rfc4648>.

   [RFC7515]  Jones, M., Bradley, J., and N. Sakimura, "JSON Web
              Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
              2015, <http://www.rfc-editor.org/info/rfc7515>.

   [RFC7517]  Jones, M., "JSON Web Key (JWK)", RFC 7517,
              DOI 10.17487/RFC7517, May 2015,
              <http://www.rfc-editor.org/info/rfc7517>.

   [RFC7518]  Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
              DOI 10.17487/RFC7518, May 2015,
              <http://www.rfc-editor.org/info/rfc7518>.

   [RFC7638]  Jones, M. and N. Sakimura, "JSON Web Key (JWK)
              Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
              2015, <http://www.rfc-editor.org/info/rfc7638>.

   [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <http://www.rfc-editor.org/info/rfc7748>.

   [RFC8032]  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
              Signature Algorithm (EdDSA)", RFC 8032,
              DOI 10.17487/RFC8032, January 2017,
              <http://www.rfc-editor.org/info/rfc8032>.

6.2.  Informative References

   [RFC7516]  Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
              RFC 7516, DOI 10.17487/RFC7516, May 2015,
              <http://www.rfc-editor.org/info/rfc7516>.








Liusvaara                    Standards Track                    [Page 8]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


Appendix A.  Examples

   To the extent possible, these examples use material taken from test
   vectors of [RFC7748] and [RFC8032].

A.1.  Ed25519 Private Key

   {"kty":"OKP","crv":"Ed25519",
   "d":"nWGxne_9WmC6hEr0kuwsxERJxWl7MmkZcDusAxyuf2A",
   "x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwIaaPcHURo"}

   The hexadecimal dump of private key is:

   9d 61 b1 9d ef fd 5a 60 ba 84 4a f4 92 ec 2c c4
   44 49 c5 69 7b 32 69 19 70 3b ac 03 1c ae 7f 60

   And of the public key is:

   d7 5a 98 01 82 b1 0a b7 d5 4b fe d3 c9 64 07 3a
   0e e1 72 f3 da a6 23 25 af 02 1a 68 f7 07 51 1a

A.2.  Ed25519 Public Key

   This is the public part of the previous private key (which just omits
   "d"):

   {"kty":"OKP","crv":"Ed25519",
   "x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwIaaPcHURo"}

A.3.  JWK Thumbprint Canonicalization

   The JWK Thumbprint canonicalization of the two examples above (with a
   linebreak inserted for formatting reasons) is:

   {"crv":"Ed25519","kty":"OKP","x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwI
   aaPcHURo"}

   Which has the SHA-256 hash (in hexadecimal) of
   90facafea9b1556698540f70c0117a22ea37bd5cf3ed3c47093c1707282b4b89,
   which results in the base64url encoded JWK Thumbprint representation
   of "kPrK_qmxVWaYVA9wwBF6Iuo3vVzz7TxHCTwXBygrS4k".










Liusvaara                    Standards Track                    [Page 9]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


A.4.  Ed25519 Signing

   The JWS protected header is:

   {"alg":"EdDSA"}

   This has the base64url encoding of:

   eyJhbGciOiJFZERTQSJ9

   The payload is (text):

   Example of Ed25519 signing

   This has the base64url encoding of:

   RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc

   The JWS signing input is (a concatenation of base64url encoding of
   the (protected) header, a dot, and base64url encoding of the payload)
   is:

   eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc

   Applying the Ed25519 signing algorithm using the private key, public
   key, and the JWS signing input yields the signature (hex):

   86 0c 98 d2 29 7f 30 60 a3 3f 42 73 96 72 d6 1b
   53 cf 3a de fe d3 d3 c6 72 f3 20 dc 02 1b 41 1e
   9d 59 b8 62 8d c3 51 e2 48 b8 8b 29 46 8e 0e 41
   85 5b 0f b7 d8 3b b1 5b e9 02 bf cc b8 cd 0a 02

   Converting this to base64url yields:

   hgyY0il_MGCjP0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt
   9g7sVvpAr_MuM0KAg

   So the compact serialization of the JWS is (a concatenation of
   signing input, a dot, and base64url encoding of the signature):

   eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc.hgyY0il_MGCj
   P0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt9g7sVvpAr_Mu
   M0KAg








Liusvaara                    Standards Track                   [Page 10]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


A.5.  Ed25519 Validation

   The JWS from the example above is:

   eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc.hgyY0il_MGCj
   P0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt9g7sVvpAr_Mu
   M0KAg

   This has 2 dots in it, so it might be valid a JWS.  Base64url
   decoding the protected header yields:

   {"alg":"EdDSA"}

   So this is an EdDSA signature.  Now the key has: "kty":"OKP" and
   "crv":"Ed25519", so the signature is Ed25519 signature.

   The signing input is the part before the second dot:

   eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc

   Applying the Ed25519 verification algorithm to the public key, JWS
   signing input, and the signature yields true.  So the signature is
   valid.  The message is the base64url decoding of the part between the
   dots:

   Example of Ed25519 Signing

A.6.  ECDH-ES with X25519

   The public key to encrypt to is:

   {"kty":"OKP","crv":"X25519","kid":"Bob",
   "x":"3p7bfXt9wbTTW2HC7OQ1Nz-DQ8hbeGdNrfx-FG-IK08"}

   The public key from the target key is (hex):

   de 9e db 7d 7b 7d c1 b4 d3 5b 61 c2 ec e4 35 37
   3f 83 43 c8 5b 78 67 4d ad fc 7e 14 6f 88 2b 4f

   The ephemeral secret happens to be (hex):

   77 07 6d 0a 73 18 a5 7d 3c 16 c1 72 51 b2 66 45
   df 4c 2f 87 eb c0 99 2a b1 77 fb a5 1d b9 2c 2a

   So the ephemeral public key is X25519(ephkey, G) (hex):

   85 20 f0 09 89 30 a7 54 74 8b 7d dc b4 3e f7 5a
   0d bf 3a 0d 26 38 1a f4 eb a4 a9 8e aa 9b 4e 6a



Liusvaara                    Standards Track                   [Page 11]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


   This is represented as the ephemeral public key value:

   {"kty":"OKP","crv":"X25519",
   "x":"hSDwCYkwp1R0i33ctD73Wg2_Og0mOBr066SpjqqbTmo"}

   So the protected header could be, for example:

   {"alg":"ECDH-ES+A128KW","epk":{"kty":"OKP","crv":"X25519",
   "x":"hSDwCYkwp1R0i33ctD73Wg2_Og0mOBr066SpjqqbTmo"},
   "enc":"A128GCM","kid":"Bob"}

   And the sender computes the DH Z value as X25519(ephkey, recv_pub)
   (hex):

   4a 5d 9d 5b a4 ce 2d e1 72 8e 3b f4 80 35 0f 25
   e0 7e 21 c9 47 d1 9e 33 76 f0 9b 3c 1e 16 17 42

   The receiver computes the DH Z value as X25519(seckey, ephkey_pub)
   (hex):

   4a 5d 9d 5b a4 ce 2d e1 72 8e 3b f4 80 35 0f 25
   e0 7e 21 c9 47 d1 9e 33 76 f0 9b 3c 1e 16 17 42

   This is the same as the sender's value (both sides run this through
   the KDF before using it as a direct encryption key or AES128-KW key).

A.7.  ECDH-ES with X448

   The public key to encrypt to (with a linebreak inserted for
   formatting reasons) is:

   {"kty":"OKP","crv":"X448","kid":"Dave",
   "x":"PreoKbDNIPW8_AtZm2_sz22kYnEHvbDU80W0MCfYuXL8PjT7QjKhPKcG3LV67D2
   uB73BxnvzNgk"}

   The public key from the target key is (hex):

   3e b7 a8 29 b0 cd 20 f5 bc fc 0b 59 9b 6f ec cf
   6d a4 62 71 07 bd b0 d4 f3 45 b4 30 27 d8 b9 72
   fc 3e 34 fb 42 32 a1 3c a7 06 dc b5 7a ec 3d ae
   07 bd c1 c6 7b f3 36 09

   The ephemeral secret happens to be (hex):

   9a 8f 49 25 d1 51 9f 57 75 cf 46 b0 4b 58 00 d4
   ee 9e e8 ba e8 bc 55 65 d4 98 c2 8d d9 c9 ba f5
   74 a9 41 97 44 89 73 91 00 63 82 a6 f1 27 ab 1d
   9a c2 d8 c0 a5 98 72 6b



Liusvaara                    Standards Track                   [Page 12]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


   So the ephemeral public key is X448(ephkey, G) (hex):

   9b 08 f7 cc 31 b7 e3 e6 7d 22 d5 ae a1 21 07 4a
   27 3b d2 b8 3d e0 9c 63 fa a7 3d 2c 22 c5 d9 bb
   c8 36 64 72 41 d9 53 d4 0c 5b 12 da 88 12 0d 53
   17 7f 80 e5 32 c4 1f a0

   This is packed into the ephemeral public key value (a linebreak
   inserted for formatting purposes):

   {"kty":"OKP","crv":"X448",
   "x":"mwj3zDG34-Z9ItWuoSEHSic70rg94Jxj-qc9LCLF2bvINmRyQdlT1AxbEtqIEg1
   TF3-A5TLEH6A"}

   So the protected header could be, for example (a linebreak inserted
   for formatting purposes):

   {"alg":"ECDH-ES+A256KW","epk":{"kty":"OKP","crv":"X448",
   "x":"mwj3zDG34-Z9ItWuoSEHSic70rg94Jxj-qc9LCLF2bvINmRyQdlT1AxbEtqIEg1
   TF3-A5TLEH6A"},"enc":"A256GCM","kid":"Dave"}

   And the sender computes the DH Z value as X448(ephkey,recv_pub)
   (hex):

   07 ff f4 18 1a c6 cc 95 ec 1c 16 a9 4a 0f 74 d1
   2d a2 32 ce 40 a7 75 52 28 1d 28 2b b6 0c 0b 56
   fd 24 64 c3 35 54 39 36 52 1c 24 40 30 85 d5 9a
   44 9a 50 37 51 4a 87 9d

   The receiver computes the DH Z value as X448(seckey, ephkey_pub)
   (hex):

   07 ff f4 18 1a c6 cc 95 ec 1c 16 a9 4a 0f 74 d1
   2d a2 32 ce 40 a7 75 52 28 1d 28 2b b6 0c 0b 56
   fd 24 64 c3 35 54 39 36 52 1c 24 40 30 85 d5 9a
   44 9a 50 37 51 4a 87 9d

   This is the same as the sender's value (both sides run this through
   KDF before using it as the direct encryption key or AES256-KW key).












Liusvaara                    Standards Track                   [Page 13]
^L
RFC 8037            CFRG ECDH and Signatures in JOSE        January 2017


Acknowledgements

   Thanks to Michael B. Jones for his comments on an initial draft of
   this document and editorial help.

   Thanks to Matt Miller for some editorial help.

Author's Address

   Ilari Liusvaara
   Independent

   Email: ilariliusvaara@welho.com






































Liusvaara                    Standards Track                   [Page 14]
^L