1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
|
Independent Submission N. Leymann
Request for Comments: 8157 C. Heidemann
Category: Informational Deutsche Telekom AG
ISSN: 2070-1721 M. Zhang
B. Sarikaya
Huawei
M. Cullen
Painless Security
May 2017
Huawei's GRE Tunnel Bonding Protocol
Abstract
There is an emerging demand for solutions that provide redundancy and
load-sharing across wired and cellular links from a single Service
Provider, so that a single subscriber is provided with bonded access
to heterogeneous connections at the same time.
In this document, GRE (Generic Routing Encapsulation) Tunnel Bonding
is specified as an enabling approach for bonded access to a wired and
a wireless network in customer premises, e.g., homes. In GRE Tunnel
Bonding, two GRE tunnels, one per network connection, are set up and
bonded together to form a single GRE tunnel for a subscriber.
Compared with each subconnection, the bonded connections promise
increased access capacity and improved reliability. The solution
described in this document is currently implemented by Huawei and
deployed by Deutsche Telekom AG. This document will enable other
developers to build interoperable implementations.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc8157.
Leymann, et al. Informational [Page 1]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
1. Introduction ....................................................3
2. Acronyms and Terminology ........................................4
3. Use Case ........................................................6
4. Overview ........................................................7
4.1. Control Plane ..............................................7
4.2. Data Plane .................................................7
4.3. Traffic Classification and Distribution ....................8
4.4. Traffic Recombination ......................................8
4.5. Bypass .....................................................9
4.6. Measurement ................................................9
4.7. Policy Control Considerations ..............................9
5. Control Protocol Specification (Control Plane) .................10
5.1. GRE Tunnel Setup Request ..................................12
5.1.1. Client Identification Name .........................12
5.1.2. Session ID .........................................13
5.1.3. DSL Synchronization Rate ...........................14
5.2. GRE Tunnel Setup Accept ...................................14
5.2.1. H IPv4 Address .....................................15
5.2.2. H IPv6 Address .....................................15
5.2.3. Session ID .........................................16
5.2.4. RTT Difference Threshold ...........................16
5.2.5. Bypass Bandwidth Check Interval ....................17
5.2.6. Active Hello Interval ..............................17
5.2.7. Hello Retry Times ..................................18
5.2.8. Idle Timeout .......................................18
5.2.9. Bonding Key Value ..................................19
5.2.10. Configured DSL Upstream Bandwidth .................20
5.2.11. Configured DSL Downstream Bandwidth ...............21
5.2.12. RTT Difference Threshold Violation ................21
5.2.13. RTT Difference Threshold Compliance ...............22
5.2.14. Idle Hello Interval ...............................23
5.2.15. No Traffic Monitored Interval .....................23
Leymann, et al. Informational [Page 2]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.3. GRE Tunnel Setup Deny .....................................24
5.3.1. Error Code .........................................24
5.4. GRE Tunnel Hello ..........................................25
5.4.1. Timestamp ..........................................25
5.4.2. IPv6 Prefix Assigned by HAAP .......................26
5.5. GRE Tunnel Tear Down ......................................26
5.6. GRE Tunnel Notify .........................................27
5.6.1. Bypass Traffic Rate ................................27
5.6.2. Filter List Package ................................28
5.6.3. Switching to DSL Tunnel ............................31
5.6.4. Overflowing to LTE Tunnel ..........................31
5.6.5. DSL Link Failure ...................................32
5.6.6. LTE Link Failure ...................................32
5.6.7. IPv6 Prefix Assigned to Host .......................33
5.6.8. Diagnostic Start: Bonding Tunnel ...................33
5.6.9. Diagnostic Start: DSL Tunnel .......................34
5.6.10. Diagnostic Start: LTE Tunnel ......................34
5.6.11. Diagnostic End ....................................35
5.6.12. Filter List Package ACK ...........................35
5.6.13. Switching to Active Hello State ...................36
5.6.14. Switching to Idle Hello State .....................37
5.6.15. Tunnel Verification ...............................37
6. Tunnel Protocol Operation (Data Plane) .........................38
6.1. The GRE Header ............................................38
6.2. Automatic Setup of GRE Tunnels ............................39
7. Security Considerations ........................................41
8. IANA Considerations ............................................41
9. References .....................................................41
9.1. Normative References ......................................41
9.2. Informative References ....................................42
Contributors ......................................................43
Authors' Addresses ................................................44
1. Introduction
Service Providers used to provide subscribers with separate access to
their fixed networks and mobile networks. It has become desirable to
bond these heterogeneous networks together to offer access service to
subscribers; this service will provide increased access capacity and
improved reliability.
This document focuses on the use case where a DSL (Digital Subscriber
Line) connection and an LTE (Long Term Evolution) connection are
bonded together. When the traffic volume exceeds the bandwidth of
the DSL connection, the excess amount can be offloaded to the LTE
connection. A Home Gateway (HG) is a Customer Premises Equipment
(CPE) device initiating the DSL and LTE connections. A Hybrid Access
Aggregation Point (HAAP) is the network function that resides in the
Leymann, et al. Informational [Page 3]
^L
RFC 8157 GRE Tunnel Bonding May 2017
provider's networks to terminate these bonded connections. Note that
if there were more than two connections that need to be bonded, the
GRE Tunnel Bonding mechanism could support that scenario as well.
However, support for more than two connections is out of scope for
this document. Also, the protocol specified in this document is
limited to the single-operator scenario only, i.e., the two peering
boxes -- the HG and the HAAP -- are operated by a single provider.
The adaptation of the GRE Tunnel Bonding Protocol to the
multi-provider scenario is left for future work.
This document bases the solution on GRE (Generic Routing
Encapsulation [RFC2784] [RFC2890]), since GRE is widely supported in
both fixed and mobile networks. Approaches specified in this
document might also be used by other tunneling technologies to
achieve tunnel bonding. However, such variants are out of scope for
this document.
For each heterogeneous connection (DSL and LTE) between the HG and
the HAAP, one GRE tunnel is set up. The HG and the HAAP,
respectively, serve as the common termination point of the two
tunnels at both ends. Those GRE tunnels are further bonded together
to form a logical GRE tunnel for the subscriber. The HG conceals the
GRE tunnels from the end nodes, and end nodes simply treat the
logical GRE tunnel as a single IP link. This provides an overlay:
the users' IP packets (inner IP) are encapsulated in GRE, which is in
turn carried over IP (outer IP).
The GRE Tunnel Bonding Protocol is developed by Huawei and has been
deployed in networks operated by Deutsche Telekom AG. This document
makes this protocol available to the public, thereby enabling other
developers to build interoperable implementations.
2. Acronyms and Terminology
GRE: Generic Routing Encapsulation [RFC2784] [RFC2890].
DSL: Digital Subscriber Line. A family of technologies used to
transmit digital data over telephone lines.
LTE: Long Term Evolution. A standard for wireless communication of
high-speed data for mobile phones and data terminals. Commonly
marketed as 4G LTE.
HG: Home Gateway. A CPE device that is enhanced to support the
simultaneous use of both fixed broadband and 3GPP access
connections.
Leymann, et al. Informational [Page 4]
^L
RFC 8157 GRE Tunnel Bonding May 2017
HAAP: Hybrid Access Aggregation Point. A logical function in an
operator's network, terminating bonded connections while offering
high-speed Internet.
CIR: Committed Information Rate [RFC2697].
RTT: Round-Trip Time.
AAA: Authentication, Authorization, and Accounting [RFC6733].
SOAP: Simple Object Access Protocol. A protocol specification for
exchanging structured information in the implementation of web
services in computer networks.
FQDN: Fully Qualified Domain Name. Generally, a host name with at
least one domain label under the top-level domain. For example,
"dhcp.example.org" is an FQDN [RFC7031].
DSCP: The 6-bit codepoint (DSCP) of the Differentiated Services field
(DS field) in the IPv4 and IPv6 headers [RFC2724].
BRAS: Broadband Remote Access Server. Routes traffic to and from
broadband remote access devices such as Digital Subscriber Line
Access Multiplexers (DSLAMs) on an Internet Service Provider's
(ISP's) network.
PGW: Packet Data Network Gateway. In the Long Term Evolution (LTE)
architecture for the Evolved Packet Core (EPC), acts as an anchor
for user-plane mobility.
PDP: Packet Data Protocol. A packet transfer protocol used in
wireless GPRS (General Packet Radio Service) / HSDPA (High-Speed
Downlink Packet Access) networks.
PPPoE: Point-to-Point over Ethernet. A network protocol for
encapsulating PPP frames inside Ethernet frames.
DNS: Domain Name System. A hierarchical distributed naming system
for computers, services, or any resource connected to the Internet
or a private network.
DHCP: Dynamic Host Configuration Protocol. A standardized network
protocol used on Internet Protocol (IP) networks for dynamically
distributing network configuration parameters, such as IP
addresses for interfaces and services.
Leymann, et al. Informational [Page 5]
^L
RFC 8157 GRE Tunnel Bonding May 2017
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
3. Use Case
Bonding Connection
+-+ ****************************
| | *+-+ +-+*
| | *|E+-- LTE Connection --+ |*
subscriber |C| *+-+ |H|* Internet
| | *+-+ | |*
| | *|D+-- DSL Connection --+ |*
| | *+-+ +-+*
+-+ ****************************
\______/ \__/
HG HAAP
C: The service endpoint of the bonding service at the HG.
E: The endpoint of the LTE connection resides in the HG.
D: The endpoint of the DSL connection resides in the HG.
H: The endpoint for each heterogeneous connection at the HAAP.
Figure 1: Offloading from DSL to LTE, Increased Access Capacity
If a Service Provider runs heterogeneous networks, such as fixed and
mobile, subscribers might be eager to use those networks
simultaneously for increased access capacity rather than just using a
single network. As shown by the reference model in Figure 1, the
subscriber expects a significantly higher access bandwidth from the
bonding connection than from the DSL connection. In other words,
when the traffic volume exceeds the bandwidth of the DSL connection,
the excess amount may be offloaded to the LTE connection.
Compared to per-flow load-balancing mechanisms, which are widely used
nowadays, the use case described in this document requires a
per-packet offloading approach. For per-flow load balancing, the
maximum bandwidth that may be used by a traffic flow is the bandwidth
of an individual connection, while for per-packet offloading, a
single flow may use the combined bandwidth of the two connections.
Leymann, et al. Informational [Page 6]
^L
RFC 8157 GRE Tunnel Bonding May 2017
4. Overview
In this document, the widely supported GRE is chosen as the tunneling
technique. With the newly defined control protocol, GRE tunnels are
set up on top of the DSL and LTE connections, which are ended at
D and H or at E and H, as shown in Figure 1. These tunnels are
bonded together to form a single logical bonding connection between
the HG and the HAAP. Subscribers use this logical connection without
knowing the GRE tunnels.
4.1. Control Plane
A clean-slate control protocol is designed to manage the GRE tunnels
that are set up per heterogeneous connection between the HG and the
HAAP. The goal is to design a compact control plane for bonding
access instead of reusing existing control planes.
In order to measure the performance of connections, control packets
need to co-route the same path with data packets. Therefore, a
GRE Channel is opened for the purpose of data-plane forwarding of
control-plane packets. As shown in Figure 2 (see Section 5), the GRE
header [RFC2784] with the Key extension specified by [RFC2890] is
being used. The GRE Protocol Type (0xB7EA) is used to identify this
GRE Channel. A family of control messages is encapsulated with a GRE
header and carried over this channel. Attributes, formatted in
Type-Length-Value (TLV) style, are further defined and included in
each control message.
With the newly defined control plane, the GRE tunnels between the HG
and the HAAP can be established, managed, and released without the
involvement of operators.
4.2. Data Plane
Using the control plane defined in Section 4.1, GRE tunnels can be
automatically set up per heterogeneous connection between the HG and
the HAAP. For the use case described in Section 3, one GRE tunnel is
ended at the DSL WAN interfaces, e.g., the DSL GRE tunnel, and
another GRE tunnel is ended at the LTE WAN interfaces, e.g., the LTE
GRE tunnel. Each tunnel may carry a user's IP packets as payload,
which forms a typical IP-over-IP overlay. These tunnels are bonded
together to offer a single access point to subscribers.
As shown in Figure 3 (see Section 6.1), the GRE header [RFC2784] with
the Key and Sequence Number extensions specified by [RFC2890] is used
to encapsulate data packets. The Protocol Type is either 0x0800
(listed as "0x800" in [RFC2784]) or 0x86DD [RFC7676], which indicates
that the inner packet is either an IPv4 packet or an IPv6 packet,
Leymann, et al. Informational [Page 7]
^L
RFC 8157 GRE Tunnel Bonding May 2017
respectively. The GRE Key field is set to a unique value for the
entire bonding connection. The GRE Sequence Number field is used to
maintain the sequence of packets transported in all GRE tunnels as a
single flow between the HG and the HAAP.
4.3. Traffic Classification and Distribution
For the offloading use case, the coloring mechanism specified in
[RFC2697] is being used to classify subscribers' IP packets, both
upstream and downstream, into the DSL GRE tunnel or the LTE GRE
tunnel. Packets colored as green or yellow will be distributed into
the DSL GRE tunnel, and packets colored as red will be distributed
into the LTE GRE tunnel. For the scenario that requires more than
two GRE tunnels, multiple levels of token buckets might be realized.
However, that scenario is out of scope for this document.
The Committed Information Rate (CIR) of the coloring mechanism is set
to the total DSL WAN bandwidth minus the bypass DSL bandwidth (see
Section 4.5). The total DSL WAN bandwidth MAY be configured, MAY be
obtained from the management system (AAA server, SOAP server, etc.),
or MAY be detected in real time using the Access Node Control
Protocol (ANCP) [RFC6320].
4.4. Traffic Recombination
For the offloading use case, the recombination function at the
receiver provides in-order delivery of subscribers' traffic. The
receiver maintains a small reordering buffer and orders the data
packets in this buffer via the Sequence Number field [RFC2890] of the
GRE header. All packets carried on GRE tunnels that belong to the
same bonding connection go into a single reordering buffer.
Operators may configure the maximum allowed size (see
MAX_PERFLOW_BUFFER in [RFC2890]) of the buffer for reordering. They
may also configure the maximum time (see OUTOFORDER_TIMER in
[RFC2890]) that a packet can stay in the buffer for reordering. The
OUTOFORDER_TIMER must be configured carefully. Values larger than
the difference of the normal Round-Trip Time (RTT) (e.g., 100 ms) of
the two connections are not recommended. Implementation and
deployment experiences have demonstrated that there is usually a
large margin for the value of MAX_PERFLOW_BUFFER. Values larger than
the multiplication of the sum of the line rate of the two connections
and the value of OUTOFORDER_TIMER should be used.
Leymann, et al. Informational [Page 8]
^L
RFC 8157 GRE Tunnel Bonding May 2017
4.5. Bypass
Service Providers provide some services that should not be delivered
over the bonding connection. For example, Service Providers may not
expect real-time IPTV to be carried by the LTE GRE tunnel. It is
required that IPTV traffic bypass the GRE Tunnel Bonding and use the
raw DSL bandwidth. Bypass traffic is not subject to the traffic
classification and distribution specified above. The raw connection
used for bypass traffic is not controlled by the HAAP. It may or may
not go through a device in which the HAAP resides.
The HAAP may announce the service types that need to bypass the
bonded GRE tunnels by using the Filter List Package attribute as
specified in Section 5.6.2. The HG and the HAAP need to set aside
the DSL bandwidth for bypassing. The available DSL bandwidth for GRE
Tunnel Bonding is equal to the total DSL bandwidth minus the bypass
bandwidth.
4.6. Measurement
Since control packets are routed using the same paths as the data
packets, the real performance of the data paths (e.g., the GRE
tunnels) can be measured. The GRE Tunnel Hello messages specified in
Section 5.4 are used to carry the timestamp information, and the RTT
value can therefore be calculated based on the timestamp.
Besides the end-to-end delay of the GRE tunnels, the HG and the HAAP
need to measure the capacity of the tunnels as well. For example,
the HG is REQUIRED to measure the downstream bypassing bandwidth and
report it to the HAAP in real time (see Section 5.6.1).
4.7. Policy Control Considerations
Operators and users may input policies into the GRE Tunnel Bonding.
These policies will be "interpreted" into parameters or actions that
impact the traffic classification, distribution, combination,
measurement, and bypass.
Operators and users may offer the service types that need to bypass
the bonded GRE tunnels. Service types defined by operators (see
Section 5.6.2) will be delivered from the HAAP to the HG through the
control plane (see Section 4.1), and the HG will use the raw
connection to transmit traffic for these service types. Users may
also define bypass service types on the HG. Bypass service types
defined by users need not be delivered to the HAAP.
Leymann, et al. Informational [Page 9]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Operators may specify the interval for sending Hello messages and the
retry times for the HG or the HAAP to send out Hello messages before
the failure of a connection.
Since the GRE tunnels are set up on top of heterogeneous DSL and LTE
connections, if the difference of the transmission delays of these
connections exceeds a given threshold for a certain period, the HG
and the HAAP should be able to stop the offloading behavior and
fall back to a traditional transmission mode, where the LTE GRE
tunnel is disused while all traffic is transmitted over the DSL GRE
tunnel. Operators are allowed to define this threshold and period.
5. Control Protocol Specification (Control Plane)
Control messages are used to establish, maintain, measure, and
tear down GRE tunnels between the HG and the HAAP. Also, the control
plane undertakes the responsibility to convey traffic policies over
the GRE tunnels.
For the purpose of measurement, control messages need to be delivered
as GRE encapsulated packets and co-routed with data-plane packets.
The new GRE Protocol Type (0xB7EA) is allocated for this purpose, and
the standard GRE header as per [RFC2784] with the Key extension
specified by [RFC2890] is used. The Checksum Present bit is set
to 0. The Key Present bit is set to 1. The Sequence Number Present
bit is set to 0. So, the format of the GRE header for control
messages of the GRE Tunnel Bonding Protocol is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0| |1|0| Reserved0 | Ver | Protocol Type 0xB7EA |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Key
For security purposes, the Key field is used to carry a random
number. The random number is generated by the HAAP, and the HG is
informed of it (see Section 5.2.9).
Leymann, et al. Informational [Page 10]
^L
RFC 8157 GRE Tunnel Bonding May 2017
The general format of the entire control message is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0| |1|0| Reserved0 | Ver | Protocol Type 0xB7EA |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|MsgType|T-Type | |
+-+-+-+-+-+-+-+-+ Attributes +
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: Format of Control Messages of GRE Tunnel Bonding
MsgType (4 bits)
Message Type. The control message family contains the following
six types of control messages (not including "Reserved"):
Control Message Family Type
========================== =========
GRE Tunnel Setup Request 1
GRE Tunnel Setup Accept 2
GRE Tunnel Setup Deny 3
GRE Tunnel Hello 4
GRE Tunnel Tear Down 5
GRE Tunnel Notify 6
Reserved 0, 7-15
T-Type (4 bits)
Tunnel Type. Set to 0001 if the control message is sent via the
primary GRE tunnel (normally the DSL GRE tunnel). Set to 0010 if
the control message is sent via the secondary GRE tunnel (normally
the LTE GRE tunnel). Values 0000 and values from 0011 through
1111 are reserved for future use and MUST be ignored on receipt.
Leymann, et al. Informational [Page 11]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attributes
The Attributes field includes the attributes that need to be
carried in the control message. Each Attribute has the following
format:
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Value ~ (variable)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
The Attribute Type specifies the type of the attribute.
Attribute Length
Attribute Length indicates the length of the Attribute Value
in bytes.
Attribute Value
The Attribute Value includes the value of the attribute.
All control messages are sent in network byte order (high-order bytes
first). The Protocol Type carried in the GRE header for the control
message is 0xB7EA. Based on this number, the receiver will decide to
consume the GRE packet locally rather than forward it further.
5.1. GRE Tunnel Setup Request
The HG uses the GRE Tunnel Setup Request message to request that the
HAAP establish the GRE tunnels. It is sent out from the HG's LTE and
DSL WAN interfaces separately. Attributes that need to be included
in this message are defined in the following subsections.
5.1.1. Client Identification Name
An operator uses the Client Identification Name (CIN) to identify the
HG. The HG sends the CIN to the HAAP for authentication and
authorization as specified in [TS23.401]. It is REQUIRED that the
GRE Tunnel Setup Request message sent out from the LTE WAN interface
contain the CIN attribute while the GRE Tunnel Setup Request message
sent out from the DSL WAN interface does not contain this attribute.
Leymann, et al. Informational [Page 12]
^L
RFC 8157 GRE Tunnel Bonding May 2017
The CIN attribute has the following format:
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Client Identification Name (40 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
CIN, set to 3.
Attribute Length
Set to 40.
Client Identification Name
This is a 40-byte string value encoded in UTF-8 and set by the
operator. It is used as the identification of the HG in the
operator's network.
5.1.2. Session ID
This Session ID is generated by the HAAP when the LTE GRE Tunnel
Setup Request message is received. The HAAP announces the Session ID
to the HG in the LTE GRE Tunnel Setup Accept message. For those WAN
interfaces that need to be bonded together, the HG MUST use the same
Session ID. The HG MUST carry the Session ID attribute in each DSL
GRE Tunnel Setup Request message. For the first time that the LTE
GRE Tunnel Setup Request message is sent to the HAAP, the Session ID
attribute need not be included. However, if the LTE GRE tunnel fails
and the HG tries to revive it, the LTE GRE Tunnel Setup Request
message MUST include the Session ID attribute.
The Session ID attribute has the following format:
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Session ID (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Leymann, et al. Informational [Page 13]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
Session ID, set to 4.
Attribute Length
Set to 4.
Session ID
An unsigned integer generated by the HAAP. It is used as the
identification of bonded GRE tunnels.
5.1.3. DSL Synchronization Rate
The HG uses the DSL Synchronization Rate to notify the HAAP about the
downstream bandwidth of the DSL link. The DSL GRE Tunnel Setup
Request message MUST include the DSL Synchronization Rate attribute.
The LTE GRE Tunnel Setup Request message SHOULD NOT include this
attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| DSL Synchronization Rate (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
DSL Synchronization Rate, set to 7.
Attribute Length
Set to 4.
DSL Synchronization Rate
An unsigned integer measured in kbps.
5.2. GRE Tunnel Setup Accept
The HAAP uses the GRE Tunnel Setup Accept message as the response to
the GRE Tunnel Setup Request message. This message indicates
acceptance of the tunnel establishment and carries parameters of the
GRE tunnels. Attributes that need to be included in this message are
defined below.
Leymann, et al. Informational [Page 14]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.2.1. H IPv4 Address
The HAAP uses the H IPv4 Address attribute to inform the HG of the
H IPv4 address. The HG uses the H IPv4 address as the destination
endpoint IPv4 address of the GRE tunnels (the source endpoint IPv4
addresses of the GRE tunnels are the DSL WAN interface IP address (D)
and the LTE WAN interface IP address (E), respectively, as shown in
Figure 1). The LTE GRE Tunnel Setup Accept message MUST include the
H IPv4 Address attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| H IPv4 Address (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
H IPv4 Address, set to 1.
Attribute Length
Set to 4.
H IPv4 Address
Set to the pre-configured IPv4 address (e.g., an IP address of a
Line Card in the HAAP), which is used as the endpoint IP address
of GRE tunnels by the HAAP.
5.2.2. H IPv6 Address
The HAAP uses the H IPv6 Address attribute to inform the HG of the
H IPv6 address. The HG uses the H IPv6 address as the destination
endpoint IPv6 address of the GRE tunnels (the source endpoint IPv6
addresses of the GRE tunnels are the DSL WAN interface IP address (D)
and the LTE WAN interface IP address (E), respectively, as shown in
Figure 1).
The LTE GRE Tunnel Setup Accept message MUST include the H IPv6
Address attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| H IPv6 Address (16 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Leymann, et al. Informational [Page 15]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
H IPv6 Address, set to 2.
Attribute Length
Set to 16.
H IPv6 Address
Set to the pre-configured IPv6 address (e.g., an IP address of a
Line Card in the HAAP), which is used as the endpoint IP address
of GRE tunnels by the HAAP.
5.2.3. Session ID
The LTE GRE Tunnel Setup Accept message MUST include the Session ID
attribute as defined in Section 5.1.2.
5.2.4. RTT Difference Threshold
The HAAP uses the RTT Difference Threshold attribute to inform the HG
of the acceptable threshold of the RTT difference between the DSL
link and the LTE link. If the measured RTT difference exceeds this
threshold, the HG SHOULD stop offloading traffic to the LTE GRE
tunnel. The LTE GRE Tunnel Setup Accept message MUST include the RTT
Difference Threshold attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| RTT Difference Threshold (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
RTT Difference Threshold, set to 9.
Attribute Length
Set to 4.
RTT Difference Threshold
An unsigned integer measured in milliseconds. This value can be
chosen in the range 0 through 1000.
Leymann, et al. Informational [Page 16]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.2.5. Bypass Bandwidth Check Interval
The HAAP uses the Bypass Bandwidth Check Interval attribute to inform
the HG of how frequently the bypass bandwidth should be checked. The
HG should check the bypass bandwidth of the DSL WAN interface in each
time period indicated by this interval. The LTE GRE Tunnel Setup
Accept message MUST include the Bypass Bandwidth Check Interval
attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Bypass Bandwidth Check Interval (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Bypass Bandwidth Check Interval, set to 10.
Attribute Length
Set to 4.
Bypass Bandwidth Check Interval
An unsigned integer measured in seconds. This value can be chosen
in the range 10 through 300.
5.2.6. Active Hello Interval
The HAAP uses the Active Hello Interval attribute to inform the HG of
the pre-configured interval for sending out GRE Tunnel Hellos. The
HG should send out GRE Tunnel Hellos via both the DSL and LTE WAN
interfaces in each time period as indicated by this interval. The
LTE GRE Tunnel Setup Accept message MUST include the Active Hello
Interval attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Active Hello Interval (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Leymann, et al. Informational [Page 17]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
Active Hello Interval, set to 14.
Attribute Length
Set to 4.
Active Hello Interval
An unsigned integer measured in seconds. This value can be chosen
in the range 1 through 100.
5.2.7. Hello Retry Times
The HAAP uses the Hello Retry Times attribute to inform the HG of the
retry times for sending GRE Tunnel Hellos. If the HG does not
receive any acknowledgement from the HAAP for the number of GRE
Tunnel Hello attempts specified in this attribute, the HG will
declare a failure of the GRE tunnel. The LTE GRE Tunnel Setup Accept
message MUST include the Hello Retry Times attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Hello Retry Times (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Hello Retry Times, set to 15.
Attribute Length
Set to 4.
Hello Retry Times
An unsigned integer that takes values in the range 3 through 10.
5.2.8. Idle Timeout
The HAAP uses the Idle Timeout attribute to inform the HG of the
pre-configured timeout value to terminate the DSL GRE tunnel. When
an LTE GRE tunnel failure is detected, all traffic will be sent over
the DSL GRE tunnel. If the failure of the LTE GRE tunnel lasts
longer than the Idle Timeout, subsequent traffic will be sent over
raw DSL rather than over a tunnel, and the DSL GRE tunnel SHOULD be
terminated. The LTE GRE Tunnel Setup Accept message MUST include the
Idle Timeout attribute.
Leymann, et al. Informational [Page 18]
^L
RFC 8157 GRE Tunnel Bonding May 2017
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Idle Timeout (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Idle Timeout, set to 16.
Attribute Length
Set to 4.
Idle Timeout
An unsigned integer measured in seconds. It takes values in the
range 0 through 172,800 with a granularity of 60. The default
value is 86,400 (24 hours). The value 0 indicates that the idle
timer never expires.
5.2.9. Bonding Key Value
The HAAP uses the Bonding Key Value attribute to inform the HG of the
number that is to be carried as the Key of the GRE header for
subsequent control messages. The Bonding Key Value is generated by
the HAAP and used for security purposes.
The method used to generate this number is left up to
implementations. The pseudorandom number generator defined in
ANSI X9.31, Appendix A.2.4 [ANSI-X9.31-1998] is RECOMMENDED. Note
that random number generation "collisions" are allowed in the GRE
Tunnel Bonding Protocol.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Bonding Key Value (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Leymann, et al. Informational [Page 19]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
Bonding Key Value, set to 20.
Attribute Length
Set to 4.
Bonding Key Value
A 32-bit random number generated by the HAAP.
5.2.10. Configured DSL Upstream Bandwidth
The HAAP obtains the upstream bandwidth of the DSL link from the
management system and uses the Configured DSL Upstream Bandwidth
attribute to inform the HG. The HG uses the received upstream
bandwidth as the CIR [RFC2697] for the DSL link. The DSL GRE Tunnel
Setup Accept message MUST include the Configured DSL Upstream
Bandwidth attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Configured DSL Upstream Bandwidth (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Configured DSL Upstream Bandwidth, set to 22.
Attribute Length
Set to 4.
Configured DSL Upstream Bandwidth
An unsigned integer measured in kbps.
Leymann, et al. Informational [Page 20]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.2.11. Configured DSL Downstream Bandwidth
The HAAP obtains the downstream bandwidth of the DSL link from the
management system and uses the Configured DSL Downstream Bandwidth
attribute to inform the HG. The HG uses the received downstream
bandwidth as the base in calculating the bypassing bandwidth. The
DSL GRE Tunnel Setup Accept message MUST include the Configured DSL
Downstream Bandwidth attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
|Configured DSL Downstream Bandwidth(4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Configured DSL Downstream Bandwidth, set to 23.
Attribute Length
Set to 4.
Configured DSL Downstream Bandwidth
An unsigned integer measured in kbps.
5.2.12. RTT Difference Threshold Violation
The HAAP uses the RTT Difference Threshold Violation attribute to
inform the HG of the number of times in a row that the RTT Difference
Threshold (see Section 5.2.4) may be violated before the HG MUST stop
using the LTE GRE tunnel. If the RTT Difference Threshold is
continuously violated for more than the indicated number of
measurements, the HG MUST stop using the LTE GRE tunnel. The LTE GRE
Tunnel Setup Accept message MUST include the RTT Difference Threshold
Violation attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| RTT Diff Threshold Violation (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Leymann, et al. Informational [Page 21]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
RTT Difference Threshold Violation, set to 24.
Attribute Length
Set to 4.
RTT Difference Threshold Violation
An unsigned integer that takes values in the range 1 through 25.
A typical value is 3.
5.2.13. RTT Difference Threshold Compliance
The HAAP uses the RTT Difference Threshold Compliance attribute to
inform the HG of the number of times in a row that the RTT Difference
Threshold (see Section 5.2.4) must be compliant before use of the LTE
GRE tunnel can be resumed. If the RTT Difference Threshold is
continuously detected to be compliant across more than this number of
measurements, the HG MAY resume using the LTE GRE tunnel. The LTE
GRE Tunnel Setup Accept message MUST include the RTT Difference
Threshold Compliance attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| RTT Diff Threshold Compliance (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
RTT Difference Threshold Compliance, set to 25.
Attribute Length
Set to 4.
RTT Difference Threshold Compliance
An unsigned integer that takes values in the range 1 through 25.
A typical value is 3.
Leymann, et al. Informational [Page 22]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.2.14. Idle Hello Interval
The HAAP uses the Idle Hello Interval attribute to inform the HG of
the pre-configured interval for sending out GRE Tunnel Hellos when
the subscriber is detected to be idle. The HG SHOULD begin to send
out GRE Tunnel Hellos via both the DSL and LTE WAN interfaces in each
time period as indicated by this interval, if the bonded tunnels have
seen no traffic for a period longer than the "No Traffic Monitored
Interval" (see Section 5.2.15). The LTE GRE Tunnel Setup Accept
message MUST include the Idle Hello Interval attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Idle Hello Interval (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Idle Hello Interval, set to 31.
Attribute Length
Set to 4.
Idle Hello Interval
An unsigned integer measured in seconds. This value can be chosen
in the range 100 through 86,400 (24 hours) with a granularity of
100. The default value is 1800 (30 minutes).
5.2.15. No Traffic Monitored Interval
The HAAP uses the No Traffic Monitored Interval attribute to inform
the HG of the pre-configured interval for switching the GRE Tunnel
Hello mode. If traffic is detected on the bonded GRE tunnels before
this interval expires, the HG SHOULD switch to the Active Hello
Interval. The LTE GRE Tunnel Setup Accept message MUST include the
No Traffic Monitored Interval attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| No Traffic Monitored Interval (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Leymann, et al. Informational [Page 23]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
No Traffic Monitored Interval, set to 32.
Attribute Length
Set to 4.
No Traffic Monitored Interval
An unsigned integer measured in seconds. This value is in the
range 30 through 86,400 (24 hours). The default value is 60.
5.3. GRE Tunnel Setup Deny
The HAAP MUST send the GRE Tunnel Setup Deny message to the HG if the
GRE Tunnel Setup Request from this HG is denied. The HG MUST
terminate the GRE tunnel setup process as soon as it receives the GRE
Tunnel Setup Deny message.
5.3.1. Error Code
The HAAP uses the Error Code attribute to inform the HG of the error
code. The error code depicts why the GRE Tunnel Setup Request is
denied. Both the LTE GRE Tunnel Setup Deny message and the DSL GRE
Tunnel Setup Deny message MUST include the Error Code attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Error Code (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Error Code, set to 17.
Attribute Length
Set to 4.
Error Code
An unsigned integer. The list of codes is as follows:
1: The HAAP was not reachable over LTE during the GRE Tunnel
Setup Request.
2: The HAAP was not reachable via DSL during the GRE Tunnel Setup
Request.
3: The LTE GRE tunnel to the HAAP failed.
Leymann, et al. Informational [Page 24]
^L
RFC 8157 GRE Tunnel Bonding May 2017
4: The DSL GRE tunnel to the HAAP failed.
5: The given DSL User ID is not allowed to use the GRE Tunnel
Bonding service.
6: The given User Alias / User ID (Globally Unique Identifier
(GUID)) is not allowed to use the GRE Tunnel Bonding service.
7: The LTE and DSL User IDs do not match.
8: The HAAP denied the GRE Tunnel Setup Request because a bonding
session with the same User ID already exists.
9: The HAAP denied the GRE Tunnel Setup Request because the
user's CIN is not permitted.
10: The HAAP terminated a GRE Tunnel Bonding session for
maintenance reasons.
11: There was a communication error between the HAAP and the
management system during the LTE GRE Tunnel Setup Request.
12: There was a communication error between the HAAP and the
management system during the DSL GRE Tunnel Setup Request.
5.4. GRE Tunnel Hello
After the DSL/LTE GRE tunnel is established, the HG begins to
periodically send out GRE Tunnel Hello messages via the tunnel; the
HAAP acknowledges the HG's messages by returning GRE Tunnel Hello
messages to the HG. This continues until the tunnel is terminated.
5.4.1. Timestamp
The HAAP uses the Timestamp attribute to inform the HG of the
timestamp value that is used for RTT calculation. Both the LTE GRE
Tunnel Hello message and the DSL GRE Tunnel Hello message MUST
include the Timestamp attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Timestamp (8 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Leymann, et al. Informational [Page 25]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
Timestamp, set to 5.
Attribute Length
Set to 8.
Timestamp
The time since the system restarted. The high-order 4 bytes
indicate an unsigned integer in units of 1 second; the low-order
4 bytes indicate an unsigned integer in units of 1 millisecond.
5.4.2. IPv6 Prefix Assigned by HAAP
The HAAP uses the IPv6 Prefix Assigned by HAAP attribute to inform
the HG of the assigned IPv6 prefix. This IPv6 prefix is to be
captured via lawful intercept. Both the LTE GRE Tunnel Hello message
and the DSL GRE Tunnel Hello message MUST include the IPv6 Prefix
Assigned by HAAP attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| IPv6 Prefix Assigned by HAAP (16 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
IPv6 Prefix Assigned by HAAP, set to 13.
Attribute Length
Set to 17.
IPv6 Prefix Assigned by HAAP
The highest-order 16 bytes encode an IPv6 address. The
lowest-order 1 byte encodes the prefix length. These two values
are put together to represent an IPv6 prefix.
5.5. GRE Tunnel Tear Down
The HAAP can terminate a DSL/LTE GRE tunnel by sending the GRE Tunnel
Tear Down message to the HG via the tunnel. The Error Code attribute
as defined in Section 5.3.1 MUST be included in this message. After
receiving the GRE Tunnel Tear Down message, the HG removes the IP
address of H, which is the destination IP addresses of the DSL and
LTE GRE tunnels.
Leymann, et al. Informational [Page 26]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.6. GRE Tunnel Notify
The HG and the HAAP use the GRE Tunnel Notify message, which is
transmitted through either the DSL GRE tunnel or the LTE GRE tunnel,
to notify each other about their status regarding the DSL/LTE GRE
tunnels, the information for the bonded tunnels, the actions that
need to be taken, etc.
Usually, the receiver just sends the received attributes back as the
acknowledgement for each GRE Tunnel Notify message. However, there
is an exception for the Filter List Package: since the size of the
Filter List Package attribute can be very large, a special attribute
-- the Filter List Package ACK attribute -- is used as the
acknowledgement (see Section 5.6.12).
Attributes that need to be included in the GRE Tunnel Notify message
are defined below.
5.6.1. Bypass Traffic Rate
There are a few types of traffic that need to be transmitted over the
raw DSL WAN interface rather than the bonded GRE tunnels. The HG has
to set aside bypass bandwidth on the DSL WAN interface for these
traffic types. Therefore, the available bandwidth of the DSL GRE
tunnel is the entire DSL WAN interface bandwidth minus the occupied
bypass bandwidth.
The HG uses the Bypass Traffic Rate attribute to inform the HAAP of
the downstream bypass bandwidth for the DSL WAN interface. The
Bypass Traffic Rate attribute will be included in the DSL GRE Tunnel
Notify message. The HAAP calculates the available downstream
bandwidth for the DSL GRE tunnel as the Configured DSL Downstream
Bandwidth minus the bypass bandwidth provided by the HG. The
available DSL bandwidth will be used as the CIR of the coloring
system [RFC2697].
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Bypass Traffic Rate (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Leymann, et al. Informational [Page 27]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
Bypass Traffic Rate, set to 6.
Attribute Length
Set to 4.
Bypass Traffic Rate
An unsigned integer measured in kbps.
5.6.2. Filter List Package
The HAAP uses the Filter List Package attribute to inform the HG of
the service types that need to bypass the bonded GRE tunnels. The
full list of all Filter Items may be given by a series of Filter List
Package attributes with each specifying a partial list. At the HG, a
full list of Filter Items is maintained. Also, the HG needs to
maintain an exception list of Filter Items. For example, the packets
carrying the control messages defined in this document should be
excluded from the filter list.
Incoming packets that match a Filter Item in the filter list while
not matching any item in the exception list MUST be transmitted over
raw DSL rather than the bonded GRE tunnels. Both the LTE GRE Tunnel
Notify message and the DSL GRE Tunnel Notify message MAY include the
Filter List Package attribute. The DSL GRE Tunnel Notify message is
preferred.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Filter List TLV (variable) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Filter List Package, set to 8.
Attribute Length
The total length of the Filter List TLV. The maximum allowed
length is 969 bytes.
Leymann, et al. Informational [Page 28]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Filter List TLV
The Filter List TLV occurs one time in a Filter List Package
attribute. It has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Commit_Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Packet_Sum | Packet_ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Filter Item (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Filter Item (n) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where each Filter Item is of the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Enable | Description Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Description Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Commit_Count
An unsigned integer that identifies the version of the Filter
Item list. The version is shared by all Filter List Packages
and increases monotonically by one for each new Filter Item
list. The HG MUST refresh its Filter Item list when a new
Commit_Count is received.
Packet_Sum
If a single Filter List Package attribute might make the
control message larger than the MTU, fragmentation is used.
The Packet_Sum indicates the total number of fragments.
Packet_ID
The fragmentation index for this Filter List Package attribute.
Each fragment is numbered starting at 1 and increasing by one
up to Packet_Sum.
Leymann, et al. Informational [Page 29]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Type
The Type of the Filter Item. Currently, the following types
are supported:
Filter Item Type
=========================== ============
FQDN [RFC7031] 1
DSCP [RFC2724] 2
Destination Port 3
Destination IP 4
Destination IP & Port 5
Source Port 6
Source IP 7
Source IP & Port 8
Source MAC 9
Protocol 10
Source IP Range 11
Destination IP Range 12
Source IP Range & Port 13
Destination IP Range & Port 14
Other values are reserved for future use and MUST be ignored on
receipt.
Length
The length of the Filter Item in bytes. Type and Length are
excluded.
Enable
An integer that indicates whether or not the Filter Item is
enabled. A value of 1 means "enabled", and a value of 0 means
"disabled". Other possible values are reserved and MUST be
ignored on receipt.
Description Length
The length of the Description Value in bytes.
Description Value
A variable-length string value encoded in UTF-8 that describes
the Filter List TLV (e.g., "FQDN").
Value
A variable-length string encoded in UTF-8 that specifies the
value of the Filter Item (e.g., "www.yahoo.com"). As an
example, Type = 1 and Value = "www.yahoo.com" mean that packets
whose FQDN field equals "www.yahoo.com" match the Filter Item.
"Source MAC" (source Media Access Control address) values are
specified using hexadecimal numbers. Port numbers are decimals
Leymann, et al. Informational [Page 30]
^L
RFC 8157 GRE Tunnel Bonding May 2017
as assigned by IANA in [Port-NO]. For the "Protocol" type, the
value could be either a decimal or a keyword specified by IANA
in [Pro-NO]. The formats for IP addresses and IP address
ranges are defined in [RFC4632] and [RFC4291] for IPv4 and
IPv6, respectively. A Filter Item of Type 5, 8, 13, or 14 is a
combination of two parameters; values for the two parameters
are separated by a colon (":").
5.6.3. Switching to DSL Tunnel
If the RTT difference is continuously detected to be in violation of
the RTT Difference Threshold (see Section 5.2.4) more than the number
of times specified in the RTT Difference Threshold Violation
attribute (see Section 5.2.12), the HG uses the Switching to DSL
Tunnel attribute to inform the HAAP to use the DSL GRE tunnel only.
When the HAAP receives this attribute, it MUST begin to transmit
downstream traffic to this HG solely over the DSL GRE tunnel. The
DSL GRE Tunnel Notify message MAY include the Switching to DSL Tunnel
attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
Switching to DSL Tunnel, set to 11.
Attribute Length
Set to 0.
5.6.4. Overflowing to LTE Tunnel
If the RTT difference is continuously detected to not be in violation
of the RTT Difference Threshold (see Section 5.2.4) more than the
number of times specified in the RTT Difference Threshold Compliance
attribute (see Section 5.2.13), the HG uses the Overflowing to LTE
Tunnel attribute to inform the HAAP that the LTE GRE tunnel can be
used again. The DSL GRE Tunnel Notify message MAY include the
Overflowing to LTE Tunnel attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Leymann, et al. Informational [Page 31]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Attribute Type
Overflowing to LTE Tunnel, set to 12.
Attribute Length
Set to 0.
5.6.5. DSL Link Failure
When the HG detects that the DSL WAN interface status is "down", it
MUST tear down the DSL GRE tunnel. It informs the HAAP about the
failure by using the DSL Link Failure attribute. The HAAP MUST
tear down the DSL GRE tunnel upon receipt of the DSL Link Failure
attribute. The DSL Link Failure attribute SHOULD be carried in the
LTE GRE Tunnel Notify message.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
DSL Link Failure, set to 18.
Attribute Length
Set to 0.
5.6.6. LTE Link Failure
When the HG detects that the LTE WAN interface status is "down", it
MUST tear down the LTE GRE tunnel. It informs the HAAP about the
failure by using the LTE Link Failure attribute. The HAAP MUST
tear down the LTE GRE tunnel upon receipt of the LTE Link Failure
attribute. The LTE Link Failure attribute SHOULD be carried in the
DSL GRE Tunnel Notify message.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
LTE Link Failure, set to 19.
Attribute Length
Set to 0.
Leymann, et al. Informational [Page 32]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.6.7. IPv6 Prefix Assigned to Host
If the HG changes the IPv6 prefix assigned to the host, it uses the
IPv6 Prefix Assigned to Host attribute to inform the HAAP. Both the
LTE GRE Tunnel Notify message and the DSL GRE Tunnel Notify message
MAY include the IPv6 Prefix Assigned to Host attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| IPv6 Prefix Assigned to Host (16 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
IPv6 Prefix Assigned to Host, set to 21.
Attribute Length
Set to 17.
IPv6 Prefix Assigned to Host
The highest-order 16 bytes encode an IPv6 address. The
lowest-order 1 byte encodes the prefix length. These two values
are put together to represent an IPv6 prefix.
5.6.8. Diagnostic Start: Bonding Tunnel
The HG uses the Diagnostic Start: Bonding Tunnel attribute to inform
the HAAP to switch to diagnostic mode to test the performance of the
entire bonding tunnel. The Diagnostic Start: Bonding Tunnel
attribute SHOULD be carried in the DSL GRE Tunnel Notify message.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
Diagnostic Start: Bonding Tunnel, set to 26.
Attribute Length
Set to 0.
Leymann, et al. Informational [Page 33]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.6.9. Diagnostic Start: DSL Tunnel
The HG uses the Diagnostic Start: DSL Tunnel attribute to inform the
HAAP to switch to diagnostic mode to test the performance of the DSL
GRE tunnel. The Diagnostic Start: DSL Tunnel attribute SHOULD be
carried in the DSL GRE Tunnel Notify message.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
Diagnostic Start: DSL Tunnel, set to 27.
Attribute Length
Set to 0.
5.6.10. Diagnostic Start: LTE Tunnel
The HG uses the Diagnostic Start: LTE Tunnel attribute to inform the
HAAP to switch to diagnostic mode to test the performance of the
LTE GRE tunnel. The Diagnostic Start: LTE Tunnel attribute SHOULD be
carried in the DSL GRE Tunnel Notify message.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
Diagnostic Start: LTE Tunnel, set to 28.
Attribute Length
Set to 0.
Leymann, et al. Informational [Page 34]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.6.11. Diagnostic End
The HG uses the Diagnostic End attribute to inform the HAAP to stop
operating in diagnostic mode. The Diagnostic End attribute SHOULD be
carried in the DSL GRE Tunnel Notify message.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
Diagnostic End, set to 29.
Attribute Length
Set to 0.
5.6.12. Filter List Package ACK
The HG uses the Filter List Package ACK attribute to acknowledge the
Filter List Package sent by the HAAP. Both the LTE GRE Tunnel Notify
message and the DSL GRE Tunnel Notify message MAY include the Filter
List Package ACK attribute.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+
| Filter List Package ACK (5 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...+-+
Attribute Type
Filter List Package ACK, set to 30.
Attribute Length
Set to 5.
Leymann, et al. Informational [Page 35]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Filter List Package ACK
The highest-order 4 bytes are the Commit_Count as defined in
Section 5.6.2. The lowest-order 1 byte encodes the following
error codes:
0: The Filter List Package is acknowledged.
1: The Filter List Package is not acknowledged. The HG is a new
subscriber and has not ever received a Filter List Package. In
this case, the HAAP SHOULD tear down the bonding tunnels and
force the HG to re-establish the GRE tunnels.
2: The Filter List Package is not acknowledged. The HG has
already gotten a valid Filter List Package. The filter list on
the HG will continue to be used, while the HAAP need not do
anything.
5.6.13. Switching to Active Hello State
If traffic is being sent/received over the bonding GRE tunnels before
the "No Traffic Monitored Interval" expires (see Section 5.2.15), the
HG sends the HAAP a GRE Tunnel Notify message containing the
Switching to Active Hello State attribute.
The HAAP will switch to Active Hello State and send the HG a GRE
Tunnel Notify message carrying the Switching to Active Hello State
attribute as the ACK.
When the HG receives the ACK, it will switch to Active Hello State,
start RTT detection, and start sending GRE Tunnel Hello messages with
the Active Hello Interval (see Section 5.2.6).
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
Switching to Active Hello State, set to 33.
Attribute Length
Set to 0.
Leymann, et al. Informational [Page 36]
^L
RFC 8157 GRE Tunnel Bonding May 2017
5.6.14. Switching to Idle Hello State
The HG initiates switching to Idle Hello State when the bonding of
GRE tunnels is successfully established and the LTE GRE Tunnel Setup
Accept message carrying the Idle Hello Interval attribute (see
Section 5.2.14) is received. The HG sends the HAAP a GRE Tunnel
Notify message containing the Switching to Idle Hello State
attribute.
The HAAP will switch to Idle Hello State, clear RTT state, and send
the HG a GRE Tunnel Notify message carrying the Switching to Idle
Hello State attribute as the ACK.
When the HG receives the ACK, it will (1) switch to Idle Hello State,
(2) stop RTT detection and clear RTT state, and (3) start sending GRE
Tunnel Hello messages with the Idle Hello Interval (see
Section 5.2.14).
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
Switching to Idle Hello State, set to 34.
Attribute Length
Set to 0.
5.6.15. Tunnel Verification
The HAAP uses the Tunnel Verification attribute to inform the HG to
verify whether an existing LTE GRE tunnel is still functioning. The
Tunnel Verification attribute SHOULD be carried in the LTE GRE Tunnel
Notify message. It provides a means to detect the tunnel faster than
the GRE Tunnel Hello, especially when the LTE GRE tunnel is in the
Idle Hello State and it takes a much longer time to detect this
tunnel.
When the HAAP receives an LTE GRE Tunnel Setup Request and finds that
the requested tunnel conflicts with an existing tunnel, the HAAP
initiates tunnel verification. The HAAP drops all conflicting LTE
GRE Tunnel Setup Request messages and sends GRE Tunnel Notify
messages carrying the Tunnel Verification attribute until the
verification ends. The HG MUST respond to the HAAP with the same
Tunnel Verification attribute as the ACK if the tunnel is still
functioning.
Leymann, et al. Informational [Page 37]
^L
RFC 8157 GRE Tunnel Bonding May 2017
If the ACK of the Tunnel Verification attribute is received from the
HG, the HAAP determines that the existing tunnel is still
functioning. An LTE GRE Tunnel Deny message (with Error Code = 8)
will be sent to the HG. The HG SHOULD terminate the GRE Tunnel Setup
Request process immediately.
If the HAAP does not receive a tunnel verification ACK message after
three attempts (one initial attempt and two retries), it will regard
the existing tunnel as failed, and the LTE GRE Tunnel Setup Request
will be accepted.
+-+-+-+-+-+-+-+-+
|Attribute Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attribute Length | (2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type
Tunnel Verification, set to 35.
Attribute Length
Set to 0.
6. Tunnel Protocol Operation (Data Plane)
GRE tunnels are set up over heterogeneous connections, such as LTE
and DSL, between the HG and the HAAP. Users' IP (inner) packets are
encapsulated in GRE packets that are in turn carried in IP (outer)
packets. The general structure of data packets of the GRE Tunnel
Bonding Protocol is shown below.
+--------------------------------+
| Media Header |
+--------------------------------+
| Outer IP Header |
+--------------------------------+
| GRE Header |
+--------------------------------+
| Inner IP Packet |
+--------------------------------+
6.1. The GRE Header
The GRE header was first standardized in [RFC2784]. [RFC2890] added
the optional Key and Sequence Number fields.
The Checksum and the Reserved1 fields are not used in the GRE Tunnel
Bonding; therefore, the C bit is set to 0.
Leymann, et al. Informational [Page 38]
^L
RFC 8157 GRE Tunnel Bonding May 2017
The Key bit is set to 1 so that the Key field is present. The Key
field is used as a 32-bit random number. It is generated by the HAAP
per bonding connection, and the HG is notified (see Section 5.2.9).
The S bit is set to 1, and the Sequence Number field is present and
used for in-order delivery as per [RFC2890].
The Protocol Type field in the GRE header MUST be set to 0x0800 for
IPv4 or 0x86DD for IPv6. So, the GRE header used by data packets of
the GRE Tunnel Bonding Protocol has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0| |1|1| Reserved0 | Ver | Protocol Type 0x0800/86DD |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: GRE Header for Data Packets of GRE Tunnel Bonding
6.2. Automatic Setup of GRE Tunnels
The HG gets the DSL WAN interface IP address (D) from the Broadband
Remote Access Server (BRAS) via the Point-to-Point Protocol over
Ethernet (PPPoE) and gets the LTE WAN interface IP address (E)
through the Packet Data Protocol (PDP) from the Packet Data Network
Gateway (PGW). The domain name of a HAAP group may be configured or
obtained via the DSL/LTE WAN interface based on gateway configuration
protocols such as [TR-069], where the HAAP group comprises one or
multiple HAAPs. The Domain Name System (DNS) resolution of the HAAP
group's domain name is requested via the DSL/LTE WAN interface. The
DNS server will reply with an anycast HAAP IP address (G), which MAY
be pre-configured by the operator.
After the interface IP addresses have been acquired, the HG starts
the following GRE Tunnel Bonding procedure. It is REQUIRED that the
HG first set up the LTE GRE tunnel and then set up the DSL GRE
tunnel.
The HG sends the GRE Tunnel Setup Request message to the HAAP via the
LTE WAN interface. The outer source IP address for this message is
the LTE WAN interface IP address (E), while the outer destination IP
address is the anycast HAAP IP address (G). The HAAP with the
highest priority (e.g., the one that the HG has the least-cost path
to reach) in the HAAP group, which receives the GRE Tunnel Setup
Leymann, et al. Informational [Page 39]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Request message, will initiate the procedure for authentication and
authorization, as specified in [TS23.401], to check whether the HG is
trusted by the PGW.
If the authentication and authorization succeed, the HAAP sets the
LTE WAN interface IP address (E), which is obtained from the GRE
Tunnel Setup Request message (i.e., its outer source IP address), as
the destination endpoint IP address of the GRE tunnel and replies to
the HG's LTE WAN interface with the GRE Tunnel Setup Accept message
in which an IP address (H) of the HAAP (e.g., an IP address of a Line
Card in the HAAP) and a Session ID randomly generated by the HAAP are
carried as attributes. The outer source IP address for this message
is the IP address (H) or the anycast HAAP IP address (G), while the
outer destination IP address is the LTE WAN interface IP address (E).
Otherwise, the HAAP MUST send to the HG's LTE WAN interface the GRE
Tunnel Setup Deny message, and the HG MUST terminate the tunnel setup
process once it receives the GRE Tunnel Setup Deny message.
After the LTE GRE tunnel is successfully set up, the HG will obtain
the C address (see Figure 1) over the tunnel from the HAAP through
the Dynamic Host Configuration Protocol (DHCP). After that, the HG
starts to set up the DSL GRE tunnel. It sends a GRE Tunnel Setup
Request message via the DSL WAN interface, carrying the
aforementioned Session ID received from the HAAP. The outer source
IP address for this message is the DSL WAN interface IP address (D),
while the outer destination IP address is the IP address (H) of the
HAAP. The HAAP, which receives the GRE Tunnel Setup Request message,
will initiate the procedure for authentication and authorization in
order to check whether the HG is trusted by the BRAS.
If the authentication and authorization succeed, the HAAP sets the
DSL WAN interface IP address (D), which is obtained from the GRE
Tunnel Setup Request message (i.e., its outer source IP address), as
the destination endpoint IP address of the GRE tunnel and replies to
the HG's DSL WAN interface with the GRE Tunnel Setup Accept message.
The outer source IP address for this message is the IP address (H) of
the HAAP, while the outer destination IP address is the DSL WAN
interface IP address (D). In this way, the two tunnels with the same
Session ID can be used to carry traffic from the same user. That is
to say, the two tunnels are "bonded" together. Otherwise, if the
authentication and authorization fail, the HAAP MUST send to the HG's
DSL WAN interface the GRE Tunnel Setup Deny message. Meanwhile, it
MUST send to the HG's LTE WAN interface the GRE Tunnel Tear Down
message. The HG MUST terminate the tunnel setup process once it
receives the GRE Tunnel Setup Deny message and MUST tear down the LTE
GRE tunnel that has been set up once it receives the GRE Tunnel
Tear Down message.
Leymann, et al. Informational [Page 40]
^L
RFC 8157 GRE Tunnel Bonding May 2017
7. Security Considerations
Malicious devices controlled by attackers may intercept the control
messages sent on the GRE tunnels. Later on, the rogue devices may
fake control messages to disrupt the GRE tunnels or attract traffic
from the target HG.
As a security feature, the Key field of the GRE header of the control
messages and the data packets is generated as a 32-bit cleartext
password, except for the first GRE Setup Request message per bonding
connection sent from the HG to the HAAP, whose Key field is filled
with all zeros. The HAAP and the HG validate the Key value and the
outer source IP address, and they discard any packets with invalid
combinations.
Moreover, GRE over IP Security (IPsec) could be used to enhance
security.
8. IANA Considerations
IANA need not assign anything for the GRE Tunnel Bonding Protocol.
The GRE Protocol Type, the Ethertype for the GRE Channel, is set to
0xB7EA, which is under the control of the IEEE Registration
Authority. However, IANA has updated the "IEEE 802 Numbers" IANA web
page [802Type], which is of primarily historic interest.
9. References
9.1. Normative References
[Port-NO] IANA, "Service Name and Transport Protocol Port Number
Registry", <http://www.iana.org/assignments/
service-names-port-numbers>.
[Pro-NO] IANA, "Assigned Internet Protocol Numbers",
<http://www.iana.org/assignments/protocol-numbers>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC2697] Heinanen, J. and R. Guerin, "A Single Rate Three Color
Marker", RFC 2697, DOI 10.17487/RFC2697, September 1999,
<http://www.rfc-editor.org/info/rfc2697>.
Leymann, et al. Informational [Page 41]
^L
RFC 8157 GRE Tunnel Bonding May 2017
[RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
DOI 10.17487/RFC2784, March 2000,
<http://www.rfc-editor.org/info/rfc2784>.
[RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,
<http://www.rfc-editor.org/info/rfc2890>.
[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, DOI 10.17487/RFC4291,
February 2006, <http://www.rfc-editor.org/info/rfc4291>.
[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing
(CIDR): The Internet Address Assignment and Aggregation
Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632,
August 2006, <http://www.rfc-editor.org/info/rfc4632>.
[TR-069] Broadband Forum, "CPE WAN Management Protocol", Issue: 1
Amendment 5, November 2013,
<https://www.broadband-forum.org/technical/download/
TR-069_Amendment-5.pdf>.
[TS23.401] 3GPP TS23.401, "General Packet Radio Service (GPRS)
enhancements for Evolved Universal Terrestrial Radio
Access Network (E-UTRAN) access", v11.7.0, September 2013.
9.2. Informative References
[802Type] IANA, "IEEE 802 Numbers",
<http://www.iana.org/assignments/ieee-802-numbers>.
[ANSI-X9.31-1998]
ANSI Standard X9.31-1998, "Digital Signatures Using
Reversible Public Key Cryptography for the Financial
Services Industry (rDSA)", 1998.
[RFC2724] Handelman, S., Stibler, S., Brownlee, N., and G. Ruth,
"RTFM: New Attributes for Traffic Flow Measurement",
RFC 2724, DOI 10.17487/RFC2724, October 1999,
<http://www.rfc-editor.org/info/rfc2724>.
[RFC6320] Wadhwa, S., Moisand, J., Haag, T., Voigt, N., and T.
Taylor, Ed., "Protocol for Access Node Control Mechanism
in Broadband Networks", RFC 6320, DOI 10.17487/RFC6320,
October 2011, <http://www.rfc-editor.org/info/rfc6320>.
Leymann, et al. Informational [Page 42]
^L
RFC 8157 GRE Tunnel Bonding May 2017
[RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
Ed., "Diameter Base Protocol", RFC 6733,
DOI 10.17487/RFC6733, October 2012,
<http://www.rfc-editor.org/info/rfc6733>.
[RFC7031] Mrugalski, T. and K. Kinnear, "DHCPv6 Failover
Requirements", RFC 7031, DOI 10.17487/RFC7031,
September 2013, <http://www.rfc-editor.org/info/rfc7031>.
[RFC7676] Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support
for Generic Routing Encapsulation (GRE)", RFC 7676,
DOI 10.17487/RFC7676, October 2015,
<http://www.rfc-editor.org/info/rfc7676>.
Contributors
Li Xue
Individual
Email: xueli_jas@163.com
Zhongwen Jiang
Huawei Technologies
Email: jiangzhongwen@huawei.com
Leymann, et al. Informational [Page 43]
^L
RFC 8157 GRE Tunnel Bonding May 2017
Authors' Addresses
Nicolai Leymann
Deutsche Telekom AG
Winterfeldtstrasse 21-27
Berlin 10781
Germany
Phone: +49-170-2275345
Email: n.leymann@telekom.de
Cornelius Heidemann
Deutsche Telekom AG
Heinrich-Hertz-Strasse 3-7
Darmstadt 64295
Germany
Phone: +49-6151-5812721
Email: heidemannc@telekom.de
Mingui Zhang
Huawei Technologies
No. 156 Beiqing Rd.
Haidian District
Beijing 100095
China
Email: zhangmingui@huawei.com
Behcet Sarikaya
Huawei USA
5340 Legacy Dr. Building 3
Plano, TX 75024
United States of America
Email: sarikaya@ieee.org
Margaret Cullen
Painless Security
14 Summer St. Suite 202
Malden, MA 02148
United States of America
Email: margaret@painless-security.com
Leymann, et al. Informational [Page 44]
^L
|