1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
|
Internet Engineering Task Force (IETF) S. Deering
Request for Comments: 8200 Retired
STD: 86 R. Hinden
Obsoletes: 2460 Check Point Software
Category: Standards Track July 2017
ISSN: 2070-1721
Internet Protocol, Version 6 (IPv6) Specification
Abstract
This document specifies version 6 of the Internet Protocol (IPv6).
It obsoletes RFC 2460.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc8200.
Deering & Hinden Standards Track [Page 1]
^L
RFC 8200 IPv6 Specification July 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Deering & Hinden Standards Track [Page 2]
^L
RFC 8200 IPv6 Specification July 2017
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. IPv6 Header Format . . . . . . . . . . . . . . . . . . . . . 6
4. IPv6 Extension Headers . . . . . . . . . . . . . . . . . . . 7
4.1. Extension Header Order . . . . . . . . . . . . . . . . . 10
4.2. Options . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3. Hop-by-Hop Options Header . . . . . . . . . . . . . . . . 13
4.4. Routing Header . . . . . . . . . . . . . . . . . . . . . 14
4.5. Fragment Header . . . . . . . . . . . . . . . . . . . . . 15
4.6. Destination Options Header . . . . . . . . . . . . . . . 23
4.7. No Next Header . . . . . . . . . . . . . . . . . . . . . 24
4.8. Defining New Extension Headers and Options . . . . . . . 24
5. Packet Size Issues . . . . . . . . . . . . . . . . . . . . . 25
6. Flow Labels . . . . . . . . . . . . . . . . . . . . . . . . . 26
7. Traffic Classes . . . . . . . . . . . . . . . . . . . . . . . 26
8. Upper-Layer Protocol Issues . . . . . . . . . . . . . . . . . 27
8.1. Upper-Layer Checksums . . . . . . . . . . . . . . . . . . 27
8.2. Maximum Packet Lifetime . . . . . . . . . . . . . . . . . 28
8.3. Maximum Upper-Layer Payload Size . . . . . . . . . . . . 29
8.4. Responding to Packets Carrying Routing Headers . . . . . 29
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 29
10. Security Considerations . . . . . . . . . . . . . . . . . . . 30
11. References . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.1. Normative References . . . . . . . . . . . . . . . . . . 32
11.2. Informative References . . . . . . . . . . . . . . . . . 33
Appendix A. Formatting Guidelines for Options . . . . . . . . . 36
Appendix B. Changes Since RFC 2460 . . . . . . . . . . . . . . . 39
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 42
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 42
Deering & Hinden Standards Track [Page 3]
^L
RFC 8200 IPv6 Specification July 2017
1. Introduction
IP version 6 (IPv6) is a new version of the Internet Protocol (IP),
designed as the successor to IP version 4 (IPv4) [RFC791]. The
changes from IPv4 to IPv6 fall primarily into the following
categories:
o Expanded Addressing Capabilities
IPv6 increases the IP address size from 32 bits to 128 bits, to
support more levels of addressing hierarchy, a much greater
number of addressable nodes, and simpler autoconfiguration of
addresses. The scalability of multicast routing is improved by
adding a "scope" field to multicast addresses. And a new type
of address called an "anycast address" is defined; it is used
to send a packet to any one of a group of nodes.
o Header Format Simplification
Some IPv4 header fields have been dropped or made optional, to
reduce the common-case processing cost of packet handling and
to limit the bandwidth cost of the IPv6 header.
o Improved Support for Extensions and Options
Changes in the way IP header options are encoded allows for
more efficient forwarding, less stringent limits on the length
of options, and greater flexibility for introducing new options
in the future.
o Flow Labeling Capability
A new capability is added to enable the labeling of sequences
of packets that the sender requests to be treated in the
network as a single flow.
o Authentication and Privacy Capabilities
Extensions to support authentication, data integrity, and
(optional) data confidentiality are specified for IPv6.
This document specifies the basic IPv6 header and the initially
defined IPv6 extension headers and options. It also discusses packet
size issues, the semantics of flow labels and traffic classes, and
the effects of IPv6 on upper-layer protocols. The format and
semantics of IPv6 addresses are specified separately in [RFC4291].
The IPv6 version of ICMP, which all IPv6 implementations are required
to include, is specified in [RFC4443].
Deering & Hinden Standards Track [Page 4]
^L
RFC 8200 IPv6 Specification July 2017
The data transmission order for IPv6 is the same as for IPv4 as
defined in Appendix B of [RFC791].
Note: As this document obsoletes [RFC2460], any document referenced
in this document that includes pointers to RFC 2460 should be
interpreted as referencing this document.
2. Terminology
node a device that implements IPv6.
router a node that forwards IPv6 packets not explicitly
addressed to itself. (See Note below.)
host any node that is not a router. (See Note below.)
upper layer a protocol layer immediately above IPv6. Examples are
transport protocols such as TCP and UDP, control
protocols such as ICMP, routing protocols such as OSPF,
and internet-layer or lower-layer protocols being
"tunneled" over (i.e., encapsulated in) IPv6 such as
Internetwork Packet Exchange (IPX), AppleTalk, or IPv6
itself.
link a communication facility or medium over which nodes can
communicate at the link layer, i.e., the layer
immediately below IPv6. Examples are Ethernets (simple
or bridged); PPP links; X.25, Frame Relay, or ATM
networks; and internet-layer or higher-layer "tunnels",
such as tunnels over IPv4 or IPv6 itself.
neighbors nodes attached to the same link.
interface a node's attachment to a link.
address an IPv6-layer identifier for an interface or a set of
interfaces.
packet an IPv6 header plus payload.
link MTU the maximum transmission unit, i.e., maximum packet size
in octets, that can be conveyed over a link.
path MTU the minimum link MTU of all the links in a path between
a source node and a destination node.
Deering & Hinden Standards Track [Page 5]
^L
RFC 8200 IPv6 Specification July 2017
Note: it is possible for a device with multiple interfaces to be
configured to forward non-self-destined packets arriving from some
set (fewer than all) of its interfaces and to discard non-self-
destined packets arriving from its other interfaces. Such a device
must obey the protocol requirements for routers when receiving
packets from, and interacting with neighbors over, the former
(forwarding) interfaces. It must obey the protocol requirements for
hosts when receiving packets from, and interacting with neighbors
over, the latter (non-forwarding) interfaces.
3. IPv6 Header Format
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| Traffic Class | Flow Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Length | Next Header | Hop Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Version 4-bit Internet Protocol version number = 6.
Traffic Class 8-bit Traffic Class field. See Section 7.
Flow Label 20-bit flow label. See Section 6.
Payload Length 16-bit unsigned integer. Length of the IPv6
payload, i.e., the rest of the packet
following this IPv6 header, in octets. (Note
that any extension headers (see Section 4)
present are considered part of the payload,
i.e., included in the length count.)
Deering & Hinden Standards Track [Page 6]
^L
RFC 8200 IPv6 Specification July 2017
Next Header 8-bit selector. Identifies the type of header
immediately following the IPv6 header. Uses
the same values as the IPv4 Protocol field
[IANA-PN].
Hop Limit 8-bit unsigned integer. Decremented by 1 by
each node that forwards the packet. When
forwarding, the packet is discarded if Hop
Limit was zero when received or is decremented
to zero. A node that is the destination of a
packet should not discard a packet with Hop
Limit equal to zero; it should process the
packet normally.
Source Address 128-bit address of the originator of the
packet. See [RFC4291].
Destination Address 128-bit address of the intended recipient of
the packet (possibly not the ultimate
recipient, if a Routing header is present).
See [RFC4291] and Section 4.4.
4. IPv6 Extension Headers
In IPv6, optional internet-layer information is encoded in separate
headers that may be placed between the IPv6 header and the upper-
layer header in a packet. There is a small number of such extension
headers, each one identified by a distinct Next Header value.
Extension headers are numbered from IANA IP Protocol Numbers
[IANA-PN], the same values used for IPv4 and IPv6. When processing a
sequence of Next Header values in a packet, the first one that is not
an extension header [IANA-EH] indicates that the next item in the
packet is the corresponding upper-layer header. A special "No Next
Header" value is used if there is no upper-layer header.
Deering & Hinden Standards Track [Page 7]
^L
RFC 8200 IPv6 Specification July 2017
As illustrated in these examples, an IPv6 packet may carry zero, one,
or more extension headers, each identified by the Next Header field
of the preceding header:
+---------------+------------------------
| IPv6 header | TCP header + data
| |
| Next Header = |
| TCP |
+---------------+------------------------
+---------------+----------------+------------------------
| IPv6 header | Routing header | TCP header + data
| | |
| Next Header = | Next Header = |
| Routing | TCP |
+---------------+----------------+------------------------
+---------------+----------------+-----------------+-----------------
| IPv6 header | Routing header | Fragment header | fragment of TCP
| | | | header + data
| Next Header = | Next Header = | Next Header = |
| Routing | Fragment | TCP |
+---------------+----------------+-----------------+-----------------
Extension headers (except for the Hop-by-Hop Options header) are not
processed, inserted, or deleted by any node along a packet's delivery
path, until the packet reaches the node (or each of the set of nodes,
in the case of multicast) identified in the Destination Address field
of the IPv6 header.
The Hop-by-Hop Options header is not inserted or deleted, but may be
examined or processed by any node along a packet's delivery path,
until the packet reaches the node (or each of the set of nodes, in
the case of multicast) identified in the Destination Address field of
the IPv6 header. The Hop-by-Hop Options header, when present, must
immediately follow the IPv6 header. Its presence is indicated by the
value zero in the Next Header field of the IPv6 header.
NOTE: While [RFC2460] required that all nodes must examine and
process the Hop-by-Hop Options header, it is now expected that nodes
along a packet's delivery path only examine and process the
Hop-by-Hop Options header if explicitly configured to do so.
Deering & Hinden Standards Track [Page 8]
^L
RFC 8200 IPv6 Specification July 2017
At the destination node, normal demultiplexing on the Next Header
field of the IPv6 header invokes the module to process the first
extension header, or the upper-layer header if no extension header is
present. The contents and semantics of each extension header
determine whether or not to proceed to the next header. Therefore,
extension headers must be processed strictly in the order they appear
in the packet; a receiver must not, for example, scan through a
packet looking for a particular kind of extension header and process
that header prior to processing all preceding ones.
If, as a result of processing a header, the destination node is
required to proceed to the next header but the Next Header value in
the current header is unrecognized by the node, it should discard the
packet and send an ICMP Parameter Problem message to the source of
the packet, with an ICMP Code value of 1 ("unrecognized Next Header
type encountered") and the ICMP Pointer field containing the offset
of the unrecognized value within the original packet. The same
action should be taken if a node encounters a Next Header value of
zero in any header other than an IPv6 header.
Each extension header is an integer multiple of 8 octets long, in
order to retain 8-octet alignment for subsequent headers. Multi-
octet fields within each extension header are aligned on their
natural boundaries, i.e., fields of width n octets are placed at an
integer multiple of n octets from the start of the header, for n = 1,
2, 4, or 8.
A full implementation of IPv6 includes implementation of the
following extension headers:
Hop-by-Hop Options
Fragment
Destination Options
Routing
Authentication
Encapsulating Security Payload
The first four are specified in this document; the last two are
specified in [RFC4302] and [RFC4303], respectively. The current list
of IPv6 extension headers can be found at [IANA-EH].
Deering & Hinden Standards Track [Page 9]
^L
RFC 8200 IPv6 Specification July 2017
4.1. Extension Header Order
When more than one extension header is used in the same packet, it is
recommended that those headers appear in the following order:
IPv6 header
Hop-by-Hop Options header
Destination Options header (note 1)
Routing header
Fragment header
Authentication header (note 2)
Encapsulating Security Payload header (note 2)
Destination Options header (note 3)
Upper-Layer header
note 1: for options to be processed by the first destination that
appears in the IPv6 Destination Address field plus
subsequent destinations listed in the Routing header.
note 2: additional recommendations regarding the relative order of
the Authentication and Encapsulating Security Payload
headers are given in [RFC4303].
note 3: for options to be processed only by the final destination
of the packet.
Each extension header should occur at most once, except for the
Destination Options header, which should occur at most twice (once
before a Routing header and once before the upper-layer header).
If the upper-layer header is another IPv6 header (in the case of IPv6
being tunneled over or encapsulated in IPv6), it may be followed by
its own extension headers, which are separately subject to the same
ordering recommendations.
If and when other extension headers are defined, their ordering
constraints relative to the above listed headers must be specified.
IPv6 nodes must accept and attempt to process extension headers in
any order and occurring any number of times in the same packet,
except for the Hop-by-Hop Options header, which is restricted to
appear immediately after an IPv6 header only. Nonetheless, it is
strongly advised that sources of IPv6 packets adhere to the above
recommended order until and unless subsequent specifications revise
that recommendation.
Deering & Hinden Standards Track [Page 10]
^L
RFC 8200 IPv6 Specification July 2017
4.2. Options
Two of the currently defined extension headers specified in this
document -- the Hop-by-Hop Options header and the Destination Options
header -- carry a variable number of "options" that are type-length-
value (TLV) encoded in the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
| Option Type | Opt Data Len | Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
Option Type 8-bit identifier of the type of option.
Opt Data Len 8-bit unsigned integer. Length of the Option
Data field of this option, in octets.
Option Data Variable-length field. Option-Type-specific
data.
The sequence of options within a header must be processed strictly in
the order they appear in the header; a receiver must not, for
example, scan through the header looking for a particular kind of
option and process that option prior to processing all preceding
ones.
The Option Type identifiers are internally encoded such that their
highest-order 2 bits specify the action that must be taken if the
processing IPv6 node does not recognize the Option Type:
00 - skip over this option and continue processing the header.
01 - discard the packet.
10 - discard the packet and, regardless of whether or not the
packet's Destination Address was a multicast address, send an
ICMP Parameter Problem, Code 2, message to the packet's
Source Address, pointing to the unrecognized Option Type.
11 - discard the packet and, only if the packet's Destination
Address was not a multicast address, send an ICMP Parameter
Problem, Code 2, message to the packet's Source Address,
pointing to the unrecognized Option Type.
The third-highest-order bit of the Option Type specifies whether or
not the Option Data of that option can change en route to the
packet's final destination. When an Authentication header is present
Deering & Hinden Standards Track [Page 11]
^L
RFC 8200 IPv6 Specification July 2017
in the packet, for any option whose data may change en route, its
entire Option Data field must be treated as zero-valued octets when
computing or verifying the packet's authenticating value.
0 - Option Data does not change en route
1 - Option Data may change en route
The three high-order bits described above are to be treated as part
of the Option Type, not independent of the Option Type. That is, a
particular option is identified by a full 8-bit Option Type, not just
the low-order 5 bits of an Option Type.
The same Option Type numbering space is used for both the Hop-by-Hop
Options header and the Destination Options header. However, the
specification of a particular option may restrict its use to only one
of those two headers.
Individual options may have specific alignment requirements, to
ensure that multi-octet values within Option Data fields fall on
natural boundaries. The alignment requirement of an option is
specified using the notation xn+y, meaning the Option Type must
appear at an integer multiple of x octets from the start of the
header, plus y octets. For example:
2n means any 2-octet offset from the start of the header.
8n+2 means any 8-octet offset from the start of the header, plus
2 octets.
There are two padding options that are used when necessary to align
subsequent options and to pad out the containing header to a multiple
of 8 octets in length. These padding options must be recognized by
all IPv6 implementations:
Pad1 option (alignment requirement: none)
+-+-+-+-+-+-+-+-+
| 0 |
+-+-+-+-+-+-+-+-+
NOTE! the format of the Pad1 option is a special case -- it does
not have length and value fields.
The Pad1 option is used to insert 1 octet of padding into the
Options area of a header. If more than one octet of padding is
required, the PadN option, described next, should be used, rather
than multiple Pad1 options.
Deering & Hinden Standards Track [Page 12]
^L
RFC 8200 IPv6 Specification July 2017
PadN option (alignment requirement: none)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
| 1 | Opt Data Len | Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
The PadN option is used to insert two or more octets of padding
into the Options area of a header. For N octets of padding, the
Opt Data Len field contains the value N-2, and the Option Data
consists of N-2 zero-valued octets.
Appendix A contains formatting guidelines for designing new options.
4.3. Hop-by-Hop Options Header
The Hop-by-Hop Options header is used to carry optional information
that may be examined and processed by every node along a packet's
delivery path. The Hop-by-Hop Options header is identified by a Next
Header value of 0 in the IPv6 header and has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
. .
. Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the type of header
immediately following the Hop-by-Hop Options
header. Uses the same values as the IPv4
Protocol field [IANA-PN].
Hdr Ext Len 8-bit unsigned integer. Length of the
Hop-by-Hop Options header in 8-octet units,
not including the first 8 octets.
Options Variable-length field, of length such that the
complete Hop-by-Hop Options header is an
integer multiple of 8 octets long. Contains
one or more TLV-encoded options, as described
in Section 4.2.
The only hop-by-hop options defined in this document are the Pad1 and
PadN options specified in Section 4.2.
Deering & Hinden Standards Track [Page 13]
^L
RFC 8200 IPv6 Specification July 2017
4.4. Routing Header
The Routing header is used by an IPv6 source to list one or more
intermediate nodes to be "visited" on the way to a packet's
destination. This function is very similar to IPv4's Loose Source
and Record Route option. The Routing header is identified by a Next
Header value of 43 in the immediately preceding header and has the
following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. type-specific data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the type of header
immediately following the Routing header.
Uses the same values as the IPv4 Protocol
field [IANA-PN].
Hdr Ext Len 8-bit unsigned integer. Length of the Routing
header in 8-octet units, not including the
first 8 octets.
Routing Type 8-bit identifier of a particular Routing
header variant.
Segments Left 8-bit unsigned integer. Number of route
segments remaining, i.e., number of explicitly
listed intermediate nodes still to be visited
before reaching the final destination.
type-specific data Variable-length field, of format determined by
the Routing Type, and of length such that the
complete Routing header is an integer multiple
of 8 octets long.
Deering & Hinden Standards Track [Page 14]
^L
RFC 8200 IPv6 Specification July 2017
If, while processing a received packet, a node encounters a Routing
header with an unrecognized Routing Type value, the required behavior
of the node depends on the value of the Segments Left field, as
follows:
If Segments Left is zero, the node must ignore the Routing header
and proceed to process the next header in the packet, whose type
is identified by the Next Header field in the Routing header.
If Segments Left is non-zero, the node must discard the packet and
send an ICMP Parameter Problem, Code 0, message to the packet's
Source Address, pointing to the unrecognized Routing Type.
If, after processing a Routing header of a received packet, an
intermediate node determines that the packet is to be forwarded onto
a link whose link MTU is less than the size of the packet, the node
must discard the packet and send an ICMP Packet Too Big message to
the packet's Source Address.
The currently defined IPv6 Routing Headers and their status can be
found at [IANA-RH]. Allocation guidelines for IPv6 Routing Headers
can be found in [RFC5871].
4.5. Fragment Header
The Fragment header is used by an IPv6 source to send a packet larger
than would fit in the path MTU to its destination. (Note: unlike
IPv4, fragmentation in IPv6 is performed only by source nodes, not by
routers along a packet's delivery path -- see Section 5.) The
Fragment header is identified by a Next Header value of 44 in the
immediately preceding header and has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Reserved | Fragment Offset |Res|M|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the initial header
type of the Fragmentable Part of the original
packet (defined below). Uses the same values
as the IPv4 Protocol field [IANA-PN].
Reserved 8-bit reserved field. Initialized to zero for
transmission; ignored on reception.
Deering & Hinden Standards Track [Page 15]
^L
RFC 8200 IPv6 Specification July 2017
Fragment Offset 13-bit unsigned integer. The offset, in
8-octet units, of the data following this
header, relative to the start of the
Fragmentable Part of the original packet.
Res 2-bit reserved field. Initialized to zero for
transmission; ignored on reception.
M flag 1 = more fragments; 0 = last fragment.
Identification 32 bits. See description below.
In order to send a packet that is too large to fit in the MTU of the
path to its destination, a source node may divide the packet into
fragments and send each fragment as a separate packet, to be
reassembled at the receiver.
For every packet that is to be fragmented, the source node generates
an Identification value. The Identification must be different than
that of any other fragmented packet sent recently* with the same
Source Address and Destination Address. If a Routing header is
present, the Destination Address of concern is that of the final
destination.
* "recently" means within the maximum likely lifetime of a
packet, including transit time from source to destination and
time spent awaiting reassembly with other fragments of the same
packet. However, it is not required that a source node knows
the maximum packet lifetime. Rather, it is assumed that the
requirement can be met by implementing an algorithm that
results in a low identification reuse frequency. Examples of
algorithms that can meet this requirement are described in
[RFC7739].
Deering & Hinden Standards Track [Page 16]
^L
RFC 8200 IPv6 Specification July 2017
The initial, large, unfragmented packet is referred to as the
"original packet", and it is considered to consist of three parts, as
illustrated:
original packet:
+------------------+-------------------------+---//----------------+
| Per-Fragment | Extension & Upper-Layer | Fragmentable |
| Headers | Headers | Part |
+------------------+-------------------------+---//----------------+
The Per-Fragment headers must consist of the IPv6 header plus any
extension headers that must be processed by nodes en route to the
destination, that is, all headers up to and including the Routing
header if present, else the Hop-by-Hop Options header if present,
else no extension headers.
The Extension headers are all other extension headers that are not
included in the Per-Fragment headers part of the packet. For this
purpose, the Encapsulating Security Payload (ESP) is not
considered an extension header. The Upper-Layer header is the
first upper-layer header that is not an IPv6 extension header.
Examples of upper-layer headers include TCP, UDP, IPv4, IPv6,
ICMPv6, and as noted ESP.
The Fragmentable Part consists of the rest of the packet after the
upper-layer header or after any header (i.e., initial IPv6 header
or extension header) that contains a Next Header value of No Next
Header.
The Fragmentable Part of the original packet is divided into
fragments. The lengths of the fragments must be chosen such that the
resulting fragment packets fit within the MTU of the path to the
packet's destination(s). Each complete fragment, except possibly the
last ("rightmost") one, is an integer multiple of 8 octets long.
Deering & Hinden Standards Track [Page 17]
^L
RFC 8200 IPv6 Specification July 2017
The fragments are transmitted in separate "fragment packets" as
illustrated:
original packet:
+-----------------+-----------------+--------+--------+-//-+--------+
| Per-Fragment |Ext & Upper-Layer| first | second | | last |
| Headers | Headers |fragment|fragment|....|fragment|
+-----------------+-----------------+--------+--------+-//-+--------+
fragment packets:
+------------------+---------+-------------------+----------+
| Per-Fragment |Fragment | Ext & Upper-Layer | first |
| Headers | Header | Headers | fragment |
+------------------+---------+-------------------+----------+
+------------------+--------+-------------------------------+
| Per-Fragment |Fragment| second |
| Headers | Header | fragment |
+------------------+--------+-------------------------------+
o
o
o
+------------------+--------+----------+
| Per-Fragment |Fragment| last |
| Headers | Header | fragment |
+------------------+--------+----------+
The first fragment packet is composed of:
(1) The Per-Fragment headers of the original packet, with the
Payload Length of the original IPv6 header changed to contain
the length of this fragment packet only (excluding the length
of the IPv6 header itself), and the Next Header field of the
last header of the Per-Fragment headers changed to 44.
(2) A Fragment header containing:
The Next Header value that identifies the first header
after the Per-Fragment headers of the original packet.
A Fragment Offset containing the offset of the fragment,
in 8-octet units, relative to the start of the
Fragmentable Part of the original packet. The Fragment
Offset of the first ("leftmost") fragment is 0.
An M flag value of 1 as this is the first fragment.
Deering & Hinden Standards Track [Page 18]
^L
RFC 8200 IPv6 Specification July 2017
The Identification value generated for the original
packet.
(3) Extension headers, if any, and the Upper-Layer header. These
headers must be in the first fragment. Note: This restricts
the size of the headers through the Upper-Layer header to the
MTU of the path to the packet's destinations(s).
(4) The first fragment.
The subsequent fragment packets are composed of:
(1) The Per-Fragment headers of the original packet, with the
Payload Length of the original IPv6 header changed to contain
the length of this fragment packet only (excluding the length
of the IPv6 header itself), and the Next Header field of the
last header of the Per-Fragment headers changed to 44.
(2) A Fragment header containing:
The Next Header value that identifies the first header
after the Per-Fragment headers of the original packet.
A Fragment Offset containing the offset of the fragment,
in 8-octet units, relative to the start of the
Fragmentable Part of the original packet.
An M flag value of 0 if the fragment is the last
("rightmost") one, else an M flag value of 1.
The Identification value generated for the original
packet.
(3) The fragment itself.
Fragments must not be created that overlap with any other fragments
created from the original packet.
Deering & Hinden Standards Track [Page 19]
^L
RFC 8200 IPv6 Specification July 2017
At the destination, fragment packets are reassembled into their
original, unfragmented form, as illustrated:
reassembled original packet:
+---------------+-----------------+---------+--------+-//--+--------+
| Per-Fragment |Ext & Upper-Layer| first | second | | last |
| Headers | Headers |frag data|fragment|.....|fragment|
+---------------+-----------------+---------+--------+-//--+--------+
The following rules govern reassembly:
An original packet is reassembled only from fragment packets that
have the same Source Address, Destination Address, and Fragment
Identification.
The Per-Fragment headers of the reassembled packet consists of all
headers up to, but not including, the Fragment header of the first
fragment packet (that is, the packet whose Fragment Offset is
zero), with the following two changes:
The Next Header field of the last header of the Per-Fragment
headers is obtained from the Next Header field of the first
fragment's Fragment header.
The Payload Length of the reassembled packet is computed from
the length of the Per-Fragment headers and the length and
offset of the last fragment. For example, a formula for
computing the Payload Length of the reassembled original packet
is:
PL.orig = PL.first - FL.first - 8 + (8 * FO.last) + FL.last
where
PL.orig = Payload Length field of reassembled packet.
PL.first = Payload Length field of first fragment packet.
FL.first = length of fragment following Fragment header of
first fragment packet.
FO.last = Fragment Offset field of Fragment header of last
fragment packet.
FL.last = length of fragment following Fragment header of
last fragment packet.
The Fragmentable Part of the reassembled packet is constructed
from the fragments following the Fragment headers in each of
the fragment packets. The length of each fragment is computed
by subtracting from the packet's Payload Length the length of
the headers between the IPv6 header and fragment itself; its
Deering & Hinden Standards Track [Page 20]
^L
RFC 8200 IPv6 Specification July 2017
relative position in Fragmentable Part is computed from its
Fragment Offset value.
The Fragment header is not present in the final, reassembled
packet.
If the fragment is a whole datagram (that is, both the Fragment
Offset field and the M flag are zero), then it does not need
any further reassembly and should be processed as a fully
reassembled packet (i.e., updating Next Header, adjust Payload
Length, removing the Fragment header, etc.). Any other
fragments that match this packet (i.e., the same IPv6 Source
Address, IPv6 Destination Address, and Fragment Identification)
should be processed independently.
The following error conditions may arise when reassembling fragmented
packets:
o If insufficient fragments are received to complete reassembly
of a packet within 60 seconds of the reception of the first-
arriving fragment of that packet, reassembly of that packet
must be abandoned and all the fragments that have been received
for that packet must be discarded. If the first fragment
(i.e., the one with a Fragment Offset of zero) has been
received, an ICMP Time Exceeded -- Fragment Reassembly Time
Exceeded message should be sent to the source of that fragment.
o If the length of a fragment, as derived from the fragment
packet's Payload Length field, is not a multiple of 8 octets
and the M flag of that fragment is 1, then that fragment must
be discarded and an ICMP Parameter Problem, Code 0, message
should be sent to the source of the fragment, pointing to the
Payload Length field of the fragment packet.
o If the length and offset of a fragment are such that the
Payload Length of the packet reassembled from that fragment
would exceed 65,535 octets, then that fragment must be
discarded and an ICMP Parameter Problem, Code 0, message should
be sent to the source of the fragment, pointing to the Fragment
Offset field of the fragment packet.
o If the first fragment does not include all headers through an
Upper-Layer header, then that fragment should be discarded and
an ICMP Parameter Problem, Code 3, message should be sent to
the source of the fragment, with the Pointer field set to zero.
Deering & Hinden Standards Track [Page 21]
^L
RFC 8200 IPv6 Specification July 2017
o If any of the fragments being reassembled overlap with any
other fragments being reassembled for the same packet,
reassembly of that packet must be abandoned and all the
fragments that have been received for that packet must be
discarded, and no ICMP error messages should be sent.
It should be noted that fragments may be duplicated in the
network. Instead of treating these exact duplicate fragments
as overlapping fragments, an implementation may choose to
detect this case and drop exact duplicate fragments while
keeping the other fragments belonging to the same packet.
The following conditions are not expected to occur frequently but are
not considered errors if they do:
The number and content of the headers preceding the Fragment
header of different fragments of the same original packet may
differ. Whatever headers are present, preceding the Fragment
header in each fragment packet, are processed when the packets
arrive, prior to queueing the fragments for reassembly. Only
those headers in the Offset zero fragment packet are retained in
the reassembled packet.
The Next Header values in the Fragment headers of different
fragments of the same original packet may differ. Only the value
from the Offset zero fragment packet is used for reassembly.
Other fields in the IPv6 header may also vary across the fragments
being reassembled. Specifications that use these fields may
provide additional instructions if the basic mechanism of using
the values from the Offset zero fragment is not sufficient. For
example, Section 5.3 of [RFC3168] describes how to combine the
Explicit Congestion Notification (ECN) bits from different
fragments to derive the ECN bits of the reassembled packet.
Deering & Hinden Standards Track [Page 22]
^L
RFC 8200 IPv6 Specification July 2017
4.6. Destination Options Header
The Destination Options header is used to carry optional information
that need be examined only by a packet's destination node(s). The
Destination Options header is identified by a Next Header value of 60
in the immediately preceding header and has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
. .
. Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the type of header
immediately following the Destination Options
header. Uses the same values as the IPv4
Protocol field [IANA-PN].
Hdr Ext Len 8-bit unsigned integer. Length of the
Destination Options header in 8-octet units,
not including the first 8 octets.
Options Variable-length field, of length such that the
complete Destination Options header is an
integer multiple of 8 octets long. Contains
one or more TLV-encoded options, as described
in Section 4.2.
The only destination options defined in this document are the Pad1
and PadN options specified in Section 4.2.
Note that there are two possible ways to encode optional destination
information in an IPv6 packet: either as an option in the Destination
Options header or as a separate extension header. The Fragment
header and the Authentication header are examples of the latter
approach. Which approach can be used depends on what action is
desired of a destination node that does not understand the optional
information:
o If the desired action is for the destination node to discard
the packet and, only if the packet's Destination Address is not
a multicast address, send an ICMP Unrecognized Type message to
the packet's Source Address, then the information may be
encoded either as a separate header or as an option in the
Deering & Hinden Standards Track [Page 23]
^L
RFC 8200 IPv6 Specification July 2017
Destination Options header whose Option Type has the value 11
in its highest-order 2 bits. The choice may depend on such
factors as which takes fewer octets, or which yields better
alignment or more efficient parsing.
o If any other action is desired, the information must be encoded
as an option in the Destination Options header whose Option
Type has the value 00, 01, or 10 in its highest-order 2 bits,
specifying the desired action (see Section 4.2).
4.7. No Next Header
The value 59 in the Next Header field of an IPv6 header or any
extension header indicates that there is nothing following that
header. If the Payload Length field of the IPv6 header indicates the
presence of octets past the end of a header whose Next Header field
contains 59, those octets must be ignored and passed on unchanged if
the packet is forwarded.
4.8. Defining New Extension Headers and Options
Defining new IPv6 extension headers is not recommended, unless there
are no existing IPv6 extension headers that can be used by specifying
a new option for that IPv6 extension header. A proposal to specify a
new IPv6 extension header must include a detailed technical
explanation of why an existing IPv6 extension header can not be used
for the desired new function. See [RFC6564] for additional
background information.
Note: New extension headers that require hop-by-hop behavior must not
be defined because, as specified in Section 4 of this document, the
only extension header that has hop-by-hop behavior is the Hop-by-Hop
Options header.
New hop-by-hop options are not recommended because nodes may be
configured to ignore the Hop-by-Hop Options header, drop packets
containing a Hop-by-Hop Options header, or assign packets containing
a Hop-by-Hop Options header to a slow processing path. Designers
considering defining new hop-by-hop options need to be aware of this
likely behavior. There has to be a very clear justification why any
new hop-by-hop option is needed before it is standardized.
Instead of defining new extension headers, it is recommended that the
Destination Options header is used to carry optional information that
must be examined only by a packet's destination node(s), because they
provide better handling and backward compatibility.
Deering & Hinden Standards Track [Page 24]
^L
RFC 8200 IPv6 Specification July 2017
If new extension headers are defined, they need to use the following
format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
. .
. Header-Specific Data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the type of
header immediately following the extension
header. Uses the same values as the IPv4
Protocol field [IANA-PN].
Hdr Ext Len 8-bit unsigned integer. Length of the
Destination Options header in 8-octet units,
not including the first 8 octets.
Header Specific Data Variable-length field. Fields specific to
the extension header.
5. Packet Size Issues
IPv6 requires that every link in the Internet have an MTU of 1280
octets or greater. This is known as the IPv6 minimum link MTU. On
any link that cannot convey a 1280-octet packet in one piece, link-
specific fragmentation and reassembly must be provided at a layer
below IPv6.
Links that have a configurable MTU (for example, PPP links [RFC1661])
must be configured to have an MTU of at least 1280 octets; it is
recommended that they be configured with an MTU of 1500 octets or
greater, to accommodate possible encapsulations (i.e., tunneling)
without incurring IPv6-layer fragmentation.
From each link to which a node is directly attached, the node must be
able to accept packets as large as that link's MTU.
It is strongly recommended that IPv6 nodes implement Path MTU
Discovery [RFC8201], in order to discover and take advantage of path
MTUs greater than 1280 octets. However, a minimal IPv6
implementation (e.g., in a boot ROM) may simply restrict itself to
sending packets no larger than 1280 octets, and omit implementation
of Path MTU Discovery.
Deering & Hinden Standards Track [Page 25]
^L
RFC 8200 IPv6 Specification July 2017
In order to send a packet larger than a path's MTU, a node may use
the IPv6 Fragment header to fragment the packet at the source and
have it reassembled at the destination(s). However, the use of such
fragmentation is discouraged in any application that is able to
adjust its packets to fit the measured path MTU (i.e., down to 1280
octets).
A node must be able to accept a fragmented packet that, after
reassembly, is as large as 1500 octets. A node is permitted to
accept fragmented packets that reassemble to more than 1500 octets.
An upper-layer protocol or application that depends on IPv6
fragmentation to send packets larger than the MTU of a path should
not send packets larger than 1500 octets unless it has assurance that
the destination is capable of reassembling packets of that larger
size.
6. Flow Labels
The 20-bit Flow Label field in the IPv6 header is used by a source to
label sequences of packets to be treated in the network as a single
flow.
The current definition of the IPv6 Flow Label can be found in
[RFC6437].
7. Traffic Classes
The 8-bit Traffic Class field in the IPv6 header is used by the
network for traffic management. The value of the Traffic Class bits
in a received packet or fragment might be different from the value
sent by the packet's source.
The current use of the Traffic Class field for Differentiated
Services and Explicit Congestion Notification is specified in
[RFC2474] and [RFC3168].
Deering & Hinden Standards Track [Page 26]
^L
RFC 8200 IPv6 Specification July 2017
8. Upper-Layer Protocol Issues
8.1. Upper-Layer Checksums
Any transport or other upper-layer protocol that includes the
addresses from the IP header in its checksum computation must be
modified for use over IPv6, to include the 128-bit IPv6 addresses
instead of 32-bit IPv4 addresses. In particular, the following
illustration shows the TCP and UDP "pseudo-header" for IPv6:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Upper-Layer Packet Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| zero | Next Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o If the IPv6 packet contains a Routing header, the Destination
Address used in the pseudo-header is that of the final
destination. At the originating node, that address will be in
the last element of the Routing header; at the recipient(s),
that address will be in the Destination Address field of the
IPv6 header.
o The Next Header value in the pseudo-header identifies the
upper-layer protocol (e.g., 6 for TCP or 17 for UDP). It will
differ from the Next Header value in the IPv6 header if there
are extension headers between the IPv6 header and the upper-
layer header.
Deering & Hinden Standards Track [Page 27]
^L
RFC 8200 IPv6 Specification July 2017
o The Upper-Layer Packet Length in the pseudo-header is the
length of the upper-layer header and data (e.g., TCP header
plus TCP data). Some upper-layer protocols carry their own
length information (e.g., the Length field in the UDP header);
for such protocols, that is the length used in the pseudo-
header. Other protocols (such as TCP) do not carry their own
length information, in which case the length used in the
pseudo-header is the Payload Length from the IPv6 header, minus
the length of any extension headers present between the IPv6
header and the upper-layer header.
o Unlike IPv4, the default behavior when UDP packets are
originated by an IPv6 node is that the UDP checksum is not
optional. That is, whenever originating a UDP packet, an IPv6
node must compute a UDP checksum over the packet and the
pseudo-header, and, if that computation yields a result of
zero, it must be changed to hex FFFF for placement in the UDP
header. IPv6 receivers must discard UDP packets containing a
zero checksum and should log the error.
o As an exception to the default behavior, protocols that use UDP
as a tunnel encapsulation may enable zero-checksum mode for a
specific port (or set of ports) for sending and/or receiving.
Any node implementing zero-checksum mode must follow the
requirements specified in "Applicability Statement for the Use
of IPv6 UDP Datagrams with Zero Checksums" [RFC6936].
The IPv6 version of ICMP [RFC4443] includes the above pseudo-header
in its checksum computation; this is a change from the IPv4 version
of ICMP, which does not include a pseudo-header in its checksum. The
reason for the change is to protect ICMP from misdelivery or
corruption of those fields of the IPv6 header on which it depends,
which, unlike IPv4, are not covered by an internet-layer checksum.
The Next Header field in the pseudo-header for ICMP contains the
value 58, which identifies the IPv6 version of ICMP.
8.2. Maximum Packet Lifetime
Unlike IPv4, IPv6 nodes are not required to enforce maximum packet
lifetime. That is the reason the IPv4 "Time-to-Live" field was
renamed "Hop Limit" in IPv6. In practice, very few, if any, IPv4
implementations conform to the requirement that they limit packet
lifetime, so this is not a change in practice. Any upper-layer
protocol that relies on the internet layer (whether IPv4 or IPv6) to
limit packet lifetime ought to be upgraded to provide its own
mechanisms for detecting and discarding obsolete packets.
Deering & Hinden Standards Track [Page 28]
^L
RFC 8200 IPv6 Specification July 2017
8.3. Maximum Upper-Layer Payload Size
When computing the maximum payload size available for upper-layer
data, an upper-layer protocol must take into account the larger size
of the IPv6 header relative to the IPv4 header. For example, in
IPv4, TCP's Maximum Segment Size (MSS) option is computed as the
maximum packet size (a default value or a value learned through Path
MTU Discovery) minus 40 octets (20 octets for the minimum-length IPv4
header and 20 octets for the minimum-length TCP header). When using
TCP over IPv6, the MSS must be computed as the maximum packet size
minus 60 octets, because the minimum-length IPv6 header (i.e., an
IPv6 header with no extension headers) is 20 octets longer than a
minimum-length IPv4 header.
8.4. Responding to Packets Carrying Routing Headers
When an upper-layer protocol sends one or more packets in response to
a received packet that included a Routing header, the response
packet(s) must not include a Routing header that was automatically
derived by "reversing" the received Routing header UNLESS the
integrity and authenticity of the received Source Address and Routing
header have been verified (e.g., via the use of an Authentication
header in the received packet). In other words, only the following
kinds of packets are permitted in response to a received packet
bearing a Routing header:
o Response packets that do not carry Routing headers.
o Response packets that carry Routing headers that were NOT
derived by reversing the Routing header of the received packet
(for example, a Routing header supplied by local
configuration).
o Response packets that carry Routing headers that were derived
by reversing the Routing header of the received packet IF AND
ONLY IF the integrity and authenticity of the Source Address
and Routing header from the received packet have been verified
by the responder.
9. IANA Considerations
RFC 2460 is referenced in a number of IANA registries. These
include:
o Internet Protocol Version 6 (IPv6) Parameters [IANA-6P]
o Assigned Internet Protocol Numbers [IANA-PN]
Deering & Hinden Standards Track [Page 29]
^L
RFC 8200 IPv6 Specification July 2017
o ONC RPC Network Identifiers (netids) [IANA-NI]
o Network Layer Protocol Identifiers (NLPIDs) of Interest
[IANA-NL]
o Protocol Registries [IANA-PR]
The IANA has updated these references to point to this document.
10. Security Considerations
IPv6, from the viewpoint of the basic format and transmission of
packets, has security properties that are similar to IPv4. These
security issues include:
o Eavesdropping, where on-path elements can observe the whole
packet (including both contents and metadata) of each IPv6
datagram.
o Replay, where the attacker records a sequence of packets off of
the wire and plays them back to the party that originally
received them.
o Packet insertion, where the attacker forges a packet with some
chosen set of properties and injects it into the network.
o Packet deletion, where the attacker removes a packet from the
wire.
o Packet modification, where the attacker removes a packet from
the wire, modifies it, and reinjects it into the network.
o Man-in-the-middle (MITM) attacks, where the attacker subverts
the communication stream in order to pose as the sender to
receiver and the receiver to the sender.
o Denial-of-service (DoS) attacks, where the attacker sends large
amounts of legitimate traffic to a destination to overwhelm it.
IPv6 packets can be protected from eavesdropping, replay, packet
insertion, packet modification, and MITM attacks by use of the
"Security Architecture for the Internet Protocol" [RFC4301]. In
addition, upper-layer protocols such as Transport Layer Security
(TLS) or Secure Shell (SSH) can be used to protect the application-
layer traffic running on top of IPv6.
There is not any mechanism to protect against DoS attacks. Defending
against these type of attacks is outside the scope of this
specification.
IPv6 addresses are significantly larger than IPv4 addresses making it
much harder to scan the address space across the Internet and even on
a single network link (e.g., Local Area Network). See [RFC7707] for
more information.
Deering & Hinden Standards Track [Page 30]
^L
RFC 8200 IPv6 Specification July 2017
IPv6 addresses of nodes are expected to be more visible on the
Internet as compared with IPv4 since the use of address translation
technology is reduced. This creates some additional privacy issues
such as making it easier to distinguish endpoints. See [RFC7721] for
more information.
The design of IPv6 extension header architecture, while adding a lot
of flexibility, also creates new security challenges. As noted
below, issues relating to the Fragment extension header have been
resolved, but it's clear that for any new extension header designed
in the future, the security implications need to be examined
thoroughly, and this needs to include how the new extension header
works with existing extension headers. See [RFC7045] for more
information.
This version of the IPv6 specification resolves a number of security
issues that were found with the previous version [RFC2460] of the
IPv6 specification. These include:
o Revised the text to handle the case of fragments that are whole
datagrams (i.e., both the Fragment Offset field and the M flag
are zero). If received, they should be processed as a
reassembled packet. Any other fragments that match should be
processed independently. The Fragment creation process was
modified to not create whole datagram fragments (Fragment
Offset field and the M flag are zero). See [RFC6946] and
[RFC8021] for more information.
o Removed the paragraph in Section 5 that required including a
Fragment header to outgoing packets if an ICMP Packet Too Big
message reporting a Next-Hop MTU is less than 1280. See
[RFC6946] for more information.
o Changed the text to require that IPv6 nodes must not create
overlapping fragments. Also, when reassembling an IPv6
datagram, if one or more of its constituent fragments is
determined to be an overlapping fragment, the entire datagram
(and any constituent fragments) must be silently discarded.
Includes clarification that no ICMP error message should be
sent if overlapping fragments are received. See [RFC5722] for
more information.
o Revised the text to require that all headers through the first
upper-layer header are in the first fragment. See [RFC7112]
for more information.
Deering & Hinden Standards Track [Page 31]
^L
RFC 8200 IPv6 Specification July 2017
o Incorporated the updates from [RFC5095] and [RFC5871] to remove
the description of the Routing Header type 0 (RH0), that the
allocations guidelines for Routing headers are specified in RFC
5871, and removed RH0 from the list of required extension
headers.
Security issues relating to other parts of IPv6 including addressing,
ICMPv6, Path MTU Discovery, etc., are discussed in the appropriate
specifications.
11. References
11.1. Normative References
[RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791,
DOI 10.17487/RFC0791, September 1981,
<http://www.rfc-editor.org/info/rfc791>.
[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
"Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers", RFC 2474,
DOI 10.17487/RFC2474, December 1998,
<http://www.rfc-editor.org/info/rfc2474>.
[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
of Explicit Congestion Notification (ECN) to IP",
RFC 3168, DOI 10.17487/RFC3168, September 2001,
<http://www.rfc-editor.org/info/rfc3168>.
[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, DOI 10.17487/RFC4291, February
2006, <http://www.rfc-editor.org/info/rfc4291>.
[RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification", STD 89,
RFC 4443, DOI 10.17487/RFC4443, March 2006,
<http://www.rfc-editor.org/info/rfc4443>.
[RFC6437] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
"IPv6 Flow Label Specification", RFC 6437,
DOI 10.17487/RFC6437, November 2011,
<http://www.rfc-editor.org/info/rfc6437>.
Deering & Hinden Standards Track [Page 32]
^L
RFC 8200 IPv6 Specification July 2017
11.2. Informative References
[Err2541] RFC Errata, Erratum ID 2541, RFC 2460.
[Err4279] RFC Errata, Erratum ID 4279, RFC 2460.
[Err4657] RFC Errata, Erratum ID 4657, RFC 2460.
[Err4662] RFC Errata, Erratum ID 4662, RFC 2460.
[IANA-6P] IANA, "Internet Protocol Version 6 (IPv6) Parameters",
<https://www.iana.org/assignments/ipv6-parameters>.
[IANA-EH] IANA, "IPv6 Extension Header Types",
<https://www.iana.org/assignments/ipv6-parameters>.
[IANA-NI] IANA, "ONC RPC Network Identifiers (netids)",
<https://www.iana.org/assignments/rpc-netids>.
[IANA-NL] IANA, "Network Layer Protocol Identifiers (NLPIDs) of
Interest", <https://www.iana.org/assignments/nlpids>.
[IANA-PN] IANA, "Protocol Numbers",
<https://www.iana.org/assignments/protocol-numbers>.
[IANA-PR] IANA, "Protocol Registries", <https://www.iana.org/
protocols>.
[IANA-RH] IANA, "Routing Types", <https://www.iana.org/assignments/
ipv6-parameters>.
[RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
STD 51, RFC 1661, DOI 10.17487/RFC1661, July 1994,
<http://www.rfc-editor.org/info/rfc1661>.
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
December 1998, <http://www.rfc-editor.org/info/rfc2460>.
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
December 2005, <http://www.rfc-editor.org/info/rfc4301>.
[RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
DOI 10.17487/RFC4302, December 2005,
<http://www.rfc-editor.org/info/rfc4302>.
Deering & Hinden Standards Track [Page 33]
^L
RFC 8200 IPv6 Specification July 2017
[RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,
<http://www.rfc-editor.org/info/rfc4303>.
[RFC5095] Abley, J., Savola, P., and G. Neville-Neil, "Deprecation
of Type 0 Routing Headers in IPv6", RFC 5095,
DOI 10.17487/RFC5095, December 2007,
<http://www.rfc-editor.org/info/rfc5095>.
[RFC5722] Krishnan, S., "Handling of Overlapping IPv6 Fragments",
RFC 5722, DOI 10.17487/RFC5722, December 2009,
<http://www.rfc-editor.org/info/rfc5722>.
[RFC5871] Arkko, J. and S. Bradner, "IANA Allocation Guidelines for
the IPv6 Routing Header", RFC 5871, DOI 10.17487/RFC5871,
May 2010, <http://www.rfc-editor.org/info/rfc5871>.
[RFC6564] Krishnan, S., Woodyatt, J., Kline, E., Hoagland, J., and
M. Bhatia, "A Uniform Format for IPv6 Extension Headers",
RFC 6564, DOI 10.17487/RFC6564, April 2012,
<http://www.rfc-editor.org/info/rfc6564>.
[RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
for the Use of IPv6 UDP Datagrams with Zero Checksums",
RFC 6936, DOI 10.17487/RFC6936, April 2013,
<http://www.rfc-editor.org/info/rfc6936>.
[RFC6946] Gont, F., "Processing of IPv6 "Atomic" Fragments",
RFC 6946, DOI 10.17487/RFC6946, May 2013,
<http://www.rfc-editor.org/info/rfc6946>.
[RFC7045] Carpenter, B. and S. Jiang, "Transmission and Processing
of IPv6 Extension Headers", RFC 7045,
DOI 10.17487/RFC7045, December 2013,
<http://www.rfc-editor.org/info/rfc7045>.
[RFC7112] Gont, F., Manral, V., and R. Bonica, "Implications of
Oversized IPv6 Header Chains", RFC 7112,
DOI 10.17487/RFC7112, January 2014,
<http://www.rfc-editor.org/info/rfc7112>.
[RFC7707] Gont, F. and T. Chown, "Network Reconnaissance in IPv6
Networks", RFC 7707, DOI 10.17487/RFC7707, March 2016,
<http://www.rfc-editor.org/info/rfc7707>.
Deering & Hinden Standards Track [Page 34]
^L
RFC 8200 IPv6 Specification July 2017
[RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
Considerations for IPv6 Address Generation Mechanisms",
RFC 7721, DOI 10.17487/RFC7721, March 2016,
<http://www.rfc-editor.org/info/rfc7721>.
[RFC7739] Gont, F., "Security Implications of Predictable Fragment
Identification Values", RFC 7739, DOI 10.17487/RFC7739,
February 2016, <http://www.rfc-editor.org/info/rfc7739>.
[RFC8021] Gont, F., Liu, W., and T. Anderson, "Generation of IPv6
Atomic Fragments Considered Harmful", RFC 8021,
DOI 10.17487/RFC8021, January 2017,
<http://www.rfc-editor.org/info/rfc8021>.
[RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, "Path
MTU Discovery for IP version 6", STD 87, RFC 8201,
DOI 10.17487/RFC8201, July 2017,
<http://www.rfc-editor.org/info/rfc8201>.
Deering & Hinden Standards Track [Page 35]
^L
RFC 8200 IPv6 Specification July 2017
Appendix A. Formatting Guidelines for Options
This appendix gives some advice on how to lay out the fields when
designing new options to be used in the Hop-by-Hop Options header or
the Destination Options header, as described in Section 4.2. These
guidelines are based on the following assumptions:
o One desirable feature is that any multi-octet fields within the
Option Data area of an option be aligned on their natural
boundaries, i.e., fields of width n octets should be placed at
an integer multiple of n octets from the start of the
Hop-by-Hop or Destination Options header, for n = 1, 2, 4, or
8.
o Another desirable feature is that the Hop-by-Hop or Destination
Options header take up as little space as possible, subject to
the requirement that the header be an integer multiple of 8
octets long.
o It may be assumed that, when either of the option-bearing
headers are present, they carry a very small number of options,
usually only one.
These assumptions suggest the following approach to laying out the
fields of an option: order the fields from smallest to largest, with
no interior padding, then derive the alignment requirement for the
entire option based on the alignment requirement of the largest field
(up to a maximum alignment of 8 octets). This approach is
illustrated in the following examples:
Example 1
If an option X required two data fields, one of length 8 octets and
one of length 4 octets, it would be laid out as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type=X |Opt Data Len=12|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ 8-octet field +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Deering & Hinden Standards Track [Page 36]
^L
RFC 8200 IPv6 Specification July 2017
Its alignment requirement is 8n+2, to ensure that the 8-octet field
starts at a multiple-of-8 offset from the start of the enclosing
header. A complete Hop-by-Hop or Destination Options header
containing this one option would look as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=1 | Option Type=X |Opt Data Len=12|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ 8-octet field +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Example 2
If an option Y required three data fields, one of length 4 octets,
one of length 2 octets, and one of length 1 octet, it would be laid
out as follows:
+-+-+-+-+-+-+-+-+
| Option Type=Y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Opt Data Len=7 | 1-octet field | 2-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Its alignment requirement is 4n+3, to ensure that the 4-octet field
starts at a multiple-of-4 offset from the start of the enclosing
header. A complete Hop-by-Hop or Destination Options header
containing this one option would look as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=1 | Pad1 Option=0 | Option Type=Y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Opt Data Len=7 | 1-octet field | 2-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PadN Option=1 |Opt Data Len=2 | 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Deering & Hinden Standards Track [Page 37]
^L
RFC 8200 IPv6 Specification July 2017
Example 3
A Hop-by-Hop or Destination Options header containing both options X
and Y from Examples 1 and 2 would have one of the two following
formats, depending on which option appeared first:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=3 | Option Type=X |Opt Data Len=12|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ 8-octet field +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PadN Option=1 |Opt Data Len=1 | 0 | Option Type=Y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Opt Data Len=7 | 1-octet field | 2-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PadN Option=1 |Opt Data Len=2 | 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=3 | Pad1 Option=0 | Option Type=Y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Opt Data Len=7 | 1-octet field | 2-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PadN Option=1 |Opt Data Len=4 | 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | Option Type=X |Opt Data Len=12|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ 8-octet field +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Deering & Hinden Standards Track [Page 38]
^L
RFC 8200 IPv6 Specification July 2017
Appendix B. Changes Since RFC 2460
This memo has the following changes from RFC 2460.
o Removed IP Next Generation from the Abstract.
o Added text in Section 1 that the data transmission order is the
same as IPv4 as defined in RFC 791.
o Clarified the text in Section 3 about decrementing the Hop Limit.
o Clarified that extension headers (except for the Hop-by-Hop
Options header) are not processed, inserted, or deleted by any
node along a packet's delivery path.
o Changed requirement for the Hop-by-Hop Options header to a "may",
and added a note to indicate what is expected regarding the
Hop-by-Hop Options header.
o Added a paragraph to Section 4 to clarify how extension headers
are numbered and which are upper-layer headers.
o Added a reference to the end of Section 4 to the "IPv6 Extension
Header Types" IANA registry.
o Incorporated the updates from RFCs 5095 and 5871 to remove the
description of RH0, that the allocations guidelines for routing
headers are specified in RFC 5871, and removed RH0 from the list
of required extension headers.
o Revised Section 4.5 on IPv6 fragmentation based on updates from
RFCs 5722, 6946, 7112, and 8021. This includes:
- Revised the text to handle the case of fragments that are whole
datagrams (i.e., both the Fragment Offset field and the M flag
are zero). If received, they should be processed as a
reassembled packet. Any other fragments that match should be
processed independently. The revised Fragment creation process
was modified to not create whole datagram fragments (Fragment
Offset field and the M flag are zero).
- Changed the text to require that IPv6 nodes must not create
overlapping fragments. Also, when reassembling an IPv6
datagram, if one or more its constituent fragments is
determined to be an overlapping fragment, the entire datagram
(and any constituent fragments) must be silently discarded.
Includes a clarification that no ICMP error message should be
sent if overlapping fragments are received.
Deering & Hinden Standards Track [Page 39]
^L
RFC 8200 IPv6 Specification July 2017
- Revised the text to require that all headers through the first
Upper-Layer header are in the first fragment. This changed the
text describing how packets are fragmented and reassembled and
added a new error case.
- Added text to the Fragment header process on handling exact
duplicate fragments.
- Updated the Fragmentation header text to correct the inclusion
of an Authentication Header (AH) and noted No Next Header case.
- Changed terminology in the Fragment header section from
"Unfragmentable Headers" to "Per-Fragment headers".
- Removed the paragraph in Section 5 that required including a
Fragment header to outgoing packets if an ICMP Packet Too Big
message reports a Next-Hop MTU less than 1280.
- Changed the text to clarify MTU restriction and 8-byte
restrictions, and noted the restriction on headers in the first
fragment.
o In Section 4.5, added clarification noting that some fields in the
IPv6 header may also vary across the fragments being reassembled,
and that other specifications may provide additional instructions
for how they should be reassembled. See, for example, Section 5.3
of [RFC3168].
o Incorporated the update from RFC 6564 to add a new Section 4.8
that describes recommendations for defining new extension headers
and options.
o Added text to Section 5 to define "IPv6 minimum link MTU".
o Simplified the text in Section 6 about Flow Labels and removed
what was Appendix A ("Semantics and Usage of the Flow Label
Field"); instead, pointed to the current specifications of the
IPv6 Flow Label field in [RFC6437] and the Traffic Class field in
[RFC2474] and [RFC3168].
o Incorporated the update made by RFC 6935 ("IPv6 and UDP Checksums
for Tunneled Packets") in Section 8. Added an exception to the
default behavior for the handling of UDP packets with zero
checksums for tunnels.
o Added instruction to Section 9, "IANA Considerations", to change
references to RFC 2460 to this document.
Deering & Hinden Standards Track [Page 40]
^L
RFC 8200 IPv6 Specification July 2017
o Revised and expanded Section 10, "Security Considerations".
o Added a paragraph to the Acknowledgments section acknowledging the
authors of the updating documents.
o Updated references to current versions and assigned references to
normative and informative.
o Made changes to resolve the errata on RFC 2460. These are:
Erratum ID 2541 [Err2541]: This erratum notes that RFC 2460
didn't update RFC 2205 when the length of the flow label was
changed from 24 to 20 bits from RFC 1883. This issue was
resolved in RFC 6437 where the flow label is defined. This
specification now references RFC 6437. No change is required.
Erratum ID 4279 [Err4279]: This erratum noted that the
specification doesn't handle the case of a forwarding node
receiving a packet with a zero Hop Limit. This is fixed in
Section 3 of this specification.
Erratum ID 4657 [Err4657]: This erratum proposed text that
extension headers must never be inserted by any node other than
the source of the packet. This was resolved in Section 4,
"IPv6 Extension Headers".
Erratum ID 4662 [Err4662]: This erratum proposed text that
extension headers, with one exception, are not examined,
processed, modified, inserted, or deleted by any node along a
packet's delivery path. This was resolved in Section 4, "IPv6
Extension Headers".
Erratum ID 2843: This erratum is marked "Rejected". No change
was made.
Deering & Hinden Standards Track [Page 41]
^L
RFC 8200 IPv6 Specification July 2017
Acknowledgments
The authors gratefully acknowledge the many helpful suggestions of
the members of the IPng Working Group, the End-to-End Protocols
research group, and the Internet community at large.
The authors would also like to acknowledge the authors of the
updating RFCs that were incorporated in this document to move the
IPv6 specification to Internet Standard. They are Joe Abley, Shane
Amante, Jari Arkko, Manav Bhatia, Ronald P. Bonica, Scott Bradner,
Brian Carpenter, P.F. Chimento, Marshall Eubanks, Fernando Gont,
James Hoagland, Sheng Jiang, Erik Kline, Suresh Krishnan, Vishwas
Manral, George Neville-Neil, Jarno Rajahalme, Pekka Savola, Magnus
Westerlund, and James Woodyatt.
Authors' Addresses
Stephen E. Deering
Retired
Vancouver, British Columbia
Canada
Robert M. Hinden
Check Point Software
959 Skyway Road
San Carlos, CA 94070
United States of America
Email: bob.hinden@gmail.com
Deering & Hinden Standards Track [Page 42]
^L
|