1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
|
Internet Engineering Task Force (IETF) D. Lopez
Request for Comments: 8253 O. Gonzalez de Dios
Updates: 5440 Telefonica I+D
Category: Standards Track Q. Wu
ISSN: 2070-1721 D. Dhody
Huawei
October 2017
PCEPS: Usage of TLS to Provide a Secure Transport for the
Path Computation Element Communication Protocol (PCEP)
Abstract
The Path Computation Element Communication Protocol (PCEP) defines
the mechanisms for the communication between a Path Computation
Client (PCC) and a Path Computation Element (PCE), or among PCEs.
This document describes PCEPS -- the usage of Transport Layer
Security (TLS) to provide a secure transport for PCEP. The
additional security mechanisms are provided by the transport protocol
supporting PCEP; therefore, they do not affect the flexibility and
extensibility of PCEP.
This document updates RFC 5440 in regards to the PCEP initialization
phase procedures.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8253.
Lopez, et al. Standards Track [Page 1]
^L
RFC 8253 PCEPS October 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Lopez, et al. Standards Track [Page 2]
^L
RFC 8253 PCEPS October 2017
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Requirements Language . . . . . . . . . . . . . . . . . . . . 5
3. Applying PCEPS . . . . . . . . . . . . . . . . . . . . . . . 5
3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Initiating TLS Procedures . . . . . . . . . . . . . . . . 5
3.3. The StartTLS Message . . . . . . . . . . . . . . . . . . 8
3.4. TLS Connection Establishment . . . . . . . . . . . . . . 13
3.5. Peer Identity . . . . . . . . . . . . . . . . . . . . . . 15
3.6. Connection Establishment Failure . . . . . . . . . . . . 16
4. Discovery Mechanisms . . . . . . . . . . . . . . . . . . . . 16
4.1. DANE Applicability . . . . . . . . . . . . . . . . . . . 17
5. Backward Compatibility . . . . . . . . . . . . . . . . . . . 17
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 18
6.1. New PCEP Message . . . . . . . . . . . . . . . . . . . . 18
6.2. New Error-Values . . . . . . . . . . . . . . . . . . . . 19
7. Security Considerations . . . . . . . . . . . . . . . . . . . 19
8. Manageability Considerations . . . . . . . . . . . . . . . . 20
8.1. Control of Function and Policy . . . . . . . . . . . . . 20
8.2. Information and Data Models . . . . . . . . . . . . . . . 21
8.3. Liveness Detection and Monitoring . . . . . . . . . . . . 21
8.4. Verifying Correct Operations . . . . . . . . . . . . . . 21
8.5. Requirements on Other Protocols . . . . . . . . . . . . . 22
8.6. Impact on Network Operation . . . . . . . . . . . . . . . 22
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.1. Normative References . . . . . . . . . . . . . . . . . . 22
9.2. Informative References . . . . . . . . . . . . . . . . . 23
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 25
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 26
Lopez, et al. Standards Track [Page 3]
^L
RFC 8253 PCEPS October 2017
1. Introduction
The Path Computation Element Communication Protocol (PCEP) [RFC5440]
defines the mechanisms for the communication between a Path
Computation Client (PCC) and a Path Computation Element (PCE), or
between two PCEs. These interactions include requests and replies
that can be critical for a sustainable network operation and adequate
resource allocation; therefore, appropriate security becomes a key
element in the PCE infrastructure. As the applications of the PCE
framework evolve and more complex service patterns emerge, the
definition of a secure mode of operation becomes more relevant.
The Security Considerations section of [RFC5440] analyzes the
potential threats to PCEP and their consequences; it also discusses
several mechanisms for protecting PCEP against security attacks,
without making a specific recommendation on a particular one or
defining their application in depth. Moreover, [RFC6952] states the
importance of ensuring PCEP communication confidentiality, especially
when PCEP communication endpoints do not reside in the same
Autonomous System (AS), as the interception of PCEP messages could
leak sensitive information related to computed paths and resources.
Transport Layer Security (TLS) [RFC5246] is one of the solutions that
seems most adequate among those mentioned in these documents, as it
provides support for peer authentication, message encryption, and
integrity. TLS provides well-known mechanisms to support key
configuration and exchange, as well as means to perform security
checks on the results of PCE Discovery (PCED) procedures via the
Interior Gateway Protocol (IGP) [RFC5088] [RFC5089].
This document describes a security container for the transport of
PCEP messages; therefore, it does not affect the flexibility and
extensibility of PCEP.
This document describes how to apply TLS to secure interactions with
PCE, including initiation of the TLS procedures, the TLS handshake
mechanism, the TLS methods for peer authentication, the applicable
TLS ciphersuites for data exchange, and the handling of errors in the
security checks. In the rest of this document, we refer to this
usage of TLS to provide a secure transport for PCEP as "PCEPS".
Within this document, PCEP communications are described through a
PCC-PCE relationship. The PCE architecture also supports PCE-PCE
communication; this is achieved by requesting the PCE to fill the
role of a PCC, as usual. Thus, in this document, the PCC refers to a
PCC or a PCE initiating the PCEP session and acting as a client.
Lopez, et al. Standards Track [Page 4]
^L
RFC 8253 PCEPS October 2017
2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Applying PCEPS
3.1. Overview
The steps involved in establishing a PCEPS session are as follows:
1. Establishment of a TCP connection.
2. Initiation of the TLS procedures by the StartTLS message from PCE
to PCC and from PCC to PCE.
3. Negotiation and establishment of a TLS connection.
4. Start exchange of PCEP messages as per [RFC5440].
This document uses the standard StartTLS procedure in PCEP instead of
using a different port for the secured session. This is done to
avoid requesting allocation of another port number for PCEPS. The
StartTLS procedure makes more efficient use of scarce port numbers
and allows simpler configuration of PCEP.
Implementations SHOULD follow the best practices and recommendations
for using TLS, as per [RFC7525].
It should be noted that this procedure updates what is defined in
Sections 4.2.1 and 6.7 of [RFC5440] regarding the initialization
phase and the processing of messages prior to the Open message. The
details of processing, including backward compatibility, are
discussed in the following sections.
3.2. Initiating TLS Procedures
Since PCEP can operate either with or without TLS, it is necessary
for a PCEP speaker to indicate whether it wants to set up a TLS
connection or not. For this purpose, this document specifies a new
PCEP message called "StartTLS". Thus, the PCEP session is secured
via TLS from the start, before the exchange of any other PCEP message
(including the Open message). This document thus updates [RFC5440],
which requires the Open message to be the first PCEP message that is
exchanged. In the case of a PCEP session using TLS, the StartTLS
Lopez, et al. Standards Track [Page 5]
^L
RFC 8253 PCEPS October 2017
message will be sent first. Also, a PCEP speaker that supports PCEPS
MUST NOT start the OpenWait timer after the TCP establishment;
instead, it starts a StartTLSWait timer as described in Section 3.3.
The PCEP speaker MAY discover that the PCEP peer supports PCEPS or
can be preconfigured to use PCEPS for a given peer (see Section 4 for
more details). An existing PCEP session cannot be secured via TLS;
the session MUST be closed and re-established with TLS as per the
procedure described in this document.
The StartTLS message is a PCEP message sent by a PCC to a PCE and by
a PCE to a PCC in order to initiate the TLS procedure for PCEP. The
PCC initiates the use of TLS by sending a StartTLS message. The PCE
agrees to the use of TLS by responding with its own StartTLS message.
If the PCE is configured to only support TLS, it may send the
StartTLS message immediately upon TCP connection establishment;
otherwise, it MUST wait to see if the PCC's first message is an Open
or a StartTLS message. The TLS negotiation and establishment
procedures are triggered once the PCEP speaker has sent and received
the StartTLS message. The Message-Type field of the PCEP common
header for the StartTLS message is set to 13.
Once the TCP connection has been successfully established, the first
message sent by the PCC to the PCE and by the PCE to the PCC MUST be
a StartTLS message for PCEPS. Note that this is a significant change
from [RFC5440], where the first PCEP message is the Open message.
A PCEP speaker receiving a StartTLS message, after any other PCEP
exchange has taken place (by receiving or sending any other messages
from either side), MUST treat it as an unexpected message and reply
with a PCEP Error (PCErr) message with Error-Type set to 25 (PCEP
StartTLS failure) and Error-value set to 1 (Reception of StartTLS
after any PCEP exchange), and it MUST close the TCP connection.
Any message received prior to the StartTLS or Open message MUST
trigger a protocol error condition causing a PCErr message to be sent
with Error-Type set to 25 (PCEP StartTLS failure) and Error-value set
to 2 (Reception of any other message apart from StartTLS, Open, or
PCErr), and it MUST close the TCP connection.
If the PCEP speaker that does not support PCEPS receives a StartTLS
message, it will behave according to the existing error mechanism
described in Section 6.2 of [RFC5440] (if the message is received
prior to an Open message) or Section 6.9 of [RFC5440] (if an unknown
message is received). See Section 5 for more details.
Lopez, et al. Standards Track [Page 6]
^L
RFC 8253 PCEPS October 2017
If the PCEP speaker that only supports PCEPS connections (as a local
policy) receives an Open message, it MUST treat it as an unexpected
message and reply with a PCErr message with Error-Type set to 1 (PCEP
session establishment failure) and Error-value set to 1 (reception of
an invalid Open message or a non Open message), and it MUST close the
TCP connection.
If a PCC supports PCEPS connections and allows non-PCEPS connections
(as a local policy), it MUST first try to establish PCEPS by sending
a StartTLS message, and in case it receives a PCErr message from the
PCE, it MAY retry to establish a connection without PCEPS by sending
an Open message. If a PCE supports PCEPS connections and allows
non-PCEPS connections (as a local policy), it MUST wait to respond
after TCP establishment, based on the message received from the PCC.
In case of a StartTLS message, the PCE MUST respond by sending a
StartTLS message and moving to TLS establishment procedures as
described in this document. In case of an Open message, the PCE MUST
respond with an Open message and move to the PCEP session
establishment procedure as per [RFC5440]. If a PCE supports PCEPS
connections only (as a local policy), it MAY send a StartTLS message
to the PCC without waiting to receive a StartTLS message from the
PCC.
If a PCEP speaker that is unwilling or unable to negotiate TLS
receives a StartTLS message, it MUST return a PCErr message (in the
clear) with Error-Type set to 25 (PCEP StartTLS failure) and Error-
value set to:
o 3 (Failure, connection without TLS is not possible) if it is not
willing to exchange PCEP messages without the solicited TLS
connection, and it MUST close the TCP session.
o 4 (Failure, connection without TLS is possible) if it is willing
to exchange PCEP messages without the solicited TLS connection,
and it MUST close the TCP session. The receiver MAY choose to
attempt to re-establish the PCEP session without TLS next.
Re-establishing the PCEP session without TLS SHOULD be limited to
only one attempt.
If the PCEP speaker supports PCEPS and can establish a TLS
connection, it MUST start the TLS connection negotiation and
establishment steps described in Section 3.4 before the PCEP
initialization procedure (see Section 4.2.1 of [RFC5440]).
After the exchange of StartTLS messages, if the TLS negotiation fails
for some reason (e.g., the required mechanisms for certificate
revocation checking are not available), both peers MUST immediately
close the connection.
Lopez, et al. Standards Track [Page 7]
^L
RFC 8253 PCEPS October 2017
A PCEP speaker that does not support PCEPS sends the Open message
directly, as per [RFC5440]. A PCEP speaker that supports PCEPS, but
has learned in the last exchange the peer's willingness to
re-establish the session without TLS, MAY send the Open message
directly, as per [RFC5440]. Re-establishing the PCEP session without
TLS SHOULD be limited to only one attempt.
Given the asymmetric nature of TLS for connection establishment, it
is relevant to identify the roles of each of the PCEP peers in it.
The PCC SHALL act as the TLS client, and the PCE SHALL act as the TLS
server as per [RFC5246].
As per the recommendation from [RFC7525] to avoid downgrade attacks,
PCEP peers that support PCEPS SHOULD default to strict TLS
configuration, i.e., not allowing non-TLS PCEP sessions to be
established. PCEPS implementations MAY provide an option to allow
the operator to manually override strict TLS configuration and allow
unsecured connections. Execution of this override SHOULD trigger a
warning about the security implications of permitting unsecured
connections.
3.3. The StartTLS Message
The StartTLS message is used to initiate the TLS procedure for a
PCEPS session between the PCEP peers. A PCEP speaker sends the
StartTLS message to request negotiation and establishment of a TLS
connection for PCEP. On receiving a StartTLS message from the PCEP
peer (i.e., when the PCEP speaker has sent and received the StartTLS
message), it is ready to start the negotiation and establishment of
TLS and move to the steps described in Section 3.4.
The collision resolution procedures described in [RFC5440] for the
exchange of Open messages MUST be applied by the PCEP peers during
the exchange of StartTLS messages.
The format of a StartTLS message is as follows:
<StartTLS Message>::= <Common Header>
The StartTLS message MUST contain only the PCEP common header with
the Message-Type field set to 13.
Once the TCP connection has been successfully established, the PCEP
speaker MUST start a timer called the "StartTLSWait timer". After
the expiration of this timer, if neither the StartTLS message nor a
PCErr/Open message (in case of failure and PCEPS not being supported
by the peer, respectively) has been received, the PCEP speaker MUST
send a PCErr message with Error-Type set to 25 (PCEP StartTLS
Lopez, et al. Standards Track [Page 8]
^L
RFC 8253 PCEPS October 2017
failure) and Error-value set to 5 (No StartTLS message (nor PCErr/
Open) before StartTLSWait timer expiry), and it MUST release the TCP
connection. A RECOMMENDED value for the StartTLSWait timer is 60
seconds. The value of the StartTLSWait timer MUST NOT be less than
that of the OpenWait timer.
The following figures illustrate the various interactions between a
PCC and a PCE, based on the support for the PCEPS capability, during
the PCEP session initialization.
+-+-+ +-+-+
|PCC| |PCE|
+-+-+ +-+-+
| |
| StartTLS |
| msg |
|------- |
| \ StartTLS |
| \ msg |
| \ ---------|
| \/ |
| /\ |
| / -------->|
| / |
|<------ |
|:::::::::TLS:::::::::|
|:::::Establishment:::|
| |
| |
|:::::::PCEP::::::::::|
| |
Figure 1: Both PCEP speakers support PCEPS (strict)
Lopez, et al. Standards Track [Page 9]
^L
RFC 8253 PCEPS October 2017
+-+-+ +-+-+
|PCC| |PCE|
+-+-+ +-+-+
| |
| StartTLS |
| msg |
|------- |
| \ StartTLS |
| \ msg |
| \ ---------|
| \/ |
| /\ |
| / -------->|
| / |
|<------ |
|:::::::::TLS:::::::::| TLS Establishment
|:::::Establishment:::| Failure; both
| | peers close
the session
Figure 2: Both PCEP speakers support PCEPS (strict) but cannot
establish TLS
Lopez, et al. Standards Track [Page 10]
^L
RFC 8253 PCEPS October 2017
+-+-+ +-+-+
|PCC| |PCE|
+-+-+ +-+-+
| | Does not support
| StartTLS | PCEPS and thus
| msg | sends Open
|------- |
| \ Open |
| \ msg |
| \ ---------|
| \/ |
| /\ |
| / -------->|
| / |
|<------ |
| |
|<--------------------| Send Error
| PCErr | Type=1,Value=1
| | (non-Open message
|<--------------------| received)
| Close |
///////// TCP /////////
//////re-establish/////
Send Open | Open |
this time | msg |
|------- |
| \ Open |
| \ msg |
| \ ---------|
| \/ |
| /\ |
| / -------->|
| / |
|<------ |
Figure 3: PCE does not support connection with PCEPS, whereas PCC
supports connection with or without PCEPS
Lopez, et al. Standards Track [Page 11]
^L
RFC 8253 PCEPS October 2017
+-+-+ +-+-+
|PCC| |PCE|
+-+-+ +-+-+
| |
| StartTLS |
| msg | PCE waits
|-------------------->| for PCC and
| StartTLS | responds with
|<--------------------| Start TLS
| |
|:::::::::TLS:::::::::|
|:::::Establishment:::|
| |
| |
|:::::::PCEP::::::::::|
| |
Figure 4: Both PCEP speakers support connection with or without PCEPS
+-+-+ +-+-+
|PCC| |PCE|
+-+-+ +-+-+
| |
| StartTLS |
| msg | PCE waits
|-------------------->| for PCC
| PCErr |
|<--------------------| Send Error
| | Type=25,Value=3
| | (Failure, connection
|<--------------------| without TLS is not
| Close | possible)
Figure 5: Both PCEP speakers support connection with or without
PCEPS, but PCE cannot start TLS negotiation
Lopez, et al. Standards Track [Page 12]
^L
RFC 8253 PCEPS October 2017
+-+-+ +-+-+
|PCC| |PCE|
+-+-+ +-+-+
| |
| Open |
| msg | PCE waits
|-------------------->| for PCC and
| Open | responds with
|<--------------------| Open
| |
|:::::::PCEP::::::::::|
| |
Figure 6: PCE supports connection with or without PCEPS, whereas PCC
does not support connection with PCEPS
3.4. TLS Connection Establishment
Once the establishment of TLS has been agreed upon by the PCEP peers,
the connection establishment SHALL follow the following steps:
1. Immediately negotiate a TLS session according to [RFC5246]. The
following restrictions apply:
* Support for TLS v1.2 [RFC5246] or later is REQUIRED.
* Support for certificate-based mutual authentication is
REQUIRED.
* Negotiation of a ciphersuite providing for integrity
protection is REQUIRED.
* Negotiation of a ciphersuite providing for confidentiality is
RECOMMENDED.
* Support for and negotiation of compression is OPTIONAL.
* PCEPS implementations MUST, at a minimum, support negotiation
of the TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 [RFC6460] and
SHOULD support TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as
well. Implementations SHOULD support the NIST P-256
(secp256r1) curve [RFC4492]. In addition, PCEPS
implementations MUST support negotiation of the
mandatory-to-implement ciphersuites required by the versions
of TLS that they support from TLS 1.3 onwards.
Lopez, et al. Standards Track [Page 13]
^L
RFC 8253 PCEPS October 2017
2. Peer authentication can be performed in any of the following two
REQUIRED operation models:
* TLS with X.509 certificates using Public-Key Infrastructure
Exchange (PKIX) trust models:
+ Implementations MUST allow the configuration of a list of
trusted Certification Authorities (CAs) for incoming
connections.
+ Certificate validation MUST include the verification rules
as per [RFC5280].
+ PCEPS implementations SHOULD incorporate revocation methods
(Certificate Revocation List (CRL) downloading, Online
Certificate Status Protocol (OCSP), etc.) according to the
trusted CA policies.
+ Implementations SHOULD indicate their trusted CAs. For TLS
1.2, this is done using "certificate_authorities" on the
server side (see Section 7.4.4 of [RFC5246]) and the
"TrustedAuthorities" extension on the client side (see
Section 6 of [RFC6066]).
+ Implementations MUST follow the rules and guidelines for
peer validation as defined in [RFC6125]. If an expected
DNS name or IP address for the peer is configured, then the
implementations MUST check them against the values in the
presented certificate. The DNS names and the IP addresses
can be contained in the Common Name Identifier (CN-ID)
[RFC6125] or the subjectAltName entries. For verification,
only one of these entries is considered. The following
precedence applies: for DNS name validation, DNS-ID
[RFC6125] has precedence over CN-ID, and for IP address
validation, subjectAltName:iPAddr has precedence over
CN-ID.
+ Implementations MAY allow the configuration of a set of
additional properties of the certificate to check for a
peer's authorization to communicate (e.g., a set of allowed
values in URI-ID [RFC6125] or a set of allowed X.509 v3
Certificate Policies). The definitions of these properties
are out of scope of this document.
* TLS with X.509 certificates using certificate fingerprints:
Implementations MUST allow the configuration of a list of
certificates that are trusted to identify peers, identified
via the fingerprint of certificate octets encoded by the
Lopez, et al. Standards Track [Page 14]
^L
RFC 8253 PCEPS October 2017
Distinguished Encoding Rules (DER). Implementations MUST
support SHA-256 as defined by [SHS] as the hash algorithm for
the fingerprint, but a later revision may demand support for a
stronger hash function.
3. Start exchanging PCEP messages.
* Once the TLS connection has been successfully established, the
PCEP speaker MUST start the OpenWait timer [RFC5440]; after
the expiration of this timer, if no Open message has been
received, the PCEP speaker sends a PCErr message and releases
the TCP/TLS connection.
3.5. Peer Identity
Depending on the peer authentication method in use, PCEPS supports
different operation modes to establish a peer's identity and whether
it is entitled to perform requests or can be considered authoritative
in its replies. PCEPS implementations SHOULD provide mechanisms for
associating peer identities with different levels of access and/or
authoritativeness, and they MUST provide a mechanism for establishing
a default level for properly identified peers. Any connection
established with a peer that cannot be properly identified SHALL be
terminated before any PCEP exchange takes place.
In TLS X.509 mode using fingerprints, a peer is uniquely identified
by the fingerprint of the presented certificate.
There are numerous trust models in PKIX environments, and it is
beyond the scope of this document to define how a particular
deployment determines whether a peer is trustworthy. Implementations
that want to support a wide variety of trust models should expose as
many details of the presented certificate to the administrator as
possible so that the trust model can be implemented by the
administrator. At least the following parameters of the X.509
certificate SHOULD be exposed:
o Peer's IP Address
o Peer's Fully Qualified Domain Name (FQDN)
o Certificate Fingerprint
o Issuer
o Subject
o All X.509 v3 Extended Key Usage
Lopez, et al. Standards Track [Page 15]
^L
RFC 8253 PCEPS October 2017
o All X.509 v3 Subject Alternative Name
o All X.509 v3 Certificate Policies
Note that the remote IP address used for the TCP session
establishment is also exposed.
[RFC8232] specifies a Speaker Entity Identifier TLV
(SPEAKER-ENTITY-ID) as an optional TLV that is included in the OPEN
object. It contains a unique identifier for the node that does not
change during the lifetime of the PCEP speaker. An implementation
would thus expose the speaker entity identifier as part of the X.509
v3 certificate's subjectAltName:otherName, so that an implementation
could use this identifier for the peer identification trust model.
In addition, a PCC MAY apply the procedures described in "DNS-Based
Authentication of Named Entities (DANE)" [RFC6698] to verify its peer
identity when using DNS discovery. See Section 4.1 for further
details.
3.6. Connection Establishment Failure
In case the initial TLS negotiation or the peer identity check fails,
according to the procedures listed in this document, both peers MUST
immediately close the connection.
The initiator SHOULD follow the procedure listed in [RFC5440] to
retry session setup as per the exponential back-off session
establishment retry procedure.
4. Discovery Mechanisms
This document does not specify any discovery mechanism for support of
PCEPS. [PCE-DISCOVERY-PCEPS-SUPPORT] and [PCE-DISCOVERY-DNS] make
the following proposals:
o A PCE can advertise its capability to support PCEPS using the
IGP's advertisement mechanism of the PCED information. The
PCE-CAP-FLAGS sub-TLV is an optional sub-TLV used to advertise PCE
capabilities. It is present within the PCED sub-TLV carried by
OSPF or IS-IS. [RFC5088] and [RFC5089] provide the description
and processing rules for this sub-TLV when carried within OSPF and
IS-IS, respectively. PCE capability bits are defined in
[RFC5088]. A new capability flag bit for the PCE-CAP-FLAGS
sub-TLV that can be announced as an attribute to distribute PCEP
security support information is proposed in
[PCE-DISCOVERY-PCEPS-SUPPORT].
Lopez, et al. Standards Track [Page 16]
^L
RFC 8253 PCEPS October 2017
o A PCE can advertise its capability to support PCEPS using DNS
[PCE-DISCOVERY-DNS] by identifying the support of TLS.
4.1. DANE Applicability
DANE [RFC6698] defines a secure method to associate the certificate
that is obtained from a TLS server with a domain name using DNS,
i.e., using the TLSA DNS resource record (RR) to associate a TLS
server certificate or public key with the domain name where the
record is found, thus forming a "TLSA certificate association". The
DNS information needs to be protected by DNS Security (DNSSEC). A
PCC willing to apply DANE to verify server identity MUST conform to
the rules defined in Section 4 of [RFC6698]. The implementation MUST
support service certificate constraint (TLSA certificate usages type
1) with Matching type 1 (SHA2-256) as described in [RFC6698] and
[RFC7671]. The server's domain name must be authorized separately,
as TLSA does not provide any useful authorization guarantees.
5. Backward Compatibility
The procedures described in this document define a security container
for the transport of PCEP requests and replies carried by a TLS
connection initiated by means of a specific extended message
(StartTLS) that does not interfere with PCEP speaker implementations
not supporting it.
A PCC that does not support PCEPS will send an Open message as the
first message on TCP establishment. A PCE that only supports PCEPS
will send a StartTLS message on TCP establishment. The PCC would
consider the received StartTLS message as an error and behave
according to the existing error mechanism of [RFC5440], i.e., it
would send a PCErr message with Error-Type 1 (PCEP session
establishment failure) and Error-value 1 (reception of an invalid
Open message or a non Open message) and close the session.
A PCC that support PCEPS will send a StartTLS message as the first
message on TCP establishment. A PCE that does not support PCEPS
would consider receiving a StartTLS message as an error, respond with
a PCErr message with Error-Type 1 (PCEP session establishment
failure) and Error-value 1 (reception of an invalid Open message or a
non Open message), and close the session.
If a StartTLS message is received at any other time by a PCEP speaker
that does not implement PCEPS, it would consider it as an unknown
message and would behave according to the existing error mechanism of
[RFC5440], i.e., it would send a PCErr message with Error-Type 2
(Capability not supported) and close the session.
Lopez, et al. Standards Track [Page 17]
^L
RFC 8253 PCEPS October 2017
An existing PCEP session cannot be upgraded to PCEPS; the session
needs to be terminated and re-established as per the procedure
described in this document. During the incremental upgrade, the PCEP
speaker SHOULD allow session establishment with and without TLS.
Once both PCEP speakers are upgraded to support PCEPS, the PCEP
session is re-established with TLS; otherwise, a PCEP session without
TLS is set up. A redundant PCE MAY also be used during the
incremental deployment to take over the PCE undergoing upgrade. Once
the upgrade is completed, support for the unsecured version SHOULD be
removed.
A PCE that accepts connections with or without PCEPS would respond
based on the message received from the PCC. A PCC that supports
connection with or without PCEPS would first attempt to connect with
PCEPS, and in case of error, it MAY retry to establish connection
without PCEPS. For successful TLS operations with PCEP, both PCEP
peers in the network would need to be upgraded to support this
document.
Note that a PCEP implementation that supports PCEPS would respond
with a PCErr message with Error-Type set to 25 (PCEP StartTLS
failure) and Error-value set to 2 (Reception of any other message
apart from StartTLS, Open, or PCErr) if any other message is sent
before a StartTLS or Open message. If the sender of the invalid
message is a PCEP implementation that does not support PCEPS, it will
not be able to understand this error. A PCEPS implementation could
also send the PCErr message as per [RFC5440] with Error-Type 1 (PCEP
session establishment failure) and Error-value 1 (reception of an
invalid Open message or a non Open message) before closing the
session.
6. IANA Considerations
6.1. New PCEP Message
The following new message type has been allocated within the "PCEP
Messages" sub-registry of the "Path Computation Element Protocol
(PCEP) Numbers" registry:
Value Description Reference
-------------------------------------------------------
13 StartTLS This document
Lopez, et al. Standards Track [Page 18]
^L
RFC 8253 PCEPS October 2017
6.2. New Error-Values
The following new error types and error values have been allocated
within the "PCEP-ERROR Object Error Types and Values" sub-registry of
the "Path Computation Element Protocol (PCEP) Numbers" registry:
Error-Type Meaning Error-value Reference
---------------------------------------------------------------------
25 PCEP StartTLS 0: Unassigned This document
failure
1: Reception of This document
StartTLS after
any PCEP exchange
2: Reception of This document
any other message
apart from StartTLS,
Open, or PCErr
3: Failure, connection This document
without TLS is not
possible
4: Failure, connection This document
without TLS is
possible
5: No StartTLS message This document
(nor PCErr/Open)
before StartTLSWait
timer expiry
7. Security Considerations
While the application of TLS satisfies the requirement on
confidentiality as well as fine-grained, policy-based peer
authentication, there are security threats that it cannot address.
It may be advisable to apply additional protection measures, in
particular in what relates to attacks specifically addressed to
forging the TCP connection underpinning TLS, especially in the case
of long-lived connections. One of these measures is the application
of the TCP Authentication Option (TCP-AO) [RFC5925], which is fully
compatible with and deemed as complementary to TLS. The mechanisms
to configure the requirements to use TCP-AO and other lower-layer
protection measures with a particular peer are outside the scope of
this document.
Lopez, et al. Standards Track [Page 19]
^L
RFC 8253 PCEPS October 2017
Since computational resources required by the TLS handshake and
ciphersuite are higher than unencrypted TCP, clients connecting to a
PCEPS server can more easily create high-load conditions, and a
malicious client might create a denial-of-service attack more easily.
Some TLS ciphersuites only provide integrity validation of their
payload and provide no encryption; such ciphersuites SHOULD NOT be
used by default. Administrators MAY allow the usage of these
ciphersuites after careful weighting of the risk of relevant internal
data leakage that can occur in such a case, as explicitly stated by
[RFC6952].
When using certificate fingerprints to identify PCEPS peers, any two
certificates that produce the same hash value will be considered the
same peer. Therefore, it is important to make sure that the hash
function used is cryptographically uncompromised, so that attackers
are very unlikely to be able to produce a hash collision with a
certificate of their choice. This document mandates support for
SHA-256 as defined by [SHS], but a later revision may demand support
for stronger functions if suitable attacks on it are known.
PCEPS implementations that continue to accept connections without TLS
are susceptible to downgrade attacks as described in [RFC7457]. An
attacker could attempt to remove the use of StartTLS messages that
request the use of TLS as it pass on the wire in clear and could also
attempt to inject a PCErr message that suggests attempting PCEP
connection without TLS.
The guidance given in [RFC7525] SHOULD be followed to avoid attacks
on TLS.
8. Manageability Considerations
All manageability requirements and considerations listed in [RFC5440]
apply to PCEP protocol extensions defined in this document. In
addition, requirements and considerations listed in this section
apply.
8.1. Control of Function and Policy
A PCE or PCC implementation SHOULD allow configuring the PCEP
security via TLS capabilities as described in this document.
A PCE or PCC implementation supporting PCEP security via TLS MUST
support general TLS configuration as per [RFC5246]. At least the
configuration of one of the trust models and its corresponding
parameters, as described in Sections 3.4 and 3.5, MUST be supported
by the implementation.
Lopez, et al. Standards Track [Page 20]
^L
RFC 8253 PCEPS October 2017
A PCEPS implementation SHOULD allow configuring the StartTLSWait
timer value.
PCEPS implementations MAY provide an option to allow the operator to
manually override strict TLS configuration and allow unsecure
connections. Execution of this override SHOULD trigger a warning
about the security implications of permitting unsecure connections.
Further, the operator needs to develop suitable security policies
around PCEP within his network. The PCEP peers SHOULD provide ways
for the operator to complete the following tasks in regards to a PCEP
session:
o Determine if a session is protected via PCEPS.
o Determine the version of TLS, the mechanism used for
authentication, and the ciphersuite in use.
o Determine if the certificate could not be verified and the reason
for this circumstance.
o Inspect the certificate offered by the PCEP peer.
o Be warned if the StartTLS procedure fails for the PCEP peers that
are known to support PCEPS via configurations or capability
advertisements.
8.2. Information and Data Models
The PCEP MIB module is defined in [RFC7420]. The MIB module could be
extended to include the ability to view the PCEPS capability,
TLS-related information, and the TLS status for each PCEP peer.
Further, to allow the operator to configure the PCEPS capability and
various TLS-related parameters as well as to view the current TLS
status for a PCEP session, the PCEP YANG module [PCEP-YANG] is
extended to include TLS-related information.
8.3. Liveness Detection and Monitoring
Mechanisms defined in this document do not imply any new liveness
detection and monitoring requirements in addition to those already
listed in [RFC5440] and [RFC5246].
8.4. Verifying Correct Operations
A PCEPS implementation SHOULD log error events and provide PCEPS
failure statistics with reasons.
Lopez, et al. Standards Track [Page 21]
^L
RFC 8253 PCEPS October 2017
8.5. Requirements on Other Protocols
Mechanisms defined in this document do not imply any new requirements
on other protocols. Note that Section 4 lists possible discovery
mechanisms for support of PCEPS.
8.6. Impact on Network Operation
Mechanisms defined in this document do not have any significant
impact on network operations in addition to those already listed in
[RFC5440] and on the policy and management implications discussed
above.
9. References
9.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<https://www.rfc-editor.org/info/rfc5246>.
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
<https://www.rfc-editor.org/info/rfc5280>.
[RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol (PCEP)", RFC 5440,
DOI 10.17487/RFC5440, March 2009,
<https://www.rfc-editor.org/info/rfc5440>.
[RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
Extensions: Extension Definitions", RFC 6066,
DOI 10.17487/RFC6066, January 2011,
<https://www.rfc-editor.org/info/rfc6066>.
Lopez, et al. Standards Track [Page 22]
^L
RFC 8253 PCEPS October 2017
[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
2011, <https://www.rfc-editor.org/info/rfc6125>.
[RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
of Named Entities (DANE) Transport Layer Security (TLS)
Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
2012, <https://www.rfc-editor.org/info/rfc6698>.
[RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
2015, <https://www.rfc-editor.org/info/rfc7525>.
[RFC7671] Dukhovni, V. and W. Hardaker, "The DNS-Based
Authentication of Named Entities (DANE) Protocol: Updates
and Operational Guidance", RFC 7671, DOI 10.17487/RFC7671,
October 2015, <https://www.rfc-editor.org/info/rfc7671>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[SHS] National Institute of Standards and Technology, "Secure
Hash Standard (SHS)", FIPS PUB 180-4,
DOI 10.6028/NIST.FIPS.180-4, August 2015,
<http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf>.
9.2. Informative References
[PCE-DISCOVERY-DNS]
Wu, Q., Dhody, D., King, D., Lopez, D., and J. Tantsura,
"Path Computation Element (PCE) Discovery using Domain
Name System(DNS)", Work in Progress, draft-wu-pce-dns-pce-
discovery-10, March 2017.
[PCE-DISCOVERY-PCEPS-SUPPORT]
Lopez, D., Wu, Q., Dhody, D., Wang, Z., and D. King, "IGP
extension for PCEP security capability support in the PCE
discovery", Work in Progress, draft-wu-pce-discovery-
pceps-support-07, March 2017.
Lopez, et al. Standards Track [Page 23]
^L
RFC 8253 PCEPS October 2017
[PCEP-YANG]
Dhody, D., Hardwick, J., Beeram, V., and J. Tantsura, "A
YANG Data Model for Path Computation Element
Communications Protocol (PCEP)", Work in Progress,
draft-ietf-pce-pcep-yang-05, July 2017.
[RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS)", RFC 4492,
DOI 10.17487/RFC4492, May 2006,
<https://www.rfc-editor.org/info/rfc4492>.
[RFC4513] Harrison, R., Ed., "Lightweight Directory Access Protocol
(LDAP): Authentication Methods and Security Mechanisms",
RFC 4513, DOI 10.17487/RFC4513, June 2006,
<https://www.rfc-editor.org/info/rfc4513>.
[RFC5088] Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
Zhang, "OSPF Protocol Extensions for Path Computation
Element (PCE) Discovery", RFC 5088, DOI 10.17487/RFC5088,
January 2008, <https://www.rfc-editor.org/info/rfc5088>.
[RFC5089] Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
Zhang, "IS-IS Protocol Extensions for Path Computation
Element (PCE) Discovery", RFC 5089, DOI 10.17487/RFC5089,
January 2008, <https://www.rfc-editor.org/info/rfc5089>.
[RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
June 2010, <https://www.rfc-editor.org/info/rfc5925>.
[RFC6460] Salter, M. and R. Housley, "Suite B Profile for Transport
Layer Security (TLS)", RFC 6460, DOI 10.17487/RFC6460,
January 2012, <https://www.rfc-editor.org/info/rfc6460>.
[RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
"Transport Layer Security (TLS) Encryption for RADIUS",
RFC 6614, DOI 10.17487/RFC6614, May 2012,
<https://www.rfc-editor.org/info/rfc6614>.
[RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
BGP, LDP, PCEP, and MSDP Issues According to the Keying
and Authentication for Routing Protocols (KARP) Design
Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
<https://www.rfc-editor.org/info/rfc6952>.
Lopez, et al. Standards Track [Page 24]
^L
RFC 8253 PCEPS October 2017
[RFC7420] Koushik, A., Stephan, E., Zhao, Q., King, D., and J.
Hardwick, "Path Computation Element Communication Protocol
(PCEP) Management Information Base (MIB) Module",
RFC 7420, DOI 10.17487/RFC7420, December 2014,
<https://www.rfc-editor.org/info/rfc7420>.
[RFC7457] Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
Known Attacks on Transport Layer Security (TLS) and
Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,
February 2015, <https://www.rfc-editor.org/info/rfc7457>.
[RFC8232] Crabbe, E., Minei, I., Medved, J., Varga, R., Zhang, X.,
and D. Dhody, "Optimizations of Label Switched Path State
Synchronization Procedures for a Stateful PCE", RFC 8232,
DOI 10.17487/RFC8232, September 2017,
<https://www.rfc-editor.org/info/rfc8232>.
Acknowledgements
This specification relies on the analysis and profiling of TLS
included in [RFC6614] and the procedures described for the StartTLS
command in [RFC4513].
We would like to thank Joe Touch for his suggestions and support
regarding the StartTLS mechanisms.
Thanks to Daniel King for reminding the authors about manageability
considerations.
Thanks to Cyril Margaria for shepherding this document.
Thanks to David Mandelberg for early SECDIR review comments as well
as further review during IETF last call.
Thanks to Dan Frost for the RTGDIR review and comments.
Thanks to Dale Worley for the Gen-ART review and comments.
Thanks to Tianran Zhou for the OPSDIR review.
Thanks to Deborah Brungard for being the responsible AD and guiding
the authors as needed.
Also, thanks to Mirja Kuhlewind, Eric Rescorla, Warren Kumari,
Kathleen Moriarty, Suresh Krishnan, Ben Campbell, and Alexey Melnikov
for the IESG review and comments.
Lopez, et al. Standards Track [Page 25]
^L
RFC 8253 PCEPS October 2017
Authors' Addresses
Diego R. Lopez
Telefonica I+D
Don Ramon de la Cruz, 82
Madrid 28006
Spain
Phone: +34 913 129 041
Email: diego.r.lopez@telefonica.com
Oscar Gonzalez de Dios
Telefonica I+D
Don Ramon de la Cruz, 82
Madrid 28006
Spain
Phone: +34 913 129 041
Email: oscar.gonzalezdedios@telefonica.com
Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China
Email: sunseawq@huawei.com
Dhruv Dhody
Huawei
Divyashree Techno Park, Whitefield
Bangalore, KA 560066
India
Email: dhruv.ietf@gmail.com
Lopez, et al. Standards Track [Page 26]
^L
|