1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
|
Internet Engineering Task Force (IETF) A. Clemm
Request for Comments: 8345 Huawei
Category: Standards Track J. Medved
ISSN: 2070-1721 Cisco
R. Varga
Pantheon Technologies SRO
N. Bahadur
Bracket Computing
H. Ananthakrishnan
Packet Design
X. Liu
Jabil
March 2018
A YANG Data Model for Network Topologies
Abstract
This document defines an abstract (generic, or base) YANG data model
for network/service topologies and inventories. The data model
serves as a base model that is augmented with technology-specific
details in other, more specific topology and inventory data models.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8345.
Clemm, et al. Standards Track [Page 1]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Clemm, et al. Standards Track [Page 2]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
Table of Contents
1. Introduction ....................................................4
2. Key Words .......................................................8
3. Definitions and Abbreviations ...................................9
4. Model Structure Details .........................................9
4.1. Base Network Model .........................................9
4.2. Base Network Topology Data Model ..........................12
4.3. Extending the Data Model ..................................13
4.4. Discussion and Selected Design Decisions ..................14
4.4.1. Container Structure ................................14
4.4.2. Underlay Hierarchies and Mappings ..................14
4.4.3. Dealing with Changes in Underlay Networks ..........15
4.4.4. Use of Groupings ...................................15
4.4.5. Cardinality and Directionality of Links ............16
4.4.6. Multihoming and Link Aggregation ...................16
4.4.7. Mapping Redundancy .................................16
4.4.8. Typing .............................................17
4.4.9. Representing the Same Device in Multiple Networks ..17
4.4.10. Supporting Client-Configured and
System-Controlled Network Topologies ..............18
4.4.11. Identifiers of String or URI Type .................19
5. Interactions with Other YANG Modules ...........................19
6. YANG Modules ...................................................20
6.1. Defining the Abstract Network: ietf-network ...............20
6.2. Creating Abstract Network Topology:
ietf-network-topology .....................................25
7. IANA Considerations ............................................32
8. Security Considerations ........................................33
9. References .....................................................35
9.1. Normative References ......................................35
9.2. Informative References ....................................36
Appendix A. Model Use Cases .......................................38
A.1. Fetching Topology from a Network Element ...................38
A.2. Modifying TE Topology Imported from an Optical Controller ..38
A.3. Annotating Topology for Local Computation ..................39
A.4. SDN Controller-Based Configuration of Overlays on Top of
Underlays ..................................................39
Appendix B. Companion YANG Data Models for Implementations Not
Compliant with NMDA ...................................39
B.1. YANG Module for Network State ..............................40
B.2. YANG Module for Network Topology State .....................45
Appendix C. An Example ............................................52
Acknowledgments ...................................................56
Contributors ......................................................56
Authors' Addresses ................................................57
Clemm, et al. Standards Track [Page 3]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
1. Introduction
This document introduces an abstract (base) YANG [RFC7950] data model
[RFC3444] to represent networks and topologies. The data model is
divided into two parts: The first part of the data model defines a
network data model that enables the definition of network
hierarchies, or network stacks (i.e., networks that are layered on
top of each other) and maintenance of an inventory of nodes contained
in a network. The second part of the data model augments the basic
network data model with information to describe topology information.
Specifically, it adds the concepts of "links" and
"termination points" to describe how nodes in a network are connected
to each other. Moreover, the data model introduces vertical layering
relationships between networks that can be augmented to cover both
network inventories and network/service topologies.
Although it would be possible to combine both parts into a single
data model, the separation facilitates integration of network
topology and network inventory data models, because it allows network
inventory information to be augmented separately, and without concern
for topology, into the network data model.
The data model can be augmented to describe the specifics of
particular types of networks and topologies. For example, an
augmenting data model can provide network node information with
attributes that are specific to a particular network type. Examples
of augmenting models include data models for Layer 2 network
topologies; Layer 3 network topologies such as unicast IGP, IS-IS
[RFC1195], and OSPF [RFC2328]; traffic engineering (TE) data
[RFC3209]; or any of the variety of transport and service topologies.
Information specific to particular network types will be captured in
separate, technology-specific data models.
The basic data models introduced in this document are generic in
nature and can be applied to many network and service topologies and
inventories. The data models allow applications to operate on an
inventory or topology of any network at a generic level, where the
specifics of particular inventory/topology types are not required.
At the same time, where data specific to a network type comes into
play and the data model is augmented, the instantiated data still
adheres to the same structure and is represented in a consistent
fashion. This also facilitates the representation of network
hierarchies and dependencies between different network components and
network types.
The abstract (base) network YANG module introduced in this document,
entitled "ietf-network" (Section 6.1), contains a list of abstract
network nodes and defines the concept of "network hierarchy" (network
Clemm, et al. Standards Track [Page 4]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
stack). The abstract network node can be augmented in inventory and
topology data models with inventory-specific and topology-specific
attributes. The network hierarchy (stack) allows any given network
to have one or more "supporting networks". The relationship between
the base network data model, the inventory data models, and the
topology data models is shown in Figure 1 (dotted lines in the figure
denote possible augmentations to models defined in this document).
+------------------------+
| |
| Abstract Network Model |
| |
+------------------------+
|
+-------+-------+
| |
V V
+------------+ ..............
| Abstract | : Inventory :
| Topology | : Model(s) :
| Model | : :
+------------+ ''''''''''''''
|
+-------------+-------------+-------------+
| | | |
V V V V
............ ............ ............ ............
: L1 : : L2 : : L3 : : Service :
: Topology : : Topology : : Topology : : Topology :
: Model : : Model : : Model : : Model :
'''''''''''' '''''''''''' '''''''''''' ''''''''''''
Figure 1: The Network Data Model Structure
The network-topology YANG module introduced in this document,
entitled "ietf-network-topology" (Section 6.2), defines a generic
topology data model at its most general level of abstraction. The
module defines a topology graph and components from which it is
composed: nodes, edges, and termination points. Nodes (from the
"ietf-network" module) represent graph vertices and links represent
graph edges. Nodes also contain termination points that anchor the
links. A network can contain multiple topologies -- for example,
topologies at different layers and overlay topologies. The data
model therefore allows relationships between topologies, as well as
dependencies between nodes and termination points across topologies,
to be captured. An example of a topology stack is shown in Figure 2.
Clemm, et al. Standards Track [Page 5]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
+---------------------------------------+
/ _[X1]_ "Service" /
/ _/ : \_ /
/ _/ : \_ /
/ _/ : \_ /
/ / : \ /
/ [X2]__________________[X3] /
+---------:--------------:------:-------+
: : :
+----:--------------:----:--------------+
/ : : : "L3" /
/ : : : /
/ : : : /
/ [Y1]_____________[Y2] /
/ * * * /
/ * * * /
+--------------*-------------*--*-------+
* * *
+--------*----------*----*--------------+
/ [Z1]_______________[Z2] "Optical" /
/ \_ * _/ /
/ \_ * _/ /
/ \_ * _/ /
/ \ * / /
/ [Z] /
+---------------------------------------+
Figure 2: Topology Hierarchy (Stack) Example
Figure 2 shows three topology levels. At the top, the "Service"
topology shows relationships between service entities, such as
service functions in a service chain. The "L3" topology shows
network elements at Layer 3 (IP), and the "Optical" topology shows
network elements at Layer 1. Service functions in the "Service"
topology are mapped onto network elements in the "L3" topology, which
in turn are mapped onto network elements in the "Optical" topology.
Two service functions (X1 and X3) are mapped onto a single L3 network
element (Y2); this could happen, for example, if two service
functions reside in the same Virtual Machine (VM) (or server) and
share the same set of network interfaces. A single "L3" network
element (Y2) is mapped onto two "Optical" network elements (Z2 and
Z). This could happen, for example, if a single IP router attaches
to multiple Reconfigurable Optical Add/Drop Multiplexers (ROADMs) in
the optical domain.
Clemm, et al. Standards Track [Page 6]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
Another example of a service topology stack is shown in Figure 3.
VPN1 VPN2
+---------------------+ +---------------------+
/ [Y5]... / / [Z5]______[Z3] /
/ / \ : / / : \_ / : /
/ / \ : / / : \_ / : /
/ / \ : / / : \ / : /
/ [Y4]____[Y1] : / / : [Z2] : /
+------:-------:---:--+ +---:---------:-----:-+
: : : : : :
: : : : : :
: +-------:---:-----:------------:-----:-----+
: / [X1]__:___:___________[X2] : /
:/ / \_ : : _____/ / : /
: / \_ : _____/ / : /
/: / \: / / : /
/ : / [X5] / : /
/ : / __/ \__ / : /
/ : / ___/ \__ / : /
/ : / ___/ \ / : /
/ [X4]__________________[X3]..: /
+------------------------------------------+
L3 Topology
Figure 3: Topology Hierarchy (Stack) Example
Figure 3 shows two VPN service topologies (VPN1 and VPN2)
instantiated over a common L3 topology. Each VPN service topology is
mapped onto a subset of nodes from the common L3 topology.
There are multiple applications for such a data model. For example,
within the context of Interface to the Routing System (I2RS), nodes
within the network can use the data model to capture their
understanding of the overall network topology and expose it to a
network controller. A network controller can then use the
instantiated topology data to compare and reconcile its own view of
the network topology with that of the network elements that it
controls. Alternatively, nodes within the network could propagate
this understanding to compare and reconcile this understanding either
among themselves or with the help of a controller. Beyond the
network element and the immediate context of I2RS itself, a network
controller might even use the data model to represent its view of the
topology that it controls and expose it to applications north of
itself. Further use cases where the data model can be applied are
described in [USECASE-REQS].
Clemm, et al. Standards Track [Page 7]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
In this data model, a network is categorized as either system
controlled or not. If a network is system controlled, then it is
automatically populated by the server and represents dynamically
learned information that can be read from the operational state
datastore. The data model can also be used to create or modify
network topologies that might be associated with an inventory model
or with an overlay network. Such a network is not system controlled;
rather, it is configured by a client.
The data model allows a network to refer to a supporting network,
supporting nodes, supporting links, etc. The data model also allows
the layering of a network that is configured on top of a network that
is system controlled. This permits the configuration of overlay
networks on top of networks that are discovered. Specifically, this
data model is structured to support being implemented as part of the
ephemeral datastore [RFC8342], the requirements for which are defined
in Section 3 of [RFC8242]. This allows network topology data that is
written, i.e., configured by a client and not system controlled, to
refer to dynamically learned data that is controlled by the system,
not configured by a client. A simple use case might involve creating
an overlay network that is supported by the dynamically discovered
IP-routed network topology. When an implementation places written
data for this data model in the ephemeral datastore, such a network
MAY refer to another network that is system controlled.
2. Key Words
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
Clemm, et al. Standards Track [Page 8]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
3. Definitions and Abbreviations
Datastore: A conceptual place to store and access information. A
datastore might be implemented, for example, using files, a
database, flash memory locations, or combinations thereof. A
datastore maps to an instantiated YANG data tree (definition from
[RFC8342]).
Data subtree: An instantiated data node and the data nodes that are
hierarchically contained within it.
IGP: Interior Gateway Protocol.
IS-IS: Intermediate System to Intermediate System.
OSPF: Open Shortest Path First (a link-state routing protocol).
SDN: Software-Defined Networking.
URI: Uniform Resource Identifier.
VM: Virtual Machine.
4. Model Structure Details
4.1. Base Network Model
The abstract (base) network data model is defined in the
"ietf-network" module. Its structure is shown in Figure 4. The
notation syntax follows the syntax used in [RFC8340].
module: ietf-network
+--rw networks
+--rw network* [network-id]
+--rw network-id network-id
+--rw network-types
+--rw supporting-network* [network-ref]
| +--rw network-ref -> /networks/network/network-id
+--rw node* [node-id]
+--rw node-id node-id
+--rw supporting-node* [network-ref node-ref]
+--rw network-ref
| -> ../../../supporting-network/network-ref
+--rw node-ref -> /networks/network/node/node-id
Figure 4: The Structure of the Abstract (Base) Network Data Model
Clemm, et al. Standards Track [Page 9]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
The data model contains a container with a list of networks. Each
network is captured in its own list entry, distinguished via a
network-id.
A network has a certain type, such as L2, L3, OSPF, or IS-IS. A
network can even have multiple types simultaneously. The type or
types are captured underneath the container "network-types". In this
model, it serves merely as an augmentation target; network-specific
modules will later introduce new data nodes to represent new network
types below this target, i.e., will insert them below "network-types"
via YANG augmentation.
When a network is of a certain type, it will contain a corresponding
data node. Network types SHOULD always be represented using presence
containers, not leafs of type "empty". This allows the
representation of hierarchies of network subtypes within the instance
information. For example, an instance of an OSPF network (which, at
the same time, is a Layer 3 unicast IGP network) would contain
underneath "network-types" another presence container
"l3-unicast-igp-network", which in turn would contain a presence
container "ospf-network". Actual examples of this pattern can be
found in [RFC8346].
A network can in turn be part of a hierarchy of networks, building on
top of other networks. Any such networks are captured in the list
"supporting-network". A supporting network is, in effect, an
underlay network.
Furthermore, a network contains an inventory of nodes that are part
of the network. The nodes of a network are captured in their own
list. Each node is identified relative to its containing network by
a node-id.
It should be noted that a node does not exist independently of a
network; instead, it is a part of the network that contains it. In
cases where the same device or entity takes part in multiple
networks, or at multiple layers of a networking stack, the same
device or entity will be represented by multiple nodes, one for each
network. In other words, the node represents an abstraction of the
device for the particular network of which it is a part. To indicate
that the same entity or device is part of multiple topologies or
networks, it is possible to create one "physical" network with a list
of nodes for each of the devices or entities. This (physical)
network -- the nodes (entities) in that network -- can then be
referred to as an underlay network and as nodes from the other
(logical) networks and nodes, respectively. Note that the data model
Clemm, et al. Standards Track [Page 10]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
allows for the definition of more than one underlay network (and
node), allowing for simultaneous representation of layered network
topologies and service topologies, and their physical instantiation.
Similar to a network, a node can be supported by other nodes and map
onto one or more other nodes in an underlay network. This is
captured in the list "supporting-node". The resulting hierarchy of
nodes also allows for the representation of device stacks, where a
node at one level is supported by a set of nodes at an underlying
level. For example:
o a "router" node might be supported by a node representing a route
processor and separate nodes for various line cards and service
modules,
o a virtual router might be supported or hosted on a physical device
represented by a separate node,
and so on.
Network data of a network at a particular layer can come into being
in one of two ways: (1) the network data is configured by client
applications -- for example, in the case of overlay networks that are
configured by an SDN Controller application, or (2) the network data
is automatically controlled by the system, in the case of networks
that can be discovered. It is possible for a configured (overlay)
network to refer to a (discovered) underlay network.
The revised datastore architecture [RFC8342] is used to account for
those possibilities. Specifically, for each network, the origin of
its data is indicated per the "origin" metadata [RFC7952] annotation
(as defined in [RFC8342]) -- "intended" for data that was configured
by a client application and "learned" for data that is discovered.
Network data that is discovered is automatically populated as part of
the operational state datastore. Network data that is configured is
part of the configuration and intended datastores, respectively.
Configured network data that is actually in effect is, in addition,
reflected in the operational state datastore. Data in the
operational state datastore will always have complete referential
integrity. Should a configured data item (such as a node) have a
dangling reference that refers to a non-existing data item (such as a
supporting node), the configured data item will automatically be
removed from the operational state datastore and thus only appear in
the intended datastore. It will be up to the client application
(such as an SDN Controller) to resolve the situation and ensure that
the reference to the supporting resources is configured properly.
Clemm, et al. Standards Track [Page 11]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
4.2. Base Network Topology Data Model
The abstract (base) network topology data model is defined in the
"ietf-network-topology" module. It builds on the network data model
defined in the "ietf-network" module, augmenting it with links
(defining how nodes are connected) and termination points (which
anchor the links and are contained in nodes). The structure of the
network topology module is shown in Figure 5. The notation syntax
follows the syntax used in [RFC8340].
module: ietf-network-topology
augment /nw:networks/nw:network:
+--rw link* [link-id]
+--rw link-id link-id
+--rw source
| +--rw source-node? -> ../../../nw:node/node-id
| +--rw source-tp? leafref
+--rw destination
| +--rw dest-node? -> ../../../nw:node/node-id
| +--rw dest-tp? leafref
+--rw supporting-link* [network-ref link-ref]
+--rw network-ref
| -> ../../../nw:supporting-network/network-ref
+--rw link-ref leafref
augment /nw:networks/nw:network/nw:node:
+--rw termination-point* [tp-id]
+--rw tp-id tp-id
+--rw supporting-termination-point*
[network-ref node-ref tp-ref]
+--rw network-ref
| -> ../../../nw:supporting-node/network-ref
+--rw node-ref
| -> ../../../nw:supporting-node/node-ref
+--rw tp-ref leafref
Figure 5: The Structure of the Abstract (Base) Network Topology
Data Model
A node has a list of termination points that are used to terminate
links. An example of a termination point might be a physical or
logical port or, more generally, an interface.
Like a node, a termination point can in turn be supported by an
underlying termination point, contained in the supporting node of the
underlay network.
Clemm, et al. Standards Track [Page 12]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
A link is identified by a link-id that uniquely identifies the link
within a given topology. Links are point-to-point and
unidirectional. Accordingly, a link contains a source and a
destination. Both source and destination reference a corresponding
node, as well as a termination point on that node. Similar to a
node, a link can map onto one or more links (which are terminated by
the corresponding underlay termination points) in an underlay
topology. This is captured in the list "supporting-link".
4.3. Extending the Data Model
In order to derive a data model for a specific type of network, the
base data model can be extended. This can be done roughly as
follows: a new YANG module for the new network type is introduced.
In this module, a number of augmentations are defined against the
"ietf-network" and "ietf-network-topology" modules.
We start with augmentations against the "ietf-network" module.
First, a new network type needs to be defined; this is done by
defining a presence container that represents the new network type.
The new network type is inserted, by means of augmentation, below the
network-types container. Subsequently, data nodes for any node
parameters that are specific to a network type are defined and
augmented into the node list. The new data nodes can be defined as
conditional ("when") on the presence of the corresponding network
type in the containing network. In cases where there are any
requirements or restrictions in terms of network hierarchies, such as
when a network of a new network type requires a specific type of
underlay network, it is possible to define corresponding constraints
as well and augment the supporting-network list accordingly.
However, care should be taken to avoid excessive definitions of
constraints.
Subsequently, augmentations are defined against the
"ietf-network-topology" module. Data nodes are defined for link
parameters, as well as termination point parameters, that are
specific to the new network type. Those data nodes are inserted via
augmentation into the link and termination-point lists, respectively.
Again, data nodes can be defined as conditional on the presence of
the corresponding network type in the containing network, by adding a
corresponding "when" statement.
It is possible, but not required, to group data nodes for a given
network type under a dedicated container. Doing so introduces
additional structure but lengthens data node path names.
Clemm, et al. Standards Track [Page 13]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
In cases where a hierarchy of network types is defined, augmentations
can in turn be applied against augmenting modules, with the module of
a network whose type is more specific augmenting the module of a
network whose type is more general.
4.4. Discussion and Selected Design Decisions
4.4.1. Container Structure
Rather than maintaining lists in separate containers, the data model
is kept relatively flat in terms of its containment structure. Lists
of nodes, links, termination points, and supporting nodes; supporting
links; and supporting termination points are not kept in separate
containers. Therefore, path identifiers that are used to refer to
specific nodes -- in management operations or in specifications of
constraints -- can remain relatively compact. Of course, this means
that there is no separate structure in instance information that
separates elements of different lists from one another. Such a
structure is semantically not required, but it might provide enhanced
"human readability" in some cases.
4.4.2. Underlay Hierarchies and Mappings
To minimize assumptions regarding what a particular entity might
actually represent, mappings between networks, nodes, links, and
termination points are kept strictly generic. For example, no
assumptions are made regarding whether a termination point actually
refers to an interface or whether a node refers to a specific
"system" or device; the data model at this generic level makes no
provisions for these.
Where additional specifics about mappings between upper and lower
layers are required, the information can be captured in augmenting
modules. For example, to express that a termination point in a
particular network type maps to an interface, an augmenting module
can introduce an augmentation to the termination point. The
augmentation introduces a leaf of type "interface-ref". That leaf
references the corresponding interface [RFC8343]. Similarly, if a
node maps to a particular device or network element, an augmenting
module can augment the node data with a leaf that references the
network element.
Clemm, et al. Standards Track [Page 14]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
It is possible for links at one level of a hierarchy to map to
multiple links at another level of the hierarchy. For example, a VPN
topology might model VPN tunnels as links. Where a VPN tunnel maps
to a path that is composed of a chain of several links, the link will
contain a list of those supporting links. Likewise, it is possible
for a link at one level of a hierarchy to aggregate a bundle of links
at another level of the hierarchy.
4.4.3. Dealing with Changes in Underlay Networks
It is possible for a network to undergo churn even as other networks
are layered on top of it. When a supporting node, link, or
termination point is deleted, the supporting leafrefs in the overlay
will be left dangling. To allow for this possibility, the data model
makes use of the "require-instance" construct of YANG 1.1 [RFC7950].
A dangling leafref of a configured object leaves the corresponding
instance in a state in which it lacks referential integrity,
effectively rendering it nonoperational. Any corresponding object
instance is therefore removed from the operational state datastore
until the situation has been resolved, i.e., until either (1) the
supporting object is added to the operational state datastore or
(2) the instance is reconfigured to refer to another object that is
actually reflected in the operational state datastore. It will
remain part of the intended datastore.
It is the responsibility of the application maintaining the overlay
to deal with the possibility of churn in the underlay network. When
a server receives a request to configure an overlay network, it
SHOULD validate whether supporting nodes / links / termination points
refer to nodes in the underlay that actually exist, i.e., verify that
the nodes are reflected in the operational state datastore.
Configuration requests in which supporting nodes / links /
termination points refer to objects currently not in existence SHOULD
be rejected. It is the responsibility of the application to update
the overlay when a supporting node / link / termination point is
deleted at a later point in time. For this purpose, an application
might subscribe to updates when changes to the underlay occur -- for
example, using mechanisms defined in [YANG-Push].
4.4.4. Use of Groupings
The data model makes use of groupings instead of simply defining data
nodes "inline". This makes it easier to include the corresponding
data nodes in notifications, which then do not need to respecify each
data node that is to be included. The trade-off is that it makes the
specification of constraints more complex, because constraints
involving data nodes outside the grouping need to be specified in
Clemm, et al. Standards Track [Page 15]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
conjunction with a "uses" statement where the grouping is applied.
This also means that constraints and XML Path Language (XPath)
statements need to be specified in such a way that they navigate
"down" first and select entire sets of nodes, as opposed to being
able to simply specify them against individual data nodes.
4.4.5. Cardinality and Directionality of Links
The topology data model includes links that are point-to-point and
unidirectional. It does not directly support multipoint and
bidirectional links. Although this may appear as a limitation, the
decision to do so keeps the data model simple and generic, and it
allows it to be very easily subjected to applications that make use
of graph algorithms. Bidirectional connections can be represented
through pairs of unidirectional links. Multipoint networks can be
represented through pseudonodes (similar to IS-IS, for example). By
introducing hierarchies of nodes with nodes at one level mapping onto
a set of other nodes at another level and by introducing new links
for nodes at that level, topologies with connections representing
non-point-to-point communication patterns can be represented.
4.4.6. Multihoming and Link Aggregation
Links are terminated by a single termination point, not sets of
termination points. Connections involving multihoming or link
aggregation schemes need to be represented using multiple point-to-
point links and then defining a link at a higher layer that is
supported by those individual links.
4.4.7. Mapping Redundancy
In a hierarchy of networks, there are nodes mapping to nodes, links
mapping to links, and termination points mapping to termination
points. Some of this information is redundant. Specifically, if the
mapping of a link to one or more other links is known and the
termination points of each link are known, the mapping information
for the termination points can be derived via transitive closure and
does not have to be explicitly configured. Nonetheless, in order to
not constrain applications regarding which mappings they want to
configure and which should be derived, the data model provides the
option to configure this information explicitly. The data model
includes integrity constraints to allow for validating for
consistency.
Clemm, et al. Standards Track [Page 16]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
4.4.8. Typing
A network's network types are represented using a container that
contains a data node for each of its network types. A network can
encompass several types of networks simultaneously; hence, a
container is used instead of a case construct, with each network type
in turn represented by a dedicated presence container. The reason
for not simply using an empty leaf, or (even more simply) even doing
away with the network container and just using a leaf-list of
"network-type" instead, is to be able to represent "class
hierarchies" of network types, with one network type "refining" the
other. Containers specific to a network type are to be defined in
the network-specific modules, augmenting the network-types container.
4.4.9. Representing the Same Device in Multiple Networks
One common requirement concerns the ability to indicate that the same
device can be part of multiple networks and topologies. However, the
data model defines a node as relative to the network that contains
it. The same node cannot be part of multiple topologies. In many
cases, a node will be the abstraction of a particular device in a
network. To reflect that the same device is part of multiple
topologies, the following approach might be chosen: a new type of
network to represent a "physical" (or "device") network is
introduced, with nodes representing devices. This network forms an
underlay network for logical networks above it, with nodes of the
logical network mapping onto nodes in the physical network.
This scenario is depicted in Figure 6. This figure depicts three
networks with two nodes each. A physical network ("P" in the figure)
consists of an inventory of two nodes (D1 and D2), each representing
a device. A second network, X, has a third network, Y, as its
underlay. Both X and Y also have the physical network (P) as their
underlay. X1 has both Y1 and D1 as underlay nodes, while Y1 has D1
as its underlay node. Likewise, X2 has both Y2 and D2 as underlay
nodes, while Y2 has D2 as its underlay node. The fact that X1 and Y1
are both instantiated on the same physical node (D1) can be
easily seen.
Clemm, et al. Standards Track [Page 17]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
+---------------------+
/ [X1]____[X2] / X(Service Overlay)
+----:--:----:--------+
..: :..: :
........: ....: : :....
+-----:-------------:--+ : :...
/ [Y1]____[Y2]....: / :.. :
+------|-------|-------+ :.. :...
Y(L3) | +---------------------:-----+ :
| +----:----|-:----------+
+------------------------/---[D1] [D2] /
+----------------------+
P (Physical Network)
Figure 6: Topology Hierarchy Example - Multiple Underlays
In the case of a physical network, nodes represent physical devices
and termination points represent physical ports. It should be noted
that it is also possible to augment the data model for a physical
network type, defining augmentations that have nodes reference system
information and termination points reference physical interfaces, in
order to provide a bridge between network and device models.
4.4.10. Supporting Client-Configured and System-Controlled Network
Topologies
YANG requires data nodes to be designated as either configuration
data ("config true") or operational data ("config false"), but not
both, yet it is important to have all network information, including
vertical cross-network dependencies, captured in one coherent data
model. In most cases, network topology information about a network
is discovered; the topology is considered a property of the network
that is reflected in the data model. That said, certain types of
topologies need to also be configurable by an application, e.g., in
the case of overlay topologies.
The YANG data model for network topologies designates all data as
"config true". The distinction between data that is actually
configured and data that is in effect, including network data that is
discovered, is provided through the datastores introduced as part of
the Network Management Datastore Architecture (NMDA) [RFC8342].
Network topology data that is discovered is automatically populated
as part of the operational state datastore, i.e., <operational>. It
is "system controlled". Network topology that is configured is
instantiated as part of a configuration datastore, e.g., <intended>.
Only when it has actually taken effect will it also be instantiated
as part of the operational state datastore, i.e., <operational>.
Clemm, et al. Standards Track [Page 18]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
In general, a configured network topology will refer to an underlay
topology and include layering information, such as the supporting
node(s) underlying a node, supporting link(s) underlying a link, and
supporting termination point(s) underlying a termination point. The
supporting objects must be instantiated in the operational state
datastore in order for the dependent overlay object to be reflected
in the operational state datastore. Should a configured data item
(such as a node) have a dangling reference that refers to a
nonexistent data item (such as a supporting node), the configured
data item will automatically be removed from <operational> and show
up only in <intended>. It will be up to the client application to
resolve the situation and ensure that the reference to the supporting
resources is configured properly.
For each network, the origin of its data is indicated per the
"origin" metadata [RFC7952] annotation defined in [RFC8342]. In
general, the origin of discovered network data is "learned"; the
origin of configured network data is "intended".
4.4.11. Identifiers of String or URI Type
The current data model defines identifiers of nodes, networks, links,
and termination points as URIs. Alternatively, they could have been
defined as strings.
The case for strings is that they will be easier to implement. The
reason for choosing URIs is that the topology / node / termination
point exists in a larger context; hence, it is useful to be able to
correlate identifiers across systems. Although strings -- being the
universal data type -- are easier for human beings, they also muddle
things. What typically happens is that strings have some structure
that is magically assigned, and the knowledge of this structure has
to be communicated to each system working with the data. A URI makes
the structure explicit and also attaches additional semantics: the
URI, unlike a free-form string, can be fed into a URI resolver, which
can point to additional resources associated with the URI. This
property is important when the topology data is integrated into a
larger and more complex system.
5. Interactions with Other YANG Modules
The data model makes use of data types that have been defined in
[RFC6991].
This is a protocol-independent YANG data model with topology
information. It is separate from, and not linked with, data models
that are used to configure routing protocols or routing information.
This includes, for example, the "ietf-routing" YANG module [RFC8022].
Clemm, et al. Standards Track [Page 19]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
The data model obeys the requirements for the ephemeral state as
specified in [RFC8242]. For ephemeral topology data that is system
controlled, the process tasked with maintaining topology information
will load information from the routing process (such as OSPF) into
the operational state datastore without relying on a configuration
datastore.
6. YANG Modules
6.1. Defining the Abstract Network: ietf-network
<CODE BEGINS> file "ietf-network@2018-02-26.yang"
module ietf-network {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-network";
prefix nw;
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types";
}
organization
"IETF I2RS (Interface to the Routing System) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/i2rs/>
WG List: <mailto:i2rs@ietf.org>
Editor: Alexander Clemm
<mailto:ludwig@clemm.org>
Editor: Jan Medved
<mailto:jmedved@cisco.com>
Editor: Robert Varga
<mailto:robert.varga@pantheon.tech>
Editor: Nitin Bahadur
<mailto:nitin_bahadur@yahoo.com>
Editor: Hariharan Ananthakrishnan
<mailto:hari@packetdesign.com>
Editor: Xufeng Liu
<mailto:xufeng.liu.ietf@gmail.com>";
Clemm, et al. Standards Track [Page 20]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
description
"This module defines a common base data model for a collection
of nodes in a network. Node definitions are further used
in network topologies and inventories.
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8345;
see the RFC itself for full legal notices.";
revision 2018-02-26 {
description
"Initial revision.";
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
typedef node-id {
type inet:uri;
description
"Identifier for a node. The precise structure of the node-id
will be up to the implementation. For example, some
implementations MAY pick a URI that includes the network-id
as part of the path. The identifier SHOULD be chosen
such that the same node in a real network topology will
always be identified through the same identifier, even if
the data model is instantiated in separate datastores. An
implementation MAY choose to capture semantics in the
identifier -- for example, to indicate the type of node.";
}
Clemm, et al. Standards Track [Page 21]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
typedef network-id {
type inet:uri;
description
"Identifier for a network. The precise structure of the
network-id will be up to the implementation. The identifier
SHOULD be chosen such that the same network will always be
identified through the same identifier, even if the data model
is instantiated in separate datastores. An implementation MAY
choose to capture semantics in the identifier -- for example,
to indicate the type of network.";
}
grouping network-ref {
description
"Contains the information necessary to reference a network --
for example, an underlay network.";
leaf network-ref {
type leafref {
path "/nw:networks/nw:network/nw:network-id";
require-instance false;
}
description
"Used to reference a network -- for example, an underlay
network.";
}
}
grouping node-ref {
description
"Contains the information necessary to reference a node.";
leaf node-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"+
"network-ref]/nw:node/nw:node-id";
require-instance false;
}
description
"Used to reference a node.
Nodes are identified relative to the network that
contains them.";
}
uses network-ref;
}
Clemm, et al. Standards Track [Page 22]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
container networks {
description
"Serves as a top-level container for a list of networks.";
list network {
key "network-id";
description
"Describes a network.
A network typically contains an inventory of nodes,
topological information (augmented through the
network-topology data model), and layering information.";
leaf network-id {
type network-id;
description
"Identifies a network.";
}
container network-types {
description
"Serves as an augmentation target.
The network type is indicated through corresponding
presence containers augmented into this container.";
}
list supporting-network {
key "network-ref";
description
"An underlay network, used to represent layered network
topologies.";
leaf network-ref {
type leafref {
path "/nw:networks/nw:network/nw:network-id";
require-instance false;
}
description
"References the underlay network.";
}
}
Clemm, et al. Standards Track [Page 23]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
list node {
key "node-id";
description
"The inventory of nodes of this network.";
leaf node-id {
type node-id;
description
"Uniquely identifies a node within the containing
network.";
}
list supporting-node {
key "network-ref node-ref";
description
"Represents another node that is in an underlay network
and that supports this node. Used to represent layering
structure.";
leaf network-ref {
type leafref {
path "../../../nw:supporting-network/nw:network-ref";
require-instance false;
}
description
"References the underlay network of which the
underlay node is a part.";
}
leaf node-ref {
type leafref {
path "/nw:networks/nw:network/nw:node/nw:node-id";
require-instance false;
}
description
"References the underlay node itself.";
}
}
}
}
}
}
<CODE ENDS>
Clemm, et al. Standards Track [Page 24]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
6.2. Creating Abstract Network Topology: ietf-network-topology
<CODE BEGINS> file "ietf-network-topology@2018-02-26.yang"
module ietf-network-topology {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-network-topology";
prefix nt;
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types";
}
import ietf-network {
prefix nw;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
organization
"IETF I2RS (Interface to the Routing System) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/i2rs/>
WG List: <mailto:i2rs@ietf.org>
Editor: Alexander Clemm
<mailto:ludwig@clemm.org>
Editor: Jan Medved
<mailto:jmedved@cisco.com>
Editor: Robert Varga
<mailto:robert.varga@pantheon.tech>
Editor: Nitin Bahadur
<mailto:nitin_bahadur@yahoo.com>
Editor: Hariharan Ananthakrishnan
<mailto:hari@packetdesign.com>
Editor: Xufeng Liu
<mailto:xufeng.liu.ietf@gmail.com>";
Clemm, et al. Standards Track [Page 25]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
description
"This module defines a common base model for a network topology,
augmenting the base network data model with links to connect
nodes, as well as termination points to terminate links
on nodes.
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8345;
see the RFC itself for full legal notices.";
revision 2018-02-26 {
description
"Initial revision.";
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
typedef link-id {
type inet:uri;
description
"An identifier for a link in a topology. The precise
structure of the link-id will be up to the implementation.
The identifier SHOULD be chosen such that the same link in a
real network topology will always be identified through the
same identifier, even if the data model is instantiated in
separate datastores. An implementation MAY choose to capture
semantics in the identifier -- for example, to indicate the
type of link and/or the type of topology of which the link is
a part.";
}
typedef tp-id {
type inet:uri;
description
"An identifier for termination points on a node. The precise
structure of the tp-id will be up to the implementation.
The identifier SHOULD be chosen such that the same termination
point in a real network topology will always be identified
through the same identifier, even if the data model is
Clemm, et al. Standards Track [Page 26]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
instantiated in separate datastores. An implementation MAY
choose to capture semantics in the identifier -- for example,
to indicate the type of termination point and/or the type of
node that contains the termination point.";
}
grouping link-ref {
description
"This grouping can be used to reference a link in a specific
network. Although it is not used in this module, it is
defined here for the convenience of augmenting modules.";
leaf link-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"+
"network-ref]/nt:link/nt:link-id";
require-instance false;
}
description
"A type for an absolute reference to a link instance.
(This type should not be used for relative references.
In such a case, a relative path should be used instead.)";
}
uses nw:network-ref;
}
grouping tp-ref {
description
"This grouping can be used to reference a termination point
in a specific node. Although it is not used in this module,
it is defined here for the convenience of augmenting
modules.";
leaf tp-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"+
"network-ref]/nw:node[nw:node-id=current()/../"+
"node-ref]/nt:termination-point/nt:tp-id";
require-instance false;
}
description
"A type for an absolute reference to a termination point.
(This type should not be used for relative references.
In such a case, a relative path should be used instead.)";
}
uses nw:node-ref;
}
Clemm, et al. Standards Track [Page 27]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
augment "/nw:networks/nw:network" {
description
"Add links to the network data model.";
list link {
key "link-id";
description
"A network link connects a local (source) node and
a remote (destination) node via a set of the respective
node's termination points. It is possible to have several
links between the same source and destination nodes.
Likewise, a link could potentially be re-homed between
termination points. Therefore, in order to ensure that we
would always know to distinguish between links, every link
is identified by a dedicated link identifier. Note that a
link models a point-to-point link, not a multipoint link.";
leaf link-id {
type link-id;
description
"The identifier of a link in the topology.
A link is specific to a topology to which it belongs.";
}
container source {
description
"This container holds the logical source of a particular
link.";
leaf source-node {
type leafref {
path "../../../nw:node/nw:node-id";
require-instance false;
}
description
"Source node identifier. Must be in the same topology.";
}
leaf source-tp {
type leafref {
path "../../../nw:node[nw:node-id=current()/../"+
"source-node]/termination-point/tp-id";
require-instance false;
}
description
"This termination point is located within the source node
and terminates the link.";
}
}
Clemm, et al. Standards Track [Page 28]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
container destination {
description
"This container holds the logical destination of a
particular link.";
leaf dest-node {
type leafref {
path "../../../nw:node/nw:node-id";
require-instance false;
}
description
"Destination node identifier. Must be in the same
network.";
}
leaf dest-tp {
type leafref {
path "../../../nw:node[nw:node-id=current()/../"+
"dest-node]/termination-point/tp-id";
require-instance false;
}
description
"This termination point is located within the
destination node and terminates the link.";
}
}
list supporting-link {
key "network-ref link-ref";
description
"Identifies the link or links on which this link depends.";
leaf network-ref {
type leafref {
path "../../../nw:supporting-network/nw:network-ref";
require-instance false;
}
description
"This leaf identifies in which underlay topology
the supporting link is present.";
}
Clemm, et al. Standards Track [Page 29]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
leaf link-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/"+
"../network-ref]/link/link-id";
require-instance false;
}
description
"This leaf identifies a link that is a part
of this link's underlay. Reference loops in which
a link identifies itself as its underlay, either
directly or transitively, are not allowed.";
}
}
}
}
augment "/nw:networks/nw:network/nw:node" {
description
"Augments termination points that terminate links.
Termination points can ultimately be mapped to interfaces.";
list termination-point {
key "tp-id";
description
"A termination point can terminate a link.
Depending on the type of topology, a termination point
could, for example, refer to a port or an interface.";
leaf tp-id {
type tp-id;
description
"Termination point identifier.";
}
list supporting-termination-point {
key "network-ref node-ref tp-ref";
description
"This list identifies any termination points on which a
given termination point depends or onto which it maps.
Those termination points will themselves be contained
in a supporting node. This dependency information can be
inferred from the dependencies between links. Therefore,
this item is not separately configurable. Hence, no
corresponding constraint needs to be articulated.
The corresponding information is simply provided by the
implementing system.";
Clemm, et al. Standards Track [Page 30]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
leaf network-ref {
type leafref {
path "../../../nw:supporting-node/nw:network-ref";
require-instance false;
}
description
"This leaf identifies in which topology the
supporting termination point is present.";
}
leaf node-ref {
type leafref {
path "../../../nw:supporting-node/nw:node-ref";
require-instance false;
}
description
"This leaf identifies in which node the supporting
termination point is present.";
}
leaf tp-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/"+
"../network-ref]/nw:node[nw:node-id=current()/../"+
"node-ref]/termination-point/tp-id";
require-instance false;
}
description
"Reference to the underlay node (the underlay node must
be in a different topology).";
}
}
}
}
}
<CODE ENDS>
Clemm, et al. Standards Track [Page 31]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
7. IANA Considerations
This document registers the following namespace URIs in the "IETF XML
Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-network
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-network-topology
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-network-state
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-network-topology-state
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
This document registers the following YANG modules in the "YANG
Module Names" registry [RFC6020]:
Name: ietf-network
Namespace: urn:ietf:params:xml:ns:yang:ietf-network
Prefix: nw
Reference: RFC 8345
Name: ietf-network-topology
Namespace: urn:ietf:params:xml:ns:yang:ietf-network-topology
Prefix: nt
Reference: RFC 8345
Name: ietf-network-state
Namespace: urn:ietf:params:xml:ns:yang:ietf-network-state
Prefix: nw-s
Reference: RFC 8345
Name: ietf-network-topology-state
Namespace: urn:ietf:params:xml:ns:yang:ietf-network-topology-state
Prefix: nt-s
Reference: RFC 8345
Clemm, et al. Standards Track [Page 32]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
8. Security Considerations
The YANG modules specified in this document define a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC5246].
The NETCONF access control model [RFC8341] provides the means to
restrict access for particular NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.
The network topology and inventory created by these modules reveal
information about the structure of networks that could be very
helpful to an attacker. As a privacy consideration, although there
is no personally identifiable information defined in these modules,
it is possible that some node identifiers may be associated with
devices that are in turn associated with specific users.
The YANG modules define information that can be configurable in
certain instances -- for example, in the case of overlay topologies
that can be created by client applications. In such cases, a
malicious client could introduce topologies that are undesired.
Specifically, a malicious client could attempt to remove or add a
node, a link, or a termination point by creating or deleting
corresponding elements in node, link, or termination point lists,
respectively. In the case of a topology that is learned, the server
will automatically prohibit such misconfiguration attempts. In the
case of a topology that is configured, i.e., whose origin is
"intended", the undesired configuration could become effective and be
reflected in the operational state datastore, leading to disruption
of services provided via this topology. For example, the topology
could be "cut" or could be configured in a suboptimal way, leading to
increased consumption of resources in the underlay network due to the
routing and bandwidth utilization inefficiencies that would result.
Likewise, it could lead to degradation of service levels as well as
possible disruption of service. For those reasons, it is important
that the NETCONF access control model be vigorously applied to
prevent topology misconfiguration by unauthorized clients.
There are a number of data nodes defined in these YANG modules that
are writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
Clemm, et al. Standards Track [Page 33]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
to these data nodes without proper protection can have a negative
effect on network operations. These are the subtrees and data nodes
and their sensitivity/vulnerability:
In the "ietf-network" module:
o network: A malicious client could attempt to remove or add a
network in an effort to remove an overlay topology or to create an
unauthorized overlay.
o supporting network: A malicious client could attempt to disrupt
the logical structure of the model, resulting in a lack of overall
data integrity and making it more difficult to, for example,
troubleshoot problems rooted in the layering of network
topologies.
o node: A malicious client could attempt to remove or add a node
from the network -- for example, in order to sabotage the topology
of a network overlay.
o supporting node: A malicious client could attempt to change the
supporting node in order to sabotage the layering of an overlay.
In the "ietf-network-topology" module:
o link: A malicious client could attempt to remove a link from a
topology, add a new link, manipulate the way the link is layered
over supporting links, or modify the source or destination of the
link. In each case, the structure of the topology would be
sabotaged, and this scenario could, for example, result in an
overlay topology that is less than optimal.
o termination point: A malicious client could attempt to remove
termination points from a node, add "phantom" termination points
to a node, or change the layering dependencies of termination
points, again in an effort to sabotage the integrity of a topology
and potentially disrupt orderly operations of an overlay.
Clemm, et al. Standards Track [Page 34]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
9. References
9.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<https://www.rfc-editor.org/info/rfc5246>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in
RFC 2119 Key Words", BCP 14, RFC 8174,
DOI 10.17487/RFC8174, May 2017,
<https://www.rfc-editor.org/info/rfc8174>.
Clemm, et al. Standards Track [Page 35]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/info/rfc8342>.
9.2. Informative References
[RFC1195] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
dual environments", RFC 1195, DOI 10.17487/RFC1195,
December 1990, <https://www.rfc-editor.org/info/rfc1195>.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
DOI 10.17487/RFC2328, April 1998,
<https://www.rfc-editor.org/info/rfc2328>.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<https://www.rfc-editor.org/info/rfc3209>.
[RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between
Information Models and Data Models", RFC 3444,
DOI 10.17487/RFC3444, January 2003,
<https://www.rfc-editor.org/info/rfc3444>.
[RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,
<https://www.rfc-editor.org/info/rfc7951>.
[RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
RFC 7952, DOI 10.17487/RFC7952, August 2016,
<https://www.rfc-editor.org/info/rfc7952>.
[RFC8022] Lhotka, L. and A. Lindem, "A YANG Data Model for Routing
Management", RFC 8022, DOI 10.17487/RFC8022,
November 2016, <https://www.rfc-editor.org/info/rfc8022>.
[RFC8242] Haas, J. and S. Hares, "Interface to the Routing System
(I2RS) Ephemeral State Requirements", RFC 8242,
DOI 10.17487/RFC8242, September 2017,
<https://www.rfc-editor.org/info/rfc8242>.
Clemm, et al. Standards Track [Page 36]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface
Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
<https://www.rfc-editor.org/info/rfc8343>.
[RFC8346] Clemm, A., Medved, J., Varga, R., Liu, X.,
Ananthakrishnan, H., and N. Bahadur, "A YANG Data Model
for Layer 3 Topologies", RFC 8346, DOI 10.17487/RFC8346,
March 2018, <https://www.rfc-editor.org/info/rfc8346>.
[USECASE-REQS]
Hares, S. and M. Chen, "Summary of I2RS Use Case
Requirements", Work in Progress, draft-ietf-i2rs-usecase-
reqs-summary-03, November 2016.
[YANG-Push]
Clemm, A., Voit, E., Gonzalez Prieto, A., Tripathy, A.,
Nilsen-Nygaard, E., Bierman, A., and B. Lengyel, "YANG
Datastore Subscription", Work in Progress,
draft-ietf-netconf-yang-push-15, February 2018.
Clemm, et al. Standards Track [Page 37]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
Appendix A. Model Use Cases
A.1. Fetching Topology from a Network Element
In its simplest form, topology is learned by a network element (e.g.,
a router) through its participation in peering protocols (IS-IS, BGP,
etc.). This learned topology can then be exported (e.g., to a
Network Management System) for external utilization. Typically, any
network element in a domain can be queried for its topology and be
expected to return the same result.
In a slightly more complex form, the network element may be a
controller. It could be a network element with satellite or
subtended devices hanging off of it, or it could be a controller in
the more classical sense -- that is, a special device designated to
orchestrate the activities of a number of other devices (e.g., an
Optical Controller). In this case, the controller device is
logically a singleton and must be queried distinctly.
It is worth noting that controllers can be built on top of other
controllers to establish a topology incorporating all of the domains
within an entire network.
In all of the cases above, the topology learned by the network
element is considered to be operational state data. That is, the
data is accumulated purely by the network element's interactions with
other systems and is subject to change dynamically without input or
consent.
A.2. Modifying TE Topology Imported from an Optical Controller
Consider a scenario where an Optical Controller presents its
topology, in abstract TE terms, to a client packet controller. This
customized topology (which gets merged into the client's native
topology) contains sufficient information for the path-computing
client to select paths across the optical domain according to its
policies. If the client determines (at any given point in time) that
this imported topology does not cater exactly to its requirements, it
may decide to request modifications to the topology. Such
customization requests may include the addition or deletion of
topological elements or the modification of attributes associated
with existing topological elements. From the perspective of the
Optical Controller, these requests translate into configuration
changes to the exported abstract topology.
Clemm, et al. Standards Track [Page 38]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
A.3. Annotating Topology for Local Computation
In certain scenarios, the topology learned by a controller needs to
be augmented with additional attributes before running a computation
algorithm on it. Consider the case where a path-computation
application on the controller needs to take the geographic
coordinates of the nodes into account while computing paths on the
learned topology. If the learned topology does not contain these
coordinates, then these additional attributes must be configured on
the corresponding topological elements.
A.4. SDN Controller-Based Configuration of Overlays on Top of Underlays
In this scenario, an SDN Controller (for example, Open Daylight)
maintains a view of the topology of the network that it controls
based on information that it discovers from the network. In
addition, it provides an application in which it configures and
maintains an overlay topology.
The SDN Controller thus maintains two roles:
o It is a client to the network.
o It is a server to its own northbound applications and clients,
e.g., an Operations Support System (OSS).
In other words, one system's client (or controller, in this case) may
be another system's server (or managed system).
In this scenario, the SDN Controller maintains a consolidated data
model of multiple layers of topology. This includes the lower layers
of the network topology, built from information that is discovered
from the network. It also includes upper layers of topology overlay,
configurable by the controller's client, i.e., the OSS. To the OSS,
the lower topology layers constitute "read-only" information. The
upper topology layers need to be read-writable.
Appendix B. Companion YANG Data Models for Implementations Not
Compliant with NMDA
The YANG modules defined in this document are designed to be used in
conjunction with implementations that support the Network Management
Datastore Architecture (NMDA) as defined in [RFC8342]. In order to
allow implementations to use the data model even in cases when NMDA
is not supported, the following two companion modules --
"ietf-network-state" and "ietf-network-topology-state" -- are
defined; they represent the operational state of networks and network
topologies, respectively. These modules mirror the "ietf-network"
Clemm, et al. Standards Track [Page 39]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
and "ietf-network-topology" modules (defined in Sections 6.1 and 6.2
of this document); however, in the case of these modules, all data
nodes are non-configurable. They represent state that comes into
being by either (1) learning topology information from the network or
(2) applying configuration from the mirrored modules.
The "ietf-network-state" and "ietf-network-topology-state" companion
modules are redundant and SHOULD NOT be supported by implementations
that support NMDA; therefore, we define these modules in
Appendices B.1 and B.2 (below) instead of the main body of this
document.
As the structure of both modules mirrors that of their underlying
modules, the YANG tree is not depicted separately.
B.1. YANG Module for Network State
<CODE BEGINS> file "ietf-network-state@2018-02-26.yang"
module ietf-network-state {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-network-state";
prefix nw-s;
import ietf-network {
prefix nw;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
organization
"IETF I2RS (Interface to the Routing System) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/i2rs/>
WG List: <mailto:i2rs@ietf.org>
Editor: Alexander Clemm
<mailto:ludwig@clemm.org>
Editor: Jan Medved
<mailto:jmedved@cisco.com>
Editor: Robert Varga
<mailto:robert.varga@pantheon.tech>
Editor: Nitin Bahadur
<mailto:nitin_bahadur@yahoo.com>
Clemm, et al. Standards Track [Page 40]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
Editor: Hariharan Ananthakrishnan
<mailto:hari@packetdesign.com>
Editor: Xufeng Liu
<mailto:xufeng.liu.ietf@gmail.com>";
description
"This module defines a common base data model for a collection
of nodes in a network. Node definitions are further used
in network topologies and inventories. It represents
information that either (1) is learned and automatically
populated or (2) results from applying network information
that has been configured per the 'ietf-network' data model,
mirroring the corresponding data nodes in this data model.
The data model mirrors 'ietf-network' but contains only
read-only state data. The data model is not needed when the
underlying implementation infrastructure supports the Network
Management Datastore Architecture (NMDA).
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8345;
see the RFC itself for full legal notices.";
revision 2018-02-26 {
description
"Initial revision.";
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
Clemm, et al. Standards Track [Page 41]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
grouping network-ref {
description
"Contains the information necessary to reference a network --
for example, an underlay network.";
leaf network-ref {
type leafref {
path "/nw-s:networks/nw-s:network/nw-s:network-id";
require-instance false;
}
description
"Used to reference a network -- for example, an underlay
network.";
}
}
grouping node-ref {
description
"Contains the information necessary to reference a node.";
leaf node-ref {
type leafref {
path "/nw-s:networks/nw-s:network[nw-s:network-id=current()"+
"/../network-ref]/nw-s:node/nw-s:node-id";
require-instance false;
}
description
"Used to reference a node.
Nodes are identified relative to the network that
contains them.";
}
uses network-ref;
}
Clemm, et al. Standards Track [Page 42]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
container networks {
config false;
description
"Serves as a top-level container for a list of networks.";
list network {
key "network-id";
description
"Describes a network.
A network typically contains an inventory of nodes,
topological information (augmented through the
network-topology data model), and layering information.";
container network-types {
description
"Serves as an augmentation target.
The network type is indicated through corresponding
presence containers augmented into this container.";
}
leaf network-id {
type nw:network-id;
description
"Identifies a network.";
}
list supporting-network {
key "network-ref";
description
"An underlay network, used to represent layered network
topologies.";
leaf network-ref {
type leafref {
path "/nw-s:networks/nw-s:network/nw-s:network-id";
require-instance false;
}
description
"References the underlay network.";
}
}
Clemm, et al. Standards Track [Page 43]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
list node {
key "node-id";
description
"The inventory of nodes of this network.";
leaf node-id {
type nw:node-id;
description
"Uniquely identifies a node within the containing
network.";
}
list supporting-node {
key "network-ref node-ref";
description
"Represents another node that is in an underlay network
and that supports this node. Used to represent layering
structure.";
leaf network-ref {
type leafref {
path "../../../nw-s:supporting-network/nw-s:network-ref";
require-instance false;
}
description
"References the underlay network of which the
underlay node is a part.";
}
leaf node-ref {
type leafref {
path "/nw-s:networks/nw-s:network/nw-s:node/nw-s:node-id";
require-instance false;
}
description
"References the underlay node itself.";
}
}
}
}
}
}
<CODE ENDS>
Clemm, et al. Standards Track [Page 44]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
B.2. YANG Module for Network Topology State
<CODE BEGINS> file "ietf-network-topology-state@2018-02-26.yang"
module ietf-network-topology-state {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-network-topology-state";
prefix nt-s;
import ietf-network-state {
prefix nw-s;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-network-topology {
prefix nt;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
organization
"IETF I2RS (Interface to the Routing System) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/i2rs/>
WG List: <mailto:i2rs@ietf.org>
Editor: Alexander Clemm
<mailto:ludwig@clemm.org>
Editor: Jan Medved
<mailto:jmedved@cisco.com>
Editor: Robert Varga
<mailto:robert.varga@pantheon.tech>
Editor: Nitin Bahadur
<mailto:nitin_bahadur@yahoo.com>
Editor: Hariharan Ananthakrishnan
<mailto:hari@packetdesign.com>
Editor: Xufeng Liu
<mailto:xufeng.liu.ietf@gmail.com>";
Clemm, et al. Standards Track [Page 45]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
description
"This module defines a common base data model for network
topology state, representing topology that either (1) is learned
or (2) results from applying topology that has been configured
per the 'ietf-network-topology' data model, mirroring the
corresponding data nodes in this data model. It augments the
base network state data model with links to connect nodes, as
well as termination points to terminate links on nodes.
The data model mirrors 'ietf-network-topology' but contains only
read-only state data. The data model is not needed when the
underlying implementation infrastructure supports the Network
Management Datastore Architecture (NMDA).
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8345;
see the RFC itself for full legal notices.";
revision 2018-02-26 {
description
"Initial revision.";
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
Clemm, et al. Standards Track [Page 46]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
grouping link-ref {
description
"References a link in a specific network. Although this
grouping is not used in this module, it is defined here for
the convenience of augmenting modules.";
leaf link-ref {
type leafref {
path "/nw-s:networks/nw-s:network[nw-s:network-id=current()"+
"/../network-ref]/nt-s:link/nt-s:link-id";
require-instance false;
}
description
"A type for an absolute reference to a link instance.
(This type should not be used for relative references.
In such a case, a relative path should be used instead.)";
}
uses nw-s:network-ref;
}
grouping tp-ref {
description
"References a termination point in a specific node. Although
this grouping is not used in this module, it is defined here
for the convenience of augmenting modules.";
leaf tp-ref {
type leafref {
path "/nw-s:networks/nw-s:network[nw-s:network-id=current()"+
"/../network-ref]/nw-s:node[nw-s:node-id=current()/../"+
"node-ref]/nt-s:termination-point/nt-s:tp-id";
require-instance false;
}
description
"A type for an absolute reference to a termination point.
(This type should not be used for relative references.
In such a case, a relative path should be used instead.)";
}
uses nw-s:node-ref;
}
augment "/nw-s:networks/nw-s:network" {
description
"Add links to the network data model.";
list link {
key "link-id";
description
"A network link connects a local (source) node and
a remote (destination) node via a set of the respective
node's termination points. It is possible to have several
Clemm, et al. Standards Track [Page 47]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
links between the same source and destination nodes.
Likewise, a link could potentially be re-homed between
termination points. Therefore, in order to ensure that we
would always know to distinguish between links, every link
is identified by a dedicated link identifier. Note that a
link models a point-to-point link, not a multipoint link.";
container source {
description
"This container holds the logical source of a particular
link.";
leaf source-node {
type leafref {
path "../../../nw-s:node/nw-s:node-id";
require-instance false;
}
description
"Source node identifier. Must be in the same topology.";
}
leaf source-tp {
type leafref {
path "../../../nw-s:node[nw-s:node-id=current()/../"+
"source-node]/termination-point/tp-id";
require-instance false;
}
description
"This termination point is located within the source node
and terminates the link.";
}
}
container destination {
description
"This container holds the logical destination of a
particular link.";
leaf dest-node {
type leafref {
path "../../../nw-s:node/nw-s:node-id";
require-instance false;
}
description
"Destination node identifier. Must be in the same
network.";
}
Clemm, et al. Standards Track [Page 48]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
leaf dest-tp {
type leafref {
path "../../../nw-s:node[nw-s:node-id=current()/../"+
"dest-node]/termination-point/tp-id";
require-instance false;
}
description
"This termination point is located within the
destination node and terminates the link.";
}
}
leaf link-id {
type nt:link-id;
description
"The identifier of a link in the topology.
A link is specific to a topology to which it belongs.";
}
list supporting-link {
key "network-ref link-ref";
description
"Identifies the link or links on which this link depends.";
leaf network-ref {
type leafref {
path "../../../nw-s:supporting-network/nw-s:network-ref";
require-instance false;
}
description
"This leaf identifies in which underlay topology
the supporting link is present.";
}
leaf link-ref {
type leafref {
path "/nw-s:networks/nw-s:network[nw-s:network-id="+
"current()/../network-ref]/link/link-id";
require-instance false;
}
description
"This leaf identifies a link that is a part
of this link's underlay. Reference loops in which
a link identifies itself as its underlay, either
directly or transitively, are not allowed.";
}
}
}
}
Clemm, et al. Standards Track [Page 49]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
augment "/nw-s:networks/nw-s:network/nw-s:node" {
description
"Augments termination points that terminate links.
Termination points can ultimately be mapped to interfaces.";
list termination-point {
key "tp-id";
description
"A termination point can terminate a link.
Depending on the type of topology, a termination point
could, for example, refer to a port or an interface.";
leaf tp-id {
type nt:tp-id;
description
"Termination point identifier.";
}
list supporting-termination-point {
key "network-ref node-ref tp-ref";
description
"This list identifies any termination points on which a
given termination point depends or onto which it maps.
Those termination points will themselves be contained
in a supporting node. This dependency information can be
inferred from the dependencies between links. Therefore,
this item is not separately configurable. Hence, no
corresponding constraint needs to be articulated.
The corresponding information is simply provided by the
implementing system.";
leaf network-ref {
type leafref {
path "../../../nw-s:supporting-node/nw-s:network-ref";
require-instance false;
}
description
"This leaf identifies in which topology the
supporting termination point is present.";
}
leaf node-ref {
type leafref {
path "../../../nw-s:supporting-node/nw-s:node-ref";
require-instance false;
}
description
"This leaf identifies in which node the supporting
termination point is present.";
}
Clemm, et al. Standards Track [Page 50]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
leaf tp-ref {
type leafref {
path "/nw-s:networks/nw-s:network[nw-s:network-id="+
"current()/../network-ref]/nw-s:node[nw-s:node-id="+
"current()/../node-ref]/termination-point/tp-id";
require-instance false;
}
description
"Reference to the underlay node (the underlay node must
be in a different topology).";
}
}
}
}
}
<CODE ENDS>
Clemm, et al. Standards Track [Page 51]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
Appendix C. An Example
This section contains an example of an instance data tree in JSON
encoding [RFC7951]. The example instantiates "ietf-network-topology"
(and "ietf-network", which "ietf-network-topology" augments) for the
topology depicted in Figure 7. There are three nodes: D1, D2, and
D3. D1 has three termination points (1-0-1, 1-2-1, and 1-3-1).
D2 has three termination points as well (2-1-1, 2-0-1, and 2-3-1).
D3 has two termination points (3-1-1 and 3-2-1). In addition, there
are six links, two between each pair of nodes with one going in each
direction.
+------------+ +------------+
| D1 | | D2 |
/-\ /-\ /-\ /-\
| | 1-0-1 | |---------------->| | 2-1-1 | |
| | 1-2-1 | |<----------------| | 2-0-1 | |
\-/ 1-3-1 \-/ \-/ 2-3-1 \-/
| /----\ | | /----\ |
+---| |---+ +---| |---+
\----/ \----/
A | A |
| | | |
| | | |
| | +------------+ | |
| | | D3 | | |
| | /-\ /-\ | |
| +----->| | 3-1-1 | |-------+ |
+---------| | 3-2-1 | |<---------+
\-/ \-/
| |
+------------+
Figure 7: A Network Topology Example
Clemm, et al. Standards Track [Page 52]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
The corresponding instance data tree is depicted in Figure 8:
{
"ietf-network:networks": {
"network": [
{
"network-types": {
},
"network-id": "otn-hc",
"node": [
{
"node-id": "D1",
"termination-point": [
{
"tp-id": "1-0-1"
},
{
"tp-id": "1-2-1"
},
{
"tp-id": "1-3-1"
}
]
},
{
"node-id": "D2",
"termination-point": [
{
"tp-id": "2-0-1"
},
{
"tp-id": "2-1-1"
},
{
"tp-id": "2-3-1"
}
]
},
Clemm, et al. Standards Track [Page 53]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
{
"node-id": "D3",
"termination-point": [
{
"tp-id": "3-1-1"
},
{
"tp-id": "3-2-1"
}
]
}
],
"ietf-network-topology:link": [
{
"link-id": "D1,1-2-1,D2,2-1-1",
"source": {
"source-node": "D1",
"source-tp": "1-2-1"
}
"destination": {
"dest-node": "D2",
"dest-tp": "2-1-1"
}
},
{
"link-id": "D2,2-1-1,D1,1-2-1",
"source": {
"source-node": "D2",
"source-tp": "2-1-1"
}
"destination": {
"dest-node": "D1",
"dest-tp": "1-2-1"
}
},
{
"link-id": "D1,1-3-1,D3,3-1-1",
"source": {
"source-node": "D1",
"source-tp": "1-3-1"
}
"destination": {
"dest-node": "D3",
"dest-tp": "3-1-1"
}
},
Clemm, et al. Standards Track [Page 54]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
{
"link-id": "D3,3-1-1,D1,1-3-1",
"source": {
"source-node": "D3",
"source-tp": "3-1-1"
}
"destination": {
"dest-node": "D1",
"dest-tp": "1-3-1"
}
},
{
"link-id": "D2,2-3-1,D3,3-2-1",
"source": {
"source-node": "D2",
"source-tp": "2-3-1"
}
"destination": {
"dest-node": "D3",
"dest-tp": "3-2-1"
}
},
{
"link-id": "D3,3-2-1,D2,2-3-1",
"source": {
"source-node": "D3",
"source-tp": "3-2-1"
}
"destination": {
"dest-node": "D2",
"dest-tp": "2-3-1"
}
}
]
}
]
}
}
Figure 8: Instance Data Tree
Clemm, et al. Standards Track [Page 55]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
Acknowledgments
We wish to acknowledge the helpful contributions, comments, and
suggestions that were received from Alia Atlas, Andy Bierman, Martin
Bjorklund, Igor Bryskin, Benoit Claise, Susan Hares, Ladislav Lhotka,
Carlos Pignataro, Juergen Schoenwaelder, Robert Wilton, Qin Wu, and
Xian Zhang.
Contributors
More people contributed to the data model presented in this paper
than can be listed in the "Authors' Addresses" section. Additional
contributors include:
o Vishnu Pavan Beeram, Juniper
o Ken Gray, Cisco
o Tom Nadeau, Brocade
o Tony Tkacik
o Kent Watsen, Juniper
o Aleksandr Zhdankin, Cisco
Clemm, et al. Standards Track [Page 56]
^L
RFC 8345 YANG Data Model for Network Topologies March 2018
Authors' Addresses
Alexander Clemm
Huawei USA - Futurewei Technologies Inc.
Santa Clara, CA
United States of America
Email: ludwig@clemm.org, alexander.clemm@huawei.com
Jan Medved
Cisco
Email: jmedved@cisco.com
Robert Varga
Pantheon Technologies SRO
Email: robert.varga@pantheon.tech
Nitin Bahadur
Bracket Computing
Email: nitin_bahadur@yahoo.com
Hariharan Ananthakrishnan
Packet Design
Email: hari@packetdesign.com
Xufeng Liu
Jabil
Email: xufeng.liu.ietf@gmail.com
Clemm, et al. Standards Track [Page 57]
^L
|