1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
|
Internet Engineering Task Force (IETF) R. Zhang
Request for Comments: 8350 China Telecom
Category: Experimental R. Pazhyannur
ISSN: 2070-1721 S. Gundavelli
Cisco
Z. Cao
H. Deng
Z. Du
Huawei
April 2018
Alternate Tunnel Encapsulation for Data Frames in
Control and Provisioning of Wireless Access Points (CAPWAP)
Abstract
Control and Provisioning of Wireless Access Points (CAPWAP) is a
protocol for encapsulating a station's data frames between the
Wireless Transmission Point (WTP) and Access Controller (AC).
Specifically, the station's IEEE 802.11 data frames can be either
locally bridged or tunneled to the AC. When tunneled, a CAPWAP Data
Channel is used for tunneling. In many deployments, encapsulating
data frames to an entity other than the AC (for example, to an Access
Router (AR)) is desirable. Furthermore, it may also be desirable to
use different tunnel encapsulation modes between the WTP and the
Access Router. This document defines an extension to the CAPWAP
protocol that supports this capability and refers to it as alternate
tunnel encapsulation. The alternate tunnel encapsulation allows 1)
the WTP to tunnel non-management data frames to an endpoint different
from the AC and 2) the WTP to tunnel using one of many known
encapsulation types, such as IP-IP, IP-GRE, or CAPWAP. The WTP may
advertise support for alternate tunnel encapsulation during the
discovery and join process, and the AC may select one of the
supported alternate tunnel encapsulation types while configuring the
WTP.
Zhang, et al. Experimental [Page 1]
^L
RFC 8350 Alternate Tunnel April 2018
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are candidates for any level of
Internet Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8350.
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Zhang, et al. Experimental [Page 2]
^L
RFC 8350 Alternate Tunnel April 2018
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Conventions Used in This Document . . . . . . . . . . . . 7
1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. History of the Document . . . . . . . . . . . . . . . . . 8
2. Alternate Tunnel Encapsulation Overview . . . . . . . . . . . 9
3. Extensions for CAPWAP Protocol Message Elements . . . . . . . 11
3.1. Supported Alternate Tunnel Encapsulations . . . . . . . . 11
3.2. Alternate Tunnel Encapsulations Type . . . . . . . . . . 11
3.3. IEEE 802.11 WTP Alternate Tunnel Failure Indication . . . 12
4. Alternate Tunnel Types . . . . . . . . . . . . . . . . . . . 13
4.1. CAPWAP-Based Alternate Tunnel . . . . . . . . . . . . . . 13
4.2. PMIPv6-Based Alternate Tunnel . . . . . . . . . . . . . . 14
4.3. GRE-Based Alternate Tunnel . . . . . . . . . . . . . . . 15
5. Alternate Tunnel Information Elements . . . . . . . . . . . . 16
5.1. Access Router Information Elements . . . . . . . . . . . 16
5.1.1. AR IPv4 List Element . . . . . . . . . . . . . . . . 16
5.1.2. AR IPv6 List Element . . . . . . . . . . . . . . . . 17
5.2. Tunnel DTLS Policy Element . . . . . . . . . . . . . . . 17
5.3. IEEE 802.11 Tagging Mode Policy Element . . . . . . . . . 19
5.4. CAPWAP Transport Protocol Element . . . . . . . . . . . . 20
5.5. GRE Key Element . . . . . . . . . . . . . . . . . . . . . 22
5.6. IPv6 MTU Element . . . . . . . . . . . . . . . . . . . . 23
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 24
7. Security Considerations . . . . . . . . . . . . . . . . . . . 25
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.1. Normative References . . . . . . . . . . . . . . . . . . 25
8.2. Informative References . . . . . . . . . . . . . . . . . 27
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 28
1. Introduction
Service Providers are deploying very large Wi-Fi networks containing
hundreds of thousands of Access Points (APs), which are referred to
as Wireless Transmission Points (WTPs) in Control and Provisioning of
Wireless Access Points (CAPWAP) terminology [RFC5415]. These
networks are designed to carry traffic generated from mobile users.
The volume in mobile user traffic is already very large and expected
to continue growing rapidly. As a result, operators are looking for
scalable solutions that can meet the increasing demand. The
scalability requirement can be met by splitting the control/
management plane from the data plane. This enables the data plane to
scale independent of the control/management plane. This
specification provides a way to enable such separation.
Zhang, et al. Experimental [Page 3]
^L
RFC 8350 Alternate Tunnel April 2018
CAPWAP [RFC5415] [RFC5416] defines a tunnel mode that describes how
the WTP handles the data plane (user traffic). The following types
are defined:
o Local Bridging: All data frames are locally bridged.
o IEEE 802.3 Tunnel: All data frames are tunneled to the Access
Controller (AC) in IEEE 802.3 format.
o IEEE 802.11 Tunnel: All data frames are tunneled to the AC in IEEE
802.11 format.
Figure 1 describes a system with Local Bridging. The AC is in a
centralized location. The data plane is locally bridged by the WTPs;
this leads to a system with a centralized control plane and a
distributed data plane. This system has two benefits: 1) it reduces
the scale requirement on the data traffic handling capability of the
AC, and 2) it leads to more efficient/optimal routing of data traffic
while maintaining centralized control/management.
Locally Bridged
+-----+ Data Frames +----------------+
| WTP |===============| Access Router |
+-----+ +----------------+
\\
\\ CAPWAP Control Channel +----------+
++=========================| AC |
// CAPWAP Data Channel: | |
// IEEE 802.11 Mgmt Traffic +----------+
//
+-----+ +----------------+
| WTP |============== | Access Router |
+-----+ +----------------+
Locally Bridged
Data Frames
Figure 1: Centralized Control with Distributed Data
The AC handles control of WTPs. In addition, the AC also handles the
IEEE 802.11 management traffic to/from the stations. There is a
CAPWAP Control and Data Channel between the WTP and the AC. Note
that even though there is no user traffic transported between the WTP
and AC, there is still a CAPWAP Data Channel. The CAPWAP Data
Channel carries the IEEE 802.11 management traffic (like IEEE 802.11
Action Frames).
Zhang, et al. Experimental [Page 4]
^L
RFC 8350 Alternate Tunnel April 2018
Figure 2 shows a system where the tunnel mode is configured to tunnel
data frames between the WTP and the AC using either the IEEE 802.3
Tunnel or 802.11 Tunnel configurations. Operators deploy this
configuration when they need to tunnel the user traffic. The
tunneling requirement may be driven by the need to apply policy at
the AC. This requirement could be met in the locally bridged system
(Figure 1) if the Access Router (AR) implemented the required policy.
However, in many deployments, the operator managing the WTP is
different than the operator managing the Access Router. When the
operators are different, the policy has to be enforced in a tunnel
termination point in the WTP operator's network.
+-----+
| WTP |
+-----+
\\
\\ CAPWAP Control Channel +----------+
++=========================| AC |
// CAPWAP Data Channel: | |
// IEEE 802.11 Mgmt Traffic | |
// Data Frames +----------+
//
+-----+
| WTP |
+-----+
Figure 2: Centralized Control and Centralized Data
The key difference with the locally bridged system is that the data
frames are tunneled to the AC instead of being locally bridged.
There are two shortcomings with the system in Figure 2: 1) it does
not allow the WTP to tunnel data frames to an endpoint different from
the AC, and 2) it does not allow the WTP to tunnel data frames using
any encapsulation other than CAPWAP (as specified in Section 4.4.2 of
[RFC5415]).
Figure 3 shows a system where the WTP tunnels data frames to an
alternate entity different from the AC. The WTP also uses an
alternate tunnel encapsulation such as Layer 2 Tunneling Protocol
(L2TP), L2TPv3, IP-in-IP, IP/GRE, etc. This enables 1) independent
scaling of data plane and 2) leveraging of commonly used tunnel
encapsulations such as L2TP, GRE, etc.
Zhang, et al. Experimental [Page 5]
^L
RFC 8350 Alternate Tunnel April 2018
Alternate Tunnel to AR (L2TPv3, IP-IP, CAPWAP, etc.)
_________
+-----+ ( ) +-----------------+
| WTP |======+Internet +==============|Access Router(AR)|
+-----+ (_________) +-----------------+
\\ ________ CAPWAP Control
\\ ( ) Channel +--------+
++=+Internet+========================| AC |
// (________)CAPWAP Data Channel: +--------+
// IEEE 802.11 Mgmt Traffic
// _________
+-----+ ( ) +----------------+
| WTP |====+Internet +================| Access Router |
+-----+ (_________) +----------------+
Alternate Tunnel to AR (L2TPv3, IP-in-IP, CAPWAP, etc.)
Figure 3: Centralized Control with an Alternate Tunnel for Data
The WTP may support widely used encapsulation types such as L2TP,
L2TPv3, IP-in-IP, IP/GRE, etc. The WTP advertises the different
alternate tunnel encapsulation types it can support. The AC
configures one of the advertised types. As is shown in Figure 3,
there is a CAPWAP Control and Data Channel between the WTP and AC.
The CAPWAP Data Channel carries the stations' management traffic, as
in the case of the locally bridged system. The main reason to
maintain a CAPWAP Data Channel is to maintain similarity with the
locally bridged system. The WTP maintains three tunnels: CAPWAP
Control, CAPWAP Data, and another alternate tunnel for the data
frames. The data frames are transported by an alternate tunnel
between the WTP and a tunnel termination point, such as an Access
Router. This specification describes how the alternate tunnel can be
established. The specification defines message elements for the WTP
to advertise support for alternate tunnel encapsulation, for the AC
to configure alternate tunnel encapsulation, and for the WTP to
report failure of the alternate tunnel.
The alternate tunnel encapsulation also supports the third-party WLAN
service provider scenario (i.e., Virtual Network Operator (VNO)).
Under this scenario, the WLAN provider owns the WTP and AC resources
while the VNOs can rent the WTP resources from the WLAN provider for
network access. The AC belonging to the WLAN service provider
manages the WTPs in the centralized mode.
As shown in Figure 4, VNO 1 and VNO 2 don't possess the network
access resources; however, they provide services by acquiring
resources from the WLAN provider. Since a WTP is capable of
supporting up to 16 Service Set Identifiers (SSIDs), the WLAN
provider may provide network access service for different providers
Zhang, et al. Experimental [Page 6]
^L
RFC 8350 Alternate Tunnel April 2018
with different SSIDs. For example, SSID1 is advertised by the WTP
for VNO 1 while SSID2 is advertised by the WTP for VNO 2. Therefore,
the data traffic from the user can be directly steered to the
corresponding Access Router of the VNO who owns that user. As is
shown in Figure 4, AC can notify multiple AR addresses for load
balancing or redundancy.
+----+
| AC |
+--+-+
CAPWAP-CTL |
+-----------------+
| CAPWAP-DATA: IEEE 802.11 Mgmt Traffic
|
WLAN Provider| VNO 1
+-----+ CAPWAP-DATA (SSID1) +---------------+
SSID1 | WTP +--------------------------|Access Router 1|
SSID2 +--+-++ +---------------+
| |
| | VNO 1
| | GRE-DATA (SSID1) +---------------+
| +---------------------------|Access Router 2|
| +---------------+
|
| VNO 2
| CAPWAP-DATA (SSID2) +---------------+
+-----------------------------|Access Router 3|
+---------------+
Figure 4: Third-Party WLAN Service Provider
1.1. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
1.2. Terminology
Station (STA): A device that contains an IEEE 802.11-conformant
Medium Access Control (MAC) and Physical layer (PHY) interface to the
Wireless Medium (WM).
Access Controller (AC): The network entity that provides WTP access
to the network infrastructure in the data plane, control plane,
management plane, or a combination therein.
Zhang, et al. Experimental [Page 7]
^L
RFC 8350 Alternate Tunnel April 2018
Access Router (AR): A specialized router usually residing at the edge
or boundary of a network. This router ensures the connectivity of
its network with external networks, a wide area network, or the
Internet.
Wireless Termination Point (WTP): The physical or network entity that
contains a Radio Frequency (RF) antenna and wireless Physical layer
(PHY) to transmit and receive station traffic for wireless access
networks.
CAPWAP Control Channel: A bidirectional flow defined by the AC IP
Address, WTP IP Address, AC control port, WTP control port, and the
transport-layer protocol (UDP or UDP-Lite) over which CAPWAP Control
packets are sent and received.
CAPWAP Data Channel: A bidirectional flow defined by the AC IP
Address, WTP IP Address, AC data port, WTP data port, and the
transport-layer protocol (UDP or UDP-Lite) over which CAPWAP Data
packets are sent and received. In certain WTP modes, the CAPWAP Data
Channel only transports IEEE 802.11 management frames and not the
data plane (user traffic).
1.3. History of the Document
This document was started to accommodate Service Providers' need of a
more flexible deployment mode with alternative tunnels [RFC7494].
Experiments and tests have been done for this alternate tunnel
network infrastructure. However important, the deployment of
relevant technology is yet to be completed. This Experimental
document is intended to serve as an archival record for any future
work on the operational and deployment requirements.
Zhang, et al. Experimental [Page 8]
^L
RFC 8350 Alternate Tunnel April 2018
2. Alternate Tunnel Encapsulation Overview
+-+-+-+-+-+-+ +-+-+-+-+-+-+
| WTP | | AC |
+-+-+-+-+-+-+ +-+-+-+-+-+-+
|Join Request [ Supported Alternate |
| Tunnel Encapsulations ] |
|---------------------------------------->|
| |
|Join Response |
|<----------------------------------------|
| |
|IEEE 802.11 WLAN Configuration Request [ |
| IEEE 802.11 Add WLAN, |
| Alternate Tunnel Encapsulation ( |
| Tunnel Type, Tunnel Info Element) |
| ] |
|<----------------------------------------|
| |
| |
+-+-+-+-+-+-+ |
| Setup | |
| Alternate | |
| Tunnel | |
+-+-+-+-+-+-+ |
|IEEE 802.11 WLAN Configuration Response |
|[ Alternate Tunnel Encapsulation ( |
| Tunnel Type, Tunnel Info Element) ] |
|---------------------------------------->|
| |
+-+-+-+-+-+-+ |
| Tunnel | |
| Failure | |
+-+-+-+-+-+-+ |
|WTP Alternate Tunnel Failure Indication |
|(Report Failure (AR Address(es))) |
|---------------------------------------->|
| |
+-+-+-+-+-+-+-+ |
| Tunnel | |
| Established | |
+-+-+-+-+-+-+-+ |
|WTP Alternate Tunnel Failure Indication |
|(Report Clearing Failure) |
|---------------------------------------->|
| |
Figure 5: Setup of an Alternate Tunnel
Zhang, et al. Experimental [Page 9]
^L
RFC 8350 Alternate Tunnel April 2018
The above example describes how the alternate tunnel encapsulation
may be established. When the WTP joins the AC, it should indicate
its alternate tunnel encapsulation capability. The AC determines
whether an alternate tunnel configuration is required. If an
appropriate alternate tunnel type is selected, then the AC provides
the Alternate Tunnel Encapsulations Type message element containing
the tunnel type and a tunnel-specific information element. The
tunnel-specific information element, for example, may contain
information like the IP address of the tunnel termination point. The
WTP sets up the alternate tunnel using the Alternate Tunnel
Encapsulations Type message element.
Since an AC can configure a WTP with more than one AR available for
the WTP to establish the data tunnel(s) for user traffic, it may be
useful for the WTP to communicate the selected AR. To enable this,
the IEEE 802.11 WLAN Configuration Response may carry the Alternate
Tunnel Encapsulations Type message element containing the AR list
element corresponding to the selected AR as shown in Figure 5.
On detecting a tunnel failure, the WTP SHALL forward data frames to
the AC and discard the frames. In addition, the WTP may dissociate
existing clients and refuse association requests from new clients.
Depending on the implementation and deployment scenario, the AC may
choose to reconfigure the WLAN (on the WTP) to a Local Bridging mode
or to tunnel frames to the AC. When the WTP detects an alternate
tunnel failure, the WTP informs the AC using a message element, IEEE
802.11 WTP Alternate Tunnel Failure Indication (defined in
Section 3.3). It MAY be carried in the WTP Event Request message,
which is defined in [RFC5415].
The WTP also needs to notify the AC of which AR(s) are unavailable.
Particularly, in the VNO scenario, the AC of the WLAN service
provider needs to maintain the association of the AR addresses of the
VNOs and SSIDs and provide this information to the WTP for the
purpose of load balancing or master-slave mode.
The message element has a Status field that indicates whether the
message is reporting a failure or clearing the previously reported
failure.
For the case where an AC is unreachable but the tunnel endpoint is
still reachable, the WTP behavior is up to the implementation. For
example, the WTP could choose to either tear down the alternate
tunnel or let the existing user's traffic continue to be tunneled.
Zhang, et al. Experimental [Page 10]
^L
RFC 8350 Alternate Tunnel April 2018
3. Extensions for CAPWAP Protocol Message Elements
3.1. Supported Alternate Tunnel Encapsulations
This message element is sent by a WTP to communicate its capability
to support alternate tunnel encapsulations. The message element
contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tunnel-Type 1 | Tunnel-Type 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... | Tunnel-Type N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Supported Alternate Tunnel Encapsulations
o Type: 54 for Supported Alternate Tunnel Encapsulations Type
o Length: The length in bytes; two bytes for each Alternative
Tunnel-Type that is included
o Tunnel-Type: This is identified by the value defined in
Section 3.2. There may be one or more Tunnel-Types, as is shown
in Figure 6.
3.2. Alternate Tunnel Encapsulations Type
This message element can be sent by the AC, allows the AC to select
the alternate tunnel encapsulation, and may be provided along with
the IEEE 802.11 Add WLAN message element. When the message element
is present, the following fields of the IEEE 802.11 Add WLAN element
SHALL be set as follows: MAC mode is set to 0 (Local MAC), and Tunnel
Mode is set to 0 (Local Bridging). Besides, the message element can
also be sent by the WTP to communicate the selected AR(s).
The message element contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tunnel-Type | Info Element Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Info Element
+-+-+-+-+-+-+-+-+-+
Figure 7: Alternate Tunnel Encapsulations Type
Zhang, et al. Experimental [Page 11]
^L
RFC 8350 Alternate Tunnel April 2018
o Type: 55 for Alternate Tunnel Encapsulations Type
o Length: > 4
o Tunnel-Type: The Tunnel-Type is specified by a 2-byte value. This
specification defines the values from 0 to 6 as given below. The
remaining values are reserved for future use.
* 0: CAPWAP. This refers to a CAPWAP Data Channel described in
[RFC5415] and [RFC5416].
* 1: L2TP. This refers to tunnel encapsulation described in
[RFC2661].
* 2: L2TPv3. This refers to tunnel encapsulation described in
[RFC3931].
* 3: IP-in-IP. This refers to tunnel encapsulation described in
[RFC2003].
* 4: PMIPv6-UDP. This refers to the UDP encapsulation mode for
Proxy Mobile IPv6 (PMIPv6) described in [RFC5844]. This
encapsulation mode is the basic encapsulation mode and does not
include the TLV header specified in Section 7.2 of [RFC5845].
* 5: GRE. This refers to GRE tunnel encapsulation as described
in [RFC2784].
* 6: GTPv1-U. This refers to the GPRS Tunnelling Protocol (GTP)
User Plane mode as described in [TS.3GPP.29.281].
o Info Element: This field contains tunnel-specific configuration
parameters to enable the WTP to set up the alternate tunnel. This
specification provides details for this element for CAPWAP,
PMIPv6, and GRE. This specification reserves the tunnel type
values for the key tunnel types and defines the most common
message elements. It is anticipated that message elements for the
other protocols (like L2TPv3) will be defined in other
specifications in the future.
3.3. IEEE 802.11 WTP Alternate Tunnel Failure Indication
The WTP MAY include the Alternate Tunnel Failure Indication message
in a WTP Event Request message to inform the AC about the status of
the alternate tunnel. For the case where the WTP establishes data
tunnels with multiple ARs (e.g., under a VNO scenario), the WTP needs
to notify the AC of which AR(s) are unavailable. The message element
contains the following fields:
Zhang, et al. Experimental [Page 12]
^L
RFC 8350 Alternate Tunnel April 2018
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WLAN ID | Status | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. Access Router Information Element .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: IEEE 802.11 WTP Alternate Tunnel Failure Indication
o Type: 1062 for IEEE 802.11 WTP Alternate Tunnel Failure Indication
o Length: > 4
o WLAN ID: An 8-bit value specifying the WLAN Identifier. The value
MUST be between 1 and 16.
o Status: An 8-bit boolean indicating whether the radio failure is
being reported or cleared. A value of 0 is used to clear the
event, while a value of 1 is used to report the event.
o Reserved: MUST be set to a value of 0 and MUST be ignored by the
receiver.
o Access Router Information Element: The IPv4 or IPv6 address of the
Access Router that terminates the alternate tunnel. The Access
Router Information Elements allow the WTP to notify the AC of
which AR(s) are unavailable.
4. Alternate Tunnel Types
4.1. CAPWAP-Based Alternate Tunnel
If the CAPWAP encapsulation is selected by the AC and configured by
the AC to the WTP, the Info Element field defined in Section 3.2
SHOULD contain the following information:
o Access Router Information: The IPv4 or IPv6 address of the Access
Router for the alternate tunnel.
o Tunnel DTLS Policy: The CAPWAP protocol allows optional protection
of data packets using DTLS. Use of data packet protection on a
WTP is not mandatory but is determined by the associated AC
policy. (This is consistent with the WTP behavior described in
[RFC5415].)
Zhang, et al. Experimental [Page 13]
^L
RFC 8350 Alternate Tunnel April 2018
o IEEE 802.11 Tagging Mode Policy: It is used to specify how the
CAPWAP Data Channel packets are to be tagged for QoS purposes (see
[RFC5416] for more details).
o CAPWAP Transport Protocol: The CAPWAP protocol supports both UDP
and UDP-Lite (see [RFC3828]). When run over IPv4, UDP is used for
the CAPWAP Data Channels. When run over IPv6, the CAPWAP Data
Channel may use either UDP or UDP-Lite.
The message element structure for CAPWAP encapsulation is shown in
Figure 9:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tunnel-Type=0 | Info Element Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. Access Router Information Element .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. Tunnel DTLS Policy Element .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. IEEE 802.11 Tagging Mode Policy Element .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. CAPWAP Transport Protocol Element .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Alternate Tunnel Encapsulation - CAPWAP
4.2. PMIPv6-Based Alternate Tunnel
A user plane based on PMIPv6 (defined in [RFC5213]) can also be used
as an alternate tunnel encapsulation between the WTP and the AR. In
this scenario, a WTP acts as the Mobile Access Gateway (MAG) function
that manages the mobility-related signaling for a station that is
attached to the WTP IEEE 802.11 radio access. The Local Mobility
Anchor (LMA) function is at the AR. If PMIPv6 UDP encapsulation is
selected by the AC and configured by the AC to a WTP, the Info
Element field defined in Section 3.2 SHOULD contain the following
information:
o Access Router (acting as LMA) Information: IPv4 or IPv6 address
for the alternate tunnel endpoint.
Zhang, et al. Experimental [Page 14]
^L
RFC 8350 Alternate Tunnel April 2018
The message element structure for PMIPv6 encapsulation is shown in
Figure 10:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tunnel-Type=4 | Info Element Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. Access Router Information Element .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Alternate Tunnel Encapsulation - PMIPv6
4.3. GRE-Based Alternate Tunnel
A user plane based on Generic Routing Encapsulation (defined in
[RFC2784]) can also be used as an alternate tunnel encapsulation
between the WTP and the AR. In this scenario, a WTP and the Access
Router represent the two endpoints of the GRE tunnel. If GRE is
selected by the AC and configured by the AC to a WTP, the Info
Element field defined in Section 3.2 SHOULD contain the following
information:
o Access Router Information: The IPv4 or IPv6 address for the
alternate tunnel endpoint.
o GRE Key Information: The Key field is intended to be used for
identifying an individual traffic flow within a tunnel [RFC2890].
The message element structure for GRE is shown in Figure 11:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tunnel-Type=5 | Info Element Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. Access Router Information Element .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. GRE Key Element .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: Alternate Tunnel Encapsulation - GRE
Zhang, et al. Experimental [Page 15]
^L
RFC 8350 Alternate Tunnel April 2018
5. Alternate Tunnel Information Elements
This section defines the various elements described in Sections 4.1,
4.2, and 4.3.
These information elements can only be included in the Alternate
Tunnel Encapsulations Type message element and the IEEE 802.11 WTP
Alternate Tunnel Failure Indication message element as their sub-
elements.
5.1. Access Router Information Elements
The Access Router Information Elements allow the AC to notify a WTP
of which AR(s) are available for establishing a data tunnel. The AR
information may be an IPv4 or IPv6 address. For any Tunnel-Type,
this information element SHOULD be included in the Alternate Tunnel
Encapsulations Type message element.
If the Alternate Tunnel Encapsulations Type message element is sent
by the WTP to communicate the selected AR(s), this Access Router
Information Element SHOULD be included in it.
The following are the Access Router Information Elements defined in
this specification. The AC can use one of them to notify the WTP
about the destination information of the data tunnel. The Elements
containing the AR IPv4 address MUST NOT be used if an IPv6 Data
Channel with IPv6 transport is used.
5.1.1. AR IPv4 List Element
This element (see Figure 12) is used by the AC to configure a WTP
with the AR IPv4 address available for the WTP to establish the data
tunnel for user traffic.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AR IPv4 Element Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR IPv4 Address-1 .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR IPv4 Address-2 .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR IPv4 Address-N .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: AR IPv4 List Element
Zhang, et al. Experimental [Page 16]
^L
RFC 8350 Alternate Tunnel April 2018
Type: 0
Length: This refers to the total length in octets of the element,
excluding the Type and Length fields.
AR IPv4 Address: The IPv4 address of the AR. At least one IPv4
address SHALL be present. Multiple addresses may be provided for
load balancing or redundancy.
5.1.2. AR IPv6 List Element
This element (see Figure 13) is used by the AC to configure a WTP
with the AR IPv6 address available for the WTP to establish the data
tunnel for user traffic.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AR IPv6 Element Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR IPv6 Address-1 .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR IPv6 Address-2 .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR IPv6 Address-N .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: AR IPv6 List Element
Type: 1
Length: This refers to the total length in octets of the element
excluding the Type and Length fields.
AR IPv6 Address: The IPv6 address of the AR. At least one IPv6
address SHALL be present. Multiple addresses may be provided for
load balancing or redundancy.
5.2. Tunnel DTLS Policy Element
The AC distributes its Datagram Transport Layer Security (DTLS) usage
policy for the CAPWAP data tunnel between a WTP and the AR. There
are multiple supported options, which are represented by the bit
fields below as defined in AC Descriptor message elements. The WTP
MUST abide by one of the options for tunneling user traffic with AR.
The Tunnel DTLS Policy Element obeys the definition in [RFC5415].
If, for reliability reasons, the AC has provided more than one AR
address in the Access Router Information Element, the same Tunnel
Zhang, et al. Experimental [Page 17]
^L
RFC 8350 Alternate Tunnel April 2018
DTLS Policy (the last one in Figure 14) is generally applied for all
tunnels associated with those ARs. Otherwise, Tunnel DTLS Policy
MUST be bonded together with each of the Access Router Information
Elements, and the WTP will enforce the independent tunnel DTLS policy
for each tunnel with a specific AR.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Tunnel DTLS Policy Element Type| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |D|C|R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |D|C|R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. ...... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |D|C|R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: Tunnel DTLS Policy Element
Type: 2
Length: This refers to the total length in octets of the element
excluding the Type and Length fields.
Reserved: A set of reserved bits for future use. All implementations
complying with this protocol MUST set to 0 any bits that are reserved
in the version of the protocol supported by that implementation.
Receivers MUST ignore all bits not defined for the version of the
protocol they support.
D: DTLS-Enabled Data Channel Supported (see [RFC5415]).
C: Clear Text Data Channel Supported (see [RFC5415]).
R: A reserved bit for future use (see [RFC5415]).
AR Information: This means Access Router Information Element. In
this context, each address in AR Information MUST be one of
previously specified AR addresses.
Zhang, et al. Experimental [Page 18]
^L
RFC 8350 Alternate Tunnel April 2018
In Figure 14, the last element that has no AR Information is the
default tunnel DTLS policy, which provides options for any address
not previously mentioned. Therefore, the AR Information field here
is optional. In this element, if all ARs share the same tunnel DTLS
policy, there won't be an AR Information field or its specific tunnel
DTLS policy.
5.3. IEEE 802.11 Tagging Mode Policy Element
In IEEE 802.11 networks, the IEEE 802.11 Tagging Mode Policy Element
is used to specify how the WTP applies the QoS tagging policy when
receiving the packets from stations on a particular radio. When the
WTP sends out the packet to data channel to the AR(s), the packets
have to be tagged for QoS purposes (see [RFC5416]).
The IEEE 802.11 Tagging Mode Policy abides by the IEEE 802.11 WTP
Quality of Service defined in Section 6.22 of [RFC5416].
If, for reliability reasons, the AC has provided more than one AR
address in the Access Router Information Element, the same IEEE
802.11 Tagging Mode Policy (the last one in Figure 15) is generally
applied for all tunnels associated with those ARs. Otherwise, IEEE
802.11 Tagging Mode Policy MUST be bonded together with each of the
Access Router Information Elements, and the WTP will enforce the
independent IEEE 802.11 Tagging Mode Policy for each tunnel with a
specific AR.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tagging Mode Policy Ele. Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |P|Q|D|O|I|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |P|Q|D|O|I|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. ...... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |P|Q|D|O|I|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 15: IEEE 802.11 Tagging Mode Policy Element
Zhang, et al. Experimental [Page 19]
^L
RFC 8350 Alternate Tunnel April 2018
Type: 3
Length: This refers to the total length in octets of the element
excluding the Type and Length fields.
Reserved: A set of reserved bits for future use.
P: When set, the WTP is to employ the IEEE 802.1p QoS mechanism (see
[RFC5416]).
Q: When the 'P' bit is set, the 'Q' bit is used by the AC to
communicate to the WTP how IEEE 802.1p QoS is to be enforced (see
[RFC5416]).
D: When set, the WTP is to employ the DSCP QoS mechanism (see
[RFC5416]).
O: When the 'D' bit is set, the 'O' bit is used by the AC to
communicate to the WTP how Differentiated Services Code Point (DSCP)
QoS is to be enforced on the outer (tunneled) header (see [RFC5416]).
I: When the 'D' bit is set, the 'I' bit is used by the AC to
communicate to the WTP how DSCP QoS is to be enforced on the
station's packet (inner) header (see [RFC5416]).
AR Information: This means Access Router Information Element. In
this context, each address in AR information MUST be one of the
previously specified AR addresses.
In Figure 15, the last element that has no AR information is the
default IEEE 802.11 Tagging Mode Policy, which provides options for
any address not previously mentioned. Therefore, the AR Information
field here is optional. If all ARs share the same IEEE 802.11
Tagging Mode Policy, in this element, there will not be an AR
Information field and its specific IEEE 802.11 Tagging Mode Policy.
5.4. CAPWAP Transport Protocol Element
The CAPWAP data tunnel supports both UDP and UDP-Lite (see
[RFC3828]). When run over IPv4, UDP is used for the CAPWAP Data
Channels. When run over IPv6, the CAPWAP Data Channel may use either
UDP or UDP-Lite. The AC specifies and configures the WTP for which
the transport protocol is to be used for the CAPWAP data tunnel.
The CAPWAP Transport Protocol Element abides by the definition in
Section 4.6.14 of [RFC5415].
Zhang, et al. Experimental [Page 20]
^L
RFC 8350 Alternate Tunnel April 2018
If, for reliability reasons, the AC has provided more than one AR
address in the Access Router Information Element, the same CAPWAP
Transport Protocol (the last one in Figure 16) is generally applied
for all tunnels associated with those ARs. Otherwise, CAPWAP
Transport Protocol MUST be bonded together with each of the Access
Router Information Elements, and the WTP will enforce the independent
CAPWAP Transport Protocol for each tunnel with a specific AR.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type=4 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transport | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transport | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. ...... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transport | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 16: CAPWAP Transport Protocol Element
Type: 4
Length: 1
Transport: The transport to use for the CAPWAP Data Channel. The
following enumerated values are supported:
1 - UDP-Lite: The UDP-Lite transport protocol is to be used for
the CAPWAP Data Channel. Note that this option MUST NOT be used
if the CAPWAP Control Channel is being used over IPv4 and if the
AR address contained in the AR Information Element is an IPv4
address.
2 - UDP: The UDP transport protocol is to be used for the CAPWAP
Data Channel.
AR Information: This means Access Router Information Element. In
this context, each address in AR information MUST be one of the
previously specified AR addresses.
Zhang, et al. Experimental [Page 21]
^L
RFC 8350 Alternate Tunnel April 2018
In Figure 16, the last element that has no AR information is the
default CAPWAP Transport Protocol, which provides options for any
address not previously mentioned. Therefore, the AR Information
field here is optional. If all ARs share the same CAPWAP Transport
Protocol, in this element, there will not be an AR Information field
and its specific CAPWAP Transport Protocol.
5.5. GRE Key Element
If a WTP receives the GRE Key Element in the Alternate Tunnel
Encapsulations Type message element for GRE selection, the WTP MUST
insert the GRE Key to the encapsulation packet (see [RFC2890]). An
AR acting as a decapsulating tunnel endpoint identifies packets
belonging to a traffic flow based on the Key value.
The GRE Key Element field contains a 4-octet number defined in
[RFC2890].
If, for reliability reasons, the AC has provided more than one AR
address in the Access Router Information Element, a GRE Key Element
MAY be bonded together with each of the Access Router Information
Elements, and the WTP will enforce the independent GRE Key for each
tunnel with a specific AR.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GRE Key Element Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GRE Key |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GRE Key |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. ...... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 17: GRE Key Element
Type: 5
Length: This refers to the total length in octets of the element
excluding the Type and Length fields.
Zhang, et al. Experimental [Page 22]
^L
RFC 8350 Alternate Tunnel April 2018
GRE Key: The Key field contains a 4-octet number that is inserted by
the WTP according to [RFC2890].
AR Information: This means Access Router Information Element. In
this context, it SHOULD be restricted to a single address and MUST be
the address of one of previously specified AR addresses.
Any address not explicitly mentioned here does not have a GRE key.
5.6. IPv6 MTU Element
If AC has chosen a tunneling mechanism based on IPv6, it SHOULD
support the minimum IPv6 MTU requirements [RFC8200]. This issue is
described in [ARCH-TUNNELS]. AC SHOULD inform the WTP about the IPv6
MTU information in the Tunnel Info Element field.
If, for reliability reasons, the AC has provided more than one AR
address in the Access Router Information Element, an IPv6 MTU Element
MAY be bonded together with each of the Access Router Information
Elements, and the WTP will enforce the independent IPv6 MTU for each
tunnel with a specific AR.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 MTU Element Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum IPv6 MTU | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum IPv6 MTU | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. AR Information .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 18: IPv6 MTU Element
Type: 6
Length: This refers to the total length in octets of the element
excluding the Type and Length fields.
Minimum IPv6 MTU: The field contains a 2-octet number indicating the
minimum IPv6 MTU in the tunnel.
Zhang, et al. Experimental [Page 23]
^L
RFC 8350 Alternate Tunnel April 2018
AR Information: This means Access Router Information Element. In
this context, each address in AR information MUST be one of
previously specified AR addresses.
6. IANA Considerations
Per this document, IANA has registered the following values in the
existing "CAPWAP Message Element Type" registry, defined in
[RFC5415].
o 54: Supported Alternate Tunnel Encapsulations Type as defined in
Section 3.1.
o 55: Alternate Tunnel Encapsulations Type as defined in
Section 3.2.
o 1062: IEEE 802.11 WTP Alternate Tunnel Failure Indication as
defined in Section 3.3.
Per this document, IANA has created a registry called "Alternate
Tunnel-Types" under "CAPWAP Parameters". This specification defines
the Alternate Tunnel Encapsulations Type message element. This
element contains a field Tunnel-Type. The namespace for the field is
16 bits (0-65535). This specification defines values 0 through 6 and
can be found in Section 3.2. Future allocations of values in this
namespace are to be assigned by IANA using the "Specification
Required" policy [RFC8126]. The registry format is given below.
Description Value Reference
CAPWAP 0 [RFC5415] [RFC5416]
L2TP 1 [RFC2661]
L2TPv3 2 [RFC3931]
IP-IP 3 [RFC2003]
PMIPv6-UDP 4 [RFC5844]
GRE 5 [RFC2784]
GTPv1-U 6 [TS.3GPP.29.281]
Zhang, et al. Experimental [Page 24]
^L
RFC 8350 Alternate Tunnel April 2018
Per this document, IANA has created a registry called "Alternate
Tunnel Sub-elements" under "CAPWAP Parameters". This specification
defines the Alternate Tunnel Sub-elements. Currently, these
information elements can only be included in the Alternate Tunnel
Encapsulations Type message element with the IEEE 802.11 WTP
Alternate Tunnel Failure Indication message element as its sub-
elements. These information elements contain a Type field. The
namespace for the field is 16 bits (0-65535). This specification
defines values 0 through 6 in Section 5. This namespace is managed
by IANA, and assignments require an Expert Review [RFC8126].
Description Value
AR IPv4 List 0
AR IPv6 List 1
Tunnel DTLS Policy 2
IEEE 802.11 Tagging Mode Policy 3
CAPWAP Transport Protocol 4
GRE Key 5
IPv6 MTU 6
7. Security Considerations
This document introduces three new CAPWAP WTP message elements.
These elements are transported within CAPWAP Control messages as the
existing message elements. Therefore, this document does not
introduce any new security risks to the control plane compared to
[RFC5415] and [RFC5416]. In the data plane, if the encapsulation
type selected itself is not secured, it is suggested to protect the
tunnel by using known secure methods, such as IPsec.
8. References
8.1. Normative References
[RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
DOI 10.17487/RFC2003, October 1996,
<https://www.rfc-editor.org/info/rfc2003>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",
RFC 2661, DOI 10.17487/RFC2661, August 1999,
<https://www.rfc-editor.org/info/rfc2661>.
Zhang, et al. Experimental [Page 25]
^L
RFC 8350 Alternate Tunnel April 2018
[RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
DOI 10.17487/RFC2784, March 2000,
<https://www.rfc-editor.org/info/rfc2784>.
[RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,
<https://www.rfc-editor.org/info/rfc2890>.
[RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,
and G. Fairhurst, Ed., "The Lightweight User Datagram
Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/RFC3828, July
2004, <https://www.rfc-editor.org/info/rfc3828>.
[RFC3931] Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed.,
"Layer Two Tunneling Protocol - Version 3 (L2TPv3)",
RFC 3931, DOI 10.17487/RFC3931, March 2005,
<https://www.rfc-editor.org/info/rfc3931>.
[RFC5415] Calhoun, P., Ed., Montemurro, M., Ed., and D. Stanley,
Ed., "Control And Provisioning of Wireless Access Points
(CAPWAP) Protocol Specification", RFC 5415,
DOI 10.17487/RFC5415, March 2009,
<https://www.rfc-editor.org/info/rfc5415>.
[RFC5416] Calhoun, P., Ed., Montemurro, M., Ed., and D. Stanley,
Ed., "Control and Provisioning of Wireless Access Points
(CAPWAP) Protocol Binding for IEEE 802.11", RFC 5416,
DOI 10.17487/RFC5416, March 2009,
<https://www.rfc-editor.org/info/rfc5416>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", STD 86, RFC 8200,
DOI 10.17487/RFC8200, July 2017,
<https://www.rfc-editor.org/info/rfc8200>.
Zhang, et al. Experimental [Page 26]
^L
RFC 8350 Alternate Tunnel April 2018
8.2. Informative References
[ARCH-TUNNELS]
Touch, J. and M. Townsley, "IP Tunnels in the Internet
Architecture", Work in Progress, draft-ietf-intarea-
tunnels-08, January 2018.
[RFC5213] Gundavelli, S., Ed., Leung, K., Devarapalli, V.,
Chowdhury, K., and B. Patil, "Proxy Mobile IPv6",
RFC 5213, DOI 10.17487/RFC5213, August 2008,
<https://www.rfc-editor.org/info/rfc5213>.
[RFC5844] Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy
Mobile IPv6", RFC 5844, DOI 10.17487/RFC5844, May 2010,
<https://www.rfc-editor.org/info/rfc5844>.
[RFC5845] Muhanna, A., Khalil, M., Gundavelli, S., and K. Leung,
"Generic Routing Encapsulation (GRE) Key Option for Proxy
Mobile IPv6", RFC 5845, DOI 10.17487/RFC5845, June 2010,
<https://www.rfc-editor.org/info/rfc5845>.
[RFC7494] Shao, C., Deng, H., Pazhyannur, R., Bari, F., Zhang, R.,
and S. Matsushima, "IEEE 802.11 Medium Access Control
(MAC) Profile for Control and Provisioning of Wireless
Access Points (CAPWAP)", RFC 7494, DOI 10.17487/RFC7494,
April 2015, <https://www.rfc-editor.org/info/rfc7494>.
[TS.3GPP.29.281]
3GPP, "General Packet Radio System (GPRS) Tunnelling
Protocol User Plane (GTPv1-U)", 3GPP TS 29.281, V13.1.0,
March 2016.
Zhang, et al. Experimental [Page 27]
^L
RFC 8350 Alternate Tunnel April 2018
Contributors
The authors would like to thank Andreas Schultz, Hong Liu, Yifan
Chen, Chunju Shao, Li Xue, Jianjie You, Jin Li, Joe Touch, Alexey
Melnikov, Kathleen Moriarty, Mirja Kuehlewind, Catherine Meadows, and
Paul Kyzivat for their valuable comments.
Authors' Addresses
Rong Zhang
China Telecom
No.109 Zhongshandadao avenue
Guangzhou 510630
China
Email: zhangr@gsta.com
Rajesh S. Pazhyannur
Cisco
170 West Tasman Drive
San Jose, CA 95134
United States of America
Email: rpazhyan@cisco.com
Sri Gundavelli
Cisco
170 West Tasman Drive
San Jose, CA 95134
United States of America
Email: sgundave@cisco.com
Zhen Cao
Huawei
Xinxi Rd. 3
Beijing 100085
China
Email: zhencao.ietf@gmail.com
Zhang, et al. Experimental [Page 28]
^L
RFC 8350 Alternate Tunnel April 2018
Hui Deng
Huawei
Xinxi Rd. 3
Beijing 100085
China
Email: denghui02@gmail.com
Zongpeng Du
Huawei
No.156 Beiqing Rd. Z-park, HaiDian District
Beijing 100095
China
Email: duzongpeng@huawei.com
Zhang, et al. Experimental [Page 29]
^L
|