1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
|
Internet Research Task Force (IRTF) A. Huelsing
Request for Comments: 8391 TU Eindhoven
Category: Informational D. Butin
ISSN: 2070-1721 TU Darmstadt
S. Gazdag
genua GmbH
J. Rijneveld
Radboud University
A. Mohaisen
University of Central Florida
May 2018
XMSS: eXtended Merkle Signature Scheme
Abstract
This note describes the eXtended Merkle Signature Scheme (XMSS), a
hash-based digital signature system that is based on existing
descriptions in scientific literature. This note specifies
Winternitz One-Time Signature Plus (WOTS+), a one-time signature
scheme; XMSS, a single-tree scheme; and XMSS^MT, a multi-tree variant
of XMSS. Both XMSS and XMSS^MT use WOTS+ as a main building block.
XMSS provides cryptographic digital signatures without relying on the
conjectured hardness of mathematical problems. Instead, it is proven
that it only relies on the properties of cryptographic hash
functions. XMSS provides strong security guarantees and is even
secure when the collision resistance of the underlying hash function
is broken. It is suitable for compact implementations, is relatively
simple to implement, and naturally resists side-channel attacks.
Unlike most other signature systems, hash-based signatures can so far
withstand known attacks using quantum computers.
Huelsing, et al. Informational [Page 1]
^L
RFC 8391 XMSS May 2018
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Research Task Force
(IRTF). The IRTF publishes the results of Internet-related research
and development activities. These results might not be suitable for
deployment. This RFC represents the consensus of the Crypto Forum
Research Group of the Internet Research Task Force (IRTF). Documents
approved for publication by the IRSG are not candidates for any level
of Internet Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8391.
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Huelsing, et al. Informational [Page 2]
^L
RFC 8391 XMSS May 2018
Table of Contents
1. Introduction ....................................................5
1.1. CFRG Note on Post-Quantum Cryptography .....................6
1.2. Conventions Used in This Document ..........................7
2. Notation ........................................................7
2.1. Data Types .................................................7
2.2. Functions ..................................................7
2.3. Operators ..................................................8
2.4. Integer-to-Byte Conversion .................................9
2.5. Hash Function Address Scheme ...............................9
2.6. Strings of Base w Numbers .................................12
2.7. Member Functions ..........................................13
3. Primitives .....................................................14
3.1. WOTS+: One-Time Signatures ................................14
3.1.1. WOTS+ Parameters ...................................14
3.1.1.1. WOTS+ Functions ...........................15
3.1.2. WOTS+ Chaining Function ............................15
3.1.3. WOTS+ Private Key ..................................16
3.1.4. WOTS+ Public Key ...................................17
3.1.5. WOTS+ Signature Generation .........................17
3.1.6. WOTS+ Signature Verification .......................19
3.1.7. Pseudorandom Key Generation ........................20
4. Schemes ........................................................20
4.1. XMSS: eXtended Merkle Signature Scheme ....................20
4.1.1. XMSS Parameters ....................................21
4.1.2. XMSS Hash Functions ................................22
4.1.3. XMSS Private Key ...................................22
4.1.4. Randomized Tree Hashing ............................23
4.1.5. L-Trees ............................................23
4.1.6. TreeHash ...........................................24
4.1.7. XMSS Key Generation ................................25
4.1.8. XMSS Signature .....................................27
4.1.9. XMSS Signature Generation ..........................28
4.1.10. XMSS Signature Verification .......................30
4.1.11. Pseudorandom Key Generation .......................32
4.1.12. Free Index Handling and Partial Private Keys ......33
4.2. XMSS^MT: Multi-Tree XMSS ..................................33
4.2.1. XMSS^MT Parameters .................................33
4.2.2. XMSS^MT Key Generation .............................33
4.2.3. XMSS^MT Signature ..................................36
4.2.4. XMSS^MT Signature Generation .......................37
4.2.5. XMSS^MT Signature Verification .....................39
4.2.6. Pseudorandom Key Generation ........................40
4.2.7. Free Index Handling and Partial Private Keys .......40
Huelsing, et al. Informational [Page 3]
^L
RFC 8391 XMSS May 2018
5. Parameter Sets .................................................40
5.1. Implementing the Functions ................................41
5.2. WOTS+ Parameters ..........................................43
5.3. XMSS Parameters ...........................................43
5.3.1. Parameter Guide ....................................44
5.4. XMSS^MT Parameters ........................................45
5.4.1. Parameter Guide ....................................47
6. Rationale ......................................................49
7. Reference Code .................................................50
8. IANA Considerations ............................................50
9. Security Considerations ........................................54
9.1. Security Proofs ...........................................55
9.2. Minimal Security Assumptions ..............................56
9.3. Post-Quantum Security .....................................56
10. References ....................................................57
10.1. Normative References .....................................57
10.2. Informative References ...................................58
Appendix A. WOTS+ XDR Formats ....................................60
A.1. WOTS+ Parameter Sets ......................................60
A.2. WOTS+ Signatures ..........................................60
A.3. WOTS+ Public Keys .........................................61
Appendix B. XMSS XDR Formats .....................................61
B.1. XMSS Parameter Sets .......................................61
B.2. XMSS Signatures ...........................................62
B.3. XMSS Public Keys ..........................................64
Appendix C. XMSS^MT XDR Formats ..................................65
C.1. XMSS^MT Parameter Sets ....................................65
C.2. XMSS^MT Signatures ........................................67
C.3. XMSS^MT Public Keys .......................................71
Acknowledgements ..................................................73
Authors' Addresses ................................................74
Huelsing, et al. Informational [Page 4]
^L
RFC 8391 XMSS May 2018
1. Introduction
A (cryptographic) digital signature scheme provides asymmetric
message authentication. The key generation algorithm produces a key
pair consisting of a private and a public key. A message is signed
using a private key to produce a signature. A message/signature pair
can be verified using a public key. A One-Time Signature (OTS)
scheme allows using a key pair to sign exactly one message securely.
A Many-Time Signature (MTS) system can be used to sign multiple
messages.
OTS schemes, and MTS schemes composed from them, were proposed by
Merkle in 1979 [Merkle83]. They were well-studied in the 1990s and
have regained interest from the mid 2000s onwards because of their
resistance against quantum-computer-aided attacks. These kinds of
signature schemes are called hash-based signature schemes as they are
built out of a cryptographic hash function. Hash-based signature
schemes generally feature small private and public keys as well as
fast signature generation and verification; however, they also
feature large signatures and relatively slow key generation. In
addition, they are suitable for compact implementations that benefit
various applications and are naturally resistant to most kinds of
side-channel attacks.
Some progress has already been made toward introducing and
standardizing hash-based signatures. Buchmann, Dahmen, and Huelsing
proposed the eXtended Merkle Signature Scheme (XMSS) [BDH11], which
offers better efficiency than Merkle's original scheme and a modern
security proof in the standard model. McGrew, Curcio, and Fluhrer
authored an Internet-Draft [MCF18] specifying the Leighton-Micali
Signature (LMS) scheme, which builds on the seminal works by Lamport,
Diffie, Winternitz, and Merkle, taking a different approach than XMSS
and relying entirely on security arguments in the random oracle
model. Very recently, the stateless hash-based signature scheme
SPHINCS was introduced [BHH15], with the intent of being easier to
deploy in current applications. A reasonable next step toward
introducing hash-based signatures is to complete the specifications
of the basic algorithms -- LMS, XMSS, SPHINCS, and/or variants.
The eXtended Merkle Signature Scheme (XMSS) [BDH11] is the latest
stateful hash-based signature scheme. It has the smallest signatures
out of such schemes and comes with a multi-tree variant that solves
the problem of slow key generation. Moreover, it can be shown that
XMSS is secure, making only mild assumptions on the underlying hash
function. In particular, it is not required that the cryptographic
hash function is collision-resistant for the security of XMSS.
Improvements upon XMSS, as described in [HRS16], are part of this
note.
Huelsing, et al. Informational [Page 5]
^L
RFC 8391 XMSS May 2018
This document describes a single-tree and a multi-tree variant of
XMSS. It also describes WOTS+, a variant of the Winternitz OTS
scheme introduced in [Huelsing13] that is used by XMSS. The schemes
are described with enough specificity to ensure interoperability
between implementations.
This document is structured as follows. Notation is introduced in
Section 2. Section 3 describes the WOTS+ signature system. MTS
schemes are defined in Section 4: the eXtended Merkle Signature
Scheme (XMSS) in Section 4.1 and its multi-tree variant (XMSS^MT) in
Section 4.2. Parameter sets are described in Section 5. Section 6
describes the rationale behind choices in this note. Section 7 gives
information about the reference code. The IANA registry for these
signature systems is described in Section 8. Finally, security
considerations are presented in Section 9.
1.1. CFRG Note on Post-Quantum Cryptography
All post-quantum algorithms documented by the Crypto Forum Research
Group (CFRG) are today considered ready for experimentation and
further engineering development (e.g., to establish the impact of
performance and sizes on IETF protocols). However, at the time of
writing, we do not have significant deployment experience with such
algorithms.
Many of these algorithms come with specific restrictions, e.g.,
change of classical interface or less cryptanalysis of proposed
parameters than established schemes. CFRG has consensus that all
documents describing post-quantum technologies include the above
paragraph and a clear additional warning about any specific
restrictions, especially as those might affect use or deployment of
the specific scheme. That guidance may be changed over time via
document updates.
Additionally, for XMSS:
CFRG consensus is that we are confident in the cryptographic security
of the signature schemes described in this document against quantum
computers, given the current state of the research community's
knowledge about quantum algorithms. Indeed, we are confident that
the security of a significant part of the Internet could be made
dependent on the signature schemes defined in this document, if
developers take care of the following.
In contrast to traditional signature schemes, the signature schemes
described in this document are stateful, meaning the secret key
changes over time. If a secret key state is used twice, no
cryptographic security guarantees remain. In consequence, it becomes
Huelsing, et al. Informational [Page 6]
^L
RFC 8391 XMSS May 2018
feasible to forge a signature on a new message. This is a new
property that most developers will not be familiar with and requires
careful handling of secret keys. Developers should not use the
schemes described here except in systems that prevent the reuse of
secret key states.
Note that the fact that the schemes described in this document are
stateful also implies that classical APIs for digital signatures
cannot be used without modification. The API MUST be able to handle
a secret key state; in particular, this means that the API MUST allow
to return an updated secret key state.
1.2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2. Notation
2.1. Data Types
Bytes and byte strings are the fundamental data types. A byte is a
sequence of eight bits. A single byte is denoted as a pair of
hexadecimal digits with a leading "0x". A byte string is an ordered
sequence of zero or more bytes and is denoted as an ordered sequence
of hexadecimal characters with a leading "0x". For example, 0xe534f0
is a byte string of length 3. An array of byte strings is an
ordered, indexed set starting with index 0 in which all byte strings
have identical length. We assume big-endian representation for any
data types or structures.
2.2. Functions
If x is a non-negative real number, then we define the following
functions:
ceil(x): returns the smallest integer greater than or equal to x.
floor(x): returns the largest integer less than or equal to x.
lg(x): returns the logarithm to base 2 of x.
Huelsing, et al. Informational [Page 7]
^L
RFC 8391 XMSS May 2018
2.3. Operators
When a and b are integers, mathematical operators are defined as
follows:
^ : a ^ b denotes the result of a raised to the power of b.
* : a * b denotes the product of a and b. This operator is
sometimes omitted in the absence of ambiguity, as in usual
mathematical notation.
/ : a / b denotes the quotient of a by non-zero b.
% : a % b denotes the non-negative remainder of the integer
division of a by b.
+ : a + b denotes the sum of a and b.
- : a - b denotes the difference of a and b.
++ : a++ denotes incrementing a by 1, i.e., a = a + 1.
<< : a << b denotes a logical left shift with b being non-
negative, i.e., a * 2^b.
>> : a >> b denotes a logical right shift with b being non-
negative, i.e., floor(a / 2^b).
The standard order of operations is used when evaluating arithmetic
expressions.
Arrays are used in the common way, where the i^th element of an array
A is denoted A[i]. Byte strings are treated as arrays of bytes where
necessary: if X is a byte string, then X[i] denotes its i^th byte,
where X[0] is the leftmost byte.
If A and B are byte strings of equal length, then:
o A AND B denotes the bitwise logical conjunction operation.
o A XOR B denotes the bitwise logical exclusive disjunction
operation.
When B is a byte and i is an integer, then B >> i denotes the logical
right-shift operation.
Huelsing, et al. Informational [Page 8]
^L
RFC 8391 XMSS May 2018
If X is an x-byte string and Y a y-byte string, then X || Y denotes
the concatenation of X and Y, with X || Y = X[0] ... X[x-1] Y[0] ...
Y[y-1].
2.4. Integer-to-Byte Conversion
If x and y are non-negative integers, we define Z = toByte(x, y) to
be the y-byte string containing the binary representation of x in
big-endian byte order.
2.5. Hash Function Address Scheme
The schemes described in this document randomize each hash function
call. This means that aside from the initial message digest, a
different key and different bitmask is used for each hash function
call. These values are pseudorandomly generated using a pseudorandom
function that takes a key SEED and a 32-byte address ADRS as input
and outputs an n-byte value, where n is the security parameter. Here
we explain the structure of address ADRS and propose setter methods
to manipulate the address. We explain the generation of the
addresses in the following sections where they are used.
The schemes in the next two sections use two kinds of hash functions
parameterized by security parameter n. For the hash tree
constructions, a hash function that maps an n-byte key and 2n-byte
inputs to n-byte outputs is used. To randomize this function, 3n
bytes are needed -- n bytes for the key and 2n bytes for a bitmask.
For the OTS scheme constructions, a hash function that maps n-byte
keys and n-byte inputs to n-byte outputs is used. To randomize this
function, 2n bytes are needed -- n bytes for the key and n bytes for
a bitmask. Consequently, three addresses are needed for the first
function and two addresses for the second one.
There are three different types of addresses for the different use
cases. One type is used for the hashes in OTS schemes, one is used
for hashes within the main Merkle tree construction, and one is used
for hashes in the L-trees. The latter is used to compress one-time
public keys. All these types share as much format as possible. In
the remainder of this section, we describe these types in detail.
The structure of an address complies with word borders, with a word
being 32 bits long in this context. Only the tree address is too
long to fit a single word, but it can fit a double word. An address
is structured as follows. It always starts with a layer address of
one word in the most significant bits, followed by a tree address of
two words. Both addresses are needed for the multi-tree variant (see
Section 4.2) and describe the position of a tree within a multi-tree.
They are therefore set to zero in single-tree applications. For
Huelsing, et al. Informational [Page 9]
^L
RFC 8391 XMSS May 2018
multi-tree hash-based signatures, the layer address describes the
height of a tree within the multi-tree, starting from height zero for
trees at the bottom layer. The tree address describes the position
of a tree within a layer of a multi-tree starting with index zero for
the leftmost tree. The next word defines the type of the address.
It is set to 0 for an OTS address, to 1 for an L-tree address, and to
2 for a hash tree address. Whenever the type word of an address is
changed, all following words should be initialized with 0 to prevent
non-zero values in unused padding words.
We first describe the OTS address case. In this case, the type word
is followed by an OTS address word that encodes the index of the OTS
key pair within the tree. The next word encodes the chain address
followed by a word that encodes the address of the hash function call
within the chain. The last word, called keyAndMask, is used to
generate two different addresses for one hash function call. The
word is set to zero to generate the key. To generate the n-byte
bitmask, the word is set to one.
+-------------------------+
| layer address (32 bits)|
+-------------------------+
| tree address (64 bits)|
+-------------------------+
| type = 0 (32 bits)|
+-------------------------+
| OTS address (32 bits)|
+-------------------------+
| chain address (32 bits)|
+-------------------------+
| hash address (32 bits)|
+-------------------------+
| keyAndMask (32 bits)|
+-------------------------+
An OTS Hash Address
We now discuss the L-tree case, which means that the type word is set
to one. In that case, the type word is followed by an L-tree address
word that encodes the index of the leaf computed with this L-tree.
The next word encodes the height of the node being input for the next
computation inside the L-tree. The following word encodes the index
of the node at that height, inside the L-tree. This time, the last
word, keyAndMask, is used to generate three different addresses for
one function call. The word is set to zero to generate the key. To
generate the most significant n bytes of the 2n-byte bitmask, the
word is set to one. The least significant bytes are generated using
the address with the word set to two.
Huelsing, et al. Informational [Page 10]
^L
RFC 8391 XMSS May 2018
+-------------------------+
| layer address (32 bits)|
+-------------------------+
| tree address (64 bits)|
+-------------------------+
| type = 1 (32 bits)|
+-------------------------+
| L-tree address (32 bits)|
+-------------------------+
| tree height (32 bits)|
+-------------------------+
| tree index (32 bits)|
+-------------------------+
| keyAndMask (32 bits)|
+-------------------------+
An L-tree Address
We now describe the remaining type for the main tree hash addresses.
In this case, the type word is set to two, followed by a zero padding
of one word. The next word encodes the height of the tree node being
input for the next computation, followed by a word that encodes the
index of this node at that height. As for the L-tree addresses, the
last word, keyAndMask, is used to generate three different addresses
for one function call. The word is set to zero to generate the key.
To generate the most significant n bytes of the 2n-byte bitmask, the
word is set to one. The least significant bytes are generated using
the address with the word set to two.
+-------------------------+
| layer address (32 bits)|
+-------------------------+
| tree address (64 bits)|
+-------------------------+
| type = 2 (32 bits)|
+-------------------------+
| Padding = 0 (32 bits)|
+-------------------------+
| tree height (32 bits)|
+-------------------------+
| tree index (32 bits)|
+-------------------------+
| keyAndMask (32 bits)|
+-------------------------+
A Hash Tree Address
Huelsing, et al. Informational [Page 11]
^L
RFC 8391 XMSS May 2018
All fields within these addresses encode unsigned integers. When
describing the generation of addresses we use setter methods that
take positive integers and set the bits of a field to the binary
representation of that integer of the length of the field. We
furthermore assume that the setType() method sets the four words
following the type word to zero.
2.6. Strings of Base w Numbers
A byte string can be considered as a string of base w numbers, i.e.,
integers in the set {0, ... , w - 1}. The correspondence is defined
by the function base_w(X, w, out_len) (Algorithm 1) as follows. If X
is a len_X-byte string, and w is a member of the set {4, 16}, then
base_w(X, w, out_len) outputs an array of out_len integers between 0
and w - 1. The length out_len is REQUIRED to be less than or equal
to 8 * len_X / lg(w).
Algorithm 1: base_w
Input: len_X-byte string X, int w, output length out_len
Output: out_len int array basew
int in = 0;
int out = 0;
unsigned int total = 0;
int bits = 0;
int consumed;
for ( consumed = 0; consumed < out_len; consumed++ ) {
if ( bits == 0 ) {
total = X[in];
in++;
bits += 8;
}
bits -= lg(w);
basew[out] = (total >> bits) AND (w - 1);
out++;
}
return basew;
For example, if X is the (big-endian) byte string 0x1234, then
base_w(X, 16, 4) returns the array a = {1, 2, 3, 4}.
Huelsing, et al. Informational [Page 12]
^L
RFC 8391 XMSS May 2018
X (represented as bits)
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
X[0] | X[1]
X (represented as base 16 numbers)
+-----------+-----------+-----------+-----------+
| 1 | 2 | 3 | 4 |
+-----------+-----------+-----------+-----------+
base_w(X, 16, 4)
+-----------+-----------+-----------+-----------+
| 1 | 2 | 3 | 4 |
+-----------+-----------+-----------+-----------+
a[0] a[1] a[2] a[3]
base_w(X, 16, 3)
+-----------+-----------+-----------+
| 1 | 2 | 3 |
+-----------+-----------+-----------+
a[0] a[1] a[2]
base_w(X, 16, 2)
+-----------+-----------+
| 1 | 2 |
+-----------+-----------+
a[0] a[1]
Example
2.7. Member Functions
To simplify algorithm descriptions, we assume the existence of member
functions. If a complex data structure like a public key PK contains
a value X, then getX(PK) returns the value of X for this public key.
Accordingly, setX(PK, X, Y) sets value X in PK to the value held by
Y. Since camelCase is used for member function names, a value z may
be referred to as Z in the function name, e.g., getZ.
Huelsing, et al. Informational [Page 13]
^L
RFC 8391 XMSS May 2018
3. Primitives
3.1. WOTS+: One-Time Signatures
This section describes the WOTS+ system in a manner similar to that
in [Huelsing13]. WOTS+ is an OTS scheme; while a private key can be
used to sign any message, each private key MUST be used only once to
sign a single message. In particular, if a private key is used to
sign two different messages, the scheme becomes insecure.
This section starts with an explanation of parameters. Afterwards,
the so-called chaining function, which forms the main building block
of the WOTS+ scheme, is explained. A description of the algorithms
for key generation, signing, and verification follows. Finally,
pseudorandom key generation is discussed.
3.1.1. WOTS+ Parameters
WOTS+ uses the parameters n and w; they both take positive integer
values. These parameters are summarized as follows:
n: the message length as well as the length of a private key,
public key, or signature element in bytes.
w: the Winternitz parameter; it is a member of the set {4, 16}.
The parameters are used to compute values len, len_1, and len_2:
len: the number of n-byte string elements in a WOTS+ private key,
public key, and signature. It is computed as len = len_1 + len_2,
with len_1 = ceil(8n / lg(w)) and len_2 = floor(lg(len_1 *
(w - 1)) / lg(w)) + 1.
The value of n is determined by the cryptographic hash function used
for WOTS+. The hash function is chosen to ensure an appropriate
level of security. The value of n is the input length that can be
processed by the signing algorithm. It is often the length of a
message digest. The parameter w can be chosen from the set {4, 16}.
A larger value of w results in shorter signatures but slower overall
signing operations; it has little effect on security. Choices of w
are limited to the values 4 and 16 since these values yield optimal
trade-offs and easy implementation.
WOTS+ parameters are implicitly included in algorithm inputs as
needed.
Huelsing, et al. Informational [Page 14]
^L
RFC 8391 XMSS May 2018
3.1.1.1. WOTS+ Functions
The WOTS+ algorithm uses a keyed cryptographic hash function F. F
accepts and returns byte strings of length n using keys of length n.
More detail on specific instantiations can be found in Section 5.
Security requirements on F are discussed in Section 9. In addition,
WOTS+ uses a pseudorandom function PRF. PRF takes as input an n-byte
key and a 32-byte index and generates pseudorandom outputs of length
n. More detail on specific instantiations can be found in Section 5.
Security requirements on PRF are discussed in Section 9.
3.1.2. WOTS+ Chaining Function
The chaining function (Algorithm 2) computes an iteration of F on an
n-byte input using outputs of PRF. It takes an OTS hash address as
input. This address will have the first six 32-bit words set to
encode the address of this chain. In each iteration, PRF is used to
generate a key for F and a bitmask that is XORed to the intermediate
result before it is processed by F. In the following, ADRS is a
32-byte OTS hash address as specified in Section 2.5 and SEED is an
n-byte string. To generate the keys and bitmasks, PRF is called with
SEED as key and ADRS as input. The chaining function takes as input
an n-byte string X, a start index i, a number of steps s, as well as
ADRS and SEED. The chaining function returns as output the value
obtained by iterating F for s times on input X, using the outputs of
PRF.
Huelsing, et al. Informational [Page 15]
^L
RFC 8391 XMSS May 2018
Algorithm 2: chain - Chaining Function
Input: Input string X, start index i, number of steps s,
seed SEED, address ADRS
Output: value of F iterated s times on X
if ( s == 0 ) {
return X;
}
if ( (i + s) > (w - 1) ) {
return NULL;
}
byte[n] tmp = chain(X, i, s - 1, SEED, ADRS);
ADRS.setHashAddress(i + s - 1);
ADRS.setKeyAndMask(0);
KEY = PRF(SEED, ADRS);
ADRS.setKeyAndMask(1);
BM = PRF(SEED, ADRS);
tmp = F(KEY, tmp XOR BM);
return tmp;
3.1.3. WOTS+ Private Key
The private key in WOTS+, denoted by sk (s for secret), is a length
len array of n-byte strings. This private key MUST be only used to
sign at most one message. Each n-byte string MUST either be selected
randomly from the uniform distribution or be selected using a
cryptographically secure pseudorandom procedure. In the latter case,
the security of the used procedure MUST at least match that of the
WOTS+ parameters used. For a further discussion on pseudorandom key
generation, see Section 3.1.7. The following pseudocode (Algorithm
3) describes an algorithm for generating sk.
Algorithm 3: WOTS_genSK - Generating a WOTS+ Private Key
Input: No input
Output: WOTS+ private key sk
for ( i = 0; i < len; i++ ) {
initialize sk[i] with a uniformly random n-byte string;
}
return sk;
Huelsing, et al. Informational [Page 16]
^L
RFC 8391 XMSS May 2018
3.1.4. WOTS+ Public Key
A WOTS+ key pair defines a virtual structure that consists of len
hash chains of length w. The len n-byte strings in the private key
each define the start node for one hash chain. The public key
consists of the end nodes of these hash chains. Therefore, like the
private key, the public key is also a length len array of n-byte
strings. To compute the hash chain, the chaining function (Algorithm
2) is used. An OTS hash address ADRS and a seed SEED have to be
provided by the calling algorithm. This address will encode the
address of the WOTS+ key pair within a greater structure. Hence, a
WOTS+ algorithm MUST NOT manipulate any parts of ADRS except for the
last three 32-bit words. Please note that the SEED used here is
public information also available to a verifier. The following
pseudocode (Algorithm 4) describes an algorithm for generating the
public key pk, where sk is the private key.
Algorithm 4: WOTS_genPK - Generating a WOTS+ Public Key From a
Private Key
Input: WOTS+ private key sk, address ADRS, seed SEED
Output: WOTS+ public key pk
for ( i = 0; i < len; i++ ) {
ADRS.setChainAddress(i);
pk[i] = chain(sk[i], 0, w - 1, SEED, ADRS);
}
return pk;
3.1.5. WOTS+ Signature Generation
A WOTS+ signature is a length len array of n-byte strings. The WOTS+
signature is generated by mapping a message to len integers between 0
and w - 1. To this end, the message is transformed into len_1 base w
numbers using the base_w function defined in Section 2.6. Next, a
checksum is computed and appended to the transformed message as len_2
base w numbers using the base_w function. Note that the checksum may
reach a maximum integer value of len_1 * (w - 1) * 2^8 and therefore
depends on the parameters n and w. For the parameter sets given in
Section 5, a 32-bit unsigned integer is sufficient to hold the
checksum. If other parameter settings are used, the size of the
variable holding the integer value of the checksum MUST be
sufficiently large. Each of the base w integers is used to select a
node from a different hash chain. The signature is formed by
concatenating the selected nodes. An OTS hash address ADRS and a
seed SEED have to be provided by the calling algorithm. This address
will encode the address of the WOTS+ key pair within a greater
structure. Hence, a WOTS+ algorithm MUST NOT manipulate any parts of
Huelsing, et al. Informational [Page 17]
^L
RFC 8391 XMSS May 2018
ADRS except for the last three 32-bit words. Please note that the
SEED used here is public information also available to a verifier.
The pseudocode for signature generation is shown below (Algorithm 5),
where M is the message and sig is the resulting signature.
Algorithm 5: WOTS_sign - Generating a signature from a private key
and a message
Input: Message M, WOTS+ private key sk, address ADRS, seed SEED
Output: WOTS+ signature sig
csum = 0;
// Convert message to base w
msg = base_w(M, w, len_1);
// Compute checksum
for ( i = 0; i < len_1; i++ ) {
csum = csum + w - 1 - msg[i];
}
// Convert csum to base w
csum = csum << ( 8 - ( ( len_2 * lg(w) ) % 8 ));
len_2_bytes = ceil( ( len_2 * lg(w) ) / 8 );
msg = msg || base_w(toByte(csum, len_2_bytes), w, len_2);
for ( i = 0; i < len; i++ ) {
ADRS.setChainAddress(i);
sig[i] = chain(sk[i], 0, msg[i], SEED, ADRS);
}
return sig;
The data format for a signature is given below.
+---------------------------------+
| |
| sig_ots[0] | n bytes
| |
+---------------------------------+
| |
~ .... ~
| |
+---------------------------------+
| |
| sig_ots[len - 1] | n bytes
| |
+---------------------------------+
WOTS+ Signature
Huelsing, et al. Informational [Page 18]
^L
RFC 8391 XMSS May 2018
3.1.6. WOTS+ Signature Verification
In order to verify a signature sig on a message M, the verifier
computes a WOTS+ public key value from the signature. This can be
done by "completing" the chain computations starting from the
signature values, using the base w values of the message hash and its
checksum. This step, called WOTS_pkFromSig, is described below in
Algorithm 6. The result of WOTS_pkFromSig is then compared to the
given public key. If the values are equal, the signature is
accepted. Otherwise, the signature MUST be rejected. An OTS hash
address ADRS and a seed SEED have to be provided by the calling
algorithm. This address will encode the address of the WOTS+ key
pair within a greater structure. Hence, a WOTS+ algorithm MUST NOT
manipulate any parts of ADRS except for the last three 32-bit words.
Please note that the SEED used here is public information also
available to a verifier.
Algorithm 6: WOTS_pkFromSig - Computing a WOTS+ public key from a
message and its signature
Input: Message M, WOTS+ signature sig, address ADRS, seed SEED
Output: 'Temporary' WOTS+ public key tmp_pk
csum = 0;
// Convert message to base w
msg = base_w(M, w, len_1);
// Compute checksum
for ( i = 0; i < len_1; i++ ) {
csum = csum + w - 1 - msg[i];
}
// Convert csum to base w
csum = csum << ( 8 - ( ( len_2 * lg(w) ) % 8 ));
len_2_bytes = ceil( ( len_2 * lg(w) ) / 8 );
msg = msg || base_w(toByte(csum, len_2_bytes), w, len_2);
for ( i = 0; i < len; i++ ) {
ADRS.setChainAddress(i);
tmp_pk[i] = chain(sig[i], msg[i], w - 1 - msg[i], SEED, ADRS);
}
return tmp_pk;
Note: XMSS uses WOTS_pkFromSig to compute a public key value and
delays the comparison to a later point.
Huelsing, et al. Informational [Page 19]
^L
RFC 8391 XMSS May 2018
3.1.7. Pseudorandom Key Generation
An implementation MAY use a cryptographically secure pseudorandom
method to generate the private key from a single n-byte value. For
example, the method suggested in [BDH11] and explained below MAY be
used. Other methods MAY be used. The choice of a pseudorandom
method does not affect interoperability, but the cryptographic
strength MUST match that of the used WOTS+ parameters.
The advantage of generating the private key elements from a random
n-byte string is that only this n-byte string needs to be stored
instead of the full private key. The key can be regenerated when
needed. The suggested method from [BDH11] can be described using
PRF. During key generation, a uniformly random n-byte string S is
sampled from a secure source of randomness. This string S is stored
as private key. The private key elements are computed as sk[i] =
PRF(S, toByte(i, 32)) whenever needed. Please note that this seed S
MUST be different from the seed SEED used to randomize the hash
function calls. Also, this seed S MUST be kept secret. The seed S
MUST NOT be a low entropy, human-memorable value since private key
elements are derived from S deterministically and their
confidentiality is security-critical.
4. Schemes
In this section, the eXtended Merkle Signature Scheme (XMSS) is
described using WOTS+. XMSS comes in two flavors: a single-tree
variant (XMSS) and a multi-tree variant (XMSS^MT). Both allow
combining a large number of WOTS+ key pairs under a single small
public key. The main ingredient added is a binary hash tree
construction. XMSS uses a single hash tree while XMSS^MT uses a tree
of XMSS key pairs.
4.1. XMSS: eXtended Merkle Signature Scheme
XMSS is a method for signing a potentially large but fixed number of
messages. It is based on the Merkle signature scheme. XMSS uses
four cryptographic components: WOTS+ as OTS method, two additional
cryptographic hash functions H and H_msg, and a pseudorandom function
PRF. One of the main advantages of XMSS with WOTS+ is that it does
not rely on the collision resistance of the used hash functions but
on weaker properties. Each XMSS public/private key pair is
associated with a perfect binary tree, every node of which contains
an n-byte value. Each tree leaf contains a special tree hash of a
WOTS+ public key value. Each non-leaf tree node is computed by first
concatenating the values of its child nodes, computing the XOR with a
bitmask, and applying the keyed hash function H to the result. The
bitmasks and the keys for the hash function H are generated from a
Huelsing, et al. Informational [Page 20]
^L
RFC 8391 XMSS May 2018
(public) seed that is part of the public key using the pseudorandom
function PRF. The value corresponding to the root of the XMSS tree
forms the XMSS public key together with the seed.
To generate a key pair that can be used to sign 2^h messages, a tree
of height h is used. XMSS is a stateful signature scheme, meaning
that the private key changes with every signature generation. To
prevent one-time private keys from being used twice, the WOTS+ key
pairs are numbered from 0 to (2^h) - 1 according to the related leaf,
starting from index 0 for the leftmost leaf. The private key
contains an index that is updated with every signature generation,
such that it contains the index of the next unused WOTS+ key pair.
A signature consists of the index of the used WOTS+ key pair, the
WOTS+ signature on the message, and the so-called authentication
path. The latter is a vector of tree nodes that allow a verifier to
compute a value for the root of the tree starting from a WOTS+
signature. A verifier computes the root value and compares it to the
respective value in the XMSS public key. If they match, the
signature is declared valid. The XMSS private key consists of all
WOTS+ private keys and the current index. To reduce storage, a
pseudorandom key generation procedure, as described in [BDH11], MAY
be used. The security of the used method MUST at least match the
security of the XMSS instance.
4.1.1. XMSS Parameters
XMSS has the following parameters:
h: the height (number of levels - 1) of the tree
n: the length in bytes of the message digest as well as each node
w: the Winternitz parameter as defined for WOTS+ in Section 3.1
There are 2^h leaves in the tree.
For XMSS and XMSS^MT, private and public keys are denoted by SK (S
for secret) and PK, respectively. For WOTS+, private and public keys
are denoted by sk (s for secret) and pk, respectively. XMSS and
XMSS^MT signatures are denoted by Sig. WOTS+ signatures are denoted
by sig.
XMSS and XMSS^MT parameters are implicitly included in algorithm
inputs as needed.
Huelsing, et al. Informational [Page 21]
^L
RFC 8391 XMSS May 2018
4.1.2. XMSS Hash Functions
Besides the cryptographic hash function F and the pseudorandom
function PRF required by WOTS+, XMSS uses two more functions:
o A cryptographic hash function H. H accepts n-byte keys and byte
strings of length 2n and returns an n-byte string.
o A cryptographic hash function H_msg. H_msg accepts 3n-byte keys
and byte strings of arbitrary length and returns an n-byte string.
More detail on specific instantiations can be found in Section 5.
Security requirements on H and H_msg are discussed in Section 9.
4.1.3. XMSS Private Key
An XMSS private key SK contains 2^h WOTS+ private keys, the leaf
index idx of the next WOTS+ private key that has not yet been used,
SK_PRF (an n-byte key to generate pseudorandom values for randomized
message hashing), the n-byte value root (which is the root node of
the tree and SEED), and the n-byte public seed used to pseudorandomly
generate bitmasks and hash function keys. Although root and SEED
formally would be considered only part of the public key, they are
needed (e.g., for signature generation) and hence are also required
for functions that do not take the public key as input.
The leaf index idx is initialized to zero when the XMSS private key
is created. The key SK_PRF MUST be sampled from a secure source of
randomness that follows the uniform distribution. The WOTS+ private
keys MUST be generated as described in Section 3.1, or, to reduce the
private key size, a cryptographic pseudorandom method MUST be used as
discussed in Section 4.1.11. SEED is generated as a uniformly random
n-byte string. Although SEED is public, it is critical for security
that it is generated using a good entropy source. The root node is
generated as described below in the section on key generation
(Section 4.1.7). That section also contains an example algorithm for
combined private and public key generation.
For the following algorithm descriptions, the existence of a method
getWOTS_SK(SK, i) is assumed. This method takes as input an XMSS
private key SK and an integer i and outputs the i^th WOTS+ private
key of SK.
Huelsing, et al. Informational [Page 22]
^L
RFC 8391 XMSS May 2018
4.1.4. Randomized Tree Hashing
To improve readability, we introduce a function RAND_HASH(LEFT,
RIGHT, SEED, ADRS) (Algorithm 7) that does the randomized hashing in
the tree. It takes as input two n-byte values LEFT and RIGHT that
represent the left and the right halves of the hash function input,
the seed SEED used as key for PRF, and the address ADRS of this hash
function call. RAND_HASH first uses PRF with SEED and ADRS to
generate a key KEY and n-byte bitmasks BM_0, BM_1. Then, it returns
the randomized hash H(KEY, (LEFT XOR BM_0) || (RIGHT XOR BM_1)).
Algorithm 7: RAND_HASH
Input: n-byte value LEFT, n-byte value RIGHT, seed SEED,
address ADRS
Output: n-byte randomized hash
ADRS.setKeyAndMask(0);
KEY = PRF(SEED, ADRS);
ADRS.setKeyAndMask(1);
BM_0 = PRF(SEED, ADRS);
ADRS.setKeyAndMask(2);
BM_1 = PRF(SEED, ADRS);
return H(KEY, (LEFT XOR BM_0) || (RIGHT XOR BM_1));
4.1.5. L-Trees
To compute the leaves of the binary hash tree, a so-called L-tree is
used. An L-tree is an unbalanced binary hash tree, distinct but
similar to the main XMSS binary hash tree. The algorithm ltree
(Algorithm 8) takes as input a WOTS+ public key pk and compresses it
to a single n-byte value pk[0]. It also takes as input an L-tree
address ADRS that encodes the address of the L-tree and the seed
SEED.
Huelsing, et al. Informational [Page 23]
^L
RFC 8391 XMSS May 2018
Algorithm 8: ltree
Input: WOTS+ public key pk, address ADRS, seed SEED
Output: n-byte compressed public key value pk[0]
unsigned int len' = len;
ADRS.setTreeHeight(0);
while ( len' > 1 ) {
for ( i = 0; i < floor(len' / 2); i++ ) {
ADRS.setTreeIndex(i);
pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS);
}
if ( len' % 2 == 1 ) {
pk[floor(len' / 2)] = pk[len' - 1];
}
len' = ceil(len' / 2);
ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
}
return pk[0];
4.1.6. TreeHash
For the computation of the internal n-byte nodes of a Merkle tree,
the subroutine treeHash (Algorithm 9) accepts an XMSS private key SK
(including seed SEED), an unsigned integer s (the start index), an
unsigned integer t (the target node height), and an address ADRS that
encodes the address of the containing tree. For the height of a node
within a tree, counting starts with the leaves at height zero. The
treeHash algorithm returns the root node of a tree of height t with
the leftmost leaf being the hash of the WOTS+ pk with index s. It is
REQUIRED that s % 2^t = 0, i.e., that the leaf at index s is a
leftmost leaf of a sub-tree of height t. Otherwise, the hash-
addressing scheme fails. The treeHash algorithm described here uses
a stack holding up to (t - 1) nodes, with the usual stack functions
push() and pop(). We furthermore assume that the height of a node
(an unsigned integer) is stored alongside a node's value (an n-byte
string) on the stack.
Huelsing, et al. Informational [Page 24]
^L
RFC 8391 XMSS May 2018
Algorithm 9: treeHash
Input: XMSS private key SK, start index s, target node height t,
address ADRS
Output: n-byte root node - top node on Stack
if( s % (1 << t) != 0 ) return -1;
for ( i = 0; i < 2^t; i++ ) {
SEED = getSEED(SK);
ADRS.setType(0); // Type = OTS hash address
ADRS.setOTSAddress(s + i);
pk = WOTS_genPK (getWOTS_SK(SK, s + i), SEED, ADRS);
ADRS.setType(1); // Type = L-tree address
ADRS.setLTreeAddress(s + i);
node = ltree(pk, SEED, ADRS);
ADRS.setType(2); // Type = hash tree address
ADRS.setTreeHeight(0);
ADRS.setTreeIndex(i + s);
while ( Top node on Stack has same height t' as node ) {
ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
node = RAND_HASH(Stack.pop(), node, SEED, ADRS);
ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
}
Stack.push(node);
}
return Stack.pop();
4.1.7. XMSS Key Generation
The XMSS key pair is computed as described in XMSS_keyGen (Algorithm
10). The XMSS public key PK consists of the root of the binary hash
tree and the seed SEED, both also stored in SK. The root is computed
using treeHash. For XMSS, there is only a single main tree. Hence,
the used address is set to the all-zero string in the beginning.
Note that we do not define any specific format or handling for the
XMSS private key SK by introducing this algorithm. It relates to
requirements described earlier and simply shows a basic but very
inefficient example to initialize a private key.
Huelsing, et al. Informational [Page 25]
^L
RFC 8391 XMSS May 2018
Algorithm 10: XMSS_keyGen - Generate an XMSS key pair
Input: No input
Output: XMSS private key SK, XMSS public key PK
// Example initialization for SK-specific contents
idx = 0;
for ( i = 0; i < 2^h; i++ ) {
wots_sk[i] = WOTS_genSK();
}
initialize SK_PRF with a uniformly random n-byte string;
setSK_PRF(SK, SK_PRF);
// Initialization for common contents
initialize SEED with a uniformly random n-byte string;
setSEED(SK, SEED);
setWOTS_SK(SK, wots_sk));
ADRS = toByte(0, 32);
root = treeHash(SK, 0, h, ADRS);
SK = idx || wots_sk || SK_PRF || root || SEED;
PK = OID || root || SEED;
return (SK || PK);
The above is just an example algorithm. It is strongly RECOMMENDED
to use pseudorandom key generation to reduce the private key size.
Public and private key generation MAY be interleaved to save space.
Particularly, when a pseudorandom method is used to generate the
private key, generation MAY be done when the respective WOTS+ key
pair is needed by treeHash.
The format of an XMSS public key is given below.
+---------------------------------+
| algorithm OID |
+---------------------------------+
| |
| root node | n bytes
| |
+---------------------------------+
| |
| SEED | n bytes
| |
+---------------------------------+
XMSS Public Key
Huelsing, et al. Informational [Page 26]
^L
RFC 8391 XMSS May 2018
4.1.8. XMSS Signature
An XMSS signature is a (4 + n + (len + h) * n)-byte string consisting
of:
o the index idx_sig of the used WOTS+ key pair (4 bytes),
o a byte string r used for randomized message hashing (n bytes),
o a WOTS+ signature sig_ots (len * n bytes), and
o the so-called authentication path 'auth' for the leaf associated
with the used WOTS+ key pair (h * n bytes).
The authentication path is an array of h n-byte strings. It contains
the siblings of the nodes on the path from the used leaf to the root.
It does not contain the nodes on the path itself. A verifier needs
these nodes to compute a root node for the tree from the WOTS+ public
key. A node Node is addressed by its position in the tree. Node(x,
y) denotes the y^th node on level x with y = 0 being the leftmost
node on a level. The leaves are on level 0; the root is on level h.
An authentication path contains exactly one node on every layer 0 <=
x <= (h - 1). For the i^th WOTS+ key pair, counting from zero, the
j^th authentication path node is:
Node(j, floor(i / (2^j)) XOR 1)
The computation of the authentication path is discussed in
Section 4.1.9.
Huelsing, et al. Informational [Page 27]
^L
RFC 8391 XMSS May 2018
The data format for a signature is given below.
+---------------------------------+
| |
| index idx_sig | 4 bytes
| |
+---------------------------------+
| |
| randomness r | n bytes
| |
+---------------------------------+
| |
| WOTS+ signature sig_ots | len * n bytes
| |
+---------------------------------+
| |
| auth[0] | n bytes
| |
+---------------------------------+
| |
~ .... ~
| |
+---------------------------------+
| |
| auth[h - 1] | n bytes
| |
+---------------------------------+
XMSS Signature
4.1.9. XMSS Signature Generation
To compute the XMSS signature of a message M with an XMSS private
key, the signer first computes a randomized message digest using a
random value r, idx_sig, the index of the WOTS+ key pair to be used,
and the root value from the public key as key. Then, a WOTS+
signature of the message digest is computed using the next unused
WOTS+ private key. Next, the authentication path is computed.
Finally, the private key is updated, i.e., idx is incremented. An
implementation MUST NOT output the signature before the private key
is updated.
The node values of the authentication path MAY be computed in any
way. This computation is assumed to be performed by the subroutine
buildAuth for the function XMSS_sign (Algorithm 12). The fastest
alternative is to store all tree nodes and set the array in the
signature by copying the respective nodes. The least storage-
intensive alternative is to recompute all nodes for each signature
Huelsing, et al. Informational [Page 28]
^L
RFC 8391 XMSS May 2018
online using the treeHash algorithm (Algorithm 9). Several
algorithms exist in between, with different time/storage trade-offs.
For an overview, see [BDS09]. A further approach can be found in
[KMN14]. Note that the details of this procedure are not relevant to
interoperability; it is not necessary to know any of these details in
order to perform the signature verification operation. The following
version of buildAuth is given for completeness. It is a simple
example for understanding, but extremely inefficient. The use of one
of the alternative algorithms is strongly RECOMMENDED.
Given an XMSS private key SK, all nodes in a tree are determined.
Their values are defined in terms of treeHash (Algorithm 9). Hence,
one can compute the authentication path as follows:
(Example) buildAuth - Compute the authentication path for the i^th
WOTS+ key pair
Input: XMSS private key SK, WOTS+ key pair index i, ADRS
Output: Authentication path auth
for ( j = 0; j < h; j++ ) {
k = floor(i / (2^j)) XOR 1;
auth[j] = treeHash(SK, k * 2^j, j, ADRS);
}
We split the description of the signature generation into two main
algorithms. The first one, treeSig (Algorithm 11), generates the
main part of an XMSS signature and is also used by the multi-tree
variant XMSS^MT. XMSS_sign (Algorithm 12) calls treeSig but handles
message compression before and the private key update afterwards.
The algorithm treeSig (Algorithm 11) described below calculates the
WOTS+ signature on an n-byte message and the corresponding
authentication path. treeSig takes as input an n-byte message M', an
XMSS private key SK, a signature index idx_sig, and an address ADRS.
It returns the concatenation of the WOTS+ signature sig_ots and
authentication path auth.
Huelsing, et al. Informational [Page 29]
^L
RFC 8391 XMSS May 2018
Algorithm 11: treeSig - Generate a WOTS+ signature on a message with
corresponding authentication path
Input: n-byte message M', XMSS private key SK,
signature index idx_sig, ADRS
Output: Concatenation of WOTS+ signature sig_ots and
authentication path auth
auth = buildAuth(SK, idx_sig, ADRS);
ADRS.setType(0); // Type = OTS hash address
ADRS.setOTSAddress(idx_sig);
sig_ots = WOTS_sign(getWOTS_SK(SK, idx_sig),
M', getSEED(SK), ADRS);
Sig = sig_ots || auth;
return Sig;
The algorithm XMSS_sign (Algorithm 12) described below calculates an
updated private key SK and a signature on a message M. XMSS_sign
takes as input a message M of arbitrary length and an XMSS private
key SK. It returns the byte string containing the concatenation of
the updated private key SK and the signature Sig.
Algorithm 12: XMSS_sign - Generate an XMSS signature and update the
XMSS private key
Input: Message M, XMSS private key SK
Output: Updated SK, XMSS signature Sig
idx_sig = getIdx(SK);
setIdx(SK, idx_sig + 1);
ADRS = toByte(0, 32);
byte[n] r = PRF(getSK_PRF(SK), toByte(idx_sig, 32));
byte[n] M' = H_msg(r || getRoot(SK) || (toByte(idx_sig, n)), M);
Sig = idx_sig || r || treeSig(M', SK, idx_sig, ADRS);
return (SK || Sig);
4.1.10. XMSS Signature Verification
An XMSS signature is verified by first computing the message digest
using randomness r, index idx_sig, the root from PK and message M.
Then the used WOTS+ public key pk_ots is computed from the WOTS+
signature using WOTS_pkFromSig. The WOTS+ public key in turn is used
to compute the corresponding leaf using an L-tree. The leaf,
together with index idx_sig and authentication path auth is used to
compute an alternative root value for the tree. The verification
succeeds if and only if the computed root value matches the one in
the XMSS public key. In any other case, it MUST return fail.
Huelsing, et al. Informational [Page 30]
^L
RFC 8391 XMSS May 2018
As for signature generation, we split verification into two parts to
allow for reuse in the XMSS^MT description. The steps also needed
for XMSS^MT are done by the function XMSS_rootFromSig (Algorithm 13).
XMSS_verify (Algorithm 14) calls XMSS_rootFromSig as a subroutine and
handles the XMSS-specific steps.
The main part of XMSS signature verification is done by the function
XMSS_rootFromSig (Algorithm 13) described below. XMSS_rootFromSig
takes as input an index idx_sig, a WOTS+ signature sig_ots, an
authentication path auth, an n-byte message M', seed SEED, and
address ADRS. XMSS_rootFromSig returns an n-byte string holding the
value of the root of a tree defined by the input data.
Algorithm 13: XMSS_rootFromSig - Compute a root node from a tree
signature
Input: index idx_sig, WOTS+ signature sig_ots, authentication path
auth, n-byte message M', seed SEED, address ADRS
Output: n-byte root value node[0]
ADRS.setType(0); // Type = OTS hash address
ADRS.setOTSAddress(idx_sig);
pk_ots = WOTS_pkFromSig(sig_ots, M', SEED, ADRS);
ADRS.setType(1); // Type = L-tree address
ADRS.setLTreeAddress(idx_sig);
byte[n][2] node;
node[0] = ltree(pk_ots, SEED, ADRS);
ADRS.setType(2); // Type = hash tree address
ADRS.setTreeIndex(idx_sig);
for ( k = 0; k < h; k++ ) {
ADRS.setTreeHeight(k);
if ( (floor(idx_sig / (2^k)) % 2) == 0 ) {
ADRS.setTreeIndex(ADRS.getTreeIndex() / 2);
node[1] = RAND_HASH(node[0], auth[k], SEED, ADRS);
} else {
ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
node[1] = RAND_HASH(auth[k], node[0], SEED, ADRS);
}
node[0] = node[1];
}
return node[0];
The full XMSS signature verification is depicted below (Algorithm
14). It handles message compression, delegates the root computation
to XMSS_rootFromSig, and compares the result to the value in the
public key. XMSS_verify takes as input an XMSS signature Sig, a
Huelsing, et al. Informational [Page 31]
^L
RFC 8391 XMSS May 2018
message M, and an XMSS public key PK. XMSS_verify returns true if
and only if Sig is a valid signature on M under public key PK.
Otherwise, it returns false.
Algorithm 14: XMSS_verify - Verify an XMSS signature using the
corresponding XMSS public key and a message
Input: XMSS signature Sig, message M, XMSS public key PK
Output: Boolean
ADRS = toByte(0, 32);
byte[n] M' = H_msg(r || getRoot(PK) || (toByte(idx_sig, n)), M);
byte[n] node = XMSS_rootFromSig(idx_sig, sig_ots, auth, M',
getSEED(PK), ADRS);
if ( node == getRoot(PK) ) {
return true;
} else {
return false;
}
4.1.11. Pseudorandom Key Generation
An implementation MAY use a cryptographically secure pseudorandom
method to generate the XMSS private key from a single n-byte value.
For example, the method suggested in [BDH11] and explained below MAY
be used. Other methods, such as the one in [HRS16], MAY be used.
The choice of a pseudorandom method does not affect interoperability,
but the cryptographic strength MUST match that of the used XMSS
parameters.
For XMSS, a method similar to that for WOTS+ can be used. The
suggested method from [BDH11] can be described using PRF. During key
generation, a uniformly random n-byte string S is sampled from a
secure source of randomness. This seed S MUST NOT be confused with
the public seed SEED. The seed S MUST be independent of SEED, and
because it is the main secret, it MUST be kept secret. This seed S
is used to generate an n-byte value S_ots for each WOTS+ key pair.
The n-byte value S_ots can then be used to compute the respective
WOTS+ private key using the method described in Section 3.1.7. The
seeds for the WOTS+ key pairs are computed as S_ots[i] = PRF(S,
toByte(i, 32)) where i is the index of the WOTS+ key pair. An
advantage of this method is that a WOTS+ key can be computed using
only len + 1 evaluations of PRF when S is given.
Huelsing, et al. Informational [Page 32]
^L
RFC 8391 XMSS May 2018
4.1.12. Free Index Handling and Partial Private Keys
Some applications might require working with partial private keys or
copies of private keys. Examples include load balancing and
delegation of signing rights or proxy signatures. Such applications
MAY use their own key format and MAY use a signing algorithm
different from the one described above. The index in partial private
keys or copies of a private key MAY be manipulated as required by the
applications. However, applications MUST establish means that
guarantee that each index, and thereby each WOTS+ key pair, is used
to sign only a single message.
4.2. XMSS^MT: Multi-Tree XMSS
XMSS^MT is a method for signing a large but fixed number of messages.
It was first described in [HRB13]. It builds on XMSS. XMSS^MT uses
a tree of several layers of XMSS trees, a so-called hypertree. The
trees on top and intermediate layers are used to sign the root nodes
of the trees on the respective layer below. Trees on the lowest
layer are used to sign the actual messages. All XMSS trees have
equal height.
Consider an XMSS^MT tree of total height h that has d layers of XMSS
trees of height h / d. Then, layer d - 1 contains one XMSS tree,
layer d - 2 contains 2^(h / d) XMSS trees, and so on. Finally, layer
0 contains 2^(h - h / d) XMSS trees.
4.2.1. XMSS^MT Parameters
In addition to all XMSS parameters, an XMSS^MT system requires the
number of tree layers d, specified as an integer value that divides h
without remainder. The same tree height h / d and the same
Winternitz parameter w are used for all tree layers.
All the trees on higher layers sign root nodes of other trees, with
the root nodes being n-byte strings. Hence, no message compression
is needed, and WOTS+ is used to sign the root nodes themselves
instead of their hash values.
4.2.2. XMSS^MT Key Generation
An XMSS^MT private key SK_MT (S for secret) consists of one reduced
XMSS private key for each XMSS tree. These reduced XMSS private keys
just contain the WOTS+ private keys corresponding to that XMSS key
pair; they do not contain a pseudorandom function key, index, public
seed, or root node. Instead, SK_MT contains a single n-byte
pseudorandom function key SK_PRF, a single (ceil(h / 8))-byte index
idx_MT, a single n-byte seed SEED, and a single root value root
Huelsing, et al. Informational [Page 33]
^L
RFC 8391 XMSS May 2018
(which is the root of the single tree on the top layer). The index
is a global index over all WOTS+ key pairs of all XMSS trees on layer
0. It is initialized with 0. It stores the index of the last used
WOTS+ key pair on the bottom layer, i.e., a number between 0 and 2^h
- 1.
The reduced XMSS private keys MUST either be generated as described
in Section 4.1.3 or be generated using a cryptographic pseudorandom
method as discussed in Section 4.2.6. As for XMSS, the PRF key
SK_PRF MUST be sampled from a secure source of randomness that
follows the uniform distribution. SEED is generated as a uniformly
random n-byte string. Although SEED is public, it is critical for
security that it is generated using a good entropy source. The root
is the root node of the single XMSS tree on the top layer. Its
computation is explained below. As for XMSS, root and SEED are
public information and would classically be considered part of the
public key. However, as both are needed for signing, which only
takes the private key, they are also part of SK_MT.
This document does not define any specific format for the XMSS^MT
private key SK_MT as it is not required for interoperability.
Algorithms 15 and 16 use a function getXMSS_SK(SK, x, y) that outputs
the reduced private key of the x^th XMSS tree on the y^th layer.
The XMSS^MT public key PK_MT contains the root of the single XMSS
tree on layer d - 1 and the seed SEED. These are the same values as
in the private key SK_MT. The pseudorandom function PRF keyed with
SEED is used to generate the bitmasks and keys for all XMSS trees.
XMSSMT_keyGen (Algorithm 15) shows example pseudocode to generate
SK_MT and PK_MT. The n-byte root node of the top-layer tree is
computed using treeHash. The algorithm XMSSMT_keyGen outputs an
XMSS^MT private key SK_MT and an XMSS^MT public key PK_MT. The
algorithm below gives an example of how the reduced XMSS private keys
can be generated. However, any of the above mentioned ways is
acceptable as long as the cryptographic strength of the used method
matches or supersedes that of the used XMSS^MT parameter set.
Huelsing, et al. Informational [Page 34]
^L
RFC 8391 XMSS May 2018
Algorithm 15: XMSSMT_keyGen - Generate an XMSS^MT key pair
Input: No input
Output: XMSS^MT private key SK_MT, XMSS^MT public key PK_MT
// Example initialization
idx_MT = 0;
setIdx(SK_MT, idx_MT);
initialize SK_PRF with a uniformly random n-byte string;
setSK_PRF(SK_MT, SK_PRF);
initialize SEED with a uniformly random n-byte string;
setSEED(SK_MT, SEED);
// Generate reduced XMSS private keys
ADRS = toByte(0, 32);
for ( layer = 0; layer < d; layer++ ) {
ADRS.setLayerAddress(layer);
for ( tree = 0; tree <
(1 << ((d - 1 - layer) * (h / d)));
tree++ ) {
ADRS.setTreeAddress(tree);
for ( i = 0; i < 2^(h / d); i++ ) {
wots_sk[i] = WOTS_genSK();
}
setXMSS_SK(SK_MT, wots_sk, tree, layer);
}
}
SK = getXMSS_SK(SK_MT, 0, d - 1);
setSEED(SK, SEED);
root = treeHash(SK, 0, h / d, ADRS);
setRoot(SK_MT, root);
PK_MT = OID || root || SEED;
return (SK_MT || PK_MT);
The above is just an example algorithm. It is strongly RECOMMENDED
to use pseudorandom key generation to reduce the private key size.
Public and private key generation MAY be interleaved to save space.
In particular, when a pseudorandom method is used to generate the
private key, generation MAY be delayed to the point that the
respective WOTS+ key pair is needed by another algorithm.
Huelsing, et al. Informational [Page 35]
^L
RFC 8391 XMSS May 2018
The format of an XMSS^MT public key is given below.
+---------------------------------+
| algorithm OID |
+---------------------------------+
| |
| root node | n bytes
| |
+---------------------------------+
| |
| SEED | n bytes
| |
+---------------------------------+
XMSS^MT Public Key
4.2.3. XMSS^MT Signature
An XMSS^MT signature Sig_MT is a byte string of length (ceil(h / 8) +
n + (h + d * len) * n). It consists of:
o the index idx_sig of the used WOTS+ key pair on the bottom layer
(ceil(h / 8) bytes),
o a byte string r used for randomized message hashing (n bytes), and
o d reduced XMSS signatures ((h / d + len) * n bytes each).
The reduced XMSS signatures only contain a WOTS+ signature sig_ots
and an authentication path auth. They contain no index idx and no
byte string r.
Huelsing, et al. Informational [Page 36]
^L
RFC 8391 XMSS May 2018
The data format for a signature is given below.
+---------------------------------+
| |
| index idx_sig | ceil(h / 8) bytes
| |
+---------------------------------+
| |
| randomness r | n bytes
| |
+---------------------------------+
| |
| (reduced) XMSS signature Sig | (h / d + len) * n bytes
| (bottom layer 0) |
| |
+---------------------------------+
| |
| (reduced) XMSS signature Sig | (h / d + len) * n bytes
| (layer 1) |
| |
+---------------------------------+
| |
~ .... ~
| |
+---------------------------------+
| |
| (reduced) XMSS signature Sig | (h / d + len) * n bytes
| (layer d - 1) |
| |
+---------------------------------+
XMSS^MT Signature
4.2.4. XMSS^MT Signature Generation
To compute the XMSS^MT signature Sig_MT of a message M using an
XMSS^MT private key SK_MT, XMSSMT_sign (Algorithm 16) described below
uses treeSig as defined in Section 4.1.9. First, the signature index
is set to idx_sig. Next, PRF is used to compute a pseudorandom
n-byte string r. This n-byte string, idx_sig, and the root node from
PK_MT are then used to compute a randomized message digest of length
n. The message digest is signed using the WOTS+ key pair on the
bottom layer with absolute index idx. The authentication path for
the WOTS+ key pair and the root of the containing XMSS tree are
computed. The root is signed by the parent XMSS tree. This is
repeated until the top tree is reached.
Huelsing, et al. Informational [Page 37]
^L
RFC 8391 XMSS May 2018
Algorithm 16: XMSSMT_sign - Generate an XMSS^MT signature and update
the XMSS^MT private key
Input: Message M, XMSS^MT private key SK_MT
Output: Updated SK_MT, signature Sig_MT
// Init
ADRS = toByte(0, 32);
SEED = getSEED(SK_MT);
SK_PRF = getSK_PRF(SK_MT);
idx_sig = getIdx(SK_MT);
// Update SK_MT
setIdx(SK_MT, idx_sig + 1);
// Message compression
byte[n] r = PRF(SK_PRF, toByte(idx_sig, 32));
byte[n] M' = H_msg(r || getRoot(SK_MT) || (toByte(idx_sig, n)), M);
// Sign
Sig_MT = idx_sig;
unsigned int idx_tree
= (h - h / d) most significant bits of idx_sig;
unsigned int idx_leaf = (h / d) least significant bits of idx_sig;
SK = idx_leaf || getXMSS_SK(SK_MT, idx_tree, 0) || SK_PRF
|| toByte(0, n) || SEED;
ADRS.setLayerAddress(0);
ADRS.setTreeAddress(idx_tree);
Sig_tmp = treeSig(M', SK, idx_leaf, ADRS);
Sig_MT = Sig_MT || r || Sig_tmp;
for ( j = 1; j < d; j++ ) {
root = treeHash(SK, 0, h / d, ADRS);
idx_leaf = (h / d) least significant bits of idx_tree;
idx_tree = (h - j * (h / d)) most significant bits of idx_tree;
SK = idx_leaf || getXMSS_SK(SK_MT, idx_tree, j) || SK_PRF
|| toByte(0, n) || SEED;
ADRS.setLayerAddress(j);
ADRS.setTreeAddress(idx_tree);
Sig_tmp = treeSig(root, SK, idx_leaf, ADRS);
Sig_MT = Sig_MT || Sig_tmp;
}
return SK_MT || Sig_MT;
Huelsing, et al. Informational [Page 38]
^L
RFC 8391 XMSS May 2018
Algorithm 16 is only one method to compute XMSS^MT signatures. Time-
memory trade-offs exist that allow reduction of the signing time to
less than the signing time of an XMSS scheme with tree height h / d.
These trade-offs 1) prevent certain values from being recomputed
several times by keeping a state and 2) distribute all computations
over all signature generations. Details can be found in
[Huelsing13a].
4.2.5. XMSS^MT Signature Verification
XMSS^MT signature verification (Algorithm 17) can be summarized as d
XMSS signature verifications with small changes. First, the message
is hashed. The XMSS signatures are then all on n-byte values.
Second, instead of comparing the computed root node to a given value,
a signature on this root node is verified. Only the root node of the
top tree is compared to the value in the XMSS^MT public key.
XMSSMT_verify uses XMSS_rootFromSig. The function
getXMSSSignature(Sig_MT, i) returns the ith reduced XMSS signature
from the XMSS^MT signature Sig_MT. XMSSMT_verify takes as input an
XMSS^MT signature Sig_MT, a message M, and a public key PK_MT.
XMSSMT_verify returns true if and only if Sig_MT is a valid signature
on M under public key PK_MT. Otherwise, it returns false.
Algorithm 17: XMSSMT_verify - Verify an XMSS^MT signature Sig_MT on a
message M using an XMSS^MT public key PK_MT
Input: XMSS^MT signature Sig_MT, message M,
XMSS^MT public key PK_MT
Output: Boolean
idx_sig = getIdx(Sig_MT);
SEED = getSEED(PK_MT);
ADRS = toByte(0, 32);
byte[n] M' = H_msg(getR(Sig_MT) || getRoot(PK_MT)
|| (toByte(idx_sig, n)), M);
unsigned int idx_leaf
= (h / d) least significant bits of idx_sig;
unsigned int idx_tree
= (h - h / d) most significant bits of idx_sig;
Sig' = getXMSSSignature(Sig_MT, 0);
ADRS.setLayerAddress(0);
ADRS.setTreeAddress(idx_tree);
byte[n] node = XMSS_rootFromSig(idx_leaf, getSig_ots(Sig'),
getAuth(Sig'), M', SEED, ADRS);
Huelsing, et al. Informational [Page 39]
^L
RFC 8391 XMSS May 2018
for ( j = 1; j < d; j++ ) {
idx_leaf = (h / d) least significant bits of idx_tree;
idx_tree = (h - j * h / d) most significant bits of idx_tree;
Sig' = getXMSSSignature(Sig_MT, j);
ADRS.setLayerAddress(j);
ADRS.setTreeAddress(idx_tree);
node = XMSS_rootFromSig(idx_leaf, getSig_ots(Sig'),
getAuth(Sig'), node, SEED, ADRS);
}
if ( node == getRoot(PK_MT) ) {
return true;
} else {
return false;
}
4.2.6. Pseudorandom Key Generation
Like for XMSS, an implementation MAY use a cryptographically secure
pseudorandom method to generate the XMSS^MT private key from a single
n-byte value. For example, the method explained below MAY be used.
Other methods, such as the one in [HRS16], MAY be used. The choice
of a pseudorandom method does not affect interoperability, but the
cryptographic strength MUST match that of the used XMSS^MT
parameters.
For XMSS^MT, a method similar to that for XMSS and WOTS+ can be used.
The method uses PRF. During key generation, a uniformly random
n-byte string S_MT is sampled from a secure source of randomness.
This seed S_MT is used to generate one n-byte value S for each XMSS
key pair. This n-byte value can be used to compute the respective
XMSS private key using the method described in Section 4.1.11. Let
S[x][y] be the seed for the x^th XMSS private key on layer y. The
seeds are computed as S[x][y] = PRF(PRF(S, toByte(y, 32)), toByte(x,
32)).
4.2.7. Free Index Handling and Partial Private Keys
The content of Section 4.1.12 also applies to XMSS^MT.
5. Parameter Sets
This section provides basic parameter sets that are assumed to cover
most relevant applications. Parameter sets for two classical
security levels are defined. Parameters with n = 32 provide a
classical security level of 256 bits. Parameters with n = 64 provide
a classical security level of 512 bits. Considering quantum-
computer-aided attacks, these output sizes yield post-quantum
security of 128 and 256 bits, respectively.
Huelsing, et al. Informational [Page 40]
^L
RFC 8391 XMSS May 2018
While this document specifies several parameter sets, an
implementation is only REQUIRED to provide support for verification
of all REQUIRED parameter sets. The REQUIRED parameter sets all use
SHA2-256 to instantiate all functions. The REQUIRED parameter sets
are only distinguished by the tree height parameter h (which
determines the number of signatures that can be done with a single
key pair) and the number of layers d (which defines a trade-off
between speed and signature size). An implementation MAY provide
support for signature generation using any of the proposed parameter
sets. For convenience, this document defines a default option for
XMSS (XMSS_SHA2_20_256) and XMSS^MT (XMSSMT-SHA2_60/3_256). These
are supposed to match the most generic requirements.
5.1. Implementing the Functions
For the n = 32 setting, we give parameters that use SHA2-256 as
defined in [FIPS180] and other parameters that use the SHA3/Keccak-
based extendable-output function SHAKE-128 as defined in [FIPS202].
For the n = 64 setting, we give parameters that use SHA2-512 as
defined in [FIPS180] and other parameters that use the SHA3/Keccak-
based extendable-output functions SHAKE-256 as defined in [FIPS202].
The parameter sets using SHA2-256 are mandatory for deployment and
therefore MUST be provided by any implementation. The remaining
parameter sets specified in this document are OPTIONAL.
SHA2 does not provide a keyed-mode itself. To implement the keyed
hash functions, the following is used for SHA2 with n = 32:
F: SHA2-256(toByte(0, 32) || KEY || M),
H: SHA2-256(toByte(1, 32) || KEY || M),
H_msg: SHA2-256(toByte(2, 32) || KEY || M), and
PRF: SHA2-256(toByte(3, 32) || KEY || M).
Accordingly, for SHA2 with n = 64 we use:
F: SHA2-512(toByte(0, 64) || KEY || M),
H: SHA2-512(toByte(1, 64) || KEY || M),
H_msg: SHA2-512(toByte(2, 64) || KEY || M), and
PRF: SHA2-512(toByte(3, 64) || KEY || M).
Huelsing, et al. Informational [Page 41]
^L
RFC 8391 XMSS May 2018
The n-byte padding is used for two reasons. First, it is necessary
that the internal compression function takes 2n-byte blocks, but keys
are n and 3n bytes long. Second, the padding is used to achieve
independence of the different function families. Finally, for the
PRF, no full-fledged Hash-Based Message Authentication Code (HMAC) is
needed as the message length is fixed, meaning that standard length
extension attacks are not a concern here. For that reason, the
simpler construction above suffices.
Similar constructions are used with SHA3. To implement the keyed
hash functions, the following is used for SHA3 with n = 32:
F: SHAKE128(toByte(0, 32) || KEY || M, 256),
H: SHAKE128(toByte(1, 32) || KEY || M, 256),
H_msg: SHAKE128(toByte(2, 32) || KEY || M, 256),
PRF: SHAKE128(toByte(3, 32) || KEY || M, 256).
Accordingly, for SHA3 with n = 64, we use:
F: SHAKE256(toByte(0, 64) || KEY || M, 512),
H: SHAKE256(toByte(1, 64) || KEY || M, 512),
H_msg: SHAKE256(toByte(2, 64) || KEY || M, 512),
PRF: SHAKE256(toByte(3, 64) || KEY || M, 512).
As for SHA2, an initial n-byte identifier is used to achieve
independence of the different function families. While a shorter
identifier could be used in case of SHA3, we use n bytes for
consistency with the SHA2 implementations.
Huelsing, et al. Informational [Page 42]
^L
RFC 8391 XMSS May 2018
5.2. WOTS+ Parameters
To fully describe a WOTS+ signature method, the parameters n and w,
as well as the functions F and PRF, MUST be specified. The following
table defines several WOTS+ signature systems, each of which is
identified by a name. Naming follows this convention:
WOTSP-[Hashfamily]_[n in bits]. Naming does not include w as all
parameter sets in this document use w=16. Values for len are
provided for convenience.
+-----------------+----------+----+----+-----+
| Name | F / PRF | n | w | len |
+-----------------+----------+----+----+-----+
| REQUIRED: | | | | |
| | | | | |
| WOTSP-SHA2_256 | SHA2-256 | 32 | 16 | 67 |
| | | | | |
| OPTIONAL: | | | | |
| | | | | |
| WOTSP-SHA2_512 | SHA2-512 | 64 | 16 | 131 |
| | | | | |
| WOTSP-SHAKE_256 | SHAKE128 | 32 | 16 | 67 |
| | | | | |
| WOTSP-SHAKE_512 | SHAKE256 | 64 | 16 | 131 |
+-----------------+----------+----+----+-----+
Table 1
The implementation of the single functions is done as described
above. External Data Representation (XDR) formats for WOTS+ are
listed in Appendix A.
5.3. XMSS Parameters
To fully describe an XMSS signature method, the parameters n, w, and
h, as well as the functions F, H, H_msg, and PRF, MUST be specified.
The following table defines different XMSS signature systems, each of
which is identified by a name. Naming follows this convention:
XMSS-[Hashfamily]_[h]_[n in bits]. Naming does not include w as all
parameter sets in this document use w=16.
Huelsing, et al. Informational [Page 43]
^L
RFC 8391 XMSS May 2018
+-------------------+-----------+----+----+-----+----+
| Name | Functions | n | w | len | h |
+-------------------+-----------+----+----+-----+----+
| REQUIRED: | | | | | |
| | | | | | |
| XMSS-SHA2_10_256 | SHA2-256 | 32 | 16 | 67 | 10 |
| | | | | | |
| XMSS-SHA2_16_256 | SHA2-256 | 32 | 16 | 67 | 16 |
| | | | | | |
| XMSS-SHA2_20_256 | SHA2-256 | 32 | 16 | 67 | 20 |
| | | | | | |
| OPTIONAL: | | | | | |
| | | | | | |
| XMSS-SHA2_10_512 | SHA2-512 | 64 | 16 | 131 | 10 |
| | | | | | |
| XMSS-SHA2_16_512 | SHA2-512 | 64 | 16 | 131 | 16 |
| | | | | | |
| XMSS-SHA2_20_512 | SHA2-512 | 64 | 16 | 131 | 20 |
| | | | | | |
| XMSS-SHAKE_10_256 | SHAKE128 | 32 | 16 | 67 | 10 |
| | | | | | |
| XMSS-SHAKE_16_256 | SHAKE128 | 32 | 16 | 67 | 16 |
| | | | | | |
| XMSS-SHAKE_20_256 | SHAKE128 | 32 | 16 | 67 | 20 |
| | | | | | |
| XMSS-SHAKE_10_512 | SHAKE256 | 64 | 16 | 131 | 10 |
| | | | | | |
| XMSS-SHAKE_16_512 | SHAKE256 | 64 | 16 | 131 | 16 |
| | | | | | |
| XMSS-SHAKE_20_512 | SHAKE256 | 64 | 16 | 131 | 20 |
+-------------------+-----------+----+----+-----+----+
Table 2
The XDR formats for XMSS are listed in Appendix B.
5.3.1. Parameter Guide
In contrast to traditional signature schemes like RSA or Digital
Signature Algorithm (DSA), XMSS has a tree height parameter h that
determines the number of messages that can be signed with one key
pair. Increasing the height allows using a key pair for more
signatures, but it also increases the signature size and slows down
key generation, signing, and verification. To demonstrate the impact
of different values of h, the following table shows signature size
and runtimes. Runtimes are given as the number of calls to F and H
when the BDS algorithm is used to compute authentication paths for
Huelsing, et al. Informational [Page 44]
^L
RFC 8391 XMSS May 2018
the worst case. The last column shows the number of messages that
can be signed with one key pair. The numbers are the same for the
XMSS-SHAKE instances with same parameters h and n.
+------------------+-------+------------+--------+--------+-------+
| Name | |Sig| | KeyGen | Sign | Verify | #Sigs |
+------------------+-------+------------+--------+--------+-------+
| REQUIRED: | | | | | |
| | | | | | |
| XMSS-SHA2_10_256 | 2,500 | 1,238,016 | 5,725 | 1,149 | 2^10 |
| | | | | | |
| XMSS-SHA2_16_256 | 2,692 | 79*10^6 | 9,163 | 1,155 | 2^16 |
| | | | | | |
| XMSS-SHA2_20_256 | 2,820 | 1,268*10^6 | 11,455 | 1,159 | 2^20 |
| | | | | | |
| OPTIONAL: | | | | | |
| | | | | | |
| XMSS-SHA2_10_512 | 9,092 | 2,417,664 | 11,165 | 2,237 | 2^10 |
| | | | | | |
| XMSS-SHA2_16_512 | 9,476 | 155*10^6 | 17,867 | 2,243 | 2^16 |
| | | | | | |
| XMSS-SHA2_20_512 | 9,732 | 2,476*10^6 | 22,335 | 2,247 | 2^20 |
+------------------+-------+------------+--------+--------+-------+
Table 3
As a default, users without special requirements should use option
XMSS-SHA2_20_256, which allows signing of 2^20 messages with one key
pair and provides reasonable speed and signature size. Users that
require more signatures per key pair or faster key generation should
consider XMSS^MT.
5.4. XMSS^MT Parameters
To fully describe an XMSS^MT signature method, the parameters n, w,
h, and d, as well as the functions F, H, H_msg, and PRF, MUST be
specified. The following table defines different XMSS^MT signature
systems, each of which is identified by a name. Naming follows this
convention: XMSSMT-[Hashfamily]_[h]/[d]_[n in bits]. Naming does not
include w as all parameter sets in this document use w=16.
Huelsing, et al. Informational [Page 45]
^L
RFC 8391 XMSS May 2018
+------------------------+-----------+----+----+-----+----+----+
| Name | Functions | n | w | len | h | d |
+------------------------+-----------+----+----+-----+----+----+
| REQUIRED: | | | | | | |
| | | | | | | |
| XMSSMT-SHA2_20/2_256 | SHA2-256 | 32 | 16 | 67 | 20 | 2 |
| | | | | | | |
| XMSSMT-SHA2_20/4_256 | SHA2-256 | 32 | 16 | 67 | 20 | 4 |
| | | | | | | |
| XMSSMT-SHA2_40/2_256 | SHA2-256 | 32 | 16 | 67 | 40 | 2 |
| | | | | | | |
| XMSSMT-SHA2_40/4_256 | SHA2-256 | 32 | 16 | 67 | 40 | 4 |
| | | | | | | |
| XMSSMT-SHA2_40/8_256 | SHA2-256 | 32 | 16 | 67 | 40 | 8 |
| | | | | | | |
| XMSSMT-SHA2_60/3_256 | SHA2-256 | 32 | 16 | 67 | 60 | 3 |
| | | | | | | |
| XMSSMT-SHA2_60/6_256 | SHA2-256 | 32 | 16 | 67 | 60 | 6 |
| | | | | | | |
| XMSSMT-SHA2_60/12_256 | SHA2-256 | 32 | 16 | 67 | 60 | 12 |
| | | | | | | |
| OPTIONAL: | | | | | | |
| | | | | | | |
| XMSSMT-SHA2_20/2_512 | SHA2-512 | 64 | 16 | 131 | 20 | 2 |
| | | | | | | |
| XMSSMT-SHA2_20/4_512 | SHA2-512 | 64 | 16 | 131 | 20 | 4 |
| | | | | | | |
| XMSSMT-SHA2_40/2_512 | SHA2-512 | 64 | 16 | 131 | 40 | 2 |
| | | | | | | |
| XMSSMT-SHA2_40/4_512 | SHA2-512 | 64 | 16 | 131 | 40 | 4 |
| | | | | | | |
| XMSSMT-SHA2_40/8_512 | SHA2-512 | 64 | 16 | 131 | 40 | 8 |
| | | | | | | |
| XMSSMT-SHA2_60/3_512 | SHA2-512 | 64 | 16 | 131 | 60 | 3 |
| | | | | | | |
| XMSSMT-SHA2_60/6_512 | SHA2-512 | 64 | 16 | 131 | 60 | 6 |
| | | | | | | |
| XMSSMT-SHA2_60/12_512 | SHA2-512 | 64 | 16 | 131 | 60 | 12 |
| | | | | | | |
| XMSSMT-SHAKE_20/2_256 | SHAKE128 | 32 | 16 | 67 | 20 | 2 |
| | | | | | | |
| XMSSMT-SHAKE_20/4_256 | SHAKE128 | 32 | 16 | 67 | 20 | 4 |
| | | | | | | |
| XMSSMT-SHAKE_40/2_256 | SHAKE128 | 32 | 16 | 67 | 40 | 2 |
| | | | | | | |
| XMSSMT-SHAKE_40/4_256 | SHAKE128 | 32 | 16 | 67 | 40 | 4 |
| | | | | | | |
| XMSSMT-SHAKE_40/8_256 | SHAKE128 | 32 | 16 | 67 | 40 | 8 |
Huelsing, et al. Informational [Page 46]
^L
RFC 8391 XMSS May 2018
| | | | | | | |
| XMSSMT-SHAKE_60/3_256 | SHAKE128 | 32 | 16 | 67 | 60 | 3 |
| | | | | | | |
| XMSSMT-SHAKE_60/6_256 | SHAKE128 | 32 | 16 | 67 | 60 | 6 |
| | | | | | | |
| XMSSMT-SHAKE_60/12_256 | SHAKE128 | 32 | 16 | 67 | 60 | 12 |
| | | | | | | |
| XMSSMT-SHAKE_20/2_512 | SHAKE256 | 64 | 16 | 131 | 20 | 2 |
| | | | | | | |
| XMSSMT-SHAKE_20/4_512 | SHAKE256 | 64 | 16 | 131 | 20 | 4 |
| | | | | | | |
| XMSSMT-SHAKE_40/2_512 | SHAKE256 | 64 | 16 | 131 | 40 | 2 |
| | | | | | | |
| XMSSMT-SHAKE_40/4_512 | SHAKE256 | 64 | 16 | 131 | 40 | 4 |
| | | | | | | |
| XMSSMT-SHAKE_40/8_512 | SHAKE256 | 64 | 16 | 131 | 40 | 8 |
| | | | | | | |
| XMSSMT-SHAKE_60/3_512 | SHAKE256 | 64 | 16 | 131 | 60 | 3 |
| | | | | | | |
| XMSSMT-SHAKE_60/6_512 | SHAKE256 | 64 | 16 | 131 | 60 | 6 |
| | | | | | | |
| XMSSMT-SHAKE_60/12_512 | SHAKE256 | 64 | 16 | 131 | 60 | 12 |
+------------------------+-----------+----+----+-----+----+----+
Table 4
XDR formats for XMSS^MT are listed in Appendix C.
5.4.1. Parameter Guide
In addition to the tree height parameter already used for XMSS,
XMSS^MT has the parameter d that determines the number of tree
layers. XMSS can be understood as XMSS^MT with a single layer, i.e.,
d=1. Hence, the choice of h has the same effect as for XMSS. The
number of tree layers provides a trade-off between signature size on
the one side and key generation and signing speed on the other side.
Increasing the number of layers reduces key generation time
exponentially and signing time linearly at the cost of increasing the
signature size linearly. Essentially, an XMSS^MT signature contains
one WOTSP signature per layer. Speed roughly corresponds to d-times
the speed for XMSS with trees of height h/d.
To demonstrate the impact of different values of h and d, the
following table shows signature size and runtimes. Runtimes are
given as the number of calls to F and H when the BDS algorithm and
distributed signature generation are used. Timings are worst-case
times. The last column shows the number of messages that can be
signed with one key pair. The numbers are the same for the XMSS-
Huelsing, et al. Informational [Page 47]
^L
RFC 8391 XMSS May 2018
SHAKE instances with same parameters h and n. Due to formatting
limitations, only the parameter part of the parameter set names are
given, omitting the name "XMSSMT".
+----------------+---------+------------+--------+--------+-------+
| Name | |Sig| | KeyGen | Sign | Verify | #Sigs |
+----------------+---------+------------+--------+--------+-------+
| REQUIRED: | | | | | |
| | | | | | |
| SHA2_20/2_256 | 4,963 | 2,476,032 | 7,227 | 2,298 | 2^20 |
| | | | | | |
| SHA2_20/4_256 | 9,251 | 154,752 | 4,170 | 4,576 | 2^20 |
| | | | | | |
| SHA2_40/2_256 | 5,605 | 2,535*10^6 | 13,417 | 2,318 | 2^40 |
| | | | | | |
| SHA2_40/4_256 | 9,893 | 4,952,064 | 7,227 | 4,596 | 2^40 |
| | | | | | |
| SHA2_40/8_256 | 18,469 | 309,504 | 4,170 | 9,152 | 2^40 |
| | | | | | |
| SHA2_60/3_256 | 8,392 | 3,803*10^6 | 13,417 | 3,477 | 2^60 |
| | | | | | |
| SHA2_60/6_256 | 14,824 | 7,428,096 | 7,227 | 6,894 | 2^60 |
| | | | | | |
| SHA2_60/12_256 | 27,688 | 464,256 | 4,170 | 13,728 | 2^60 |
| | | | | | |
| OPTIONAL: | | | | | |
| | | | | | |
| SHA2_20/2_512 | 18,115 | 4,835,328 | 14,075 | 4,474 | 2^20 |
| | | | | | |
| SHA2_20/4_512 | 34,883 | 302,208 | 8,138 | 8,928 | 2^20 |
| | | | | | |
| SHA2_40/2_512 | 19,397 | 4,951*10^6 | 26,025 | 4,494 | 2^40 |
| | | | | | |
| SHA2_40/4_512 | 36,165 | 9,670,656 | 14,075 | 8,948 | 2^40 |
| | | | | | |
| SHA2_40/8_512 | 69,701 | 604,416 | 8,138 | 17,856 | 2^40 |
| | | | | | |
| SHA2_60/3_512 | 29,064 | 7,427*10^6 | 26,025 | 6,741 | 2^60 |
| | | | | | |
| SHA2_60/6_512 | 54,216 | 14,505,984 | 14,075 | 13,422 | 2^60 |
| | | | | | |
| SHA2_60/12_512 | 104,520 | 906,624 | 8,138 | 26,784 | 2^60 |
+----------------+---------+------------+--------+--------+-------+
Table 5
Huelsing, et al. Informational [Page 48]
^L
RFC 8391 XMSS May 2018
As a default, users without special requirements should use option
XMSSMT-SHA2_60/3_256, which allows signing of 2^60 messages with one
key pair (this is a virtually unbounded number of signatures). At
the same time, signature size and speed are well balanced.
6. Rationale
The goal of this note is to describe the WOTS+, XMSS, and XMSS^MT
algorithms based on the scientific literature. The description is
done in a modular way that allows basing a description of stateless
hash-based signature algorithms like SPHINCS [BHH15] on it.
This note slightly deviates from the scientific literature by using a
tweak that prevents multi-user and multi-target attacks against
H_msg. To this end, the public key as well as the index of the used
one-time key pair become part of the hash function key. Thereby, we
achieve a domain separation that forces an attacker to decide which
hash value to attack.
For the generation of the randomness used for randomized message
hashing, we apply a PRF, keyed with a secret value, to the index of
the used one-time key pair instead of the message. The reason is
that this requires processing the message only once instead of twice.
For long messages, this improves speed and simplifies implementations
on resource-constrained devices that cannot hold the entire message
in storage.
We give one mandatory set of parameters using SHA2-256. The reasons
are twofold. On the one hand, SHA2-256 is part of most cryptographic
libraries. On the other hand, a 256-bit hash function leads to
parameters that provide 128 bits of security even against quantum-
computer-aided attacks. A post-quantum security level of 256 bits
seems overly conservative. However, to prepare for possible
cryptanalytic breakthroughs, we also provide OPTIONAL parameter sets
using the less widely supported SHA2-512, SHAKE-256, and SHAKE-512
functions.
We suggest the value w = 16 for the Winternitz parameter. No bigger
values are included since the decrease in signature size then becomes
less significant. Furthermore, the value w = 16 considerably
simplifies the implementations of some of the algorithms. Please
note that we do allow w = 4 but limit the specified parameter sets to
w = 16 for efficiency reasons.
Huelsing, et al. Informational [Page 49]
^L
RFC 8391 XMSS May 2018
The signature and public key formats are designed so that they are
easy to parse. Each format starts with a 32-bit enumeration value
that indicates all of the details of the signature algorithm and
hence defines all of the information that is needed in order to parse
the format.
7. Reference Code
For testing purposes, a reference implementation in C is available.
The code contains a basic implementation that closely follows the
pseudocode in this document and an optimized implementation that uses
the BDS algorithm [BDS08] to compute authentication paths and
distributed signature generation as described in [HRB13] for XMSS^MT.
The code is permanently available at
<https://github.com/joostrijneveld/xmss-reference>.
8. IANA Considerations
The Internet Assigned Numbers Authority (IANA) has created three
registries: one for WOTS+ signatures (as defined in Section 3), one
for XMSS signatures (as defined in Section 4), and one for XMSS^MT
signatures (as defined in Section 4). For the sake of clarity and
convenience, the first collection of WOTS+, XMSS, and XMSS^MT
parameter sets is defined in Section 5. Additions to these
registries require that a specification be documented in an RFC or
another permanent and readily available reference in sufficient
detail as defined by the "Specification Required" policy described in
[RFC8126] to make interoperability between independent
implementations possible. Each entry in these registries contains
the following elements:
o a short name, such as "XMSS_SHA2_20_256",
o a positive number, and
o a reference to a specification that completely defines the
signature method test cases or provides a reference implementation
that can be used to verify the correctness of an implementation
(or a reference to such an implementation).
Requests to add an entry to these registries MUST include the name
and the reference. The number is assigned by IANA. These number
assignments SHOULD use the smallest available positive number.
Submitters MUST have their requests reviewed and approved.
Designated Experts for this task as requested by the "Specification
Required" policy defined by [RFC8126] will be assigned by the
Huelsing, et al. Informational [Page 50]
^L
RFC 8391 XMSS May 2018
Internet Engineering Steering Group (IESG). The IESG can be
contacted at iesg@ietf.org. Interested applicants that are
unfamiliar with IANA processes should visit <http://www.iana.org>.
The number 0x00000000 (decimal 0) is Reserved. The numbers between
0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF (decimal
4,294,967,295) inclusive will not be assigned by IANA and are
Reserved for Private Use; no attempt will be made to prevent multiple
sites from using the same value in different (and incompatible) ways
[RFC8126].
The "WOTS+ Signatures" registry is as follows.
+--------------------+-----------------+-------------+
| Numeric Identifier | Name | Reference |
+--------------------+-----------------+-------------+
| 0x00000000 | Reserved | this RFC |
| | | |
| 0x00000001 | WOTSP-SHA2_256 | Section 5.2 |
| | | |
| 0x00000002 | WOTSP-SHA2_512 | Section 5.2 |
| | | |
| 0x00000003 | WOTSP-SHAKE_256 | Section 5.2 |
| | | |
| 0x00000004 | WOTSP-SHAKE_512 | Section 5.2 |
+--------------------+-----------------+-------------+
Table 6
Huelsing, et al. Informational [Page 51]
^L
RFC 8391 XMSS May 2018
The "XMSS Signatures" registry is as follows.
+--------------------+-------------------+-------------+
| Numeric Identifier | Name | Reference |
+--------------------+-------------------+-------------+
| 0x00000000 | Reserved | this RFC |
| | | |
| 0x00000001 | XMSS-SHA2_10_256 | Section 5.3 |
| | | |
| 0x00000002 | XMSS-SHA2_16_256 | Section 5.3 |
| | | |
| 0x00000003 | XMSS-SHA2_20_256 | Section 5.3 |
| | | |
| 0x00000004 | XMSS-SHA2_10_512 | Section 5.3 |
| | | |
| 0x00000005 | XMSS-SHA2_16_512 | Section 5.3 |
| | | |
| 0x00000006 | XMSS-SHA2_20_512 | Section 5.3 |
| | | |
| 0x00000007 | XMSS-SHAKE_10_256 | Section 5.3 |
| | | |
| 0x00000008 | XMSS-SHAKE_16_256 | Section 5.3 |
| | | |
| 0x00000009 | XMSS-SHAKE_20_256 | Section 5.3 |
| | | |
| 0x0000000A | XMSS-SHAKE_10_512 | Section 5.3 |
| | | |
| 0x0000000B | XMSS-SHAKE_16_512 | Section 5.3 |
| | | |
| 0x0000000C | XMSS-SHAKE_20_512 | Section 5.3 |
+--------------------+-------------------+-------------+
Table 7
Huelsing, et al. Informational [Page 52]
^L
RFC 8391 XMSS May 2018
The "XMSS^MT Signatures" registry is as follows.
+--------------------+------------------------+-------------+
| Numeric Identifier | Name | Reference |
+--------------------+------------------------+-------------+
| 0x00000000 | Reserved | this RFC |
| | | |
| 0x00000001 | XMSSMT-SHA2_20/2_256 | Section 5.4 |
| | | |
| 0x00000002 | XMSSMT-SHA2_20/4_256 | Section 5.4 |
| | | |
| 0x00000003 | XMSSMT-SHA2_40/2_256 | Section 5.4 |
| | | |
| 0x00000004 | XMSSMT-SHA2_40/4_256 | Section 5.4 |
| | | |
| 0x00000005 | XMSSMT-SHA2_40/8_256 | Section 5.4 |
| | | |
| 0x00000006 | XMSSMT-SHA2_60/3_256 | Section 5.4 |
| | | |
| 0x00000007 | XMSSMT-SHA2_60/6_256 | Section 5.4 |
| | | |
| 0x00000008 | XMSSMT-SHA2_60/12_256 | Section 5.4 |
| | | |
| 0x00000009 | XMSSMT-SHA2_20/2_512 | Section 5.4 |
| | | |
| 0x0000000A | XMSSMT-SHA2_20/4_512 | Section 5.4 |
| | | |
| 0x0000000B | XMSSMT-SHA2_40/2_512 | Section 5.4 |
| | | |
| 0x0000000C | XMSSMT-SHA2_40/4_512 | Section 5.4 |
| | | |
| 0x0000000D | XMSSMT-SHA2_40/8_512 | Section 5.4 |
| | | |
| 0x0000000E | XMSSMT-SHA2_60/3_512 | Section 5.4 |
| | | |
| 0x0000000F | XMSSMT-SHA2_60/6_512 | Section 5.4 |
| | | |
| 0x00000010 | XMSSMT-SHA2_60/12_512 | Section 5.4 |
| | | |
| 0x00000011 | XMSSMT-SHAKE_20/2_256 | Section 5.4 |
| | | |
| 0x00000012 | XMSSMT-SHAKE_20/4_256 | Section 5.4 |
| | | |
| 0x00000013 | XMSSMT-SHAKE_40/2_256 | Section 5.4 |
| | | |
| 0x00000014 | XMSSMT-SHAKE_40/4_256 | Section 5.4 |
| | | |
| 0x00000015 | XMSSMT-SHAKE_40/8_256 | Section 5.4 |
Huelsing, et al. Informational [Page 53]
^L
RFC 8391 XMSS May 2018
| | | |
| 0x00000016 | XMSSMT-SHAKE_60/3_256 | Section 5.4 |
| | | |
| 0x00000017 | XMSSMT-SHAKE_60/6_256 | Section 5.4 |
| | | |
| 0x00000018 | XMSSMT-SHAKE_60/12_256 | Section 5.4 |
| | | |
| 0x00000019 | XMSSMT-SHAKE_20/2_512 | Section 5.4 |
| | | |
| 0x0000001A | XMSSMT-SHAKE_20/4_512 | Section 5.4 |
| | | |
| 0x0000001B | XMSSMT-SHAKE_40/2_512 | Section 5.4 |
| | | |
| 0x0000001C | XMSSMT-SHAKE_40/4_512 | Section 5.4 |
| | | |
| 0x0000001D | XMSSMT-SHAKE_40/8_512 | Section 5.4 |
| | | |
| 0x0000001E | XMSSMT-SHAKE_60/3_512 | Section 5.4 |
| | | |
| 0x0000001F | XMSSMT-SHAKE_60/6_512 | Section 5.4 |
| | | |
| 0x00000020 | XMSSMT-SHAKE_60/12_512 | Section 5.4 |
+--------------------+------------------------+-------------+
Table 8
An IANA registration of a signature system does not constitute an
endorsement of that system or its security.
9. Security Considerations
A signature system is considered secure if it prevents an attacker
from forging a valid signature. More specifically, consider a
setting in which an attacker gets a public key and can learn
signatures on arbitrary messages of its choice. A signature system
is secure if, even in this setting, the attacker cannot produce a new
message/signature pair of his choosing such that the verification
algorithm accepts.
Preventing an attacker from mounting an attack means that the attack
is computationally too expensive to be carried out. There are
various estimates for when a computation is too expensive to be done.
For that reason, this note only describes how expensive it is for an
attacker to generate a forgery. Parameters are accompanied by a bit
security value. The meaning of bit security is as follows. A
parameter set grants b bits of security if the best attack takes at
least 2^(b - 1) bit operations to achieve a success probability of
Huelsing, et al. Informational [Page 54]
^L
RFC 8391 XMSS May 2018
1/2. Hence, to mount a successful attack, an attacker needs to
perform 2^b bit operations on average. The given values for bit
security were estimated according to [HRS16].
9.1. Security Proofs
A full security proof for all schemes described in this document can
be found in [HRS16]. This proof shows that an attacker has to break
at least one out of certain security properties of the used hash
functions and PRFs to forge a signature in any of the described
schemes. The proof in [HRS16] considers an initial message
compression different from the randomized hashing used here. We
comment on this below. For the original schemes, these proofs show
that an attacker has to break certain minimal security properties.
In particular, it is not sufficient to break the collision resistance
of the hash functions to generate a forgery.
More specifically, the requirements on the used functions are that F
and H are post-quantum multi-function multi-target second-preimage
resistant keyed functions, F fulfills an additional statistical
requirement that roughly says that most images have at least two
preimages, PRF is a post-quantum pseudorandom function, and H_msg is
a post-quantum multi-target extended target collision-resistant keyed
hash function. For detailed definitions of these properties see
[HRS16]. To give some intuition: multi-function multi-target second-
preimage resistance is an extension of second-preimage resistance to
keyed hash functions, covering the case where an adversary succeeds
if it finds a second preimage for one out of many values. The same
holds for multi-target extended target collision resistance, which
just lacks the multi-function identifier as target collision
resistance already considers keyed hash functions. The proof in
[HRS16] splits PRF into two functions. When PRF is used for
pseudorandom key generation or generation of randomness for
randomized message hashing, it is still considered a pseudorandom
function. Whenever PRF is used to generate bitmasks and hash
function keys, it is modeled as a random oracle. This is due to
technical reasons in the proof, and an implementation using a
pseudorandom function is secure.
The proof in [HRS16] considers classical randomized hashing for the
initial message compression, i.e., H(r, M) instead of H(r ||
getRoot(PK) || index, M). This classical randomized hashing allows
getting a security reduction from extended target collision
resistance [HRS16], a property that is conjectured to be strictly
weaker than collision resistance. However, it turns out that in this
case, an attacker could still launch a multi-target attack even
against multiple users at the same time. The reason is that the
adversary attacking u users at the same time learns u * 2^h
Huelsing, et al. Informational [Page 55]
^L
RFC 8391 XMSS May 2018
randomized hashes H(r_i_j || M_i_j) with signature index i in [0, 2^h
- 1] and user index j in [0, u]. It suffices to find a single pair
(r*, M*) such that H(r* || M*) = H(r_i_u || M_i_u) for one out of the
u * 2^h learned hashes. Hence, an attacker can do a brute-force
search in time 2^n / u * 2^h instead of 2^n.
The indexed randomized hashing H(r || getRoot(PK) || toByte(idx, n),
M) used in this work makes the hash function calls position- and
user-dependent. This thwarts the above attack because each hash
function evaluation during an attack can only target one of the
learned randomized hash values. More specifically, an attacker now
has to decide which index idx and which root value to use for each
query. If one assumes that the used hash function is a random
function, it can be shown that a multi-user existential forgery
attack that targets this message compression has a complexity of 2^n
hash function calls.
The given bit security values were estimated based on the complexity
of the best-known generic attacks against the required security
properties of the used hash and pseudorandom functions, assuming
conventional and quantum adversaries. At the time of writing,
generic attacks are the best-known attacks for the parameters
suggested in the classical setting. Also, in the quantum setting,
there are no dedicated attacks known that perform better than generic
attacks. Nevertheless, the topic of quantum cryptanalysis of hash
functions is not as well understood as in the classical setting.
9.2. Minimal Security Assumptions
The assumptions one has to make to prove security of the described
schemes are minimal in the following sense. Any signature algorithm
that allows arbitrary size messages relies on the security of a
cryptographic hash function, either on collision resistance or on
extended target collision resistance if randomized hashing is used
for message compression. For the schemes described here, this is
already sufficient to be secure. In contrast, common signature
schemes like RSA, DSA, and Elliptic Curve Digital Signature Algorithm
(ECDSA) additionally rely on the conjectured hardness of certain
mathematical problems.
9.3. Post-Quantum Security
A post-quantum cryptosystem is a system that is secure against
attackers with access to a reasonably sized quantum computer. At the
time of writing this note, whether or not it is feasible to build
such a machine is an open conjecture. However, significant progress
was made over the last few years in this regard. Hence, we consider
it a matter of risk assessment to prepare for this case.
Huelsing, et al. Informational [Page 56]
^L
RFC 8391 XMSS May 2018
In contrast to RSA, DSA, and ECDSA, the described signature systems
are post-quantum-secure if they are used with an appropriate
cryptographic hash function. In particular, for post-quantum
security, the size of n must be twice the size required for classical
security. This is in order to protect against quantum square-root
attacks due to Grover's algorithm. [HRS16] shows that variants of
Grover's algorithm are the optimal generic attacks against the
security properties of hash functions required for the described
schemes.
As stated above, we only consider generic attacks here, as
cryptographic hash functions should be deprecated as soon as
dedicated attacks that perform significantly better exist. This also
applies to the quantum setting. As soon as dedicated quantum attacks
against the used hash function that can perform significantly better
than the described generic attacks exist, these hash functions should
not be used anymore for the described schemes, or the computation of
the security level has to be redone.
10. References
10.1. Normative References
[FIPS180] National Institute of Standards and Technology, "Secure
Hash Standard (SHS)", FIPS PUB 180-4,
DOI 10.6028/NIST.FIPS.180-4, August 2015.
[FIPS202] National Institute of Standards and Technology, "SHA-3
Standard: Permutation-Based Hash and Extendable-Output
Functions", FIPS PUB 202, DOI 10.6028/NIST.FIPS.202,
August 2015.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC4506] Eisler, M., Ed., "XDR: External Data Representation
Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
2006, <https://www.rfc-editor.org/info/rfc4506>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
Huelsing, et al. Informational [Page 57]
^L
RFC 8391 XMSS May 2018
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
10.2. Informative References
[BDH11] Buchmann, J., Dahmen, E., and A. Huelsing, "XMSS - A
Practical Forward Secure Signature Scheme Based on Minimal
Security Assumptions", Lecture Notes in Computer Science,
Volume 7071, Post-Quantum Cryptography,
DOI 10.1007/978-3-642-25405-5_8, 2011.
[BDS08] Buchmann, J., Dahmen, E., and M. Schneider, "Merkle Tree
Traversal Revisited", Lecture Notes in Computer Science,
Volume 5299, Post-Quantum Cryptography,
DOI 10.1007/978-3-540-88403-3_5, 2008.
[BDS09] Buchmann, J., Dahmen, E., and M. Szydlo, "Hash-based
Digital Signature Schemes", Book chapter, Post-Quantum
Cryptography, DOI 10.1007/978-3-540-88702-7_3, 2009.
[BHH15] Bernstein, D., Hopwood, D., Huelsing, A., Lange, T.,
Niederhagen, R., Papachristodoulou, L., Schneider, M.,
Schwabe, P., and Z. Wilcox-O'Hearn, "SPHINCS: Practical
Stateless Hash-Based Signatures", Lecture Notes in
Computer Science, Volume 9056, Advances in Cryptology -
EUROCRYPT, DOI 10.1007/978-3-662-46800-5_15, 2015.
[HRB13] Huelsing, A., Rausch, L., and J. Buchmann, "Optimal
Parameters for XMSS^MT", Lecture Notes in Computer
Science, Volume 8128, CD-ARES,
DOI 10.1007/978-3-642-40588-4_14, 2013.
[HRS16] Huelsing, A., Rijneveld, J., and F. Song, "Mitigating
Multi-Target Attacks in Hash-based Signatures", Lecture
Notes in Computer Science, Volume 9614, Public-Key
Cryptography - PKC, DOI 10.1007/978-3-662-49384-7_15,
2016.
[Huelsing13]
Huelsing, A., "W-OTS+ - Shorter Signatures for Hash-Based
Signature Schemes", Lecture Notes in Computer Science,
Volume 7918, Progress in Cryptology - AFRICACRYPT,
DOI 10.1007/978-3-642-38553-7_10, 2013.
Huelsing, et al. Informational [Page 58]
^L
RFC 8391 XMSS May 2018
[Huelsing13a]
Huelsing, A., "Practical Forward Secure Signatures using
Minimal Security Assumptions", PhD thesis TU Darmstadt,
2013,
<http://tuprints.ulb.tu-darmstadt.de/3651/1/Thesis.pdf>.
[KMN14] Knecht, M., Meier, W., and C. Nicola, "A space- and time-
efficient Implementation of the Merkle Tree Traversal
Algorithm", Computing Research Repository
(CoRR), arXiv:1409.4081, 2014.
[MCF18] McGrew, D., Curcio, M., and S. Fluhrer, "Hash-Based
Signatures", Work in Progress, draft-mcgrew-hash-sigs-11,
April 2018.
[Merkle83] Merkle, R., "Secrecy, Authentication, and Public Key
Systems", Computer Science Series, UMI Research Press,
ISBN: 9780835713849, 1983.
Huelsing, et al. Informational [Page 59]
^L
RFC 8391 XMSS May 2018
Appendix A. WOTS+ XDR Formats
The WOTS+ signature and public key formats are formally defined using
XDR [RFC4506] in order to provide an unambiguous, machine readable
definition. Though XDR is used, these formats are simple and easy to
parse without any special tools. Note that this representation
includes all optional parameter sets. The same applies for the XMSS
and XMSS^MT formats below.
A.1. WOTS+ Parameter Sets
WOTS+ parameter sets are defined using XDR syntax as follows:
/* ots_algorithm_type identifies a particular
signature algorithm */
enum ots_algorithm_type {
wotsp_reserved = 0x00000000,
wotsp-sha2_256 = 0x00000001,
wotsp-sha2_512 = 0x00000002,
wotsp-shake_256 = 0x00000003,
wotsp-shake_512 = 0x00000004,
};
A.2. WOTS+ Signatures
WOTS+ signatures are defined using XDR syntax as follows:
/* Byte strings */
typedef opaque bytestring32[32];
typedef opaque bytestring64[64];
union ots_signature switch (ots_algorithm_type type) {
case wotsp-sha2_256:
case wotsp-shake_256:
bytestring32 ots_sig_n32_len67[67];
case wotsp-sha2_512:
case wotsp-shake_512:
bytestring64 ots_sig_n64_len18[131];
default:
void; /* error condition */
};
Huelsing, et al. Informational [Page 60]
^L
RFC 8391 XMSS May 2018
A.3. WOTS+ Public Keys
WOTS+ public keys are defined using XDR syntax as follows:
union ots_pubkey switch (ots_algorithm_type type) {
case wotsp-sha2_256:
case wotsp-shake_256:
bytestring32 ots_pubk_n32_len67[67];
case wotsp-sha2_512:
case wotsp-shake_512:
bytestring64 ots_pubk_n64_len18[131];
default:
void; /* error condition */
};
Appendix B. XMSS XDR Formats
B.1. XMSS Parameter Sets
XMSS parameter sets are defined using XDR syntax as follows:
/* Byte strings */
typedef opaque bytestring4[4];
/* Definition of parameter sets */
enum xmss_algorithm_type {
xmss_reserved = 0x00000000,
/* 256 bit classical security, 128 bit post-quantum security */
xmss-sha2_10_256 = 0x00000001,
xmss-sha2_16_256 = 0x00000002,
xmss-sha2_20_256 = 0x00000003,
/* 512 bit classical security, 256 bit post-quantum security */
xmss-sha2_10_512 = 0x00000004,
xmss-sha2_16_512 = 0x00000005,
xmss-sha2_20_512 = 0x00000006,
Huelsing, et al. Informational [Page 61]
^L
RFC 8391 XMSS May 2018
/* 256 bit classical security, 128 bit post-quantum security */
xmss-shake_10_256 = 0x00000007,
xmss-shake_16_256 = 0x00000008,
xmss-shake_20_256 = 0x00000009,
/* 512 bit classical security, 256 bit post-quantum security */
xmss-shake_10_512 = 0x0000000A,
xmss-shake_16_512 = 0x0000000B,
xmss-shake_20_512 = 0x0000000C,
};
B.2. XMSS Signatures
XMSS signatures are defined using XDR syntax as follows:
/* Authentication path types */
union xmss_path switch (xmss_algorithm_type type) {
case xmss-sha2_10_256:
case xmss-shake_10_256:
bytestring32 path_n32_t10[10];
case xmss-sha2_16_256:
case xmss-shake_16_256:
bytestring32 path_n32_t16[16];
case xmss-sha2_20_256:
case xmss-shake_20_256:
bytestring32 path_n32_t20[20];
case xmss-sha2_10_512:
case xmss-shake_10_512:
bytestring64 path_n64_t10[10];
case xmss-sha2_16_512:
case xmss-shake_16_512:
bytestring64 path_n64_t16[16];
case xmss-sha2_20_512:
case xmss-shake_20_512:
bytestring64 path_n64_t20[20];
default:
void; /* error condition */
};
Huelsing, et al. Informational [Page 62]
^L
RFC 8391 XMSS May 2018
/* Types for XMSS random strings */
union random_string_xmss switch (xmss_algorithm_type type) {
case xmss-sha2_10_256:
case xmss-sha2_16_256:
case xmss-sha2_20_256:
case xmss-shake_10_256:
case xmss-shake_16_256:
case xmss-shake_20_256:
bytestring32 rand_n32;
case xmss-sha2_10_512:
case xmss-sha2_16_512:
case xmss-sha2_20_512:
case xmss-shake_10_512:
case xmss-shake_16_512:
case xmss-shake_20_512:
bytestring64 rand_n64;
default:
void; /* error condition */
};
/* Corresponding WOTS+ type for given XMSS type */
union xmss_ots_signature switch (xmss_algorithm_type type) {
case xmss-sha2_10_256:
case xmss-sha2_16_256:
case xmss-sha2_20_256:
wotsp-sha2_256;
case xmss-sha2_10_512:
case xmss-sha2_16_512:
case xmss-sha2_20_512:
wotsp-sha2_512;
case xmss-shake_10_256:
case xmss-shake_16_256:
case xmss-shake_20_256:
wotsp-shake_256;
case xmss-shake_10_512:
case xmss-shake_16_512:
case xmss-shake_20_512:
wotsp-shake_512;
Huelsing, et al. Informational [Page 63]
^L
RFC 8391 XMSS May 2018
default:
void; /* error condition */
};
/* XMSS signature structure */
struct xmss_signature {
/* WOTS+ key pair index */
bytestring4 idx_sig;
/* Random string for randomized hashing */
random_string_xmss rand_string;
/* WOTS+ signature */
xmss_ots_signature sig_ots;
/* authentication path */
xmss_path nodes;
};
B.3. XMSS Public Keys
XMSS public keys are defined using XDR syntax as follows:
/* Types for bitmask seed */
union seed switch (xmss_algorithm_type type) {
case xmss-sha2_10_256:
case xmss-sha2_16_256:
case xmss-sha2_20_256:
case xmss-shake_10_256:
case xmss-shake_16_256:
case xmss-shake_20_256:
bytestring32 seed_n32;
case xmss-sha2_10_512:
case xmss-sha2_16_512:
case xmss-sha2_20_512:
case xmss-shake_10_512:
case xmss-shake_16_512:
case xmss-shake_20_512:
bytestring64 seed_n64;
default:
void; /* error condition */
};
Huelsing, et al. Informational [Page 64]
^L
RFC 8391 XMSS May 2018
/* Types for XMSS root node */
union xmss_root switch (xmss_algorithm_type type) {
case xmss-sha2_10_256:
case xmss-sha2_16_256:
case xmss-sha2_20_256:
case xmss-shake_10_256:
case xmss-shake_16_256:
case xmss-shake_20_256:
bytestring32 root_n32;
case xmss-sha2_10_512:
case xmss-sha2_16_512:
case xmss-sha2_20_512:
case xmss-shake_10_512:
case xmss-shake_16_512:
case xmss-shake_20_512:
bytestring64 root_n64;
default:
void; /* error condition */
};
/* XMSS public key structure */
struct xmss_public_key {
xmss_root root; /* Root node */
seed SEED; /* Seed for bitmasks */
};
Appendix C. XMSS^MT XDR Formats
C.1. XMSS^MT Parameter Sets
XMSS^MT parameter sets are defined using XDR syntax as follows:
/* Byte strings */
typedef opaque bytestring3[3];
typedef opaque bytestring5[5];
typedef opaque bytestring8[8];
/* Definition of parameter sets */
enum xmssmt_algorithm_type {
xmssmt_reserved = 0x00000000,
Huelsing, et al. Informational [Page 65]
^L
RFC 8391 XMSS May 2018
/* 256 bit classical security, 128 bit post-quantum security */
xmssmt-sha2_20/2_256 = 0x00000001,
xmssmt-sha2_20/4_256 = 0x00000002,
xmssmt-sha2_40/2_256 = 0x00000003,
xmssmt-sha2_40/4_256 = 0x00000004,
xmssmt-sha2_40/8_256 = 0x00000005,
xmssmt-sha2_60/3_256 = 0x00000006,
xmssmt-sha2_60/6_256 = 0x00000007,
xmssmt-sha2_60/12_256 = 0x00000008,
/* 512 bit classical security, 256 bit post-quantum security */
xmssmt-sha2_20/2_512 = 0x00000009,
xmssmt-sha2_20/4_512 = 0x0000000A,
xmssmt-sha2_40/2_512 = 0x0000000B,
xmssmt-sha2_40/4_512 = 0x0000000C,
xmssmt-sha2_40/8_512 = 0x0000000D,
xmssmt-sha2_60/3_512 = 0x0000000E,
xmssmt-sha2_60/6_512 = 0x0000000F,
xmssmt-sha2_60/12_512 = 0x00000010,
/* 256 bit classical security, 128 bit post-quantum security */
xmssmt-shake_20/2_256 = 0x00000011,
xmssmt-shake_20/4_256 = 0x00000012,
xmssmt-shake_40/2_256 = 0x00000013,
xmssmt-shake_40/4_256 = 0x00000014,
xmssmt-shake_40/8_256 = 0x00000015,
xmssmt-shake_60/3_256 = 0x00000016,
xmssmt-shake_60/6_256 = 0x00000017,
xmssmt-shake_60/12_256 = 0x00000018,
/* 512 bit classical security, 256 bit post-quantum security */
xmssmt-shake_20/2_512 = 0x00000019,
xmssmt-shake_20/4_512 = 0x0000001A,
xmssmt-shake_40/2_512 = 0x0000001B,
xmssmt-shake_40/4_512 = 0x0000001C,
xmssmt-shake_40/8_512 = 0x0000001D,
xmssmt-shake_60/3_512 = 0x0000001E,
xmssmt-shake_60/6_512 = 0x0000001F,
xmssmt-shake_60/12_512 = 0x00000020,
};
Huelsing, et al. Informational [Page 66]
^L
RFC 8391 XMSS May 2018
C.2. XMSS^MT Signatures
XMSS^MT signatures are defined using XDR syntax as follows:
/* Type for XMSS^MT key pair index */
/* Depends solely on h */
union idx_sig_xmssmt switch (xmss_algorithm_type type) {
case xmssmt-sha2_20/2_256:
case xmssmt-sha2_20/4_256:
case xmssmt-sha2_20/2_512:
case xmssmt-sha2_20/4_512:
case xmssmt-shake_20/2_256:
case xmssmt-shake_20/4_256:
case xmssmt-shake_20/2_512:
case xmssmt-shake_20/4_512:
bytestring3 idx3;
case xmssmt-sha2_40/2_256:
case xmssmt-sha2_40/4_256:
case xmssmt-sha2_40/8_256:
case xmssmt-sha2_40/2_512:
case xmssmt-sha2_40/4_512:
case xmssmt-sha2_40/8_512:
case xmssmt-shake_40/2_256:
case xmssmt-shake_40/4_256:
case xmssmt-shake_40/8_256:
case xmssmt-shake_40/2_512:
case xmssmt-shake_40/4_512:
case xmssmt-shake_40/8_512:
bytestring5 idx5;
case xmssmt-sha2_60/3_256:
case xmssmt-sha2_60/6_256:
case xmssmt-sha2_60/12_256:
case xmssmt-sha2_60/3_512:
case xmssmt-sha2_60/6_512:
case xmssmt-sha2_60/12_512:
case xmssmt-shake_60/3_256:
case xmssmt-shake_60/6_256:
case xmssmt-shake_60/12_256:
case xmssmt-shake_60/3_512:
case xmssmt-shake_60/6_512:
case xmssmt-shake_60/12_512:
bytestring8 idx8;
Huelsing, et al. Informational [Page 67]
^L
RFC 8391 XMSS May 2018
default:
void; /* error condition */
};
union random_string_xmssmt switch (xmssmt_algorithm_type type) {
case xmssmt-sha2_20/2_256:
case xmssmt-sha2_20/4_256:
case xmssmt-sha2_40/2_256:
case xmssmt-sha2_40/4_256:
case xmssmt-sha2_40/8_256:
case xmssmt-sha2_60/3_256:
case xmssmt-sha2_60/6_256:
case xmssmt-sha2_60/12_256:
case xmssmt-shake_20/2_256:
case xmssmt-shake_20/4_256:
case xmssmt-shake_40/2_256:
case xmssmt-shake_40/4_256:
case xmssmt-shake_40/8_256:
case xmssmt-shake_60/3_256:
case xmssmt-shake_60/6_256:
case xmssmt-shake_60/12_256:
bytestring32 rand_n32;
case xmssmt-sha2_20/2_512:
case xmssmt-sha2_20/4_512:
case xmssmt-sha2_40/2_512:
case xmssmt-sha2_40/4_512:
case xmssmt-sha2_40/8_512:
case xmssmt-sha2_60/3_512:
case xmssmt-sha2_60/6_512:
case xmssmt-sha2_60/12_512:
case xmssmt-shake_20/2_512:
case xmssmt-shake_20/4_512:
case xmssmt-shake_40/2_512:
case xmssmt-shake_40/4_512:
case xmssmt-shake_40/8_512:
case xmssmt-shake_60/3_512:
case xmssmt-shake_60/6_512:
case xmssmt-shake_60/12_512:
bytestring64 rand_n64;
default:
void; /* error condition */
};
/* Type for reduced XMSS signatures */
Huelsing, et al. Informational [Page 68]
^L
RFC 8391 XMSS May 2018
union xmss_reduced (xmss_algorithm_type type) {
case xmssmt-sha2_20/2_256:
case xmssmt-sha2_40/4_256:
case xmssmt-sha2_60/6_256:
case xmssmt-shake_20/2_256:
case xmssmt-shake_40/4_256:
case xmssmt-shake_60/6_256:
bytestring32 xmss_reduced_n32_t77[77];
case xmssmt-sha2_20/4_256:
case xmssmt-sha2_40/8_256:
case xmssmt-sha2_60/12_256:
case xmssmt-shake_20/4_256:
case xmssmt-shake_40/8_256:
case xmssmt-shake_60/12_256:
bytestring32 xmss_reduced_n32_t72[72];
case xmssmt-sha2_40/2_256:
case xmssmt-sha2_60/3_256:
case xmssmt-shake_40/2_256:
case xmssmt-shake_60/3_256:
bytestring32 xmss_reduced_n32_t87[87];
case xmssmt-sha2_20/2_512:
case xmssmt-sha2_40/4_512:
case xmssmt-sha2_60/6_512:
case xmssmt-shake_20/2_512:
case xmssmt-shake_40/4_512:
case xmssmt-shake_60/6_512:
bytestring64 xmss_reduced_n32_t141[141];
case xmssmt-sha2_20/4_512:
case xmssmt-sha2_40/8_512:
case xmssmt-sha2_60/12_512:
case xmssmt-shake_20/4_512:
case xmssmt-shake_40/8_512:
case xmssmt-shake_60/12_512:
bytestring64 xmss_reduced_n32_t136[136];
case xmssmt-sha2_40/2_512:
case xmssmt-sha2_60/3_512:
case xmssmt-shake_40/2_512:
case xmssmt-shake_60/3_512:
bytestring64 xmss_reduced_n32_t151[151];
Huelsing, et al. Informational [Page 69]
^L
RFC 8391 XMSS May 2018
default:
void; /* error condition */
};
/* xmss_reduced_array depends on d */
union xmss_reduced_array (xmss_algorithm_type type) {
case xmssmt-sha2_20/2_256:
case xmssmt-sha2_20/2_512:
case xmssmt-sha2_40/2_256:
case xmssmt-sha2_40/2_512:
case xmssmt-shake_20/2_256:
case xmssmt-shake_20/2_512:
case xmssmt-shake_40/2_256:
case xmssmt-shake_40/2_512:
xmss_reduced xmss_red_arr_d2[2];
case xmssmt-sha2_60/3_256:
case xmssmt-sha2_60/3_512:
case xmssmt-shake_60/3_256:
case xmssmt-shake_60/3_512:
xmss_reduced xmss_red_arr_d3[3];
case xmssmt-sha2_20/4_256:
case xmssmt-sha2_20/4_512:
case xmssmt-sha2_40/4_256:
case xmssmt-sha2_40/4_512:
case xmssmt-shake_20/4_256:
case xmssmt-shake_20/4_512:
case xmssmt-shake_40/4_256:
case xmssmt-shake_40/4_512:
xmss_reduced xmss_red_arr_d4[4];
case xmssmt-sha2_60/6_256:
case xmssmt-sha2_60/6_512:
case xmssmt-shake_60/6_256:
case xmssmt-shake_60/6_512:
xmss_reduced xmss_red_arr_d6[6];
case xmssmt-sha2_40/8_256:
case xmssmt-sha2_40/8_512:
case xmssmt-shake_40/8_256:
case xmssmt-shake_40/8_512:
xmss_reduced xmss_red_arr_d8[8];
Huelsing, et al. Informational [Page 70]
^L
RFC 8391 XMSS May 2018
case xmssmt-sha2_60/12_256:
case xmssmt-sha2_60/12_512:
case xmssmt-shake_60/12_256:
case xmssmt-shake_60/12_512:
xmss_reduced xmss_red_arr_d12[12];
default:
void; /* error condition */
};
/* XMSS^MT signature structure */
struct xmssmt_signature {
/* WOTS+ key pair index */
idx_sig_xmssmt idx_sig;
/* Random string for randomized hashing */
random_string_xmssmt randomness;
/* Array of d reduced XMSS signatures */
xmss_reduced_array;
};
C.3. XMSS^MT Public Keys
XMSS^MT public keys are defined using XDR syntax as follows:
/* Types for bitmask seed */
union seed switch (xmssmt_algorithm_type type) {
case xmssmt-sha2_20/2_256:
case xmssmt-sha2_40/4_256:
case xmssmt-sha2_60/6_256:
case xmssmt-sha2_20/4_256:
case xmssmt-sha2_40/8_256:
case xmssmt-sha2_60/12_256:
case xmssmt-sha2_40/2_256:
case xmssmt-sha2_60/3_256:
case xmssmt-shake_20/2_256:
case xmssmt-shake_40/4_256:
case xmssmt-shake_60/6_256:
case xmssmt-shake_20/4_256:
case xmssmt-shake_40/8_256:
case xmssmt-shake_60/12_256:
case xmssmt-shake_40/2_256:
case xmssmt-shake_60/3_256:
bytestring32 seed_n32;
Huelsing, et al. Informational [Page 71]
^L
RFC 8391 XMSS May 2018
case xmssmt-sha2_20/2_512:
case xmssmt-sha2_40/4_512:
case xmssmt-sha2_60/6_512:
case xmssmt-sha2_20/4_512:
case xmssmt-sha2_40/8_512:
case xmssmt-sha2_60/12_512:
case xmssmt-sha2_40/2_512:
case xmssmt-sha2_60/3_512:
case xmssmt-shake_20/2_512:
case xmssmt-shake_40/4_512:
case xmssmt-shake_60/6_512:
case xmssmt-shake_20/4_512:
case xmssmt-shake_40/8_512:
case xmssmt-shake_60/12_512:
case xmssmt-shake_40/2_512:
case xmssmt-shake_60/3_512:
bytestring64 seed_n64;
default:
void; /* error condition */
};
/* Types for XMSS^MT root node */
union xmssmt_root switch (xmssmt_algorithm_type type) {
case xmssmt-sha2_20/2_256:
case xmssmt-sha2_20/4_256:
case xmssmt-sha2_40/2_256:
case xmssmt-sha2_40/4_256:
case xmssmt-sha2_40/8_256:
case xmssmt-sha2_60/3_256:
case xmssmt-sha2_60/6_256:
case xmssmt-sha2_60/12_256:
case xmssmt-shake_20/2_256:
case xmssmt-shake_20/4_256:
case xmssmt-shake_40/2_256:
case xmssmt-shake_40/4_256:
case xmssmt-shake_40/8_256:
case xmssmt-shake_60/3_256:
case xmssmt-shake_60/6_256:
case xmssmt-shake_60/12_256:
bytestring32 root_n32;
case xmssmt-sha2_20/2_512:
case xmssmt-sha2_20/4_512:
case xmssmt-sha2_40/2_512:
case xmssmt-sha2_40/4_512:
case xmssmt-sha2_40/8_512:
Huelsing, et al. Informational [Page 72]
^L
RFC 8391 XMSS May 2018
case xmssmt-sha2_60/3_512:
case xmssmt-sha2_60/6_512:
case xmssmt-sha2_60/12_512:
case xmssmt-shake_20/2_512:
case xmssmt-shake_20/4_512:
case xmssmt-shake_40/2_512:
case xmssmt-shake_40/4_512:
case xmssmt-shake_40/8_512:
case xmssmt-shake_60/3_512:
case xmssmt-shake_60/6_512:
case xmssmt-shake_60/12_512:
bytestring64 root_n64;
default:
void; /* error condition */
};
/* XMSS^MT public key structure */
struct xmssmt_public_key {
xmssmt_root root; /* Root node */
seed SEED; /* Seed for bitmasks */
};
Acknowledgements
We would like to thank Johannes Braun, Peter Campbell, Florian
Caullery, Stephen Farrell, Scott Fluhrer, Burt Kaliski, Adam Langley,
Marcos Manzano, David McGrew, Rafael Misoczki, Sean Parkinson,
Sebastian Roland, and the Keccak team for their help and comments.
Huelsing, et al. Informational [Page 73]
^L
RFC 8391 XMSS May 2018
Authors' Addresses
Andreas Huelsing
TU Eindhoven
P.O. Box 513
Eindhoven 5600 MB
The Netherlands
Email: ietf@huelsing.net
Denis Butin
TU Darmstadt
Hochschulstrasse 10
Darmstadt 64289
Germany
Email: dbutin@cdc.informatik.tu-darmstadt.de
Stefan-Lukas Gazdag
genua GmbH
Domagkstrasse 7
Kirchheim bei Muenchen 85551
Germany
Email: ietf@gazdag.de
Joost Rijneveld
Radboud University
Toernooiveld 212
Nijmegen 6525 EC
The Netherlands
Email: ietf@joostrijneveld.nl
Aziz Mohaisen
University of Central Florida
4000 Central Florida Blvd
Orlando, FL 32816
United States of America
Phone: +1 407 823-1294
Email: mohaisen@ieee.org
Huelsing, et al. Informational [Page 74]
^L
|