summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8418.txt
blob: a95379f323df525ff37477f77fc9d9c52a9d94c7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
Internet Engineering Task Force (IETF)                        R. Housley
Request for Comments: 8418                                Vigil Security
Category: Standards Track                                    August 2018
ISSN: 2070-1721


    Use of the Elliptic Curve Diffie-Hellman Key Agreement Algorithm
     with X25519 and X448 in the Cryptographic Message Syntax (CMS)

Abstract

   This document describes the conventions for using the Elliptic Curve
   Diffie-Hellman (ECDH) key agreement algorithm with curve25519 and
   curve448 in the Cryptographic Message Syntax (CMS).

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by
   the Internet Engineering Steering Group (IESG).  Further
   information on Internet Standards is available in Section 2 of
   RFC 7841.

   Information about the current status of this document, any
   errata, and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8418.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.







Housley                      Standards Track                    [Page 1]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


Table of Contents

   1. Introduction ....................................................2
      1.1. Terminology ................................................3
      1.2. ASN.1 ......................................................3
   2. Key Agreement ...................................................3
      2.1. ANSI-X9.63-KDF .............................................4
      2.2. HKDF .......................................................5
   3. Enveloped-data Conventions ......................................5
      3.1. EnvelopedData Fields .......................................6
      3.2. KeyAgreeRecipientInfo Fields ...............................6
   4. Authenticated-data Conventions ..................................7
      4.1. AuthenticatedData Fields ...................................8
      4.2. KeyAgreeRecipientInfo Fields ...............................8
   5. Authenticated-enveloped-data Conventions ........................8
      5.1. AuthEnvelopedData Fields ...................................8
      5.2. KeyAgreeRecipientInfo Fields ...............................8
   6. Certificate Conventions .........................................9
   7. Key Agreement Algorithm Identifiers .............................9
   8. SMIMECapabilities Attribute Conventions ........................10
   9. Security Considerations ........................................11
   10. IANA Considerations ...........................................12
   11. References ....................................................13
      11.1. Normative References .....................................13
      11.2. Informative References ...................................14
   Appendix A. ASN.1 Module ..........................................16
   Acknowledgements ..................................................18
   Author's Address ..................................................18

1.  Introduction

   This document describes the conventions for using Elliptic Curve
   Diffie-Hellman (ECDH) key agreement using curve25519 and curve448
   [CURVES] in the Cryptographic Message Syntax (CMS) [CMS].  Key
   agreement is supported in three CMS content types: the enveloped-data
   content type [CMS], authenticated-data content type [CMS], and the
   authenticated-enveloped-data content type [AUTHENV].

   The conventions for using some Elliptic Curve Cryptography (ECC)
   algorithms in CMS are described in [CMSECC].  These conventions cover
   the use of ECDH with some curves other than curve25519 and curve448
   [CURVES].  Those other curves are not deprecated.

   Using curve25519 with Diffie-Hellman key agreement is referred to as
   "X25519".  Using curve448 with Diffie-Hellman key agreement is
   referred to as "X448".





Housley                      Standards Track                    [Page 2]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

1.2.  ASN.1

   CMS values are generated using ASN.1 [X680], which uses the Basic
   Encoding Rules (BER) and the Distinguished Encoding Rules (DER)
   [X690].

2.  Key Agreement

   In 1976, Diffie and Hellman described a means for two parties to
   agree upon a shared secret value in a manner that prevents
   eavesdroppers from learning the shared secret value [DH1976].  This
   secret may then be converted into pairwise symmetric keying material
   for use with other cryptographic algorithms.  Over the years, many
   variants of this fundamental technique have been developed.  This
   document describes the conventions for using Ephemeral-Static
   Elliptic Curve Diffie-Hellman (ECDH) key agreement using X25519 and
   X448 [CURVES].

   The originator MUST use an ephemeral public/private key pair that is
   generated on the same elliptic curve as the public key of the
   recipient.  The ephemeral key pair MUST be used for a single CMS-
   protected content type, and then it MUST be discarded.  The
   originator obtains the recipient's static public key from the
   recipient's certificate [PROFILE].

   X25519 is described in Section 6.1 of [CURVES], and X448 is described
   in Section 6.2 of [CURVES].  Conforming implementations MUST check
   whether the computed Diffie-Hellman shared secret is the all-zero
   value, and abort if so, as described in Section 6 of [CURVES].  If an
   alternative implementation of these elliptic curves to that
   documented in Section 6 of [CURVES] is employed, then the additional
   checks specified in Section 7 of [CURVES] SHOULD be performed.

   In [CURVES], the shared secret value that is produced by ECDH is
   called K.  (In some other specifications, the shared secret value is
   called Z.)  A Key Derivation Function (KDF) is used to produce a
   pairwise key-encryption key (KEK) from the shared secret value (K),
   the length of the KEK, and the DER-encoded ECC-CMS-SharedInfo
   structure [CMSECC].




Housley                      Standards Track                    [Page 3]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   The ECC-CMS-SharedInfo definition from [CMSECC] is repeated here for
   convenience.

      ECC-CMS-SharedInfo ::= SEQUENCE {
        keyInfo         AlgorithmIdentifier,
        entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
        suppPubInfo [2] EXPLICIT OCTET STRING  }

   The ECC-CMS-SharedInfo keyInfo field contains the object identifier
   of the key-encryption algorithm and associated parameters.  This
   algorithm will be used to wrap the content-encryption key.  For
   example, the AES Key Wrap algorithm [AESKW] does not need parameters,
   so the algorithm identifier parameters are absent.

   The ECC-CMS-SharedInfo entityUInfo field optionally contains
   additional keying material supplied by the sending agent.  Note that
   [CMS] requires implementations to accept a KeyAgreeRecipientInfo
   SEQUENCE that includes the ukm field.  If the ukm field is present,
   the ukm is placed in the entityUInfo field.  By including the ukm, a
   different KEK is generated even when the originator ephemeral private
   key is improperly used more than once.  Therefore, if the ukm field
   is present, it MUST be selected in a manner that provides, with very
   high probability, a unique value; however, there is no security
   benefit to using a ukm value that is longer than the KEK that will be
   produced by the KDF.

   The ECC-CMS-SharedInfo suppPubInfo field contains the length of the
   generated KEK, in bits, represented as a 32-bit number in network
   byte order.  For example, the key length for AES-256 [AES] would be
   0x00000100.

2.1.  ANSI-X9.63-KDF

   The ANSI-X9.63-KDF key derivation function is a simple construct
   based on a one-way hash function described in American National
   Standard X9.63 [X963].  This KDF is also described in Section 3.6.1
   of [SEC1].

   Three values are concatenated to produce the input string to the KDF:
      1. The shared secret value generated by ECDH, K.
      2. The iteration counter, starting with one, as described below.
      3. The DER-encoded ECC-CMS-SharedInfo structure.

   To generate a key-encryption key (KEK), the KDF generates one or more
   keying material (KM) blocks, with the counter starting at 0x00000001,
   and incrementing the counter for each subsequent KM block until
   enough material has been generated.  The 32-bit counter is




Housley                      Standards Track                    [Page 4]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   represented in network byte order.  The KM blocks are concatenated
   left to right, and then the leftmost portion of the result is used as
   the pairwise key-encryption key, KEK:

      KM(i) = Hash(K || INT32(counter=i) || DER(ECC-CMS-SharedInfo))

      KEK = KM(counter=1) || KM(counter=2) ...

2.2.  HKDF

   The Extract-and-Expand HMAC-based Key Derivation Function (HKDF) is a
   robust construct based on a one-way hash function described in RFC
   5869 [HKDF].  HKDF is comprised of two steps: HKDF-Extract followed
   by HKDF-Expand.

   Three values are used as inputs to the HKDF:
      1. The shared secret value generated by ECDH, K.
      2. The length in octets of the keying data to be generated.
      3. The DER-encoded ECC-CMS-SharedInfo structure.

   The ECC-CMS-SharedInfo structure optionally includes the ukm.  If the
   ukm is present, the ukm is also used as the HKDF salt.  HKDF uses an
   appropriate number of zero octets when no salt is provided.

   The length of the generated KEK is used in two places, once in bits
   and once in octets.  The ECC-CMS-SharedInfo structure includes the
   length of the generated KEK in bits.  The HKDF-Expand function takes
   an argument for the length of the generated KEK in octets.

   In summary, to produce the pairwise key-encryption key, KEK:

      if ukm is provided, then salt = ukm, else salt is not provided
      PRK = HKDF-Extract(salt, K)

      KEK = HKDF-Expand(PRK, DER(ECC-CMS-SharedInfo), SizeInOctets(KEK))

3. Enveloped-data Conventions

   The CMS enveloped-data content type [CMS] consists of an encrypted
   content and wrapped content-encryption keys for one or more
   recipients.  The ECDH key agreement algorithm is used to generate a
   pairwise KEK between the originator and a particular recipient.
   Then, the KEK is used to wrap the content-encryption key for that
   recipient.  When there is more than one recipient, the same content-
   encryption key MUST be wrapped for each of them.






Housley                      Standards Track                    [Page 5]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   A compliant implementation MUST meet the requirements for
   constructing an enveloped-data content type in Section 6 of [CMS].

   A content-encryption key MUST be randomly generated for each instance
   of an enveloped-data content type.  The content-encryption key is
   used to encrypt the content.

3.1.  EnvelopedData Fields

   The enveloped-data content type is ASN.1 encoded using the
   EnvelopedData syntax.  The fields of the EnvelopedData syntax MUST be
   populated as described in Section 6 of [CMS].  The RecipientInfo
   choice is described in Section 6.2 of [CMS], and repeated here for
   convenience.

      RecipientInfo ::= CHOICE {
        ktri KeyTransRecipientInfo,
        kari [1] KeyAgreeRecipientInfo,
        kekri [2] KEKRecipientInfo,
        pwri [3] PasswordRecipientinfo,
        ori [4] OtherRecipientInfo }

   For the recipients that use X25519 or X448, the RecipientInfo kari
   choice MUST be used.

3.2.  KeyAgreeRecipientInfo Fields

   The fields of the KeyAgreeRecipientInfo syntax MUST be populated as
   described in this section when X25519 or X448 is employed for one or
   more recipients.

   The KeyAgreeRecipientInfo version MUST be 3.

   The KeyAgreeRecipientInfo originator provides three alternatives for
   identifying the originator's public key, and the originatorKey
   alternative MUST be used.  The originatorKey MUST contain an
   ephemeral key for the originator.  The originatorKey algorithm field
   MUST contain the id-X25519 or the id-X448 object identifier.  The
   originator's ephemeral public key MUST be encoded as an OCTET STRING.

   The object identifiers for X25519 and X448 have been assigned in
   [RFC8410].  They are repeated below for convenience.









Housley                      Standards Track                    [Page 6]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   When using X25519, the public key contains exactly 32 octets, and the
   id-X25519 object identifier is used:

      id-X25519 OBJECT IDENTIFIER ::= { 1 3 101 110 }

   When using X448, the public key contains exactly 56 octets, and the
   id-X448 object identifier is used:

      id-X448 OBJECT IDENTIFIER ::= { 1 3 101 111 }

   KeyAgreeRecipientInfo ukm is optional.  The processing of the ukm
   with the ANSI-X9.63-KDF key derivation function is described in
   Section 2.1, and the processing of the ukm with the HKDF key
   derivation function is described in Section 2.2.

   The KeyAgreeRecipientInfo keyEncryptionAlgorithm MUST contain the
   object identifier of the key-encryption algorithm that will be used
   to wrap the content-encryption key.  The conventions for using
   AES-128, AES-192, and AES-256 in the key wrap mode are specified in
   [CMSAES].

   The KeyAgreeRecipientInfo recipientEncryptedKeys includes a recipient
   identifier and encrypted key for one or more recipients.  The
   RecipientEncryptedKey KeyAgreeRecipientIdentifier MUST contain either
   the issuerAndSerialNumber identifying the recipient's certificate or
   the RecipientKeyIdentifier containing the subject key identifier from
   the recipient's certificate.  In both cases, the recipient's
   certificate contains the recipient's static X25519 or X448 public
   key.  The RecipientEncryptedKey EncryptedKey MUST contain the
   content-encryption key encrypted with the pairwise key-encryption key
   using the algorithm specified by the KeyWrapAlgorithm.

4.  Authenticated-data Conventions

   The CMS authenticated-data content type [CMS] consists of an
   authenticated content, a message authentication code (MAC), and
   encrypted authentication keys for one or more recipients.  The ECDH
   key agreement algorithm is used to generate a pairwise KEK between
   the originator and a particular recipient.  Then, the KEK is used to
   wrap the authentication key for that recipient.  When there is more
   than one recipient, the same authentication key MUST be wrapped for
   each of them.

   A compliant implementation MUST meet the requirements for
   constructing an authenticated-data content type in Section 9 of
   [CMS].





Housley                      Standards Track                    [Page 7]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   An authentication key MUST be randomly generated for each instance of
   an authenticated-data content type.  The authentication key is used
   to compute the MAC over the content.

4.1.  AuthenticatedData Fields

   The authenticated-data content type is ASN.1 encoded using the
   AuthenticatedData syntax.  The fields of the AuthenticatedData syntax
   MUST be populated as described in [CMS]; for the recipients that use
   X25519 or X448, the RecipientInfo kari choice MUST be used.

4.2.  KeyAgreeRecipientInfo Fields

   The fields of the KeyAgreeRecipientInfo syntax MUST be populated as
   described in Section 3.2 of this document.

5.  Authenticated-enveloped-data Conventions

   The CMS authenticated-enveloped-data content type [AUTHENV] consists
   of an authenticated and encrypted content and encrypted content-
   authenticated-encryption keys for one or more recipients.  The ECDH
   key agreement algorithm is used to generate a pairwise KEK between
   the originator and a particular recipient.  Then, the KEK is used to
   wrap the content-authenticated-encryption key for that recipient.
   When there is more than one recipient, the same content-
   authenticated-encryption key MUST be wrapped for each of them.

   A compliant implementation MUST meet the requirements for
   constructing an authenticated-data content type in Section 2 of
   [AUTHENV].

   A content-authenticated-encryption key MUST be randomly generated for
   each instance of an authenticated-enveloped-data content type.  The
   content-authenticated-encryption key is used to authenticate and
   encrypt the content.

5.1.  AuthEnvelopedData Fields

   The authenticated-enveloped-data content type is ASN.1 encoded using
   the AuthEnvelopedData syntax.  The fields of the AuthEnvelopedData
   syntax MUST be populated as described in [AUTHENV]; for the
   recipients that use X25519 or X448, the RecipientInfo kari choice
   MUST be used.

5.2.  KeyAgreeRecipientInfo Fields

   The fields of the KeyAgreeRecipientInfo syntax MUST be populated as
   described in Section 3.2 of this document.



Housley                      Standards Track                    [Page 8]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


6.  Certificate Conventions

   RFC 5280 [PROFILE] specifies the profile for using X.509 Certificates
   in Internet applications.  A recipient static public key is needed
   for X25519 or X448, and the originator obtains that public key from
   the recipient's certificate.  The conventions for carrying X25519 and
   X448 public keys are specified in [RFC8410].

7.  Key Agreement Algorithm Identifiers

   The following object identifiers are assigned in [CMSECC] to indicate
   ECDH with ANSI-X9.63-KDF using various one-way hash functions.  These
   are expected to be used as AlgorithmIdentifiers with a parameter that
   specifies the key-encryption algorithm.  These are repeated here for
   convenience.

      secg-scheme OBJECT IDENTIFIER ::= {
        iso(1) identified-organization(3) certicom(132) schemes(1) }

      dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 11 1 }

      dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 11 2 }

      dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 11 3 }

   The following object identifiers are assigned to indicate ECDH with
   HKDF using various one-way hash functions.  These are expected to be
   used as AlgorithmIdentifiers with a parameter that specifies the
   key-encryption algorithm.

      smime-alg OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-9(9) smime(16) alg(3) }

      dhSinglePass-stdDH-hkdf-sha256-scheme OBJECT IDENTIFIER ::= {
         smime-alg 19 }

      dhSinglePass-stdDH-hkdf-sha384-scheme OBJECT IDENTIFIER ::= {
         smime-alg 20 }

      dhSinglePass-stdDH-hkdf-sha512-scheme OBJECT IDENTIFIER ::= {
         smime-alg 21 }






Housley                      Standards Track                    [Page 9]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


8.  SMIMECapabilities Attribute Conventions

   A sending agent MAY announce to other agents that it supports ECDH
   key agreement using the SMIMECapabilities signed attribute in a
   signed message [SMIME] or a certificate [CERTCAP].  Following the
   pattern established in [CMSECC], the SMIMECapabilities associated
   with ECDH carries a DER-encoded object identifier that identifies
   support for ECDH in conjunction with a particular KDF, and it
   includes a parameter that names the key wrap algorithm.

   The following SMIMECapabilities values (in hexadecimal) from [CMSECC]
   might be of interest to implementations that support X25519 and X448:

      ECDH with ANSI-X9.63-KDF using SHA-256; uses AES-128 key wrap:
         30 15 06 06 2B 81 04 01 0B 01 30 0B 06 09 60 86 48 01 65 03 04
         01 05

      ECDH with ANSI-X9.63-KDF using SHA-384; uses AES-128 key wrap:
         30 15 06 06 2B 81 04 01 0B 02 30 0B 06 09 60 86 48 01 65 03 04
         01 05

      ECDH with ANSI-X9.63-KDF using SHA-512; uses AES-128 key wrap:
         30 15 06 06 2B 81 04 01 0B 03 30 0B 06 09 60 86 48 01 65 03 04
         01 05

      ECDH with ANSI-X9.63-KDF using SHA-256; uses AES-256 key wrap:
         30 15 06 06 2B 81 04 01 0B 01 30 0B 06 09 60 86 48 01 65 03 04
         01 2D

      ECDH with ANSI-X9.63-KDF using SHA-384; uses AES-256 key wrap:
         30 15 06 06 2B 81 04 01 0B 02 30 0B 06 09 60 86 48 01 65 03 04
         01 2D

      ECDH with ANSI-X9.63-KDF using SHA-512; uses AES-256 key wrap:
         30 15 06 06 2B 81 04 01 0B 03 30 0B 06 09 60 86 48 01 65 03 04
         01 2D















Housley                      Standards Track                   [Page 10]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   The following SMIMECapabilities values (in hexadecimal) based on the
   algorithm identifiers in Section 7 of this document might be of
   interest to implementations that support X25519 and X448:

      ECDH with HKDF using SHA-256; uses AES-128 key wrap:
         30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 13 30 0B 06 09 60 86
         48 01 65 03 04 01 05

      ECDH with HKDF using SHA-384; uses AES-128 key wrap:
         30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 14 30 0B 06 09 60 86
         48 01 65 03 04 01 05

      ECDH with HKDF using SHA-512; uses AES-128 key wrap:
         30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 15 30 0B 06 09 60 86
         48 01 65 03 04 01 05

      ECDH with HKDF using SHA-256; uses AES-256 key wrap:
         30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 13 30 0B 06 09 60 86
         48 01 65 03 04 01 2D

      ECDH with HKDF using SHA-384; uses AES-256 key wrap:
         30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 14 30 0B 06 09 60 86
         48 01 65 03 04 01 2D

      ECDH with HKDF using SHA-512; uses AES-256 key wrap:
         30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 15 30 0B 06 09 60 86
         48 01 65 03 04 01 2D

9.  Security Considerations

   Please consult the security considerations of [CMS] for security
   considerations related to the enveloped-data content type and the
   authenticated-data content type.

   Please consult the security considerations of [AUTHENV] for security
   considerations related to the authenticated-enveloped-data content
   type.

   Please consult the security considerations of [CURVES] for security
   considerations related to the use of X25519 and X448.

   The originator uses an ephemeral public/private key pair that is
   generated on the same elliptic curve as the public key of the
   recipient.  The ephemeral key pair is used for a single CMS protected
   content type, and then it is discarded.  If the originator wants to
   be able to decrypt the content (for enveloped-data and authenticated-
   enveloped-data) or check the authentication (for authenticated-data),
   then the originator needs to treat themselves as a recipient.



Housley                      Standards Track                   [Page 11]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   As specified in [CMS], implementations MUST support processing of the
   KeyAgreeRecipientInfo ukm field; this ensures that interoperability
   is not a concern whether the ukm is present or absent.  The ukm is
   placed in the entityUInfo field of the ECC-CMS-SharedInfo structure.
   When present, the ukm ensures that a different key-encryption key is
   generated, even when the originator ephemeral private key is
   improperly used more than once.

10.  IANA Considerations

   One object identifier for the ASN.1 module in Appendix A was assigned
   in the "SMI Security for S/MIME Module Identifiers
   (1.2.840.113549.1.9.16.0)" registry on [IANA-SMI]:

      id-mod-cms-ecdh-alg-2017 OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-9(9) smime(16) mod(0) 67 }

   Three object identifiers for the Key Agreement Algorithm Identifiers
   in Section 7 were assigned in the "SMI Security for S/MIME Algorithms
   (1.2.840.113549.1.9.16.3)" registry on [IANA-SMI]:

      smime-alg OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-9(9) smime(16) alg(3) }

      dhSinglePass-stdDH-hkdf-sha256-scheme OBJECT IDENTIFIER ::= {
         smime-alg 19 }

      dhSinglePass-stdDH-hkdf-sha384-scheme OBJECT IDENTIFIER ::= {
         smime-alg 20 }

      dhSinglePass-stdDH-hkdf-sha512-scheme OBJECT IDENTIFIER ::= {
         smime-alg 21 }

















Housley                      Standards Track                   [Page 12]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


11. References

11.1.  Normative References

   [AUTHENV]  Housley, R., "Cryptographic Message Syntax (CMS)
              Authenticated-Enveloped-Data Content Type", RFC 5083,
              DOI 10.17487/RFC5083, November 2007,
              <https://www.rfc-editor.org/info/rfc5083>.

   [CERTCAP]  Santesson, S., "X.509 Certificate Extension for
              Secure/Multipurpose Internet Mail Extensions (S/MIME)
              Capabilities", RFC 4262, DOI 10.17487/RFC4262, December
              2005, <https://www.rfc-editor.org/info/rfc4262>.

   [CMS]      Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [CMSASN1]  Hoffman, P. and J. Schaad, "New ASN.1 Modules for
              Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,
              DOI 10.17487/RFC5911, June 2010,
              <https://www.rfc-editor.org/info/rfc5911>.

   [CMSECC]   Turner, S. and D. Brown, "Use of Elliptic Curve
              Cryptography (ECC) Algorithms in Cryptographic Message
              Syntax (CMS)", RFC 5753, DOI 10.17487/RFC5753, January
              2010, <https://www.rfc-editor.org/info/rfc5753>.

   [CURVES]   Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <https://www.rfc-editor.org/info/rfc7748>.

   [HKDF]     Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
              Key Derivation Function (HKDF)", RFC 5869,
              DOI 10.17487/RFC5869, May 2010,
              <https://www.rfc-editor.org/info/rfc5869>.

   [PROFILE]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




Housley                      Standards Track                   [Page 13]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8410]  Josefsson, S., and J. Schaad, "Algorithm Identifiers for
              Ed25519,Ed448, Ed448ph, X25519, and X448 for Use in the
              Internet X.509 Public Key Infrastructure", RFC 8410,
              DOI 10.17487/RFC8410, August 2018,
              <https://www.rfc-editor.org/info/rfc8410>.

   [SEC1]     Standards for Efficient Cryptography, "SEC 1: Elliptic
              Curve Cryptography", Cericom Research, version 2.0, May
              2009, <http://www.secg.org/sec1-v2.pdf>.

   [SMIME]    Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
              Mail Extensions (S/MIME) Version 3.2 Message
              Specification", RFC 5751, DOI 10.17487/RFC5751, January
              2010, <https://www.rfc-editor.org/info/rfc5751>.

   [X680]     ITU-T, "Information technology -- Abstract Syntax Notation
              One (ASN.1): Specification of basic notation", ITU-T
              Recommendation X.680, ISO/IEC 8824-1, August 2015,
              <https://www.itu.int/rec/T-REC-X.680/en>.

   [X690]     ITU-T, "Information technology -- ASN.1 encoding rules:
              Specification of Basic Encoding Rules (BER), Canonical
              Encoding Rules (CER) and Distinguished Encoding Rules
              (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1, August
              2015, <https://www.itu.int/rec/T-REC-X.690/en>.

11.2.  Informative References

   [AES]      National Institute of Standards and Technology, "Advanced
              Encryption Standard (AES)", FIPS PUB 197, November 2001.

   [AESKW]    Schaad, J. and R. Housley, "Advanced Encryption Standard
              (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
              September 2002, <https://www.rfc-editor.org/info/rfc3394>.

   [CMSAES]   Schaad, J., "Use of the Advanced Encryption Standard (AES)
              Encryption Algorithm in Cryptographic Message Syntax
              (CMS)", RFC 3565, DOI 10.17487/RFC3565, July 2003,
              <https://www.rfc-editor.org/info/rfc3565>.

   [DH1976]   Diffie, W., and M. E. Hellman, "New Directions in
              Cryptography", IEEE Trans. on Info. Theory, Vol. IT-22,
              November 1976, pp. 644-654.




Housley                      Standards Track                   [Page 14]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   [IANA-SMI] IANA, "Structure of Management Information (SMI) Numbers
              (MIB Module Registrations)",
              <https://www.iana.org/assignments/smi-numbers>.

   [X963]     American National Standards Institute, "Public-Key
              Cryptography for the Financial Services Industry: Key
              Agreement and Key Transport Using Elliptic Curve
              Cryptography", American National Standard X9.63-2001,
              November 2001.










































Housley                      Standards Track                   [Page 15]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


Appendix A.  ASN.1 Module

   CMSECDHAlgs-2017
     { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
       smime(16) modules(0) id-mod-cms-ecdh-alg-2017(67) }

   DEFINITIONS IMPLICIT TAGS ::=
   BEGIN

   -- EXPORTS ALL

   IMPORTS

     KeyWrapAlgorithm
       FROM CryptographicMessageSyntaxAlgorithms-2009  -- in [CMSASN1]
         { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
           pkcs-9(9) smime(16) modules(0) id-mod-cmsalg-2001-02(37) }

     KEY-AGREE, SMIME-CAPS
       FROM AlgorithmInformation-2009  -- in [CMSASN1]
         { iso(1) identified-organization(3) dod(6) internet(1)
           security(5) mechanisms(5) pkix(7) id-mod(0)
           id-mod-algorithmInformation-02(58) }

     dhSinglePass-stdDH-sha256kdf-scheme,
     dhSinglePass-stdDH-sha384kdf-scheme,
     dhSinglePass-stdDH-sha512kdf-scheme,
     kaa-dhSinglePass-stdDH-sha256kdf-scheme,
     kaa-dhSinglePass-stdDH-sha384kdf-scheme,
     kaa-dhSinglePass-stdDH-sha512kdf-scheme,
     cap-kaa-dhSinglePass-stdDH-sha256kdf-scheme,
     cap-kaa-dhSinglePass-stdDH-sha384kdf-scheme,
     cap-kaa-dhSinglePass-stdDH-sha512kdf-scheme
       FROM CMSECCAlgs-2009-02  -- in [CMSECC]
         { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
           pkcs-9(9) smime(16) modules(0)
           id-mod-cms-ecc-alg-2009-02(46) }
     ;













Housley                      Standards Track                   [Page 16]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   --
   -- Object Identifiers
   --

   smime-alg OBJECT IDENTIFIER ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
      pkcs-9(9) smime(16) alg(3) }

   dhSinglePass-stdDH-hkdf-sha256-scheme OBJECT IDENTIFIER ::= {
      smime-alg 19 }

   dhSinglePass-stdDH-hkdf-sha384-scheme OBJECT IDENTIFIER ::= {
      smime-alg 20 }

   dhSinglePass-stdDH-hkdf-sha512-scheme OBJECT IDENTIFIER ::= {
      smime-alg 21 }

   --
   -- Extend the Key Agreement Algorithms in [CMSECC]
   --

   KeyAgreementAlgs KEY-AGREE ::= { ...,
     kaa-dhSinglePass-stdDH-sha256kdf-scheme   |
     kaa-dhSinglePass-stdDH-sha384kdf-scheme   |
     kaa-dhSinglePass-stdDH-sha512kdf-scheme   |
     kaa-dhSinglePass-stdDH-hkdf-sha256-scheme |
     kaa-dhSinglePass-stdDH-hkdf-sha384-scheme |
     kaa-dhSinglePass-stdDH-hkdf-sha512-scheme }

   kaa-dhSinglePass-stdDH-hkdf-sha256-scheme KEY-AGREE ::= {
     IDENTIFIER dhSinglePass-stdDH-hkdf-sha256-scheme
     PARAMS TYPE KeyWrapAlgorithm ARE required
     UKM -- TYPE unencoded data -- ARE preferredPresent
     SMIME-CAPS cap-kaa-dhSinglePass-stdDH-hkdf-sha256-scheme }

   kaa-dhSinglePass-stdDH-hkdf-sha384-scheme KEY-AGREE ::= {
     IDENTIFIER dhSinglePass-stdDH-hkdf-sha384-scheme
     PARAMS TYPE KeyWrapAlgorithm ARE required
     UKM -- TYPE unencoded data -- ARE preferredPresent
     SMIME-CAPS cap-kaa-dhSinglePass-stdDH-hkdf-sha384-scheme }

   kaa-dhSinglePass-stdDH-hkdf-sha512-scheme KEY-AGREE ::= {
     IDENTIFIER dhSinglePass-stdDH-hkdf-sha512-scheme
     PARAMS TYPE KeyWrapAlgorithm ARE required
     UKM -- TYPE unencoded data -- ARE preferredPresent
     SMIME-CAPS cap-kaa-dhSinglePass-stdDH-hkdf-sha512-scheme }





Housley                      Standards Track                   [Page 17]
^L
RFC 8418             Using X25519 and X448 with CMS          August 2018


   --
   -- Extend the S/MIME CAPS in [CMSECC]
   --

   SMimeCAPS SMIME-CAPS ::= { ...,
     kaa-dhSinglePass-stdDH-sha256kdf-scheme.&smimeCaps   |
     kaa-dhSinglePass-stdDH-sha384kdf-scheme.&smimeCaps   |
     kaa-dhSinglePass-stdDH-sha512kdf-scheme.&smimeCaps   |
     kaa-dhSinglePass-stdDH-hkdf-sha256-scheme.&smimeCaps |
     kaa-dhSinglePass-stdDH-hkdf-sha384-scheme.&smimeCaps |
     kaa-dhSinglePass-stdDH-hkdf-sha512-scheme.&smimeCaps }

   cap-kaa-dhSinglePass-stdDH-hkdf-sha256-scheme SMIME-CAPS ::= {
     TYPE KeyWrapAlgorithm
     IDENTIFIED BY dhSinglePass-stdDH-hkdf-sha256-scheme }

   cap-kaa-dhSinglePass-stdDH-hkdf-sha384-scheme SMIME-CAPS ::= {
     TYPE KeyWrapAlgorithm
     IDENTIFIED BY dhSinglePass-stdDH-hkdf-sha384-scheme}

   cap-kaa-dhSinglePass-stdDH-hkdf-sha512-scheme SMIME-CAPS ::= {
     TYPE KeyWrapAlgorithm
     IDENTIFIED BY dhSinglePass-stdDH-hkdf-sha512-scheme }

   END

Acknowledgements

   Many thanks to Roni Even, Daniel Migault, Eric Rescorla, Jim Schaad,
   Stefan Santesson, and Sean Turner for their review and insightful
   suggestions.

Author's Address

   Russ Housley
   918 Spring Knoll Drive
   Herndon, VA  20170
   United States of America

   Email: housley@vigilsec.com











Housley                      Standards Track                   [Page 18]
^L