summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8432.txt
blob: c474123e8e165391f453a17964b05b7ab05b6ab5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
Internet Engineering Task Force (IETF)                   J. Ahlberg, Ed.
Request for Comments: 8432                                   Ericsson AB
Category: Informational                                       M. Ye, Ed.
ISSN: 2070-1721                                      Huawei Technologies
                                                                   X. Li
                                                 NEC Laboratories Europe
                                                           LM. Contreras
                                                          Telefonica I+D
                                                           CJ. Bernardos
                                        Universidad Carlos III de Madrid
                                                            October 2018


               A Framework for Management and Control of
           Microwave and Millimeter Wave Interface Parameters

Abstract

   The unification of control and management of microwave radio link
   interfaces is a precondition for seamless multi-layer networking and
   automated network provisioning and operation.

   This document describes the required characteristics and use cases
   for control and management of radio link interface parameters using a
   YANG data model.

   The purpose is to create a framework to identify the necessary
   information elements and define a YANG data model for control and
   management of the radio link interfaces in a microwave node.  Some
   parts of the resulting model may be generic and could also be used by
   other technologies, e.g., Ethernet technology.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are candidates for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8432.




Ahlberg, et al.               Informational                     [Page 1]
^L
RFC 8432                   Microwave Framework              October 2018


Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................3
      1.1. Conventions Used in This Document ..........................5
   2. Terminology and Definitions .....................................5
   3. Approaches to Manage and Control Radio Link Interfaces ..........7
      3.1. Network Management Solutions ...............................7
      3.2. Software-Defined Networking ................................7
   4. Use Cases .......................................................8
      4.1. Configuration Management ...................................9
      4.2. Inventory .................................................10
      4.3. Status and Statistics .....................................10
      4.4. Performance Management ....................................10
      4.5. Fault Management ..........................................11
      4.6. Troubleshooting and Root Cause Analysis ...................11
   5. Requirements ...................................................11
   6. Gap Analysis on Models .........................................12
      6.1. Microwave Radio Link Functionality ........................13
      6.2. Generic Functionality .....................................14
      6.3. Summary ...................................................15
   7. Security Considerations ........................................16
   8. IANA Considerations ............................................16
   9. References .....................................................16
      9.1. Normative References ......................................16
      9.2. Informative References ....................................17
   Contributors ......................................................19
   Authors' Addresses ................................................20









Ahlberg, et al.               Informational                     [Page 2]
^L
RFC 8432                   Microwave Framework              October 2018


1.  Introduction

   Microwave radio is a technology that uses high-frequency radio waves
   to provide high-speed wireless connections that can send and receive
   voice, video, and data information.  It is a general term used for
   systems covering a very large range of traffic capacities, channel
   separations, modulation formats, and applications over a wide range
   of frequency bands from 1.4 GHz up to and above 100 GHz.

   The main application for microwave is backhaul for mobile broadband.
   Those networks will continue to be modernized using a combination of
   microwave and fiber technologies.  The choice of technology depends
   on fiber presence and cost of ownership, not capacity limitations in
   microwave.

   Today, microwave is already able to fully support the capacity needs
   of a backhaul in a radio access network and will evolve to support
   multiple gigabits in traditional frequency bands and more than 10
   gigabits in higher-frequency bands with more bandwidth.  Layer 2 (L2)
   Ethernet features are normally an integrated part of microwave nodes,
   and more advanced L2 and Layer 3 (L3) features will be introduced
   over time to support the evolution of the transport services that
   will be provided by a backhaul/transport network.  Note that wireless
   access technologies such as 3/4/5G and Wi-Fi are not within the scope
   of this document.

   Open and standardized interfaces are a prerequisite for efficient
   management of equipment from multiple vendors, integrated in a single
   system/controller.  This framework addresses management and control
   of the radio link interface(s) and their relationship to other
   interfaces (typically, Ethernet interfaces) in a microwave node.  A
   radio link provides the transport over the air, using one or several
   carriers in aggregated or protected configurations.  Managing and
   controlling a transport service over a microwave node involves both
   radio link and packet transport functionality.

   Today, there are already numerous IETF data models, RFCs, and
   Internet-Drafts with technology-specific extensions that cover a
   large part of the L2 and L3 domains.  Examples include IP Management
   [RFC8344], Routing Management [RFC8349], and Provider Bridge
   [IEEE802.1Qcp].  These are based on the IETF YANG data model for
   Interface Management [RFC8343], which is an evolution of the SNMP
   IF-MIB [RFC2863].

   Since microwave nodes will contain more and more L2 and L3 (packet)
   functionality that is expected to be managed using those models,
   there are advantages if radio link interfaces can be modeled and
   managed using the same structure and the same approach.  This is



Ahlberg, et al.               Informational                     [Page 3]
^L
RFC 8432                   Microwave Framework              October 2018


   especially true for use cases in which a microwave node is managed as
   one common entity that includes both the radio link and the L2 and L3
   functionality, e.g., basic configuration of the node and connections,
   centralized troubleshooting, upgrade, and maintenance.  All
   interfaces in a node, irrespective of technology, would then be
   accessed from the same core model, i.e., [RFC8343], and could be
   extended with technology-specific parameters in models augmenting
   that core model.  The relationship/connectivity between interfaces
   could be given by the physical equipment configuration.  For example,
   the slot where the Radio Link Terminal (modem) is plugged in could be
   associated with a specific Ethernet port due to the wiring in the
   backplane of the system, or it could be flexible and therefore
   configured via a management system or controller.

   +------------------------------------------------------------------+
   | Interface [RFC8343]                                              |
   |                +---------------+                                 |
   |                | Ethernet Port |                                 |
   |                +---------------+                                 |
   |                      \                                           |
   |                    +---------------------+                       |
   |                    | Radio Link Terminal |                       |
   |                    +---------------------+                       |
   |                       /              \                           |
   |     +---------------------+       +---------------------+        |
   |     | Carrier Termination |       | Carrier Termination |        |
   |     +---------------------+       +---------------------+        |
   +------------------------------------------------------------------+

            Figure 1: Relationship between Interfaces in a Node

   There will always be certain implementations that differ among
   products, so it is practically impossible to achieve industry
   consensus on every design detail.  It is therefore important to focus
   on the parameters that are required to support the use cases
   applicable for centralized, unified, multi-vendor management and to
   allow other parameters to either be optional or be covered by
   extensions to the standardized model.  Furthermore, a standard that
   allows for a certain degree of freedom encourages innovation and
   competition, which benefits the entire industry.  Thus, it is
   important that a radio link management model covers all relevant
   functions but also leaves room for product- and feature-specific
   extensions.

   Models are available for microwave radio link functionality:
   "Microwave Information Model" by the ONF [ONF-MW] and "Microwave
   Radio Link YANG Data Models" submitted to and discussed by the CCAMP
   Working Group [CCAMP-MW].  The purpose of this document is to reach



Ahlberg, et al.               Informational                     [Page 4]
^L
RFC 8432                   Microwave Framework              October 2018


   consensus within the industry around one common approach with respect
   to the use cases and requirements to be supported, the type and
   structure of the model, and the resulting attributes to be included.
   This document describes the use cases, requirements, and expected
   characteristics of the model.  It also includes an analysis of how
   the models in the two ongoing initiatives fulfill these expectations
   and recommendations for what can be reused and what gaps need to be
   filled by a new and evolved model ("A YANG Data Model for Microwave
   Radio Link" by the IETF [IETF-MW]).

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Terminology and Definitions

   Microwave radio:  a term commonly used for technologies that operate
      in both microwave and millimeter wavelengths and in frequency
      bands from 1.4 GHz up to and beyond 100 GHz.  In traditional
      bands, it typically supports capacities of 1-3 Gbps; in the 70/80
      GHz band, it supports up to 10 Gbps.  Using multi-carrier systems
      operating in frequency bands with wider channels, the technology
      will be capable of providing capacities of up to 100 Gbps.

   Microwave radio technology:  widely used for point-to-point
      telecommunications because its small wavelength allows
      conveniently sized antennas to direct radio waves in narrow beams
      and its comparatively higher frequencies allow broad bandwidth and
      high data-transmission rates.  It is used for a broad range of
      fixed and mobile services, including high-speed, point-to-point
      wireless local area networks (WLANs) and broadband access.

      The ETSI EN 302 217 series defines the characteristics and
      requirements of microwave equipment and antennas.  In particular,
      ETSI EN 302 217-2 [EN302217-2] specifies the essential parameters
      for the systems operating from 1.4 GHz to 86 GHz.

   Carrier Termination and Radio Link Terminal:  two concepts defined to
      support modeling of microwave radio link features and parameters
      in a structured yet simple manner.

      *  Carrier Termination: an interface for the capacity provided
         over the air by a single carrier.  It is typically defined by
         its transmitting and receiving frequencies.



Ahlberg, et al.               Informational                     [Page 5]
^L
RFC 8432                   Microwave Framework              October 2018


      *  Radio Link Terminal: an interface providing Ethernet capacity
         and/or Time Division Multiplexing (TDM) capacity to the
         associated Ethernet and/or TDM interfaces in a node.  It is
         used for setting up a transport service over a microwave radio
         link.

      Figure 2 provides a graphical representation of the Carrier
      Termination and Radio Link Terminal concepts.

                 /--------- Radio Link ---------\
                  Near End              Far End

           +---------------+           +---------------+
           |    Radio Link |           | Radio Link    |
           |      Terminal |           | Terminal      |
           |               |           |               |
           |           (Protected or Bonded)           |
           |               |           |               |
           | +-----------+ |           | +-----------+ |
           | |           | | Carrier A | |           | |
           | |  Carrier  | |<--------->| |  Carrier  | |
           | |Termination| |           | |Termination| |
    ETH----| |           | |           | |           | |----ETH
           | +-----------+ |           | +-----------+ |
    TDM----|               |           |               |----TDM
           | +-----------+ |           | +-----------+ |
           | |           | | Carrier B | |           | |
           | |  Carrier  | |<--------->| |  Carrier  | |
           | |Termination| |           | |Termination| |
           | |           | |           | |           | |
           | +-----------+ |           | +-----------+ |
           |               |           |               |
           +---------------+           +---------------+

     \--- Microwave Node ---/          \--- Microwave Node ---/

           Figure 2: Radio Link Terminal and Carrier Termination

   Software-Defined Networking (SDN):  an architecture that decouples
      the network control and forwarding functions, enabling the network
      control to become directly programmable and the underlying
      infrastructure to be abstracted for applications and network
      services.  SDN can be used for automation of traditional network
      management functionality using an SDN approach of standardized
      programmable interfaces for control and management [RFC7426].






Ahlberg, et al.               Informational                     [Page 6]
^L
RFC 8432                   Microwave Framework              October 2018


3.  Approaches to Manage and Control Radio Link Interfaces

   This framework addresses the definition of an open and standardized
   interface for radio link functionality in a microwave node.  The
   application of such an interface used for management and control of
   nodes and networks typically varies from one operator to another in
   terms of the systems used and how they interact.  Possible approaches
   include using a Network Management System (NMS), Software-Defined
   Networking (SDN), or some combination of the two.  As there are still
   many networks where the NMS is implemented as one component/interface
   and the SDN controller is scoped to control-plane functionality as a
   separate component/interface, this document does not preclude either
   model.  The aim of this document is to provide a framework for
   development of a common YANG data model for both management and
   control of microwave interfaces.

3.1.  Network Management Solutions

   The classic network management solutions, with vendor-specific domain
   management combined with cross-domain functionality for service
   management and analytics, still dominate the market.  These solutions
   are expected to evolve and benefit from an increased focus on
   standardization by simplifying multi-vendor management and removing
   the need for vendor- or domain-specific management.

3.2.  Software-Defined Networking

   One of the main drivers for applying SDN from an operator perspective
   is simplification and automation of network provisioning as well as
   end-to-end network service management.  The vision is to have a
   global view of the network conditions spanning different vendors'
   equipment and multiple technologies.

   If nodes from different vendors are managed by the same SDN
   controller via a node management interface without the extra effort
   of introducing intermediate systems, all nodes must align their node
   management interfaces.  Hence, an open and standardized node
   management interface is required in a multi-vendor environment.  Such
   a standardized interface enables unified management and configuration
   of nodes from different vendors by a common set of applications.

   In addition to SDN applications for configuring, managing, and
   controlling the nodes and their associated transport interfaces
   (including the L2 Ethernet, L3 IP, and radio interfaces), there are
   also a large variety of more advanced SDN applications that can be
   utilized and/or developed.





Ahlberg, et al.               Informational                     [Page 7]
^L
RFC 8432                   Microwave Framework              October 2018


   A potentially flexible approach for operators is to use SDN in a
   logically controlled way, managing the radio links by selecting a
   predefined operation mode.  The operation mode is a set of logical
   metrics or parameters describing a complete radio link configuration,
   such as capacity, availability, priority, and power consumption.

   An example of an operation mode table is shown in Figure 3.  Based on
   its operation policy (e.g., power consumption or traffic priority),
   the SDN controller selects one operation mode and translates that
   into the required configuration of the individual parameters for the
   Radio Link Terminals and the associated Carrier Terminations.

   +----+---------------+------------+-------------+-----------+------+
   | ID |Description    | Capacity   |Availability | Priority  |Power |
   +----+---------------+------------+-------------+-----------+------+
   | 1  |High capacity  |  400 Mbps  |  99.9%      | Low       |High  |
   +----+---------------+------------+-------------+-----------+------+
   | 2  |High avail-    |  100 Mbps  |  99.999%    | High      |Low   |
   |    | ability       |            |             |           |      |
   +----+---------------+------------+-------------+-----------+------+

               Figure 3: Example of an Operation Mode Table

   An operation mode bundles together the values of a set of different
   parameters.  How each operation mode maps a certain set of attributes
   is out of the scope of this document.

4.  Use Cases

   The use cases described should be the basis for identifying and
   defining the parameters to be supported by a YANG data model for
   management of radio links that will be applicable to centralized,
   unified, multi-vendor management.  The use cases involve
   configuration management, inventory, status and statistics,
   performance management, fault management, and troubleshooting and
   root cause analysis.

   Other product-specific use cases, e.g., addressing installation or
   on-site troubleshooting and fault resolution, are outside the scope
   of this framework.  If required, these use cases are expected to be
   supported by product-specific extensions to the standardized model.










Ahlberg, et al.               Informational                     [Page 8]
^L
RFC 8432                   Microwave Framework              October 2018


4.1.  Configuration Management

   Configuration management involves configuring a Radio Link Terminal,
   the constituent Carrier Terminations, and, when applicable, the
   relationship to IP/Ethernet and TDM interfaces.

   o  Understand the capabilities and limitations

      Exchange of information between a manager and a device about the
      capabilities supported and specific limitations in the parameter
      values and enumerations that can be used.

      Examples of information that could be exchanged include the
      maximum modulation supported and support (or lack of support) for
      the Cross Polarization Interference Cancellation (XPIC) feature.

   o  Initial Configuration

      Initial configuration of a Radio Link Terminal, enough to
      establish Layer 1 (L1) connectivity to an associated Radio Link
      Terminal on a device at the far end over the hop.  It may also
      include configuration of the relationship between a Radio Link
      Terminal and an associated traffic interface, e.g., an Ethernet
      interface, unless that is given by the equipment configuration.

      Frequency, modulation, coding, and output power are examples of
      parameters typically configured for a Carrier Termination and type
      of aggregation/bonding or protection configurations expected for a
      Radio Link Terminal.

   o  Radio link reconfiguration and optimization

      Reconfiguration, update, or optimization of an existing Radio Link
      Terminal.  Output power and modulation for a Carrier Termination
      as well as protection schemas and activation/deactivation of
      carriers in a Radio Link Terminal are examples on parameters that
      can be reconfigured and used for optimization of the performance
      of a network.

   o  Radio link logical configuration

      Radio Link Terminals configured to include a group of carriers are
      widely used in microwave technology.  There are several kinds of
      groups: aggregation/bonding, 1+1 protection/redundancy, etc.  To
      avoid configuration on each Carrier Termination directly, a
      logical control provides flexible management by mapping a logical
      configuration to a set of physical attributes.  This could also be




Ahlberg, et al.               Informational                     [Page 9]
^L
RFC 8432                   Microwave Framework              October 2018


      applied in a hierarchical SDN environment where some domain
      controllers are located between the SDN controller and the Radio
      Link Terminal.

4.2.  Inventory

   o  Retrieve logical inventory and configuration from device

      Request from manager and response by device with information about
      radio interfaces, e.g., their constitution and configuration.

   o  Retrieve physical/equipment inventory from device

      Request from manager about physical and/or equipment inventory
      associated with the Radio Link Terminals and Carrier Terminations.

4.3.  Status and Statistics

   o  Actual status and performance of a radio link interface

      Manager requests and device responds with information about actual
      status and statistics of configured radio link interfaces and
      their constituent parts.  It's important to report the effective
      bandwidth of a radio link since it can be configured to
      dynamically adjust the modulation based on the current signal
      conditions.

4.4.  Performance Management

   o  Configuration of historical performance measurements

      Configuration of historical performance measurements for a radio
      link interface and/or its constituent parts.  See Section 4.1.

   o  Collection of historical performance data

      Collection of historical performance data in bulk by the manager
      is a general use case for a device and not specific to a radio
      link interface.

      Collection of an individual counter for a specific interval is in
      some cases required as a complement to the retrieval in bulk as
      described above.








Ahlberg, et al.               Informational                    [Page 10]
^L
RFC 8432                   Microwave Framework              October 2018


4.5.  Fault Management

   o  Configuration of alarm reporting

      Configuration of alarm reporting associated specifically with
      radio interfaces, e.g., configuration of alarm severity, is a
      subset of the configuration use case to be supported.  See
      Section 4.1.

   o  Alarm management

      Alarm synchronization, visualization, handling, notifications, and
      events are generic use cases for a device and should be supported
      on a radio link interface.  There are, however, radio-specific
      alarms that are important to report.  Signal degradation of the
      radio link is one example.

4.6.  Troubleshooting and Root Cause Analysis

   Provide information and suggest actions required by a manager/
   operator to investigate and understand the underlying issue to a
   problem in the performance and/or functionality of a Radio Link
   Terminal and the associated Carrier Terminations.

5.  Requirements

   For managing a microwave node including both the radio link and the
   packet transport functionality, a unified data model is desired to
   unify the modeling of the radio link interfaces and the L2/L3
   interfaces using the same structure and the same modeling approach.
   If some part of the model is generic for other technology usage, it
   should be clearly stated.

   The purpose of the YANG data model is for management and control of
   the radio link interface(s) and the relationship/connectivity to
   other interfaces, typically to Ethernet interfaces, in a microwave
   node.

   The capability of configuring and managing microwave nodes includes
   the following requirements for the model:

   1.  It MUST be possible to configure, manage, and control a Radio
       Link Terminal and the constituent Carrier Terminations.

       A.  Configuration of frequency, channel bandwidth, modulation,
           coding, and transmitter output power MUST be supported for a
           Carrier Termination.




Ahlberg, et al.               Informational                    [Page 11]
^L
RFC 8432                   Microwave Framework              October 2018


       B.  A Radio Link Terminal MUST configure the associated Carrier
           Terminations and the type of aggregation/bonding or
           protection configurations expected for the Radio Link
           Terminal.

       C.  The capability (e.g., the maximum modulation supported) and
           the actual status/statistics (e.g., administrative status of
           the carriers) SHOULD also be supported by the data model.

       D.  The definition of the features and parameters SHOULD be based
           on established microwave equipment and radio standards, such
           as ETSI EN 302 217 [EN302217-2], which specifies the
           essential parameters for microwave systems operating from 1.4
           GHz to 86 GHz.

   2.  It MUST be possible to map different traffic types (e.g., TDM and
       Ethernet) to the transport capacity provided by a specific Radio
       Link Terminal.

   3.  It MUST be possible to configure and collect historical
       measurements (for the use case described in Section 4.4) to be
       performed on a radio link interface (e.g., minimum, maximum,
       average transmit power, and received level in dBm).

   4.  It MUST be possible to configure and retrieve alarms reporting
       associated with the radio interfaces (e.g., configuration fault,
       signal lost, modem fault, and radio fault).

6.  Gap Analysis on Models

   The purpose of the gap analysis is to identify and recommend what
   models to use in a microwave device to support the use cases and
   requirements specified in the previous sections.  This document also
   makes a recommendation for how the gaps not supported should be
   filled, including the need for development of new models and
   evolution of existing models and documents.

   Models are available for microwave radio link functionality:
   "Microwave Information Model" by the ONF [ONF-MW] and "Microwave
   Radio Link YANG Data Models" submitted to and discussed by the CCAMP
   Working Group [CCAMP-MW].  The analysis in this document takes these
   initiatives into consideration and makes a recommendation on how to
   use and complement them in order to fill the gaps identified.

   For generic functionality, not functionality specific to radio link,
   the ambition is to refer to existing or emerging models that could be
   applicable for all functional areas in a microwave node.




Ahlberg, et al.               Informational                    [Page 12]
^L
RFC 8432                   Microwave Framework              October 2018


6.1.  Microwave Radio Link Functionality

   [ONF-CIM] defines a CoreModel of the ONF Common Information Model.
   An information model describes the things in a domain in terms of
   objects, their properties (represented as attributes), and their
   relationships.  The ONF information model is expressed in Unified
   Modeling Language (UML).  The ONF CoreModel is independent of
   specific data-plane technology.  The technology-specific content,
   acquired in a runtime solution via "filled in" cases of
   specification, augments the CoreModel by providing a forwarding
   technology-specific representation.

   IETF data models define implementations and protocol-specific
   details.  YANG is a data modeling language used to model the
   configuration and state data.  [RFC8343] defines a generic YANG data
   model for interface management that doesn't include technology-
   specific information.  To describe the technology-specific
   information, several YANG data models have been proposed in the IETF
   to augment [RFC8343], e.g., the data model defined in [RFC8344].  The
   YANG data model is a popular approach for modeling interfaces for
   many packet transport technologies and is thereby well positioned to
   become an industry standard.  In light of this trend, [CCAMP-MW]
   provides a YANG data model proposal for radio interfaces that is well
   aligned with the structure of other technology-specific YANG data
   models augmenting [RFC8343].

   [RFC3444] explains the difference between Information Models (IMs)
   and Data Models (DMs).  An IM models managed objects at a conceptual
   level for designers and operators, while a DM is defined at a lower
   level and includes many details for implementers.  In addition, the
   protocol-specific details are usually included in a DM.  Since
   conceptual models can be implemented in different ways, multiple DMs
   can be derived from a single IM.

   It is recommended to use the structure of the model described in
   [CCAMP-MW] as the starting point, since it is a data model providing
   the wanted alignment with [RFC8343].  To cover the identified gaps,
   it is recommended to define new leafs/parameters and include those in
   the new model [IETF-MW] while taking reference from [ONF-CIM].  It is
   also recommended to add the required data nodes to describe the
   interface layering for the capacity provided by a Radio Link Terminal
   and the associated Ethernet and TDM interfaces in a microwave node.
   The principles and data nodes for interface layering described in
   [RFC8343] should be used as a basis.







Ahlberg, et al.               Informational                    [Page 13]
^L
RFC 8432                   Microwave Framework              October 2018


6.2.  Generic Functionality

   For generic functionality, not functionality specific to radio links,
   the recommendation is to refer to existing RFCs or emerging Internet-
   Drafts according to Figure 4.  "[IETF-MW]" is used in Figure 4 for
   the cases where the functionality is recommended to be included in
   the new model [IETF-MW] as described in Section 6.1.

   +------------------------------------+-----------------------------+
   | Generic Functionality              | Recommendation              |
   |                                    |                             |
   +------------------------------------+-----------------------------+
   |1. Fault Management                 |                             |
   |                                    |                             |
   |   Alarm Configuration              | [IETF-MW]                   |
   |                                    |                             |
   |   Alarm Notifications/             | [YANG-ALARM]                |
   |   Synchronization                  |                             |
   +------------------------------------+-----------------------------+
   |2. Performance Management           |                             |
   |                                    |                             |
   |   Performance Configuration/       | [IETF-MW]                   |
   |   Activation                       |                             |
   |                                    |                             |
   |   Performance Collection           | [IETF-MW] and XML files     |
   +------------------------------------+-----------------------------+
   |3.  Physical/Equipment Inventory    | [RFC8348]                   |
   +------------------------------------+-----------------------------+

     Figure 4: Recommendation for How to Support Generic Functionality

   Microwave-specific alarm configurations are recommended to be
   included in the new model [IETF-MW] and could be based on what is
   supported in the models described in [ONF-MW] and [CCAMP-MW].  Alarm
   notifications and synchronization are general and are recommended to
   be supported by a generic model, such as [YANG-ALARM].

   Activation of interval counters and thresholds could be a generic
   function, but it is recommended to be supported by the new model
   [IETF-MW].  It can be based on the models described in [ONF-MW] and
   [CCAMP-MW].

   Collection of interval/historical counters is a generic function that
   needs to be supported in a node.  File-based collection via the SSH
   File Transfer Protocol (SFTP) and collection via NETCONF/YANG
   interfaces are two possible options; the recommendation is to include





Ahlberg, et al.               Informational                    [Page 14]
^L
RFC 8432                   Microwave Framework              October 2018


   support for the latter in the new model [IETF-MW].  The models
   described in [ONF-MW] and [CCAMP-MW] can also be used as a basis in
   this area.

   Physical and/or equipment inventory associated with the Radio Link
   Terminals and Carrier Terminations is recommended to be covered by a
   generic model for the complete node, e.g., the model defined in
   [RFC8348].  It is thereby outside the scope of the new model
   [IETF-MW].

6.3.  Summary

   The conclusions and recommendations from the analysis can be
   summarized as follows:

   1.  A new YANG data model for radio link [IETF-MW] should be defined
       with enough scope to support the use cases and requirements in
       Sections 4 and 5 of this document.

   2.  Use the structure of the model described in [CCAMP-MW] as the
       starting point.  It augments [RFC8343] and is thereby as required
       aligned with the structure of the models for management of the L2
       and L3 domains.

   3.  Use established microwave equipment and radio standards (such as
       [EN302217-2], the model described in [CCAMP-MW], and the model
       described in [ONF-MW]) as the basis for the definition of the
       detailed leafs/ parameters to support the specified use cases and
       requirements, proposing new ones to cover identified gaps.

   4.  Add the required data nodes to describe the interface layering
       for the capacity provided by a Radio Link Terminal and the
       associated Ethernet and TDM interfaces, using the principles and
       data nodes for interface layering described in [RFC8343] as a
       basis.

   5.  Include support for configuration of microwave-specific alarms in
       the new YANG data model [IETF-MW] and rely on a generic model
       such as [YANG-ALARM] for notifications and alarm synchronization.

   6.  Use a generic model such as [RFC8348] for physical/equipment
       inventory.









Ahlberg, et al.               Informational                    [Page 15]
^L
RFC 8432                   Microwave Framework              October 2018


7.  Security Considerations

   The configuration information may be considered sensitive or
   vulnerable in network environments.  Unauthorized access to
   configuration data nodes can have a negative effect on network
   operations, e.g., interrupting the ability to forward traffic or
   increasing the interference level of the network.  The status and
   inventory reveal some network information that could be very helpful
   to an attacker.  A malicious attack to that information may result in
   a loss of customer data.  Security issues concerning the access
   control to management interfaces can be generally addressed by
   authentication techniques providing origin verification, integrity,
   and confidentiality.  In addition, management interfaces can be
   physically or logically isolated by configuring them to be only
   accessible out-of-band, through a system that is physically or
   logically separated from the rest of the network infrastructure.  In
   cases where management interfaces are accessible in-band at the
   client device or within the microwave transport network domain,
   filtering or firewalling techniques can be used to restrict
   unauthorized in-band traffic.  Additionally, authentication
   techniques may be used in all cases.

   This framework describes the requirements and characteristics of a
   YANG data model for control and management of the radio link
   interfaces in a microwave node.  It is supposed to be accessed via a
   management protocol with a secure transport layer, such as NETCONF
   [RFC6241].

8.  IANA Considerations

   This document has no IANA actions.

9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.







Ahlberg, et al.               Informational                    [Page 16]
^L
RFC 8432                   Microwave Framework              October 2018


9.2.  Informative References

   [CCAMP-MW] Ahlberg, J., Carlson, J-O., Lund, H-A., Olausson, T.,
              Ye, M., and M. Vaupotic, "Microwave Radio Link YANG Data
              Models", Work in Progress, draft-ahlberg-ccamp-microwave-
              radio-link-01, May 2016.

   [EN302217-2]
              ETSI, "Fixed Radio Systems; Characteristics and
              requirements for point-to-point equipment and antennas;
              Part 2: Digital systems operating in frequency bands from
              1 GHz to 86 GHz; Harmonised Standard covering the
              essential requirements of article 3.2 of Directive
              2014/53/EU", ETSI EN 302 217-2, V3.1.1, May 2017.

   [IEEE802.1Qcp]
              IEEE, "Bridges and Bridged Networks Ammendment: YANG Data
              Model", Work in Progress, Draft 2.2, March 2018,
              <https://1.ieee802.org/tsn/802-1qcp/>.

   [IETF-MW]  Ahlberg, J., Ye, M., Li, X., Spreafico, D., and
              M. Vaupotic, "A YANG Data Model for Microwave Radio Link",
              Work in Progress, draft-ietf-ccamp-mw-yang-10, October
              2018.

   [ONF-CIM]  ONF, "Core Information Model (CoreModel)", ONF
              TR-512, version 1.2, September 2016,
              <https://www.opennetworking.org/images/stories/downloads/
              sdn-resources/technical-reports/
              TR-512_CIM_(CoreModel)_1.2.zip>.

   [ONF-MW]   ONF, "Microwave Information Model", ONF TR-532, version
              1.0, December 2016,
              <https://www.opennetworking.org/images/stories/downloads/
              sdn-resources/technical-reports/
              TR-532-Microwave-Information-Model-V1.pdf>.

   [RFC2863]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group
              MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,
              <https://www.rfc-editor.org/info/rfc2863>.

   [RFC3444]  Pras, A. and J. Schoenwaelder, "On the Difference between
              Information Models and Data Models", RFC 3444,
              DOI 10.17487/RFC3444, January 2003,
              <https://www.rfc-editor.org/info/rfc3444>.






Ahlberg, et al.               Informational                    [Page 17]
^L
RFC 8432                   Microwave Framework              October 2018


   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC7426]  Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
              Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
              Defined Networking (SDN): Layers and Architecture
              Terminology", RFC 7426, DOI 10.17487/RFC7426, January
              2015, <https://www.rfc-editor.org/info/rfc7426>.

   [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
              <https://www.rfc-editor.org/info/rfc8343>.

   [RFC8344]  Bjorklund, M., "A YANG Data Model for IP Management",
              RFC 8344, DOI 10.17487/RFC8344, March 2018,
              <https://www.rfc-editor.org/info/rfc8344>.

   [RFC8348]  Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A
              YANG Data Model for Hardware Management", RFC 8348,
              DOI 10.17487/RFC8348, March 2018,
              <https://www.rfc-editor.org/info/rfc8348>.

   [RFC8349]  Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
              Routing Management (NMDA Version)", RFC 8349,
              DOI 10.17487/RFC8349, March 2018,
              <https://www.rfc-editor.org/info/rfc8349>.

   [YANG-ALARM]
              Vallin, S. and M. Bjorklund, "YANG Alarm Module", Work in
              Progress, draft-ietf-ccamp-alarm-module-04, October 2018.



















Ahlberg, et al.               Informational                    [Page 18]
^L
RFC 8432                   Microwave Framework              October 2018


Contributors

   Marko Vaupotic
   Aviat Networks
   Motnica 9
   Trzin-Ljubljana  1236
   Slovenia

   Email: Marko.Vaupotic@aviatnet.com


   Jeff Tantsura

   Email: jefftant.ietf@gmail.com


   Koji Kawada
   NEC Corporation
   1753, Shimonumabe Nakahara-ku
   Kawasaki, Kanagawa 211-8666
   Japan

   Email: k-kawada@ah.jp.nec.com


   Ippei Akiyoshi
   NEC
   1753, Shimonumabe Nakahara-ku
   Kawasaki, Kanagawa 211-8666
   Japan

   Email: i-akiyoshi@ah.jp.nec.com


   Daniela Spreafico
   Nokia - IT
   Via Energy Park, 14
   Vimercate (MI)  20871
   Italy

   Email: daniela.spreafico@nokia.com










Ahlberg, et al.               Informational                    [Page 19]
^L
RFC 8432                   Microwave Framework              October 2018


Authors' Addresses

   Jonas Ahlberg (editor)
   Ericsson AB
   Lindholmspiren 11
   Goteborg  417 56
   Sweden

   Email: jonas.ahlberg@ericsson.com


   Min Ye (editor)
   Huawei Technologies
   No.1899, Xiyuan Avenue
   Chengdu  611731
   China

   Email: amy.yemin@huawei.com


   Xi Li
   NEC Laboratories Europe
   Kurfuersten-Anlage 36
   Heidelberg  69115
   Germany

   Email: Xi.Li@neclab.eu


   Luis Contreras
   Telefonica I+D
   Ronda de la Comunicacion, S/N
   Madrid  28050
   Spain

   Email: luismiguel.contrerasmurillo@telefonica.com


   Carlos J. Bernardos
   Universidad Carlos III de Madrid
   Av. Universidad, 30
   Madrid, Leganes  28911
   Spain

   Email: cjbc@it.uc3m.es






Ahlberg, et al.               Informational                    [Page 20]
^L