1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
|
Internet Engineering Task Force (IETF) B. Wen
Request for Comments: 8466 Comcast
Category: Standards Track G. Fioccola, Ed.
ISSN: 2070-1721 Telecom Italia
C. Xie
China Telecom
L. Jalil
Verizon
October 2018
A YANG Data Model for
Layer 2 Virtual Private Network (L2VPN) Service Delivery
Abstract
This document defines a YANG data model that can be used to configure
a Layer 2 provider-provisioned VPN service. It is up to a management
system to take this as an input and generate specific configuration
models to configure the different network elements to deliver the
service. How this configuration of network elements is done is out
of scope for this document.
The YANG data model defined in this document includes support for
point-to-point Virtual Private Wire Services (VPWSs) and multipoint
Virtual Private LAN Services (VPLSs) that use Pseudowires signaled
using the Label Distribution Protocol (LDP) and the Border Gateway
Protocol (BGP) as described in RFCs 4761 and 6624.
The YANG data model defined in this document conforms to the Network
Management Datastore Architecture defined in RFC 8342.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8466.
Wen, et al. Standards Track [Page 1]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1. Requirements Language . . . . . . . . . . . . . . . . 5
1.2. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 5
2. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. The Layer 2 VPN Service Model . . . . . . . . . . . . . . . . 7
3.1. Layer 2 VPN Service Types . . . . . . . . . . . . . . . . 7
3.2. Layer 2 VPN Physical Network Topology . . . . . . . . . . 7
4. Service Data Model Usage . . . . . . . . . . . . . . . . . . 9
5. Design of the Data Model . . . . . . . . . . . . . . . . . . 11
5.1. Features and Augmentation . . . . . . . . . . . . . . . . 20
5.2. VPN Service Overview . . . . . . . . . . . . . . . . . . 20
5.2.1. VPN Service Type . . . . . . . . . . . . . . . . . . 21
5.2.2. VPN Service Topologies . . . . . . . . . . . . . . . 22
5.2.2.1. Route Target Allocation . . . . . . . . . . . . . 22
5.2.2.2. Any-to-Any . . . . . . . . . . . . . . . . . . . 22
5.2.2.3. Hub-and-Spoke . . . . . . . . . . . . . . . . . . 22
5.2.2.4. Hub-and-Spoke Disjoint . . . . . . . . . . . . . 23
5.2.3. Cloud Access . . . . . . . . . . . . . . . . . . . . 24
5.2.4. Extranet VPNs . . . . . . . . . . . . . . . . . . . . 27
5.2.5. Frame Delivery Service . . . . . . . . . . . . . . . 28
5.3. Site Overview . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1. Devices and Locations . . . . . . . . . . . . . . . . 31
5.3.2. Site Network Accesses . . . . . . . . . . . . . . . . 32
5.3.2.1. Bearer . . . . . . . . . . . . . . . . . . . . . 33
5.3.2.2. Connection . . . . . . . . . . . . . . . . . . . 33
5.4. Site Roles . . . . . . . . . . . . . . . . . . . . . . . 38
Wen, et al. Standards Track [Page 2]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.5. Site Belonging to Multiple VPNs . . . . . . . . . . . . . 38
5.5.1. Site VPN Flavors . . . . . . . . . . . . . . . . . . 38
5.5.1.1. Single VPN Attachment: site-vpn-flavor-single . . 39
5.5.1.2. Multi-VPN Attachment: site-vpn-flavor-multi . . . 39
5.5.1.3. NNI: site-vpn-flavor-nni . . . . . . . . . . . . 40
5.5.1.4. E2E: site-vpn-flavor-e2e . . . . . . . . . . . . 41
5.5.2. Attaching a Site to a VPN . . . . . . . . . . . . . . 41
5.5.2.1. Referencing a VPN . . . . . . . . . . . . . . . . 41
5.5.2.2. VPN Policy . . . . . . . . . . . . . . . . . . . 43
5.6. Deciding Where to Connect the Site . . . . . . . . . . . 48
5.6.1. Constraint: Device . . . . . . . . . . . . . . . . . 49
5.6.2. Constraint/Parameter: Site Location . . . . . . . . . 50
5.6.3. Constraint/Parameter: Access Type . . . . . . . . . . 51
5.6.4. Constraint: Access Diversity . . . . . . . . . . . . 52
5.7. Route Distinguisher and Network Instance Allocation . . . 53
5.8. Site-Network-Access Availability . . . . . . . . . . . . 54
5.9. SVC MTU . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.10. Service . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.10.1. Bandwidth . . . . . . . . . . . . . . . . . . . . . 56
5.10.2. QoS . . . . . . . . . . . . . . . . . . . . . . . . 57
5.10.2.1. QoS Classification . . . . . . . . . . . . . . . 57
5.10.2.2. QoS Profile . . . . . . . . . . . . . . . . . . 58
5.10.3. Support for BUM . . . . . . . . . . . . . . . . . . 59
5.11. Site Management . . . . . . . . . . . . . . . . . . . . . 60
5.12. MAC Loop Protection . . . . . . . . . . . . . . . . . . . 61
5.13. MAC Address Limit . . . . . . . . . . . . . . . . . . . . 61
5.14. Enhanced VPN Features . . . . . . . . . . . . . . . . . . 62
5.14.1. Carriers' Carriers . . . . . . . . . . . . . . . . . 62
5.15. External ID References . . . . . . . . . . . . . . . . . 63
5.16. Defining NNIs and Inter-AS Support . . . . . . . . . . . 64
5.16.1. Defining an NNI with the Option A Flavor . . . . . . 66
5.16.2. Defining an NNI with the Option B Flavor . . . . . . 70
5.16.3. Defining an NNI with the Option C Flavor . . . . . . 73
5.17. Applicability of L2SM in Inter-provider and Inter-domain
Orchestration . . . . . . . . . . . . . . . . . . . . . . 74
6. Interaction with Other YANG Modules . . . . . . . . . . . . . 76
7. Service Model Usage Example . . . . . . . . . . . . . . . . . 77
8. YANG Module . . . . . . . . . . . . . . . . . . . . . . . . . 82
9. Security Considerations . . . . . . . . . . . . . . . . . . . 152
10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 153
11. References . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.1. Normative References . . . . . . . . . . . . . . . . . . 153
11.2. Informative References . . . . . . . . . . . . . . . . . 155
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 157
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 158
Wen, et al. Standards Track [Page 3]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
1. Introduction
This document defines a YANG data model for the Layer 2 VPN (L2VPN)
service. This model defines service configuration elements that can
be used in communication protocols between customers and network
operators. Those elements can also be used as input to automated
control and configuration applications and can generate specific
configuration models to configure the different network elements to
deliver the service. How this configuration of network elements is
done is out of scope for this document.
Further discussion of the way that services are modeled in YANG and
the relationship between "customer service models" like the one
described in this document and configuration models can be found in
[RFC8309] and [RFC8199]. Sections 4 and 6 also provide more
information on how this service model could be used and how it fits
into the overall modeling architecture.
The YANG data model defined in this document includes support for
point-to-point Virtual Private Wire Services (VPWSs) and multipoint
Virtual Private LAN Services (VPLSs) that use Pseudowires signaled
using the Label Distribution Protocol (LDP) and the Border Gateway
Protocol (BGP) as described in [RFC4761] and [RFC6624]. It also
conforms to the Network Management Datastore Architecture (NMDA)
[RFC8342].
1.1. Terminology
The following terms are defined in [RFC6241] and are not redefined
here:
o client
o configuration data
o server
o state data
The following terms are defined in [RFC7950] and are not redefined
here:
o augment
o data model
o data node
Wen, et al. Standards Track [Page 4]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
The terminology for describing YANG data models is found in
[RFC7950].
1.1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
1.2. Tree Diagrams
Tree diagrams used in this document follow the notation defined in
[RFC8340].
2. Definitions
This document uses the following terms:
Service Provider (SP): The organization (usually a commercial
undertaking) responsible for operating the network that offers VPN
services to clients and customers.
Customer Edge (CE) Device: Equipment that is dedicated to a
particular customer and is directly connected to one or more PE
devices via Attachment Circuits (ACs). A CE is usually located at
the customer premises and is usually dedicated to a single VPN,
although it may support multiple VPNs if each one has separate
ACs. The CE devices can be routers, bridges, switches, or hosts.
Provider Edge (PE) Device: Equipment managed by the SP that can
support multiple VPNs for different customers and is directly
connected to one or more CE devices via ACs. A PE is usually
located at an SP Point of Presence (POP) and is managed by the SP.
Virtual Private LAN Service (VPLS): A VPLS is a provider service
that emulates the full functionality of a traditional LAN. A VPLS
makes it possible to interconnect several LAN segments over a
packet switched network (PSN) and makes the remote LAN segments
behave as one single LAN.
Virtual Private Wire Service (VPWS): A VPWS is a point-to-point
circuit (i.e., link) connecting two CE devices. The link is
established as a logical Layer 2 circuit through a PSN. The CE in
the customer network is connected to a PE in the provider network
via an AC: the AC is either a physical or logical circuit. A VPWS
Wen, et al. Standards Track [Page 5]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
differs from a VPLS in that the VPLS is point-to-multipoint while
the VPWS is point-to-point. In some implementations, a set of
VPWSs is used to create a multi-site L2VPN network.
Pseudowire (PW): A Pseudowire is an emulation of a native service
over a PSN. The native service may be ATM, Frame Relay, Ethernet,
low-rate Time-Division Multiplexing (TDM), or Synchronous Optical
Network / Synchronous Digital Hierarchy (SONET/SDH), while the PSN
may be MPLS, IP (either IPv4 or IPv6), or Layer 2 Tunneling
Protocol version 3 (L2TPv3).
MAC-VRF: A Virtual Routing and Forwarding table for Media Access
Control (MAC) addresses on a PE. It is sometimes also referred to
as a Virtual Switching Instance (VSI).
UNI: User-to-Network Interface. The physical demarcation point
between the customer's area of responsibility and the provider's
area of responsibility.
NNI: Network-to-Network Interface. A reference point representing
the boundary between two networks that are operated as separate
administrative domains. The two networks may belong to the same
provider or to two different providers.
This document uses the following abbreviations:
BSS: Business Support System
BUM: Broadcast, Unknown Unicast, or Multicast
CoS: Class of Service
LAG: Link Aggregation Group
LLDP: Link Layer Discovery Protocol
OAM: Operations, Administration, and Maintenance
OSS: Operations Support System
PDU: Protocol Data Unit
QoS: Quality of Service
Wen, et al. Standards Track [Page 6]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
3. The Layer 2 VPN Service Model
A Layer 2 VPN (L2VPN) service is a collection of sites that are
authorized to exchange traffic between each other over a shared
infrastructure of a common technology. The L2VPN Service Model
(L2SM) described in this document provides a common understanding of
how the corresponding L2VPN service is to be deployed over the shared
infrastructure.
This document presents the L2SM using the YANG data modeling language
[RFC7950] as a formal language that is both human readable and
parsable by software for use with protocols such as the Network
Configuration Protocol (NETCONF) [RFC6241] and RESTCONF [RFC8040].
This service model is limited to VPWS-based VPNs and VPLS-based VPNs
as described in [RFC4761] and [RFC6624] and to Ethernet VPNs (EVPNs)
as described in [RFC7432].
3.1. Layer 2 VPN Service Types
From a technology perspective, a set of basic L2VPN service types
include:
o Point-to-point VPWSs that use LDP-signaled Pseudowires or
L2TP-signaled Pseudowires [RFC6074].
o Multipoint VPLSs that use LDP-signaled Pseudowires or
L2TP-signaled Pseudowires [RFC6074].
o Multipoint VPLSs that use a BGP control plane as described in
[RFC4761] and [RFC6624].
o IP-only LAN Services (IPLSs) that are a functional subset of VPLS
services [RFC7436].
o BGP MPLS-based EVPN services as described in [RFC7432] and
[RFC7209].
o EVPN VPWSs as specified in [RFC8214].
3.2. Layer 2 VPN Physical Network Topology
Figure 1 below depicts a typical SP's physical network topology.
Most SPs have deployed an IP, MPLS, or Segment Routing (SR)
multi-service core infrastructure. Ingress Layer 2 service frames
will be mapped to either an Ethernet Pseudowire (e.g., Pseudowire
Emulation Edge to Edge (PWE3)) or a Virtual Extensible Local Area
Wen, et al. Standards Track [Page 7]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Network (VXLAN) PE-to-PE tunnel. The details of these tunneling
mechanisms are left to the provider's discretion and are not part of
the L2SM.
An L2VPN provides end-to-end Layer 2 connectivity over this
multi-service core infrastructure between two or more customer
locations or a collection of sites. ACs are placed between CE
devices and PE devices that backhaul Layer 2 service frames from the
customer over the access network to the provider network or remote
site. The demarcation point (i.e., UNI) between the customer and the
SP can be placed between either (1) customer nodes and the CE device
or (2) the CE device and the PE device. The actual bearer connection
between the CE and the PE will be described in the L2SM.
The SP may also choose a "seamless MPLS" approach to expand the PWE3
or VXLAN tunnel between sites.
The SP may leverage Multiprotocol BGP (MP-BGP) to autodiscover and
signal the PWE3 or VXLAN tunnel endpoints.
Site A | |Site B
--- ---- | VXLAN/PW | ---
| | | | |<------------------------>| | |
| C +---+ CE | | | | C |
| | | | | --------- | | |
--- ----\ | ( ) | /---
\ -|-- ( ) -|-- ---- /
\| | ( ) | | | |/
| PE +---+ IP/MPLS/SR +---+ PE +---+ CE |
/| | ( Network ) | | | |\
/ ---- ( ) ---- ---- \
--- ----/ ( ) \---
| | | | ----+---- | |
| C +---+ CE | | | C |
| | | | --+-- | |
--- ---- | PE | ---
--+--
| Site C
--+--
| CE |
--+--
|
--+--
| C |
-----
Figure 1: Reference Network for the Use of the L2SM
Wen, et al. Standards Track [Page 8]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
From the customer's perspective, however, all the CE devices are
connected over a simulated LAN environment as shown in Figure 2.
Broadcast and multicast packets are sent to all participants in the
same bridge domain.
CE---+----+-----+---CE
| | |
| | |
| | |
CE---+ CE +---CE
Figure 2: Customer's View of the L2VPN
4. Service Data Model Usage
The L2SM provides an abstracted interface to request, configure, and
manage the components of an L2VPN service. The model is used by a
customer who purchases connectivity and other services from an SP to
communicate with that SP.
A typical usage for this model is as an input to an orchestration
layer that is responsible for translating it into configuration
commands for the network elements that deliver/enable the service.
The network elements may be routers, but also servers (like
Authentication, Authorization, and Accounting (AAA)) that are
necessary within the network.
The configuration of network elements may be done using the Command
Line Interface (CLI) or any other configuration (or "southbound")
interface such as NETCONF [RFC6241] in combination with device-
specific and protocol-specific YANG data models.
This way of using the service model is illustrated in Figure 3 and is
described in more detail in [RFC8309] and [RFC8199]. The split of
the orchestration function between a "service orchestrator" and a
"network orchestrator" is clarified in [RFC8309]. The usage of this
service model is not limited to this example: it can be used by any
component of the management system but not directly by network
elements.
The usage and structure of this model should be compared to the
Layer 3 VPN service model defined in [RFC8299].
Wen, et al. Standards Track [Page 9]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
----------------------------
| Customer Service Requester |
----------------------------
|
|
L2SM |
|
|
-----------------------
| Service Orchestration |
-----------------------
|
| Service +-------------+
| Delivery +------>| Application |
| Model | | BSS/OSS |
| V +-------------+
-----------------------
| Network Orchestration |
-----------------------
| |
+----------------+ |
| Config manager | |
+----------------+ | Device
| | Models
| |
--------------------------------------------
Network
+++++++
+ AAA +
+++++++
++++++++ Bearer ++++++++ ++++++++ ++++++++
+ CE A + ----------- + PE A + + PE B + ---- + CE B +
++++++++ Connection ++++++++ ++++++++ ++++++++
Site A Site B
Figure 3: Reference Architecture for the Use of the L2SM
The Metro Ethernet Forum (MEF) [MEF-6] has also developed an
architecture for network management and operations, but the work of
the MEF embraces all aspects of lifecycle service orchestration,
including billing, Service Level Agreements (SLAs), order management,
and lifecycle management. The IETF's work on service models is
typically smaller and offers a simple, self-contained service YANG
module. See [RFC8309] for more details.
Wen, et al. Standards Track [Page 10]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5. Design of the Data Model
The L2SM is structured in a way that allows the provider to list
multiple circuits of various service types for the same customer. A
circuit represents an end-to-end connection between two or more
customer locations.
The YANG module is divided into two main containers: "vpn-services"
and "sites". The "vpn-svc" container under vpn-services defines
global parameters for the VPN service for a specific customer.
A site contains at least one network access (i.e., site network
accesses providing access to the sites, as defined in Section 5.3.2),
and there may be multiple network accesses in the case of
multihoming. Site-to-network-access attachment is done through a
bearer with a Layer 2 connection on top. The bearer refers to
properties of the attachment that are below Layer 2, while the
connection refers to Layer 2 protocol-oriented properties. The
bearer may be allocated dynamically by the SP, and the customer may
provide some constraints or parameters to drive the placement.
Authorization of traffic exchanges is done through what we call a VPN
policy or VPN topology that defines routing exchange rules between
sites.
End-to-end multi-segment connectivity can be realized by using a
combination of per-site connectivity and per-segment connectivity at
different segments.
Figure 4 shows the overall structure of the YANG module:
module: ietf-l2vpn-svc
+--rw l2vpn-svc
+--rw vpn-profiles
| +--rw valid-provider-identifiers
| +--rw cloud-identifier* string{cloud-access}?
| +--rw qos-profile-identifier* string
| +--rw bfd-profile-identifier* string
| +--rw remote-carrier-identifier* string
+--rw vpn-services
| +--rw vpn-service* [vpn-id]
| +--rw vpn-id svc-id
| +--rw vpn-svc-type? identityref
| +--rw customer-name? string
| +--rw svc-topo? identityref
| +--rw cloud-accesses {cloud-access}?
| | +--rw cloud-access* [cloud-identifier]
| | +--rw cloud-identifier
Wen, et al. Standards Track [Page 11]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
| | | -> /l2vpn-svc/vpn-profiles/
| | | valid-provider-identifiers/cloud-identifier
| | +--rw (list-flavor)?
| | +--:(permit-any)
| | | +--rw permit-any? empty
| | +--:(deny-any-except)
| | | +--rw permit-site*
| | | : -> /l2vpn-svc/sites/site/site-id
| | +--:(permit-any-except)
| | +--rw deny-site*
| | -> /l2vpn-svc/sites/site/site-id
| +--rw frame-delivery {frame-delivery}?
| | +--rw customer-tree-flavors
| | | +--rw tree-flavor* identityref
| | +--rw bum-frame-delivery
| | | +--rw bum-frame-delivery* [frame-type]
| | | +--rw frame-type identityref
| | | +--rw delivery-mode? identityref
| | +--rw multicast-gp-port-mapping identityref
| +--rw extranet-vpns {extranet-vpn}?
| | +--rw extranet-vpn* [vpn-id]
| | +--rw vpn-id svc-id
| | +--rw local-sites-role? identityref
| +--rw ce-vlan-preservation boolean
| +--rw ce-vlan-cos-preservation boolean
| +--rw carrierscarrier? boolean {carrierscarrier}?
+--rw sites
+--rw site* [site-id]
+--rw site-id string
+--rw site-vpn-flavor? identityref
+--rw devices
| +--rw device* [device-id]
| +--rw device-id string
| +--rw location
| | -> ../../../locations/location/location-id
| +--rw management
| +--rw transport? identityref
| +--rw address? inet:ip-address
+--rw management
| +--rw type identityref
+--rw locations
| +--rw location* [location-id]
| +--rw location-id string
| +--rw address? string
| +--rw postal-code? string
| +--rw state? string
| +--rw city? string
| +--rw country-code? string
Wen, et al. Standards Track [Page 12]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
+--rw site-diversity {site-diversity}?
| +--rw groups
| +--rw group* [group-id]
| +--rw group-id string
+--rw vpn-policies
| +--rw vpn-policy* [vpn-policy-id]
| +--rw vpn-policy-id string
| +--rw entries* [id]
| +--rw id string
| +--rw filters
| | +--rw filter* [type]
| | +--rw type identityref
| | +--rw lan-tag* uint32 {lan-tag}?
| +--rw vpn* [vpn-id]
| +--rw vpn-id
| | -> /l2vpn-svc/vpn-services/
| | vpn-service/vpn-id
| +--rw site-role? identityref
+--rw service
| +--rw qos {qos}?
| | +--rw qos-classification-policy
| | | +--rw rule* [id]
| | | +--rw id string
| | | +--rw (match-type)?
| | | | +--:(match-flow)
| | | | | +--rw match-flow
| | | | | +--rw dscp? inet:dscp
| | | | | +--rw dot1q? uint16
| | | | | +--rw pcp? uint8
| | | | | +--rw src-mac? yang:mac-address
| | | | | +--rw dst-mac? yang:mac-address
| | | | | +--rw color-type? identityref
| | | | | +--rw target-sites*
| | | | | | svc-id {target-sites}?
| | | | | +--rw any? empty
| | | | | +--rw vpn-id? svc-id
| | | | +--:(match-application)
| | | | +--rw match-application? identityref
| | | +--rw target-class-id? string
| | +--rw qos-profile
| | +--rw (qos-profile)?
| | +--:(standard)
| | | +--rw profile?
| | | -> /l2vpn-svc/vpn-profiles/
| | | valid-provider-identifiers/
| | | qos-profile-identifier
| | +--:(custom)
| | +--rw classes {qos-custom}?
Wen, et al. Standards Track [Page 13]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
| | +--rw class* [class-id]
| | +--rw class-id string
| | +--rw direction? identityref
| | +--rw policing? identityref
| | +--rw byte-offset? uint16
| | +--rw frame-delay
| | | +--rw (flavor)?
| | | +--:(lowest)
| | | | +--rw use-lowest-latency? empty
| | | +--:(boundary)
| | | +--rw delay-bound? uint16
| | +--rw frame-jitter
| | | +--rw (flavor)?
| | | +--:(lowest)
| | | | +--rw use-lowest-jitter? empty
| | | +--:(boundary)
| | | +--rw delay-bound? uint32
| | +--rw frame-loss
| | | +--rw rate? decimal64
| | +--rw bandwidth
| | +--rw guaranteed-bw-percent decimal64
| | +--rw end-to-end? empty
| +--rw carrierscarrier {carrierscarrier}?
| +--rw signaling-type? identityref
+--rw broadcast-unknown-unicast-multicast {bum}?
| +--rw multicast-site-type? enumeration
| +--rw multicast-gp-address-mapping* [id]
| | +--rw id uint16
| | +--rw vlan-id uint16
| | +--rw mac-gp-address yang:mac-address
| | +--rw port-lag-number? uint32
| +--rw bum-overall-rate? uint32
| +--rw bum-rate-per-type* [type]
| +--rw type identityref
| +--rw rate? uint32
+--rw mac-loop-prevention {mac-loop-prevention}?
| +--rw protection-type? identityref
| +--rw frequency? uint32
| +--rw retry-timer? uint32
+--rw access-control-list
| +--rw mac* [mac-address]
| +--rw mac-address yang:mac-address
+--ro actual-site-start? yang:date-and-time
+--ro actual-site-stop? yang:date-and-time
+--rw bundling-type? identityref
+--rw default-ce-vlan-id uint32
+--rw site-network-accesses
+--rw site-network-access* [network-access-id]
Wen, et al. Standards Track [Page 14]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
+--rw network-access-id string
+--rw remote-carrier-name? string
+--rw type? identityref
+--rw (location-flavor)
| +--:(location)
| | +--rw location-reference?
| | -> ../../../locations/location/
| | location-id
| +--:(device)
| +--rw device-reference?
| -> ../../../devices/device/device-id
+--rw access-diversity {site-diversity}?
| +--rw groups
| | +--rw group* [group-id]
| | +--rw group-id string
| +--rw constraints
| +--rw constraint* [constraint-type]
| +--rw constraint-type identityref
| +--rw target
| +--rw (target-flavor)?
| +--:(id)
| | +--rw group* [group-id]
| | +--rw group-id string
| +--:(all-accesses)
| | +--rw all-other-accesses? empty
| +--:(all-groups)
| +--rw all-other-groups? empty
+--rw bearer
| +--rw requested-type {requested-type}?
| | +--rw type? string
| | +--rw strict? boolean
| +--rw always-on? boolean {always-on}?
| +--rw bearer-reference? string {bearer-reference}?
+--rw connection
| +--rw encapsulation-type? identityref
| +--rw eth-inf-type? identityref
| +--rw tagged-interface
| | +--rw type? identityref
| | +--rw dot1q-vlan-tagged {dot1q}?
| | | +--rw tg-type? identityref
| | | +--rw cvlan-id uint16
| | +--rw priority-tagged
| | | +--rw tag-type? identityref
| | +--rw qinq {qinq}?
| | | +--rw tag-type? identityref
| | | +--rw svlan-id uint16
| | | +--rw cvlan-id uint16
| | +--rw qinany {qinany}?
Wen, et al. Standards Track [Page 15]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
| | | +--rw tag-type? identityref
| | | +--rw svlan-id uint16
| | +--rw vxlan {vxlan}?
| | +--rw vni-id uint32
| | +--rw peer-mode? identityref
| | +--rw peer-list* [peer-ip]
| | +--rw peer-ip inet:ip-address
| +--rw untagged-interface
| | +--rw speed? uint32
| | +--rw mode? neg-mode
| | +--rw phy-mtu? uint32
| | +--rw lldp? boolean
| | +--rw oam-802.3ah-link {oam-3ah}?
| | | +--rw enabled? boolean
| | +--rw uni-loop-prevention? boolean
| +--rw lag-interfaces {lag-interface}?
| | +--rw lag-interface* [index]
| | +--rw index string
| | +--rw lacp {lacp}?
| | +--rw enabled? boolean
| | +--rw mode? neg-mode
| | +--rw speed? uint32
| | +--rw mini-link-num? uint32
| | +--rw system-priority? uint16
| | +--rw micro-bfd {micro-bfd}?
| | | +--rw enabled? enumeration
| | | +--rw interval? uint32
| | | +--rw hold-timer? uint32
| | +--rw bfd {bfd}?
| | | +--rw enabled? boolean
| | | +--rw (holdtime)?
| | | +--:(profile)
| | | | +--rw profile-name?
| | | | -> /l2vpn-svc/
| | | | vpn-profiles/
| | | | valid-provider-identifiers/
| | | | bfd-profile-identifier
| | | +--:(fixed)
| | | +--rw fixed-value? uint32
| | +--rw member-links
| | | +--rw member-link* [name]
| | | +--rw name string
| | | +--rw speed? uint32
| | | +--rw mode? neg-mode
| | | +--rw link-mtu? uint32
| | | +--rw oam-802.3ah-link {oam-3ah}?
| | | +--rw enabled? boolean
| | +--rw flow-control? boolean
Wen, et al. Standards Track [Page 16]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
| | +--rw lldp? boolean
| +--rw cvlan-id-to-svc-map* [svc-id]
| | +--rw svc-id
| | | -> /l2vpn-svc/vpn-services/vpn-service/
| | | vpn-id
| | +--rw cvlan-id* [vid]
| | +--rw vid uint16
| +--rw l2cp-control {l2cp-control}?
| | +--rw stp-rstp-mstp? control-mode
| | +--rw pause? control-mode
| | +--rw lacp-lamp? control-mode
| | +--rw link-oam? control-mode
| | +--rw esmc? control-mode
| | +--rw l2cp-802.1x? control-mode
| | +--rw e-lmi? control-mode
| | +--rw lldp? boolean
| | +--rw ptp-peer-delay? control-mode
| | +--rw garp-mrp? control-mode
| +--rw oam {oam}
| +--rw md-name string
| +--rw md-level uint16
| +--rw cfm-802.1-ag* [maid]
| | +--rw maid string
| | +--rw mep-id? uint32
| | +--rw mep-level? uint32
| | +--rw mep-up-down? enumeration
| | +--rw remote-mep-id? uint32
| | +--rw cos-for-cfm-pdus? uint32
| | +--rw ccm-interval? uint32
| | +--rw ccm-holdtime? uint32
| | +--rw alarm-priority-defect? identityref
| | +--rw ccm-p-bits-pri? ccm-priority-type
| +--rw y-1731* [maid]
| +--rw maid string
| +--rw mep-id? uint32
| +--rw type? identityref
| +--rw remote-mep-id? uint32
| +--rw message-period? uint32
| +--rw measurement-interval? uint32
| +--rw cos? uint32
| +--rw loss-measurement? boolean
| +--rw synthetic-loss-measurement? boolean
| +--rw delay-measurement
| | +--rw enable-dm? boolean
| | +--rw two-way? boolean
| +--rw frame-size? uint32
| +--rw session-type? enumeration
+--rw availability
Wen, et al. Standards Track [Page 17]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
| +--rw access-priority? uint32
| +--rw (redundancy-mode)?
| +--:(single-active)
| | +--rw single-active? empty
| +--:(all-active)
| +--rw all-active? empty
+--rw vpn-attachment
| +--rw (attachment-flavor)
| +--:(vpn-id)
| | +--rw vpn-id?
| | | -> /l2vpn-svc/vpn-services/
| | | vpn-service/vpn-id
| | +--rw site-role? identityref
| +--:(vpn-policy-id)
| +--rw vpn-policy-id?
| -> ../../../../vpn-policies/
| vpn-policy/vpn-policy-id
+--rw service
| +--rw svc-bandwidth {input-bw}?
| | +--rw bandwidth* [direction type]
| | +--rw direction identityref
| | +--rw type identityref
| | +--rw cos-id? uint8
| | +--rw vpn-id? svc-id
| | +--rw cir uint64
| | +--rw cbs uint64
| | +--rw eir? uint64
| | +--rw ebs? uint64
| | +--rw pir? uint64
| | +--rw pbs? uint64
| +--rw svc-mtu uint16
| +--rw qos {qos}?
| | +--rw qos-classification-policy
| | | +--rw rule* [id]
| | | +--rw id string
| | | +--rw (match-type)?
| | | | +--:(match-flow)
| | | | | +--rw match-flow
| | | | | +--rw dscp? inet:dscp
| | | | | +--rw dot1q? uint16
| | | | | +--rw pcp? uint8
| | | | | +--rw src-mac? yang:mac-address
| | | | | +--rw dst-mac? yang:mac-address
| | | | | +--rw color-type? identityref
| | | | | +--rw target-sites*
| | | | | | svc-id {target-sites}?
| | | | | +--rw any? empty
| | | | | +--rw vpn-id? svc-id
Wen, et al. Standards Track [Page 18]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
| | | | +--:(match-application)
| | | | +--rw match-application? identityref
| | | +--rw target-class-id? string
| | +--rw qos-profile
| | +--rw (qos-profile)?
| | +--:(standard)
| | | +--rw profile?
| | | -> /l2vpn-svc/vpn-profiles/
| | | valid-provider-identifiers/
| | | qos-profile-identifier
| | +--:(custom)
| | +--rw classes {qos-custom}?
| | +--rw class* [class-id]
| | +--rw class-id string
| | +--rw direction? identityref
| | +--rw policing? identityref
| | +--rw byte-offset? uint16
| | +--rw frame-delay
| | | +--rw (flavor)?
| | | +--:(lowest)
| | | | +--rw use-lowest-latency?
| | | | empty
| | | +--:(boundary)
| | | +--rw delay-bound? uint16
| | +--rw frame-jitter
| | | +--rw (flavor)?
| | | +--:(lowest)
| | | | +--rw use-lowest-jitter?
| | | | empty
| | | +--:(boundary)
| | | +--rw delay-bound? uint32
| | +--rw frame-loss
| | | +--rw rate? decimal64
| | +--rw bandwidth
| | +--rw guaranteed-bw-percent
| | | decimal64
| | +--rw end-to-end? empty
| +--rw carrierscarrier {carrierscarrier}?
| +--rw signaling-type? identityref
+--rw broadcast-unknown-unicast-multicast {bum}?
| +--rw multicast-site-type? enumeration
| +--rw multicast-gp-address-mapping* [id]
| | +--rw id uint16
| | +--rw vlan-id uint16
| | +--rw mac-gp-address yang:mac-address
| | +--rw port-lag-number? uint32
| +--rw bum-overall-rate? uint32
| +--rw bum-rate-per-type* [type]
Wen, et al. Standards Track [Page 19]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
| +--rw type identityref
| +--rw rate? uint32
+--rw mac-loop-prevention {mac-loop-prevention}?
| +--rw protection-type? identityref
| +--rw frequency? uint32
| +--rw retry-timer? uint32
+--rw access-control-list
| +--rw mac* [mac-address]
| +--rw mac-address yang:mac-address
+--rw mac-addr-limit
+--rw limit-number? uint16
+--rw time-interval? uint32
+--rw action? identityref
Figure 4: Overall Structure of the YANG Module
5.1. Features and Augmentation
The model defined in this document implements many features that
allow implementations to be modular. As an example, the Layer 2
protocol parameters (Section 5.3.2.2) proposed to the customer may
also be enabled through features. This model also defines some
features for options that are more advanced, such as support for
extranet VPNs (Section 5.2.4), site diversity (Section 5.3), and QoS
(Section 5.10.2).
In addition, as for any YANG data model, this service model can be
augmented to implement new behaviors or specific features. For
example, this model defines VXLAN [RFC7348] for Ethernet packet
encapsulation; if VXLAN encapsulation does not fulfill all
requirements for describing the service, new options can be added
through augmentation.
5.2. VPN Service Overview
The vpn-service list item contains generic information about the VPN
service. The vpn-id in the vpn-service list refers to an internal
reference for this VPN service. This identifier is purely internal
to the organization responsible for the VPN service.
The vpn-service list is composed of the following characteristics:
Customer information (customer-name): Used to identify the customer.
VPN service type (vpn-svc-type): Used to indicate the VPN service
type. The identifier is an identity allowing any encoding for the
local administration of the VPN service. Note that another
identity can be an extension of the base identity.
Wen, et al. Standards Track [Page 20]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Cloud access (cloud-access): All sites in the L2VPN SHOULD be
permitted to access the cloud by default. The "cloud-access"
container provides parameters for authorization rules. A cloud
identifier is used to reference the target service. This
identifier is local to each administration.
Service topology (svc-topo): Used to identify the type of VPN
service topology that is required.
Frame delivery service (frame-delivery): Defines the frame delivery
support required for the L2VPN, e.g., multicast delivery, unicast
delivery, or broadcast delivery.
Extranet VPN (extranet-vpns): Indicates that a particular VPN needs
access to resources located in another VPN.
5.2.1. VPN Service Type
The "vpn-svc-type" parameter defines the service type for provider-
provisioned L2VPNs. The current version of the model supports six
flavors:
o Point-to-point VPWSs connecting two customer sites.
o Point-to-point or point-to-multipoint VPWSs connecting a set of
customer sites [RFC8214].
o Multipoint VPLSs connecting a set of customer sites.
o Multipoint VPLSs connecting one or more root sites and a set of
leaf sites but preventing inter-leaf-site communication.
o EVPN services [RFC7432] connecting a set of customer sites.
o EVPN VPWSs between two customer sites or a set of customer sites
as specified in [RFC8214].
Other L2VPN service types could be included by augmentation. Note
that an Ethernet Private Line (EPL) service or an Ethernet Virtual
Private Line (EVPL) service is an Ethernet Line (E-Line) service
[MEF-6]or a point-to-point Ethernet Virtual Circuit (EVC) service,
while an Ethernet Private LAN (EP-LAN) service or an Ethernet Virtual
Private LAN (EVP-LAN) service is an Ethernet LAN (E-LAN) service
[MEF-6] or a multipoint-to-multipoint EVC service.
Wen, et al. Standards Track [Page 21]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.2.2. VPN Service Topologies
The types of VPN service topologies discussed below can be used for
configuration if needed. The module described in this document
currently supports any-to-any, Hub-and-Spoke (where Hubs can exchange
traffic), and Hub-and-Spoke Disjoint (where Hubs cannot exchange
traffic). New topologies could be added by augmentation. By
default, the any-to-any VPN service topology is used.
5.2.2.1. Route Target Allocation
A Layer 2 PE-based VPN (such as a VPLS-based VPN or an EVPN that uses
BGP as its signaling protocol) can be built using Route Targets (RTs)
as described in [RFC4364] and [RFC7432]. The management system is
expected to automatically allocate a set of RTs upon receiving a VPN
service creation request. How the management system allocates RTs is
out of scope for this document, but multiple ways could be envisaged,
as described in Section 6.2.1.1 of [RFC8299].
5.2.2.2. Any-to-Any
+--------------------------------------------------------------+
| VPN1_Site 1 ------ PE1 PE2 ------ VPN1_Site 2 |
| |
| VPN1_Site 3 ------ PE3 PE4 ------ VPN1_Site 4 |
+--------------------------------------------------------------+
Figure 5: Any-to-Any VPN Service Topology
In the any-to-any VPN service topology, all VPN sites can communicate
with each other without any restrictions. The management system that
receives an any-to-any L2VPN service request through this model is
expected to assign and then configure the MAC-VRF and RTs on the
appropriate PEs. In the any-to-any case, a single RT is generally
required, and every MAC-VRF imports and exports this RT.
5.2.2.3. Hub-and-Spoke
+---------------------------------------------------------------+
| Hub_Site 1 ------ PE1 PE2 ------ Spoke_Site 1 |
| +------------------------------------+
| |
| +------------------------------------+
| Hub_Site 2 ------ PE3 PE4 ------ Spoke_Site 2 |
+---------------------------------------------------------------+
Figure 6: Hub-and-Spoke VPN Service Topology
Wen, et al. Standards Track [Page 22]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
In the Hub-and-Spoke VPN service topology,
o all Spoke sites can communicate only with Hub sites (i.e., Spoke
sites cannot communicate with each other).
o Hubs can communicate with each other.
The management system that receives a Hub-and-Spoke L2VPN service
request through this model is expected to assign and then configure
the MAC-VRF and RTs on the appropriate PEs. In the Hub-and-Spoke
case, two RTs are generally required (one RT for Hub routes and one
RT for Spoke routes). A Hub MAC-VRF that connects Hub sites will
export Hub routes with the Hub RT and will import Spoke routes
through the Spoke RT. It will also import the Hub RT to allow
Hub-to-Hub communication. A Spoke MAC-VRF that connects Spoke sites
will export Spoke routes with the Spoke RT and will import Hub routes
through the Hub RT.
5.2.2.4. Hub-and-Spoke Disjoint
+---------------------------------------------------------------+
| Hub_Site 1 ------ PE1 PE2 ------ Spoke_Site 1 |
+--------------------------+ +---------------------------------+
| |
+--------------------------+ +---------------------------------+
| Hub_Site 2 ------ PE3 PE4 ------ Spoke_Site 2 |
+---------------------------------------------------------------+
Figure 7: Hub-and-Spoke-Disjoint VPN Service Topology
In the Hub-and-Spoke-Disjoint VPN service topology,
o all Spoke sites can communicate only with Hub sites (i.e., Spoke
sites cannot communicate with each other).
o Hubs cannot communicate with each other.
The management system that receives a Hub-and-Spoke-Disjoint L2VPN
service request through this model is expected to assign and then
configure the VRF and RTs on the appropriate PEs. In the
Hub-and-Spoke-Disjoint case, at least two RTs are required for Hubs
and Spokes, respectively (at least one RT for Hub routes and at least
one RT for Spoke routes). A Hub VRF that connects Hub sites will
export Hub routes with the Hub RT and will import Spoke routes
through the Spoke RT. A Spoke VRF that connects Spoke sites will
export Spoke routes with the Spoke RT and will import Hub routes
through the Hub RT.
Wen, et al. Standards Track [Page 23]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
The management system MUST take into account constraints on
Hub-and-Spoke connections, as in the previous case.
Hub-and-Spoke Disjoint can also be seen as multiple Hub-and-Spoke
VPNs (one per Hub) that share a common set of Spoke sites.
5.2.3. Cloud Access
This model provides cloud access configuration through the
cloud-access container. The usage of cloud-access is targeted for
public cloud access and Internet access. The cloud-access container
provides parameters for authorization rules. Note that this model
considers that public cloud and public Internet access share some
commonality; therefore, it does not distinguish Internet access from
cloud access. If needed, a different label for Internet access could
be added by augmentation.
Private cloud access may be addressed through the site container as
described in Section 5.3, with usage consistent with sites of
type "NNI".
A cloud identifier is used to reference the target service. This
identifier is local to each administration.
By default, all sites in the L2VPN SHOULD be permitted to access the
cloud or the Internet. If restrictions are required, a user MAY
configure some limitations for some sites or nodes by using policies,
i.e., the "permit-site" or "deny-site" leaf-list. The permit-site
leaf-list defines the list of sites authorized for cloud access. The
deny-site leaf-list defines the list of sites denied for cloud
access. The model supports both "deny-any-except" and
"permit-any-except" authorization.
How the restrictions will be configured on network elements is out of
scope for this document.
Wen, et al. Standards Track [Page 24]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
L2VPN
++++++++++++++++++++++++++++++++ ++++++++++++
+ Site 3 + --- + Cloud 1 +
+ Site 1 + ++++++++++++
+ +
+ Site 2 + --- ++++++++++++
+ + + Internet +
+ Site 4 + ++++++++++++
++++++++++++++++++++++++++++++++
|
+++++++++++
+ Cloud 2 +
+++++++++++
Figure 8: Example of Cloud Access Configuration
As shown in Figure 8, we configure the global VPN to access the
Internet by creating a cloud-access container pointing to the cloud
identifier for the Internet service. (This is illustrated in the XML
[W3C.REC-xml-20081126] below.) No authorized sites will be
configured, as all sites are required to be able to access the
Internet.
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>123456487</vpn-id>
<cloud-accesses>
<cloud-access>
<cloud-identifier>INTERNET</cloud-identifier>
</cloud-access>
</cloud-accesses>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
</l2vpn-svc>
If Site 1 and Site 2 require access to Cloud 1, a new cloud-access
container pointing to the cloud identifier of Cloud 1 will be
created. The permit-site leaf-list will be filled with a reference
to Site 1 and Site 2.
Wen, et al. Standards Track [Page 25]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>123456487</vpn-id>
<cloud-accesses>
<cloud-access>
<cloud-identifier>Cloud1</cloud-identifier>
<permit-site>site1</permit-site>
<permit-site>site2</permit-site>
</cloud-access>
</cloud-accesses>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
</l2vpn-svc>
If all sites except Site 1 require access to Cloud 2, a new
cloud-access container pointing to the cloud identifier of Cloud 2
will be created. The deny-site leaf-list will be filled with a
reference to Site 1.
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>123456487</vpn-id>
<cloud-accesses>
<cloud-access>
<cloud-identifier>Cloud2</cloud-identifier>
<deny-site>site1</deny-site>
</cloud-access>
</cloud-accesses>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
</l2vpn-svc>
Wen, et al. Standards Track [Page 26]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.2.4. Extranet VPNs
There are some cases where a particular VPN needs access to resources
(servers, hosts, etc.) that are external. Those resources may be
located in another VPN.
+-----------+ +-----------+
/ \ / \
Site A -- | VPN A | --- | VPN B | --- Site B
\ / \ / (Shared
+-----------+ +-----------+ resources)
Figure 9: Example of Shared VPN Resources
As illustrated in Figure 9, VPN B has some resources on Site B that
need to be made available to some customers/partners. Specifically,
VPN A must be able to access those VPN B resources.
Such a VPN connection scenario can be achieved via a VPN policy as
defined in Section 5.5.2.2. But there are some simple cases where a
particular VPN (VPN A) needs access to all resources in another VPN
(VPN B). The model provides an easy way to set up this connection
using the "extranet-vpns" container.
The extranet-vpns container defines a list of VPNs a particular VPN
wants to access. The extranet-vpns container is used on customer
VPNs accessing extranet resources in another VPN. In Figure 9, in
order to provide VPN A with access to VPN B, the extranet-vpns
container needs to be configured under VPN A with an entry
corresponding to VPN B. There is no service configuration
requirement on VPN B.
Readers should note that even if there is no configuration
requirement on VPN B, if VPN A lists VPN B as an extranet, all sites
in VPN B will gain access to all sites in VPN A.
The "site-role" leaf defines the role of the local VPN sites in the
target extranet VPN service topology. Site roles are defined in
Section 5.4.
In the example below, VPN A accesses VPN B resources through an
extranet connection. A Spoke role is required for VPN A sites, as
sites from VPN A must not be able to communicate with each other
through the extranet VPN connection.
Wen, et al. Standards Track [Page 27]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>VPNB</vpn-id>
<svc-topo>hub-spoke</svc-topo>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
<vpn-service>
<vpn-id>VPNA</vpn-id>
<svc-topo>any-to-any</svc-topo>
<extranet-vpns>
<extranet-vpn>
<vpn-id>VPNB</vpn-id>
<local-sites-role>spoke-role</local-sites-role>
</extranet-vpn>
</extranet-vpns>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
</l2vpn-svc>
This model does not define how the extranet configuration will be
achieved within the network.
Any VPN interconnection scenario that is more complex (e.g., only
certain parts of sites on VPN A accessing only certain parts of sites
on VPN B) needs to be achieved using a VPN attachment as defined in
Section 5.5.2 and, in particular, a VPN policy as defined in
Section 5.5.2.2.
5.2.5. Frame Delivery Service
If a BUM (Broadcast, Unknown Unicast, or Multicast) frame delivery
service is supported for an L2VPN, some global frame delivery
parameters are required as input for the service request. When a CE
sends BUM packets, replication occurs at the ingress PE and three
frame types need to be supported.
Users of this model will need to provide the flavors of trees that
will be used by customers within the L2VPN (customer-tree-flavors).
The model defined in this document supports bidirectional, shared,
and source-based trees (and can be augmented to contain other tree
types). Multiple flavors of trees can be supported simultaneously.
Wen, et al. Standards Track [Page 28]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Operator network
______________
/ \
| |
| |
Recv -- Site 2 ------- PE2 |
| PE1 --- Site 1 --- Source 1
| | \
| | -- Source 2
| |
| |
Recv -- Site 3 ------- PE3 |
| |
| |
Recv -- Site 4 ------- PE4 |
/ | |
Recv -- Site 5 ------- | |
| |
| |
\______________/
Figure 10: BUM Frame Delivery Service Example
Multicast-group-to-port mappings can be created using the
"rp-group-mappings" leaf. Two group-to-port mapping methods are
supported:
o Static configuration of multicast Ethernet addresses and
ports/interfaces.
o A multicast control protocol based on Layer 2 technology that
signals mappings of multicast addresses to ports/interfaces, such
as the Generic Attribute Registration Protocol (GARP) / GARP
Multicast Registration Protocol (GARP/GMRP) [IEEE-802-1D].
Wen, et al. Standards Track [Page 29]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.3. Site Overview
A site represents a connection of a customer office to one or more
VPN services. Each site is associated with one or more locations.
+-------------+
/ \
+-----| VPN1 |
+------------------+ | \ /
| | | +-------------+
| New York Office |------ (site) -----+
| | | +-------------+
+------------------+ | / \
+-----| VPN2 |
\ /
+-------------+
Figure 11: Example: Customer Office and Two VPN Services
The provider uses the site container to store information regarding
detailed implementation arrangements made with either the customer or
peer operators at each interconnect location.
We restrict the L2SM to exterior interfaces (i.e., UNIs and NNIs)
only, so all internal interfaces and the underlying topology are
outside the scope of the L2SM.
Typically, the following characteristics of a site interface handoff
need to be documented as part of the service design:
Unique identifier (site-id): An arbitrary string to uniquely
identify the site within the overall network infrastructure. The
format of "site-id" is determined by the local administrator of
the VPN service.
Device (device): The customer can request one or more customer
premises equipment entities from the SP for a particular site.
Management (management): Defines the model of management for the
site -- for example, type, management-transport, address. This
parameter determines the boundary between the SP and the customer,
i.e., who has ownership of the CE device.
Location (location): The site location information. Allows easy
retrieval of data about the nearest available resources.
Site diversity (site-diversity): Presents some parameters to support
site diversity.
Wen, et al. Standards Track [Page 30]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Site network accesses (site-network-accesses): Defines the list of
ports to the site and their properties -- in particular, bearer,
connection, and service parameters.
A site-network-access represents an Ethernet logical connection to a
site. A site may have multiple site-network-accesses.
+------------------+ Site
| |-------------------------------------
| |****** (site-network-access#1) ******
| New York Office |
| |****** (site-network-access#2) ******
| |-------------------------------------
+------------------+
Figure 12: Two Site-Network-Accesses for a Site
Multiple site-network-accesses are used, for instance, in the case of
multihoming. Some other meshing cases may also include multiple
site-network-accesses.
The site configuration is viewed as a global entity; we assume that
it is mostly the management system's role to split the parameters
between the different elements within the network. For example, in
the case of the site-network-access configuration, the management
system needs to split the parameters between the PE configuration and
the CE configuration.
The site may support single-homed access or multihoming. In the case
of multihoming, the site can support multiple site-network-accesses.
Under each site-network-access, "vpn-attachment" is defined;
vpn-attachment will describe the association between a given
site-network-access and a given site, as well as the VPN to which
that site will connect.
5.3.1. Devices and Locations
The information in the "location" sub-container under a site
container and in the "devices" container allows easy retrieval of
data about the nearest available facilities and can be used for
access topology planning. It may also be used by other network
orchestration components to choose the targeted upstream PE and
downstream CE. Location is expressed in terms of postal information.
More detailed information or other location information can be added
by augmentation.
A site may be composed of multiple locations. All the locations will
need to be configured as part of the "locations" container and list.
Wen, et al. Standards Track [Page 31]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
A typical example of a multi-location site is a headquarters office
in a city, where the office is composed of multiple buildings. Those
buildings may be located in different parts of the city and may be
linked by intra-city fibers (a customer metropolitan area network).
This model does not represent connectivity between multiple locations
of a site, because that connectivity is controlled by the customer.
In such a case, when connecting to a VPN service, the customer may
ask for multihoming based on its distributed locations.
New York Site
+------------------+ Site
| +--------------+ |-------------------------------------
| | Manhattan | |****** (site-network-access#1) ******
| +--------------+ |
| +--------------+ |
| | Brooklyn | |****** (site-network-access#2) ******
| +--------------+ |-------------------------------------
+------------------+
Figure 13: Two Site-Network-Accesses, Two Sites
A customer may also request the use of some premises equipment
entities (CEs) from the SP via the devices container. Requesting a
CE implies a provider-managed or co-managed model. A particular
device must be requested for a particular already-configured
location. This would help the SP send the device to the appropriate
postal address. In a multi-location site, a customer may, for
example, request a CE for each location on the site where multihoming
must be implemented. In Figure 13, one device may be requested for
the Manhattan location and one other for the Brooklyn location.
By using devices and locations, the user can influence the
multihoming scenario they want to implement: single CE, dual CE, etc.
5.3.2. Site Network Accesses
The L2SM includes a set of essential physical interface properties
and Ethernet-layer characteristics in the "site-network-accesses"
container. Some of these are critical implementation arrangements
that require consent from both the customer and the provider.
As mentioned earlier, a site may be multihomed. Each logical network
access for a site is defined in the site-network-accesses container.
The site-network-access parameter defines how the site is connected
on the network and is split into three main classes of parameters:
o bearer: defines requirements of the attachment (below Layer 2).
Wen, et al. Standards Track [Page 32]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
o connection: defines Layer 2 protocol parameters of the attachment.
o availability: defines the site's availability policy. The
availability parameters are defined in Section 5.8.
The site-network-access has a specific type
(site-network-access type). This document defines two types:
o point-to-point: describes a point-to-point connection between the
SP and the customer.
o multipoint: describes a multipoint connection between the SP and
the customer.
This site-network-access type may have an impact on the parameters
offered to the customer, e.g., an SP might not offer MAC loop
protection for multipoint accesses. It is up to the provider to
decide what parameters are supported for point-to-point and/or
multipoint accesses. Multipoint accesses are out of scope for this
document; some containers defined in the model may require extensions
in order to work properly for multipoint accesses.
5.3.2.1. Bearer
The "bearer" container defines the requirements for the site
attachment (below Layer 2) to the provider network.
The bearer parameters will help to determine the access media to
be used.
5.3.2.2. Connection
The "connection" container defines the Layer 2 protocol parameters of
the attachment (e.g., vlan-id or circuit-id) and provides
connectivity between customer Ethernet switches. Depending on the
management mode, it refers to PE-CE-LAN segment addressing or to
CE-to-customer-LAN segment addressing. In any case, it describes the
responsibility boundary between the provider and the customer. For a
customer-managed site, it refers to the PE-CE-LAN segment connection.
For a provider-managed site, it refers to the CE-to-customer-LAN
segment connection.
The "encapsulation-type" parameter allows the user to select between
Ethernet encapsulation (port-based) or Ethernet VLAN encapsulation
(VLAN-based). All of the allowed Ethernet interface types of service
frames can be listed under "ether-inf-type", e.g., untagged
interface, tagged interface, LAG interface.
Wen, et al. Standards Track [Page 33]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Corresponding to "ether-inf-type", the connection container also
presents three sets of link attributes: untagged interface, tagged
interface, and optional LAG interface attributes. These parameters
are essential for the connection to be properly established between
the CE devices and the PE devices. The connection container also
defines a Layer 2 Control Protocol (L2CP) attribute that allows
control-plane protocol interaction between the CE devices and the PE
device.
5.3.2.2.1. Untagged Interface
For each untagged interface (untagged-interface), there are basic
configuration parameters like interface index and speed, interface
MTU, auto-negotiation and flow-control settings, etc. In addition,
and based on mutual agreement, the customer and provider may decide
to enable advanced features, such as LLDP, IEEE 802.3ah
[IEEE-802-3ah], or MAC loop detection/prevention at a UNI. If loop
avoidance is required, the attribute "uni-loop-prevention" must be
set to "true".
5.3.2.2.2. Tagged Interface
If the tagged service is enabled on a logical unit on the connection
at the interface, "encapsulation-type" should be specified as the
Ethernet VLAN encapsulation (if VLAN-based) or VXLAN encapsulation,
and "eth-inf-type" should be set to indicate a tagged interface.
In addition, "tagged-interface-type" should be specified in the
"tagged-interface" container to determine how tagging needs to be
done. The current model defines five ways to perform VLAN tagging:
o priority-tagged: SPs encapsulate and tag packets between the CE
and the PE with the frame priority level.
o dot1q-vlan-tagged: SPs encapsulate packets between the CE and the
PE with one or a set of customer VLAN (CVLAN) IDs.
o qinq: SPs encapsulate packets that enter their networks with
multiple CVLAN IDs and a single VLAN tag with a single SP VLAN
(SVLAN).
o qinany: SPs encapsulate packets that enter their networks with
unknown CVLANs and a single VLAN tag with a single SVLAN.
o vxlan: SPs encapsulate packets that enter their networks with a
VXLAN Network Identifier (VNI) and a peer list.
Wen, et al. Standards Track [Page 34]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
The overall S-tag for the Ethernet circuit and (if applicable)
C-tag-to-SVC mapping (where "SVC" stands for "Switched Virtual
Circuit") have been placed in the "service" container. For the qinq
and qinany options, the S-tag under "qinq" and "qinany" should match
the S-tag in the service container in most cases; however, VLAN
translation is required for the S-tag in certain deployments at the
external-facing interface or upstream PEs to "normalize" the outer
VLAN tag to the service S-tag into the network and translate back to
the site's S-tag in the opposite direction. One example of this is
with a Layer 2 aggregation switch along the path: the S-tag for the
SVC has been previously assigned to another service and thus cannot
be used by this AC.
5.3.2.2.3. LAG Interface
Sometimes, the customer may require multiple physical links bundled
together to form a single, logical, point-to-point LAG connection to
the SP. Typically, the Link Aggregation Control Protocol (LACP) is
used to dynamically manage adding or deleting member links of the
aggregate group. In general, a LAG allows for increased service
bandwidth beyond the speed of a single physical link while providing
graceful degradation as failure occurs, thus increasing availability.
In the L2SM, there is a set of attributes under "lag-interface"
related to link aggregation functionality. The customer and provider
first need to decide on whether LACP PDUs will be exchanged between
the edge devices by specifying the "LACP-state" as "on" or "off". If
LACP is to be enabled, then both parties need to further specify
(1) whether LACP will be running in active or passive mode and
(2) the time interval and priority level of the LACP PDU. The
customer and provider can also determine the minimum aggregate
bandwidth for a LAG to be considered as a valid path by specifying
the optional "mini-link-num" attribute. To enable fast detection of
faulty links, micro-BFD [RFC7130] ("BFD" stands for "Bidirectional
Forwarding Detection") runs independent UDP sessions to monitor the
status of each member link. The customer and provider should agree
on the BFD hello interval and hold time.
Each member link will be listed under the LAG interface with basic
physical link properties. Certain attributes, such as flow control,
encapsulation type, allowed ingress Ethertype, and LLDP settings, are
at the LAG level.
Wen, et al. Standards Track [Page 35]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.3.2.2.4. CVLAN-ID-to-SVC Mapping
When more than one service is multiplexed onto the same interface,
ingress service frames are conditionally transmitted through one of
the L2VPN services based upon a pre-arranged customer-VLAN-to-SVC
mapping. Multiple CVLANs can be bundled across the same SVC. The
bundling type will determine how a group of CVLANs is bundled into
one VPN service (i.e., VLAN-bundling).
When applicable, "cvlan-id-to-svc-map" contains the list of CVLANs
that are mapped to the same service. In most cases, this will be the
VLAN access-list for the inner 802.1Q tag [IEEE-802-1Q] (the C-tag).
A VPN service can be set to preserve the CE-VLAN ID and CE-VLAN CoS
from the source site to the destination site. This is required when
the customer wants to use the VLAN header information between its two
sites. CE-VLAN ID preservation and CE-VLAN CoS preservation are
applied on each site-network-access within sites. "Preservation"
means that the value of the CE-VLAN ID and/or CE-VLAN CoS at the
source site must be equal to the value at a destination site
belonging to the same L2VPN service.
If all-to-one bundling is enabled (i.e., the bundling type is set to
"all-to-one bundling"), then preservation applies to all ingress
service frames. If all-to-one bundling is disabled, then
preservation applies to tagged ingress service frames having the
CE-VLAN ID.
5.3.2.2.5. L2CP Control Support
The customer and the SP should arrange in advance whether or not to
allow control-plane protocol interaction between the CE devices and
the PE device. To provide seamless operation with multicast data
transport, the transparent operation of Ethernet control protocols
(e.g., the Spanning Tree Protocol (STP) [IEEE-802-1D]) can be
employed by customers.
To support efficient dynamic transport, Ethernet multicast control
frames (e.g., GARP/GMRP [IEEE-802-1D]) can be used between the CE and
the PE. However, solutions MUST NOT assume that all CEs are always
running such protocols (typically in the case where a CE is a router
and is not aware of Layer 2 details).
The destination MAC addresses of these L2CP PDUs fall within two
reserved blocks specified by the IEEE 802.1 Working Group. Packets
with destination MAC addresses in these multicast ranges have special
forwarding rules.
Wen, et al. Standards Track [Page 36]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
o Bridge block of protocols: 01-80-C2-00-00-00 through
01-80-C2-00-00-0F
o MRP block of protocols: 01-80-C2-00-00-20 through
01-80-C2-00-00-2F
Layer 2 protocol tunneling allows SPs to pass subscriber Layer 2
control PDUs across the network without being interpreted and
processed by intermediate network devices. These L2CP PDUs are
transparently encapsulated across the MPLS-enabled core network in
QinQ fashion.
The "L2CP-control" container contains the list of commonly used L2CP
protocols and parameters. The SP can specify discard-mode,
peer-mode, or tunnel-mode actions for each individual protocol.
5.3.2.2.6. Ethernet Service OAM
The advent of Ethernet as a wide-area network technology brings the
additional requirements of end-to-end service monitoring and fault
management in the SP network, particularly in the area of service
availability and Mean Time To Repair (MTTR). Ethernet Service OAM in
the L2SM refers to the combined protocol suites of IEEE 802.1ag
[IEEE-802-1ag] and ITU-T Y.1731 [ITU-T-Y-1731].
Generally speaking, Ethernet Service OAM enables SPs to perform
service continuity checks, fault isolation, and packet delay/jitter
measurement at per-customer and per-site-network-access granularity.
The information collected from Ethernet Service OAM data sets is
complementary to other higher-layer IP/MPLS OSS tools to ensure that
the required SLAs can be met.
The 802.1ag Connectivity Fault Management (CFM) functional model is
structured with hierarchical Maintenance Domains (MDs), each assigned
with a unique maintenance level. Higher-level MDs can be nested over
lower-level MDs. However, the MDs cannot intersect. The scope of
each MD can be solely within a customer network or solely within the
SP network. An MD can interact between CEs and PEs (customer-to-
provider) or between PEs (provider-to-provider), or it can tunnel
over another SP network.
Depending on the use-case scenario, one or more Maintenance Entity
Group End Points (MEPs) can be placed on the external-facing
interface, sending CFM PDUs towards the core network ("Up MEP") or
downstream link ("Down MEP").
The "cfm-802.1-ag" sub-container under "site-network-access" presents
the CFM Maintenance Association (MA), i.e., Down MEP for the UNI MA.
Wen, et al. Standards Track [Page 37]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
For each MA, the user can define the Maintenance Association
Identifier (MAID), MEP level, MEP direction, Remote MEP ID, CoS level
of the CFM PDUs, Continuity Check Message (CCM) interval and hold
time, alarm-priority defect (i.e., the lowest-priority defect that is
allowed to generate a fault alarm), CCM priority type, etc.
ITU-T Y.1731 Performance Monitoring (PM) provides essential network
telemetry information that includes the measurement of Ethernet
service frame delay, frame delay variation, frame loss, and frame
throughput. The delay/jitter measurement can be either one-way or
two-way. Typically, a Y.1731 PM probe sends a small amount of
synthetic frames along with service frames to measure the SLA
parameters.
The "y-1731" sub-container under "site-network-access" contains a set
of parameters to define the PM probe information, including MAID,
local and Remote MEP ID, PM PDU type, message period and measurement
interval, CoS level of the PM PDUs, loss measurement by synthetic or
service frame options, one-way or two-way delay measurement, PM frame
size, and session type.
5.4. Site Roles
A VPN has a particular service topology, as described in
Section 5.2.2. As a consequence, each site belonging to a VPN is
assigned a particular role in this topology. The site-role leaf
defines the role of the site in a particular VPN topology.
In the any-to-any VPN service topology, all sites MUST have the same
role, which will be "any-to-any-role".
In the Hub-and-Spoke VPN service topology or the Hub-and-Spoke-
Disjoint VPN service topology, sites MUST have a Hub role or a
Spoke role.
5.5. Site Belonging to Multiple VPNs
5.5.1. Site VPN Flavors
A site may be part of one or more VPNs. The "site-vpn-flavor"
defines the way that the VPN multiplexing is done. There are four
possible types of external-facing connections associated with an EVPN
service and a site. Therefore, the model supports four flavors:
o site-vpn-flavor-single: The site belongs to only one VPN.
o site-vpn-flavor-multi: The site belongs to multiple VPNs, and all
the logical accesses of the sites belong to the same set of VPNs.
Wen, et al. Standards Track [Page 38]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
o site-vpn-flavor-nni: The site represents an NNI where two
administrative domains belonging to the same or different
providers interconnect.
o site-vpn-flavor-e2e: The site represents an end-to-end
multi-segment connection.
5.5.1.1. Single VPN Attachment: site-vpn-flavor-single
Figure 14 depicts a single VPN attachment. The site connects to only
one VPN.
+--------+
+------------------+ Site / \
| |-----------------------------| |
| |***(site-network-access#1)***| VPN1 |
| New York Office | | |
| |***(site-network-access#2)***| |
| |-----------------------------| |
+------------------+ \ /
+--------+
Figure 14: Single VPN Attachment
5.5.1.2. Multi-VPN Attachment: site-vpn-flavor-multi
Figure 15 shows a site connected to multiple VPNs.
+---------+
+---/----+ \
+------------------+ Site / | \ |
| |--------------------------------- | |VPN B|
| |***(site-network-access#1)******* | | |
| New York Office | | | | |
| |***(site-network-access#2)******* \ | /
| |-----------------------------| VPN A+-----|---+
+------------------+ \ /
+--------+
Figure 15: Multi-VPN Attachment
In Figure 15, the New York office is multihomed. Both logical
accesses are using the same VPN attachment rules, and both are
connected to VPN A and to VPN B.
Reaching VPN A or VPN B from the New York office will be done via MAC
destination-based forwarding. Having the same destination reachable
from the two VPNs may cause routing problems. The customer
Wen, et al. Standards Track [Page 39]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
administration's role in this case would be to ensure the appropriate
mapping of its MAC addresses in each VPN. See Sections 5.5.2 and
5.10.2 for more details. See also Section 5.10.3 for details
regarding support for BUM.
5.5.1.3. NNI: site-vpn-flavor-nni
A Network-to-Network Interface (NNI) scenario may be modeled using
the sites container. It is helpful for the SP to indicate that the
requested VPN connection is not a regular site but rather is an NNI,
as specific default device configuration parameters may be applied in
the case of NNIs (e.g., Access Control Lists (ACLs), routing
policies).
SP A SP B
------------------- -------------------
/ \ / \
| | | |
| ++++++++ Inter-AS link ++++++++ |
| + +_______________+ + |
| + (MAC-VRF1)-(VPN1)-(MAC-VRF1)+ |
| + + + + |
| + ASBR + + ASBR + |
| + + + + |
| + (MAC-VRF2)-(VPN2)-(MAC-VRF2)+ |
| + +_______________+ + |
| ++++++++ ++++++++ |
| | | |
| | | |
| | | |
| ++++++++ Inter-AS link ++++++++ |
| + +_______________+ + |
| + (MAC-VRF1)-(VPN1)-(MAC-VRF1)+ |
| + + + + |
| + ASBR + + ASBR + |
| + + + + |
| + (MAC-VRF2)-(VPN2)-(MAC-VRF2)+ |
| + +_______________+ + |
| ++++++++ ++++++++ |
| | | |
| | | |
\ / \ /
------------------- -------------------
Figure 16: Option A NNI Scenario
Wen, et al. Standards Track [Page 40]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Figure 16 illustrates an option A NNI scenario that can be modeled
using the sites container. In order to connect its customer VPNs
(VPN1 and VPN2) in SP B, SP A may request the creation of some
site-network-accesses to SP B. The site-vpn-flavor-nni type will
be used to inform SP B that this is an NNI and not a regular
customer site.
5.5.1.4. E2E: site-vpn-flavor-e2e
An end-to-end (E2E) multi-segment VPN connection to be constructed
out of several connectivity segments may be modeled. It is helpful
for the SP to indicate that the requested VPN connection is not a
regular site but rather is an end-to-end VPN connection, as specific
default device configuration parameters may be applied in the case of
site-vpn-flavor-e2e (e.g., QoS configuration). In order to establish
a connection between Site 1 in SP A and Site 2 in SP B spanning
multiple domains, SP A may request the creation of end-to-end
connectivity to SP B. The site-vpn-flavor-e2e type will be used to
indicate that this is an end-to-end connectivity setup and not a
regular customer site.
5.5.2. Attaching a Site to a VPN
Due to the multiple site-vpn flavors, the attachment of a site to an
L2VPN is done at the site-network-access (logical access) level
through the "vpn-attachment" container. The vpn-attachment container
is mandatory. The model provides two ways to attach a site to a VPN:
o By referencing the target VPN directly.
o By referencing a VPN policy for attachments that are more complex.
These options allow the user to choose the flavor that provides the
best fit.
5.5.2.1. Referencing a VPN
Referencing a vpn-id provides an easy way to attach a particular
logical access to a VPN. This is the best way in the case of a
single VPN attachment. When referencing a vpn-id, the site-role
setting must be added to express the role of the site in the target
VPN service topology.
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>VPNA</vpn-id>
Wen, et al. Standards Track [Page 41]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
<vpn-service>
<vpn-id>VPNB</vpn-id>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
<sites>
<site>
<site-id>SITE1</site-id>
<locations>
<location>
<location-id>L1</location-id>
</location>
</locations>
<management>
<type>customer-managed</type>
</management>
<site-network-accesses>
<site-network-access>
<network-access-id>LA1</network-access-id>
<service>
<svc-bandwidth>
<bandwidth>
<direction>input-bw</direction>
<type>bw-per-cos</type>
<cir>450000000</cir>
<cbs>20000000</cbs>
<eir>1000000000</eir>
<ebs>200000000</ebs>
</bandwidth>
</svc-bandwidth>
<carrierscarrier>
<signaling-type>bgp</signaling-type>
</carrierscarrier>
<svc-mtu>1514</svc-mtu>
</service>
<vpn-attachment>
<vpn-id>VPNA</vpn-id>
<site-role>spoke-role</site-role>
</vpn-attachment>
</site-network-access>
<site-network-access>
<network-access-id>LA2</network-access-id>
<service>
<svc-bandwidth>
Wen, et al. Standards Track [Page 42]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<bandwidth>
<direction>input-bw</direction>
<type>bw-per-cos</type>
<cir>450000000</cir>
<cbs>20000000</cbs>
<eir>1000000000</eir>
<ebs>200000000</ebs>
</bandwidth>
</svc-bandwidth>
<carrierscarrier>
<signaling-type>bgp</signaling-type>
</carrierscarrier>
<svc-mtu>1514</svc-mtu>
</service>
<vpn-attachment>
<vpn-id>VPNB</vpn-id>
<site-role>spoke-role</site-role>
</vpn-attachment>
</site-network-access>
</site-network-accesses>
</site>
</sites>
</l2vpn-svc>
The example above describes a multi-VPN case where a site (SITE 1)
has two logical accesses (LA1 and LA2), attached to both VPNA and
VPNB.
5.5.2.2. VPN Policy
The "vpn-policy" list helps express a multi-VPN scenario where a
logical access belongs to multiple VPNs.
As a site can belong to multiple VPNs, the vpn-policy list may be
composed of multiple entries. A filter can be applied to specify
that only some LANs at the site should be part of a particular VPN.
A site can be composed of multiple LAN segments, and each LAN segment
can be connected to a different VPN. Each time a site (or LAN) is
attached to a VPN, the user must precisely describe its role
(site-role) within the target VPN service topology.
Wen, et al. Standards Track [Page 43]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
+---------------------------------------------------------------+
| Site 1 ------ PE7 |
+-------------------------+ [VPN2] |
| |
+-------------------------+ |
| Site 2 ------ PE3 PE4 ------ Site 3 |
+-----------------------------------+ |
| |
+-------------------------------------------------------------+ |
| Site 4 ------ PE5 | PE6 ------ Site 5 | |
| | |
| [VPN3] | |
+-------------------------------------------------------------+ |
| |
+----------------------------+
Figure 17: VPN Policy Example
In Figure 17, Site 5 is part of two VPNs: VPN3 and VPN2. It will
play a Hub role in VPN2 and an any-to-any role in VPN3. We can
express such a multi-VPN scenario as follows:
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>VPN2</vpn-id>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
<vpn-service>
<vpn-id>VPN3</vpn-id>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
<sites>
<site>
<locations>
<location>
<location-id>L1</location-id>
</location>
</locations>
<management>
<type>customer-managed</type>
</management>
<site-id>Site5</site-id>
<vpn-policies>
Wen, et al. Standards Track [Page 44]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<vpn-policy>
<vpn-policy-id>POLICY1</vpn-policy-id>
<entries>
<id>ENTRY1</id>
<vpn>
<vpn-id>VPN2</vpn-id>
<site-role>hub-role</site-role>
</vpn>
</entries>
<entries>
<id>ENTRY2</id>
<vpn>
<vpn-id>VPN3</vpn-id>
<site-role>any-to-any-role</site-role>
</vpn>
</entries>
</vpn-policy>
</vpn-policies>
<site-network-accesses>
<site-network-access>
<network-access-id>LA1</network-access-id>
<site>
<site-id>SITE1</site-id>
<locations>
<location>
<location-id>L1</location-id>
</location>
</locations>
<management>
<type>customer-managed</type>
</management>
<site-network-accesses>
<site-network-access>
<network-access-id>LA1</network-access-id>
<service>
<svc-bandwidth>
<bandwidth>
<direction>input-bw</direction>
<type>bw-per-cos</type>
<cir>450000000</cir>
<cbs>20000000</cbs>
<eir>1000000000</eir>
<ebs>200000000</ebs>
</bandwidth>
</svc-bandwidth>
<carrierscarrier>
<signaling-type>bgp</signaling-type>
</carrierscarrier>
Wen, et al. Standards Track [Page 45]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<svc-mtu>1514</svc-mtu>
</service>
<vpn-attachment>
<vpn-id>VPNA</vpn-id>
<site-role>spoke-role</site-role>
</vpn-attachment>
</site-network-access>
<site-network-access>
<network-access-id>LA2</network-access-id>
<service>
<svc-bandwidth>
<bandwidth>
<direction>input-bw</direction>
<type>bw-per-cos</type>
<cir>450000000</cir>
<cbs>20000000</cbs>
<eir>1000000000</eir>
<ebs>200000000</ebs>
</bandwidth>
</svc-bandwidth>
<carrierscarrier>
<signaling-type>bgp</signaling-type>
</carrierscarrier>
<svc-mtu>1514</svc-mtu>
</service>
<vpn-attachment>
<vpn-id>VPNB</vpn-id>
<site-role>spoke-role</site-role>
</vpn-attachment>
</site-network-access>
</site-network-accesses>
</site>
<vpn-attachment>
<vpn-policy-id>POLICY1</vpn-policy-id>
</vpn-attachment>
</site-network-access>
</site-network-accesses>
</site>
</sites>
</l2vpn-svc>
Wen, et al. Standards Track [Page 46]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Now, if a more granular VPN attachment is necessary, filtering can be
used. For example, if LAN1 from Site 5 must be attached to VPN2 as a
Hub and LAN2 must be attached to VPN3, the following configuration
can be used:
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>VPN2</vpn-id>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
<vpn-service>
<vpn-id>VPN3</vpn-id>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
<sites>
<site>
<locations>
<location>
<location-id>L1</location-id>
</location>
</locations>
<management>
<type>customer-managed</type>
</management>
<site-id>Site5</site-id>
<vpn-policies>
<vpn-policy>
<vpn-policy-id>POLICY1</vpn-policy-id>
<entries>
<id>ENTRY1</id>
<filters>
<filter>
<type>lan</type>
<lan-tag>LAN1</lan-tag>
</filter>
</filters>
<vpn>
<vpn-id>VPN2</vpn-id>
<site-role>hub-role</site-role>
</vpn>
</entries>
<entries>
<id>ENTRY2</id>
Wen, et al. Standards Track [Page 47]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<filters>
<filter>
<type>lan</type>
<lan-tag>LAN2</lan-tag>
</filter>
</filters>
<vpn>
<vpn-id>VPN3</vpn-id>
<site-role>any-to-any-role</site-role>
</vpn>
</entries>
</vpn-policy>
</vpn-policies>
<site-network-accesses>
<site-network-access>
<network-access-id>LA1</network-access-id>
<service>
<svc-bandwidth>
<bandwidth>
<direction>input-bw</direction>
<type>bw-per-cos</type>
<cir>450000000</cir>
<cbs>20000000</cbs>
<eir>1000000000</eir>
<ebs>200000000</ebs>
</bandwidth>
</svc-bandwidth>
<carrierscarrier>
<signaling-type>bgp</signaling-type>
</carrierscarrier>
<svc-mtu>1514</svc-mtu>
</service>
<vpn-attachment>
<vpn-policy-id>POLICY1</vpn-policy-id>
</vpn-attachment>
</site-network-access>
</site-network-accesses>
</site>
</sites>
</l2vpn-svc>
5.6. Deciding Where to Connect the Site
The management system will have to determine where to connect each
site-network-access of a particular site to the provider network
(e.g., PE or aggregation switch).
Wen, et al. Standards Track [Page 48]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
This model defines parameters and constraints that can influence the
meshing of the site-network-access.
The management system MUST honor all customer constraints, or, if a
constraint is too strict and cannot be fulfilled, the management
system MUST NOT provision the site and MUST provide the user with
information regarding any constraints that could not be fulfilled.
How this information is provided is out of scope for this document.
Whether or not to relax the constraint would then be left up to
the user.
Parameters such as site location (see Section 5.6.2) and access type
(see Section 5.6.3) affect the service placement that the management
system applies.
In addition to parameters and constraints, the management system's
decision MAY be based on any other internal constraints that are left
up to the SP, e.g., least load, distance.
5.6.1. Constraint: Device
In the case of provider management or co-management, one or more
devices have been ordered by the customer to a particular location
that has already been configured. The customer may force a
particular site-network-access to be connected on a particular device
that it ordered.
New York Site
+------------------+ Site
| +--------------+ |-------------------------------------
| | Manhattan | |
| | CE1********* (site-network-access#1) ******
| +--------------+ |
| +--------------+ |
| | Brooklyn | |
| | CE2********* (site-network-access#2) ******
| +--------------+ |
| |-------------------------------------
+------------------+
Figure 18: Example of a Constraint Applied to a Device
In Figure 18, site-network-access#1 is associated with CE1 in the
service request. The SP must ensure the provisioning of this
connection.
Wen, et al. Standards Track [Page 49]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.6.2. Constraint/Parameter: Site Location
The location information provided in this model MAY be used by a
management system to determine the target PE to mesh the site (SP
side). A particular location must be associated with each site
network access when configuring it. The SP MUST honor the
termination of the access on the location associated with the site
network access (customer side). The "country-code" in the site
location should be expressed as an ISO 3166 code and is similar to
the "country" label defined in [RFC4119].
The site-network-access location is determined by the
"location-flavor". In the case of a provider-managed or co-managed
site, the user is expected to configure a "device-reference" (device
case) that will bind the site-network-access to a particular device
that the customer ordered. As each device is already associated with
a particular location, in such a case the location information is
retrieved from the device location. In the case of a
customer-managed site, the user is expected to configure a
"location-reference" (location case); this provides a reference to an
existing configured location and will help with placement.
POP#1 (New York)
+---------+
| PE1 |
Site 1 ---... | PE2 |
(Atlantic City) | PE3 |
+---------+
POP#2 (Washington)
+---------+
| PE4 |
| PE5 |
| PE6 |
+---------+
POP#3 (Philadelphia)
+---------+
| PE7 |
Site 2 CE#1---... | PE8 |
(Reston) | PE9 |
+---------+
Figure 19: Location Information for Sites
In Figure 19, Site 1 is a customer-managed site with a location "L1",
while Site 2 is a provider-managed site for which a CE (CE#1) was
ordered. Site 2 is configured with "L2" as its location. When
Wen, et al. Standards Track [Page 50]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
configuring a site-network-access for Site 1, the user will need to
reference location L1 so that the management system will know that
the access will need to terminate on this location. Then, for
distance reasons, this management system may mesh Site 1 on a PE in
the Philadelphia POP. It may also take into account resources
available on PEs to determine the exact target PE (e.g., least
loaded). For Site 2, the user is expected to configure the
site-network-access with a device-reference to CE#1 so that the
management system will know that the access must terminate on the
location of CE#1 and must be connected to CE#1. For placement of the
SP side of the access connection, in the case of the nearest PE used,
it may mesh Site 2 on the Washington POP.
5.6.3. Constraint/Parameter: Access Type
The management system needs to elect the access media to connect the
site to the customer (for example, xDSL, leased line, Ethernet
backhaul). The customer may provide some parameters/constraints that
will provide hints to the management system.
The bearer container information SHOULD be the first piece of
information considered when making this decision:
o The "requested-type" parameter provides information about the
media type that the customer would like to use. If the "strict"
leaf is equal to "true", this MUST be considered a strict
constraint so that the management system cannot connect the site
with another media type. If the "strict" leaf is equal to "false"
(default) and if the requested media type cannot be fulfilled, the
management system can select another media type. The supported
media types SHOULD be communicated by the SP to the customer via a
mechanism that is out of scope for this document.
o The "always-on" leaf defines a strict constraint: if set to
"true", the management system MUST elect a media type that is
"always-on" (e.g., this means no dial-in access type).
o The "bearer-reference" parameter is used in cases where the
customer has already ordered a network connection to the SP apart
from the L2VPN site and wants to reuse this connection. The
string used is an internal reference from the SP and describes the
already-available connection. This is also a strict requirement
that cannot be relaxed. How the reference is given to the
customer is out of scope for this document, but as an example,
when the customer ordered the bearer (through a process that is
out of scope for this model), the SP may have provided the bearer
reference that can be used for provisioning services on top.
Wen, et al. Standards Track [Page 51]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Any other internal parameters from the SP can also be used. The
management system MAY use other parameters, such as the requested
"input svc-bandwidth" and "output svc-bandwidth", to help decide
which access type to use.
5.6.4. Constraint: Access Diversity
Each site-network-access may have one or more constraints that would
drive the placement of the access. By default, the model assumes
that there are no constraints, but allocation of a unique bearer per
site-network-access is expected.
In order to help with the different placement scenarios, a
site-network-access may be tagged using one or multiple group
identifiers. The group identifier is a string, so it can accommodate
both explicit naming of a group of sites (e.g., "multihomed-set1")
and the use of a numbered identifier (e.g., 12345678). The meaning
of each group-id is local to each customer administrator, and the
management system MUST ensure that different customers can use the
same group-ids. One or more group-ids can also be defined at the
site level; as a consequence, all site-network-accesses under the
site MUST inherit the group-ids of the site to which they belong.
When, in addition to the site group-ids some group-ids are defined at
the site-network-access level, the management system MUST consider
the union of all groups (site level and site-network-access level)
for this particular site-network-access.
For an already-configured site-network-access, each constraint MUST
be expressed against a targeted set of site-network-accesses. This
site-network-access (i.e., the already-configured
site-network-access) MUST never be taken into account in the targeted
set of site-network-accesses -- for example, "My site-network-access
S must not be connected on the same POP as the site-network-accesses
that are part of Group 10." The set of site-network-accesses against
which the constraint is evaluated can be expressed as a list of
groups, "all-other-accesses", or "all-other-groups". The
all-other-accesses option means that the current site-network-access
constraint MUST be evaluated against all the other
site-network-accesses belonging to the current site. The
all-other-groups option means that the constraint MUST be evaluated
against all groups to which the current site-network-access does not
belong.
The current model defines multiple constraint-types:
o pe-diverse: The current site-network-access MUST NOT be connected
to the same PE as the targeted site-network-accesses.
Wen, et al. Standards Track [Page 52]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
o pop-diverse: The current site-network-access MUST NOT be connected
to the same POP as the targeted site-network-accesses.
o linecard-diverse: The current site-network-access MUST NOT be
connected to the same linecard as the targeted site-network-
accesses. Note that the customer can request linecard-diverse for
site-network-accesses, but the specific linecard identifier used
should not be exposed to the customer.
o bearer-diverse: The current site-network-access MUST NOT use
common bearer components compared to bearers used by the targeted
site-network-accesses. "bearer-diverse" provides some level of
diversity at the access level. As an example, two bearer-diverse
site-network-accesses must not use the same Digital Subscriber
Line Access Multiplexer (DSLAM), Broadband Access Switch (BAS), or
Layer 2 switch.
o same-pe: The current site-network-access MUST be connected to the
same PE as the targeted site-network-accesses.
o same-bearer: The current site-network-access MUST be connected
using the same bearer as the targeted site-network-accesses.
These constraint-types can be extended through augmentation. Each
constraint is expressed as "The site-network-access S must be
<constraint-type> (e.g., pe-diverse, pop-diverse) from these <target>
site-network-accesses."
The group-id used to target some site-network-accesses may be the
same as the one used by the current site-network-access. This eases
the configuration of scenarios where a group of site-network-access
points has a constraint between the access points in the group.
5.7. Route Distinguisher and Network Instance Allocation
The Route Distinguisher (RD) is a critical parameter of BGP-based
L2VPNs as described in [RFC4364] that provides the ability to
distinguish common addressing plans in different VPNs. As for Route
Targets (RTs), a management system is expected to allocate a MAC-VRF
on the target PE and an RD for that MAC-VRF; that RD MUST be unique
across all MAC-VRFs on the target PE.
If a MAC-VRF already exists on the target PE and the MAC-VRF fulfills
the connectivity constraints for the site, there is no need to
recreate another MAC-VRF, and the site MAY be meshed within the
existing MAC-VRF. How the management system checks to see if an
existing MAC-VRF fulfills the connectivity constraints for a site is
out of scope for this document.
Wen, et al. Standards Track [Page 53]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
If no such MAC-VRF exists on the target PE, the management system has
to initiate the creation of a new MAC-VRF on the target PE and has to
allocate a new RD for the new MAC-VRF.
The management system MAY apply a per-VPN or per-MAC-VRF allocation
policy for the RD, depending on the SP's policy. In a per-VPN
allocation policy, all MAC-VRFs (dispatched on multiple PEs) within a
VPN will share the same RD value. In a per-MAC-VRF model, all
MAC-VRFs should always have a unique RD value. Some other allocation
policies are also possible, and this document does not restrict the
allocation policies to be used.
The allocation of RDs MAY be done in the same way as RTs. The
information provided in Section 5.2.2.1 could also be used in this
scenario.
Note that an SP MAY configure a target PE for an automated allocation
of RDs. In this case, there will be no need for any backend system
to allocate an RD value.
5.8. Site-Network-Access Availability
A site may be multihomed, meaning that it has multiple
site-network-access points. The placement constraints defined in
Section 5.6 will help ensure physical diversity.
When the site-network-accesses are placed on the network, a customer
may want to use a particular routing policy on those accesses. The
"site-network-access/availability" container defines parameters for
site redundancy. The "access-priority" leaf defines a preference for
a particular access. This preference is used to model load-balancing
or primary/backup scenarios. The higher the access-priority value,
the higher the preference will be. The "redundancy-mode" attribute
is defined for a multihoming site and used to model single-active and
active/active scenarios. It allows for multiple active paths in
forwarding state and for load-balancing options.
Wen, et al. Standards Track [Page 54]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Figure 20 illustrates how the access-priority attribute can be used.
Hub#1 LAN (Primary/backup) Hub#2 LAN (Load-sharing)
| |
| access-priority 1 access-priority 1 |
|--- CE1 ------- PE1 PE3 --------- CE3 --- |
| |
| |
|--- CE2 ------- PE2 PE4 --------- CE4 --- |
| access-priority 2 access-priority 1 |
PE5
|
|
|
CE5
|
Spoke#1 site (Single-homed)
Figure 20: Example: Configuring Access Priority
In Figure 20, Hub#2 requires load-sharing, so all the site-network-
accesses must use the same access-priority value. On the other hand,
as Hub#1 requires a primary site-network-access and a backup
site-network-access, a higher access-priority setting will be
configured on the primary site-network-access.
Scenarios that are more complex can also be modeled. Let's consider
a Hub site with five accesses to the network (A1, A2, A3, A4, and
A5). The customer wants to load-share its traffic on A1 and A2 in
the nominal situation. If A1 and A2 fail, the customer wants to
load-share its traffic on A3 and A4; finally, if A1, A2, A3, and A4
are all down, the customer wants to use A5. We can model this easily
by configuring the following access-priority values: A1=100, A2=100,
A3=50, A4=50, A5=10.
The access-priority scenario has some limitations. An
access-priority scenario like the previous one with five accesses but
with the constraint of having traffic load-shared between A3 and A4
in the case where only A1 or A2 (not both) is down is not achievable.
But the access-priority attribute defined will cover most of the
deployment use cases, and if necessary the model can be extended via
augmentation to support additional use cases.
Wen, et al. Standards Track [Page 55]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.9. SVC MTU
The MTU of subscriber service frames can be derived from the physical
interface MTU by default, or it can be specified under the "svc-mtu"
leaf if it is different than the default number.
5.10. Service
The service container defines service parameters associated with
the site.
5.10.1. Bandwidth
The service bandwidth refers to the bandwidth requirement between the
CE and the PE and can be represented using the Committed Information
Rate (CIR), the Excess Information Rate (EIR), or the Peak
Information Rate (PIR). The requested bandwidth is expressed as
ingress bandwidth and egress bandwidth. The ingress or egress
direction uses the customer site as the point of reference:
"ingress-direction bandwidth" refers to download bandwidth for the
site, and "egress-direction bandwidth" refers to upload bandwidth for
the site.
The service bandwidth is only configurable at the site-network-access
level (i.e., for the site network access associated with the site).
Using a different ingress and egress bandwidth will allow an SP to
know if a customer allows for asymmetric bandwidth access like ADSL.
It can also be used to set the rate limit in a different way for
uploads and downloads on symmetric bandwidth access.
The svc-bandwidth parameter has a specific type. This document
defines four types:
o bw-per-access: bandwidth is per connection or site network access,
providing rate enforcement for all service frames at the interface
that are associated with a particular network access.
o bw-per-cos: bandwidth is per CoS, providing rate enforcement for
all service frames for a given CoS with a specific cos-id.
o bw-per-svc: bandwidth is per site, providing rate enforcement for
all service frames that are associated with a particular VPN
service.
o opaque bandwidth is the total bandwidth that is not associated
with any particular cos-id, VPN service identified with the
vpn-id, or site network access ID.
Wen, et al. Standards Track [Page 56]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
The svc-bandwidth parameter must include a "cos-id" parameter if the
"type" is set to "bw-per-cos". The cos-id can be assigned based on
either (1) the IEEE 802.1p value [IEEE-802-1D] in the C-tag or
(2) the Differentiated Services Code Point (DSCP) in the Ethernet
frame header. Service frames are metered against the bandwidth
profile based on the cos-id.
The svc-bandwidth parameter must be associated with a specific
"site-network-access-id" parameter if the "type" is set to
"bw-per-access". Multiple bandwidths per cos-id can be associated
with the same site network access.
The svc-bandwidth parameter must include a specific "vpn-id"
parameter if the "type" is set to "bw-per-svc". Multiple bandwidths
per cos-id can be associated with the same EVPN service.
5.10.2. QoS
The model defines QoS parameters as an abstraction:
o qos-classification-policy: Defines a set of ordered rules to
classify customer traffic.
o qos-profile: Provides a QoS scheduling profile to be applied.
5.10.2.1. QoS Classification
QoS classification rules are handled by "qos-classification-policy".
qos-classification-policy is an ordered list of rules that match a
flow or application and set the appropriate target CoS
(target-class-id). The user can define the match using a
more specific flow definition (based on Layer 2 source and
destination MAC addresses, cos, dscp, cos-id, color-id, etc.). A
"color-id" will be assigned to a service frame to identify its QoS
profile conformance. A service frame is "green" if it is conformant
with the "committed" rate of the bandwidth profile. A service frame
is "yellow" if it exceeds the "committed" rate but is conformant with
the "excess" rate of the bandwidth profile. Finally, a service frame
is "red" if it is conformant with neither the "committed" rate nor
the "excess" rate of the bandwidth profile.
When a flow definition is used, the user can use a target-sites
leaf-list to identify the destination of a flow rather than using
destination addresses. In such a case, an association between the
site abstraction and the MAC addresses used by this site must be done
dynamically. How this association is done is out of scope for this
document. The association of a site to an L2VPN is done through the
vpn-attachment container. Therefore, the user can also employ the
Wen, et al. Standards Track [Page 57]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"target-sites" leaf-list and "vpn-attachment" to identify the
destination of a flow targeted to a specific VPN service. A rule
that does not have a "match" statement is considered a "match-all"
rule. An SP may implement a default terminal classification rule if
the customer does not provide it. It will be up to the SP to
determine its default target class. This model defines some
applications, but new application identities may be added through
augmentation. The exact meaning of each application identity is up
to the SP, so it will be necessary for the SP to advise the customer
on the usage of application-matching.
5.10.2.2. QoS Profile
A user can choose between the standard profile provided by the
operator or a custom profile. The QoS profile ("qos-profile")
defines the traffic-scheduling policy to be used by the SP.
A custom QoS profile is defined as a list of CoS entries and
associated properties. The properties are as follows:
o direction: Used to specify the direction to which the qos-profile
setting is applied. This model supports the site-to-WAN direction
("site-to-wan"), the WAN-to-site direction ("wan-to-site"), and
both directions ("bidirectional"). By default, "bidirectional" is
used. In the case of both directions, the provider should ensure
scheduling according to the requested policy in both traffic
directions (SP to customer and customer to SP). As an example, a
device-scheduling policy may be implemented on both the PE side
and the CE side of the WAN link. In the case of the WAN-to-site
direction, the provider should ensure scheduling from the SP
network to the customer site. As an example, a device-scheduling
policy may be implemented only on the PE side of the WAN link
towards the customer.
o policing: Optional. Indicates whether policing should apply to
one-rate, two-color or to two-rate, three-color.
o byte-offset: Optional. Indicates how many bytes in the service
frame header are excluded from rate enforcement.
o frame-delay: Used to define the latency constraint of the class.
The latency constraint can be expressed as the lowest possible
latency or as a latency boundary expressed in milliseconds. How
this latency constraint will be fulfilled is up to the SP
implementation: a strict priority-queuing mechanism may be used on
the access and in the core network, or a low-latency routing path
may be created for this traffic class.
Wen, et al. Standards Track [Page 58]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
o frame-jitter: Used to define the jitter constraint of the class.
The jitter constraint can be expressed as the lowest possible
jitter or as a jitter boundary expressed in microseconds. How
this jitter constraint will be fulfilled is up to the SP
implementation: a strict priority-queuing mechanism may be used on
the access and in the core network, or a jitter-aware routing path
may be created for this traffic class.
o bandwidth: Used to define a guaranteed amount of bandwidth for
the CoS. It is expressed as a percentage. The
"guaranteed-bw-percent" parameter uses available bandwidth as a
reference. The available bandwidth should not fall below the CIR
value defined under the input svc-bandwidth or the output
svc-bandwidth. When the "qos-profile" container is implemented on
the CE side, the output svc-bandwidth is taken into account as a
reference. When it is implemented on the PE side, the input
svc-bandwidth is used. By default, the bandwidth reservation is
only guaranteed at the access level. The user can use the
"end-to-end" leaf to request an end-to-end bandwidth reservation,
including across the MPLS transport network. (In other words, the
SP will activate something in the MPLS core to ensure that the
bandwidth request from the customer will be fulfilled by the MPLS
core as well.) How this is done (e.g., RSVP-TE reservation,
controller reservation) is out of scope for this document.
In addition, due to network conditions, some constraints may not be
completely fulfilled by the SP; in this case, the SP should advise
the customer about the limitations. How this communication is done
is out of scope for this document.
5.10.3. Support for BUM
The "broadcast-unknown-unicast-multicast" container defines the type
of site in the customer multicast service topology: source, receiver,
or both. These parameters will help the management system optimize
the multicast service.
Multiple multicast group-to-port mappings can be created using the
"multicast-gp-address-mapping" list. The
"multicast-gp-address-mapping" list defines the multicast group
address and port LAG number. Those parameters will help the SP
select the appropriate association between an interface and a
multicast group to fulfill the customer service requirement.
To ensure that a given frame is transparently transported, a whole
Layer 2 multicast frame (whether for data or control) should not be
altered from a CE to other CEs, except for the VLAN ID field. VLAN
IDs assigned by the SP can also be altered.
Wen, et al. Standards Track [Page 59]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
For point-to-point services, the provider only needs to deliver a
single copy of each service frame to the remote PE, regardless of
whether the destination MAC address of the incoming frame is unicast,
multicast, or broadcast. Therefore, all service frames should be
delivered unconditionally.
BUM frame forwarding in multipoint-to-multipoint services, on the
other hand, involves both local flooding to other ACs on the same PE
and remote replication to all other PEs, thus consuming additional
resources and core bandwidth. Special BUM frame disposition rules
can be implemented at external-facing interfaces (UNIs or External
NNIs (E-NNIs)) to rate-limit the BUM frames, in terms of the number
of packets per second or bits per second.
The threshold can apply to all BUM traffic, or one threshold can be
applied for each category of traffic.
5.11. Site Management
The "management" sub-container is intended for site management
options, depending on device ownership and security access control.
Three common management models are as follows:
Provider-managed CE: The provider has sole ownership of the CE
device. Only the provider has access to the CE. The
responsibility boundary between the SP and the customer is between
the CE and the customer network. This is the most common
use case.
Customer-managed CE: The customer has sole ownership of the CE
device. Only the customer has access to the CE. In this model,
the responsibility boundary between the SP and the customer is
between the PE and the CE.
Co-managed CE: The provider has ownership of the CE device and is
responsible for managing the CE. However, the provider grants the
customer access to the CE for some configuration/monitoring
purposes. In this co-managed mode, the responsibility boundary is
the same as for the provider-managed model.
The selected management mode is specified under the "type" leaf. The
"address" leaf stores CE device management addressing information.
The "management-transport" leaf is used to identify the transport
protocol for management traffic: IPv4 or IPv6. Additional security
options may be derived based on the particular management model
selected.
Wen, et al. Standards Track [Page 60]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.12. MAC Loop Protection
MAC address flapping between different physical ports typically
indicates a bridge loop condition in the customer network.
Misleading entries in the MAC cache table can cause service frames to
circulate around the network indefinitely and saturate the links
throughout the provider's network, affecting other services in the
same network. In the case of EVPNs, it also introduces massive BGP
updates and control-plane instability.
The SP may opt to implement a switching loop-prevention mechanism at
the external-facing interfaces for multipoint-to-multipoint services
by imposing a MAC address move threshold.
The MAC move rate and prevention-type options are listed in the
"mac-loop-prevention" container.
5.13. MAC Address Limit
The optional "mac-addr-limit" container contains the customer MAC
address limit and information that describes the action taken when
the limit is exceeded and the aging time for a MAC address.
When multiple services are provided on the same network element, the
MAC address table (and the Routing Information Base space for
MAC routes in the case of EVPNs) is a shared common resource. SPs
may impose a maximum number of MAC addresses learned from the
customer for a single service instance by using the "mac-addr-limit"
leaf and may use the "action" leaf to specify the action taken when
the upper limit is exceeded: drop the packet, flood the packet, or
simply send a warning log message.
For point-to-point services, if MAC learning is disabled, then the
MAC address limit is not necessary.
Wen, et al. Standards Track [Page 61]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.14. Enhanced VPN Features
5.14.1. Carriers' Carriers
In the case of Carriers' Carriers (CsC) [RFC8299], a customer may
want to build an MPLS service using an L2VPN to carry its traffic.
LAN customer1
|
|
CE1
|
| -------------
(vrf_cust1)
CE1_ISP1
| ISP1 POP
| MPLS link
| -------------
|
(vrf ISP1)
PE1
(...) Provider backbone
PE2
(vrf ISP1)
|
| ------------
|
| MPLS link
| ISP1 POP
CE2_ISP1
(vrf_cust1)
| ------------
|
CE2
|
LAN customer1
Figure 21: MPLS Service Using an L2VPN to Carry Traffic
In Figure 21, ISP1 resells an L2VPN service but has no core network
infrastructure between its POPs. ISP1 uses an L2VPN as the core
network infrastructure (belonging to another provider) between
its POPs.
Wen, et al. Standards Track [Page 62]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
In order to support CsC, the VPN service must indicate MPLS support
by setting the "carrierscarrier" leaf to "true" in the vpn-service
list. The link between CE1_ISP1/PE1 and CE2_ISP1/PE2 must also run
an MPLS signaling protocol. This configuration is done at the site
level.
In this model, LDP or BGP can be used as the MPLS signaling protocol.
In the case of LDP, an IGP routing protocol MUST also be activated.
In the case of BGP signaling, BGP MUST also be configured as the
routing protocol.
If CsC is enabled, the requested "svc-mtu" leaf will refer to the
MPLS MTU and not to the link MTU.
5.15. External ID References
The service model sometimes refers to external information through
identifiers. As an example, to order cloud access to a particular
Cloud Service Provider (CSP), the model uses an identifier to refer
to the targeted CSP. If a customer is directly using this service
model as an API (through RESTCONF or NETCONF, for example) to order a
particular service, the SP should provide a list of authorized
identifiers. In the case of cloud access, the SP will provide the
associated identifiers for each available CSP. The same applies to
other identifiers, such as qos-profile.
As a usage example, the remote-carrier-name setting is used in the
NNI case because it should be known by the current L2VPN SP to which
it is connecting, while the cloud-identifier setting should be known
by both the current L2VPN SP and the customer because it is applied
to the public cloud or Internet access.
How an SP provides the meanings of those identifiers to the customer
is out of scope for this document.
Wen, et al. Standards Track [Page 63]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.16. Defining NNIs and Inter-AS Support
An Autonomous System (AS) is a single network or group of networks
that are controlled by a common system administration group and that
use a single, clearly defined routing protocol. In some cases, VPNs
need to span different ASes in different geographical areas or span
different SPs. The connection between ASes is established by the SPs
and is seamless to the customer. Examples include:
o A partnership between SPs (e.g., carrier, cloud) to extend their
VPN services seamlessly.
o An internal administrative boundary within a single SP (e.g.,
backhaul versus core versus data center).
NNIs have to be defined to extend the VPNs across multiple ASes.
[RFC4761] defines multiple flavors of VPN NNI implementations (e.g.,
VPLSs). Each implementation has pros and cons; this topic is outside
the scope of this document. For example, in an inter-AS option A
(two ASes), AS Border Router (ASBR) peers are connected by multiple
interfaces with at least one of those interfaces spanning the two
ASes while being present in the same VPN. In order for these ASBRs
to signal label blocks, they associate each interface with a MAC-VRF
(VSI) (Section 2) and a BGP session. As a result, traffic between
devices in the back-to-back VPLS is Ethernet. In this scenario, the
VPNs are isolated from each other, and because the traffic is
Ethernet, QoS mechanisms that operate on Ethernet traffic can be
applied to achieve customer SLAs.
Wen, et al. Standards Track [Page 64]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
-------- -------------- -----------
/ \ / \ / \
| Cloud | | | | |
| Provider |-----NNI-----| |----NNI---| Data Center |
| #1 | | | | |
\ / | | \ /
-------- | | -----------
| |
-------- | My network | -----------
/ \ | | / \
| Cloud | | | | |
| Provider |-----NNI-----| |---NNI---| L2VPN |
| #2 | | | | Partner |
\ / | | | |
-------- | | | |
\ / | |
-------------- \ /
| -----------
|
NNI
|
|
-------------------
/ \
| |
| |
| |
| L2VPN Partner |
| |
\ /
-------------------
Figure 22: SP Network with Several NNIs
Figure 22 illustrates an SP network called "My network" that has
several NNIs. This network uses NNIs to:
o increase its footprint by relying on L2VPN partners.
o connect its own data-center services to the customer L2VPN.
o enable the customer to access its private resources located in a
private cloud owned by some CSPs.
Wen, et al. Standards Track [Page 65]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.16.1. Defining an NNI with the Option A Flavor
AS A AS B
------------------- -------------------
/ \ / \
| | | |
| ++++++++ Inter-AS link +++++++++ |
| + +_______________+ + |
| +(MAC-VRF1)--(VPN1)--(MAC-VRF1)+ |
| + + + + |
| + ASBR + + ASBR + |
| + + + + |
| +(MAC-VRF2)--(VPN2)--(MAC-VRF2)+ |
| + +_______________+ + |
| ++++++++ +++++++++ |
| | | |
| | | |
| | | |
| ++++++++ Inter-AS link +++++++++ |
| + +_______________+ + |
| +(MAC-VRF1)--(VPN1)--(MAC-VRF1)+ |
| + + + + |
| + ASBR + + ASBR + |
| + + + + |
| +(MAC-VRF2)--(VPN2)--(MAC-VRF2)+ |
| + +_______________+ + |
| ++++++++ +++++++++ |
| | | |
| | | |
\ / \ /
------------------- -------------------
Figure 23: NNI Defined with the Option A Flavor: Example 1
In option A, the two ASes are connected to each other with physical
links on ASBRs. For resiliency purposes, there may be multiple
physical connections between the ASes. A VPN connection -- physical
or logical (on top of physical) -- is created for each VPN that needs
to cross the AS boundary, thus providing a back-to-back VPLS model.
From a service model's perspective, this VPN connection can be seen
as a site. Let's say that AS B wants to extend some VPN connections
for VPN C on AS A. The administrator of AS B can use this service
model to order a site on AS A. All connection scenarios could be
realized using the features of the current model. As an example,
Figure 23 shows two physical connections that have logical
connections per VPN overlaid on them. This could be seen as a
multi-VPN scenario. Also, the administrator of AS B will be able to
Wen, et al. Standards Track [Page 66]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
choose the appropriate routing protocol (e.g., External BGP (EBGP))
to dynamically exchange routes between ASes.
This document assumes that the option A NNI flavor SHOULD reuse the
existing VPN site modeling.
Figure 24 illustrates an example where a customer wants its CSP A to
attach its virtual network N to an existing L2VPN (VPN1) that it has
from L2VPN SP B.
CSP A L2VPN SP B
----------------- -----------
/ \ / \
| | | | |
| VM --| ++++++++ NNI ++++++++++ |--- VPN1
| | + +____________+ + | Site 1
| |-------+(MAC-VRF1)-(VPN1)-(MAC-VRF1)+ |
| | + + + + |
| | + ASBR + + ASBR + |
| | + +____________+ + |
| | ++++++++ ++++++++++ |
| VM --| | | |--- VPN1
| |Virtual | | | Site 2
| |Network | | |
| VM --| | | |--- VPN1
| | | | | Site 3
\ / \ /
----------------- -----------
|
|
VPN1
Site 4
VM = Virtual Machine
Figure 24: NNI Defined with the Option A Flavor: Example 2
To create the VPN connectivity, the CSP or the customer may use the
L2SM that SP B exposes. We could consider that, as the NNI is
shared, the physical connection (bearer) between CSP A and SP B
already exists. CSP A may request through a service model the
creation of a new site with a single site-network-access
(single-homing is used in Figure 24). As a placement constraint, CSP
A may use the existing bearer reference it has from SP A to force the
placement of the VPN NNI on the existing link. The XML below
illustrates a possible configuration request to SP B:
Wen, et al. Standards Track [Page 67]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-profiles>
<valid-provider-identifiers>
<qos-profile-identifier>
<id>GOLD</id>
</qos-profile-identifier>
<qos-profile-identifier>
<id>PLATINUM</id>
</qos-profile-identifier>
</valid-provider-identifiers>
</vpn-profiles>
<vpn-services>
<vpn-service>
<vpn-id>VPN1</vpn-id>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
<sites>
<site>
<site-id>CSP_A_attachment</site-id>
<locations>
<location>
<location-id>NY1</location-id>
<city>NY</city>
<country-code>US</country-code>
</location>
</locations>
<site-vpn-flavor>site-vpn-flavor-nni</site-vpn-flavor>
<site-network-accesses>
<site-network-access>
<network-access-id>CSP_A_VN1</network-access-id>
<connection>
<encapsulation-type>vlan</encapsulation-type>
<eth-inf-type>tagged</eth-inf-type>
<tagged-interface>
<tagged-inf-type>dot1q</tagged-inf-type>
<dot1q-vlan-tagged>
<cvlan-id>17</cvlan-id>
</dot1q-vlan-tagged>
</tagged-interface>
</connection>
<service>
<svc-bandwidth>
<bandwidth>
<direction>input-bw</direction>
<type>bw-per-cos</type>
Wen, et al. Standards Track [Page 68]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
<cir>450000000</cir>
<cbs>20000000</cbs>
<eir>1000000000</eir>
<ebs>200000000</ebs>
</bandwidth>
</svc-bandwidth>
<carrierscarrier>
<signaling-type>bgp</signaling-type>
</carrierscarrier>
</service>
<vpn-attachment>
<vpn-id>12456487</vpn-id>
<site-role>spoke-role</site-role>
</vpn-attachment>
</site-network-access>
</site-network-accesses>
<management>
<type>customer-managed</type>
</management>
</site>
</sites>
</l2vpn-svc>
The case described above is different from a scenario using the
cloud-accesses container, as the cloud-access provides a public cloud
access while this example enables access to private resources located
in a CSP network.
Wen, et al. Standards Track [Page 69]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.16.2. Defining an NNI with the Option B Flavor
AS A AS B
------------------- -------------------
/ \ / \
| | | |
| ++++++++ Inter-AS link ++++++++ |
| + +_______________+ + |
| + + + + |
| + ASBR +<---MP-BGP---->+ ASBR + |
| + + + + |
| + +_______________+ + |
| ++++++++ ++++++++ |
| | | |
| | | |
| | | |
| ++++++++ Inter-AS link ++++++++ |
| + +_______________+ + |
| + + + + |
| + ASBR +<---MP-BGP---->+ ASBR + |
| + + + + |
| + +_______________+ + |
| ++++++++ ++++++++ |
| | | |
| | | |
\ / \ /
------------------- -------------------
Figure 25: NNI Defined with the Option B Flavor: Example 1
In option B, the two ASes are connected to each other with physical
links on ASBRs. For resiliency purposes, there may be multiple
physical connections between the ASes. The VPN "connection" between
ASes is done by exchanging VPN routes through MP-BGP [RFC4761].
There are multiple flavors of implementations of such an NNI. For
example:
1. The NNI is internal to the provider and is situated between a
backbone and a data center. There is enough trust between the
domains to not filter the VPN routes. So, all the VPN routes are
exchanged. RT filtering may be implemented to save some
unnecessary route states.
2. The NNI is used between providers that agreed to exchange VPN
routes for specific RTs only. Each provider is authorized to use
the RT values from the other provider.
Wen, et al. Standards Track [Page 70]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
3. The NNI is used between providers that agreed to exchange VPN
routes for specific RTs only. Each provider has its own RT
scheme. So, a customer spanning the two networks will have
different RTs in each network for a particular VPN.
Case 1 does not require any service modeling, as the protocol enables
the dynamic exchange of necessary VPN routes.
Case 2 requires that an RT-filtering policy on ASBRs be maintained.
From a service-modeling point of view, it is necessary to agree on
the list of RTs to authorize.
In Case 3, both ASes need to agree on the VPN RT to exchange, as well
as how to map a VPN RT from AS A to the corresponding RT in AS B (and
vice versa).
Those modelings are currently out of scope for this document.
CSP A L3VPN SP B
----------------- ------------------
/ \ / \
| | | | |
| VM --| ++++++++ NNI ++++++++ |--- VPN1
| | + +__________+ + | Site 1
| |-------+ + + + |
| | + ASBR +<-MP-BGP->+ ASBR + |
| | + +__________+ + |
| | ++++++++ ++++++++ |
| VM --| | | |--- VPN1
| |Virtual | | | Site 2
| |Network | | |
| VM --| | | |--- VPN1
| | | | | Site 3
\ / | |
----------------- | |
\ /
------------------
|
|
VPN1
Site 4
VM = Virtual Machine
Figure 26: NNI Defined with the Option B Flavor: Example 2
Wen, et al. Standards Track [Page 71]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Figure 26 shows an NNI connection between CSP A and SP network B.
The SPs do not trust each other and use different RT allocation
policies. So, in terms of implementation, the customer VPN has a
different RT in each network (RT A in CSP A and RT B in SP
network B). In order to connect the customer's virtual network in
CSP A to the customer's L2VPN (VPN1) in SP network B, CSP A should
request that SP network B open the customer VPN on the NNI (accept
the appropriate RT). Who does the RT translation depends on the
agreement between the two SPs: SP B may permit CSP A to request VPN
(RT) translation.
Wen, et al. Standards Track [Page 72]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
5.16.3. Defining an NNI with the Option C Flavor
AS A AS B
------------------- -------------------
/ \ / \
| | | |
| | | |
| | | |
| ++++++++ Multihop EBGP ++++++++ |
| + + + + |
| + + + + |
| + RGW +<----MP-BGP---->+ RGW + |
| + + + + |
| + + + + |
| ++++++++ ++++++++ |
| | | |
| | | |
| | | |
| | | |
| | | |
| ++++++++ Inter-AS link ++++++++ |
| + +_______________+ + |
| + + + + |
| + ASBR + + ASBR + |
| + + + + |
| + +_______________+ + |
| ++++++++ ++++++++ |
| | | |
| | | |
| | | |
| ++++++++ Inter-AS link ++++++++ |
| + +_______________+ + |
| + + + + |
| + ASBR + + ASBR + |
| + + + + |
| + +_______________+ + |
| ++++++++ ++++++++ |
| | | |
| | | |
\ / \ /
------------------- -------------------
Figure 27: NNI Defined with the Option C Flavor
Wen, et al. Standards Track [Page 73]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
From a VPN service's perspective, the option C NNI is very similar to
option B, as an MP-BGP session is used to exchange VPN routes between
the ASes. The difference is that the forwarding plane and the
control plane are on different nodes, so the MP-BGP session is
multihop between routing gateway (RGW) nodes. From a VPN service's
point of view, modeling options B and C will be configured
identically.
5.17. Applicability of L2SM in Inter-provider and Inter-domain
Orchestration
In the case where the ASes belong to different providers, one might
imagine that providers would like to have fewer signaling sessions
crossing the AS boundary and that the entities that terminate the
sessions could be restricted to a smaller set of devices. Two
approaches can be taken:
a. Construct inter-provider control connections to run only between
the two border routers.
b. Allow end-to-end, multi-segment connectivity to be constructed
out of several connectivity segments, without maintaining an
end-to-end control connection.
Inter-provider control connections as described in approach (a) can
be realized using the techniques provided in Section 5.16 (e.g.,
defining NNIs). Multi-segment connectivity as described in
approach (b) can produce an inter-AS solution that more closely
resembles scheme (b) in Section 10 of [RFC4364]. It may be realized
using "stitching" of per-site connectivity and service segments at
different domains, e.g., end-to-end connectivity between Site 1 and
Site 3 spans multiple domains (e.g., metropolitan area networks) and
can be constructed by stitching network access connectivity within
Site 1 with SEG1, SEG3, and SEG4, and network access connectivity
within Site 3 (as shown in Figure 28). The assumption is that the
service orchestration component in Figure 3 should have visibility
into the complete abstract topology and resource availability. This
may rely on network planning.
Wen, et al. Standards Track [Page 74]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
---------- ---------- ----------
| | | | | |
+--+ +---+ +---+ +--+
Site 1|PE|==SEG1==| |==SEG3==| |==SEG4==|PE|Site 3
+--+ +---+ | | +--+
| | | | | | ----------
| | | | | | | |
+--+ +---+ | | +---+ +--+
Site 2|PE|==SEG2==| |==SEG5==| |==SEG6==| |==SEG7==|PE|Site 4
+--+ +---+ +---+ +---+ +--+
| | | | | | | |
---------- ---------- ---------- ----------
Figure 28: Example: Inter-provider and Inter-domain Orchestration
Note that SEG1, SEG2, SEG3, SEG4, SEG5, and SEG6 can also be regarded
as network access connectivity within a site and can be created as a
normal site using the L2SM.
In Figure 28, we use BGP redistribution of L2VPN Network Layer
Reachability Information (NLRI) instances from AS to neighboring AS.
First, the PE routers use BGP to redistribute L2VPN NLRIs to either
an ASBR or a route reflector of which an ASBR is a client. The ASBR
then uses BGP to redistribute those L2VPN NLRIs to an ASBR in another
AS, which in turn distributes them to the PE routers in that AS, or
perhaps to another ASBR that in turn distributes them, and so on.
In this case, a PE can learn the address of an ASBR through which it
could reach another PE to which it wishes to establish connectivity.
That is, a local PE will receive a BGP advertisement containing an
L2VPN NLRI corresponding to an L2VPN instance in which the local PE
has some attached members. The BGP next hop for that L2VPN NLRI will
be an ASBR of the local AS. Then, rather than building a control
connection all the way to the remote PE, it builds one only to the
ASBR. A connectivity segment can now be established from the PE to
the ASBR. The ASBR in turn can establish connectivity to the ASBR of
the next AS and then stitch that connectivity to the connectivity
from the PE as described in [RFC6073]. Repeating the process at each
ASBR leads to a sequence of connectivity segments that, when stitched
together, connect the two PEs.
Note that in the approach just described, the local PE may never
learn the IP address of the remote PE. It learns the L2VPN NLRI
advertised by the remote PE, which need not contain the remote PE
address, and it learns the IP address of the ASBR that is the BGP
next hop for that NLRI.
Wen, et al. Standards Track [Page 75]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
When this approach is used for VPLS or for full-mesh VPWS, it leads
to a full mesh of connectivity among the PEs, but it does not require
a full mesh of control connections (LDP or L2TPv3 sessions).
Instead, the control connections within a single AS run among all the
PEs of that AS and the ASBRs of the AS. A single control connection
between the ASBRs of adjacent ASes can be used to support as many
AS-to-AS connectivity segments as may be needed.
6. Interaction with Other YANG Modules
As explained in Section 4, this service model is not intended to
configure network elements; rather, it is instantiated in a
management system.
The management system might follow modular design and comprise two
different components:
a. The component instantiating the service model (let's call it the
service component).
b. The component responsible for network element configuration
(let's call it the configuration component).
In some cases, when a split is needed between the behavior and
functions that a customer requests and the technology that the
network operator has available to deliver the service [RFC8309], a
new component can be separated out of the service component (let's
call it the control component). This component is responsible for
network-centric operation and is aware of many features such as
topology, technology, and operator policy. As an optional component,
it can use the service model as input and is not required at all if
the control component delegates its control operations to the
configuration component.
In Section 7, we provide an example of translation of service
provisioning requests to router configuration lines as an
illustration. In the YANG-based ecosystem, it is expected that
NETCONF and YANG will be used between the configuration component and
network elements to configure the requested service on those
elements.
In this framework, it is expected that YANG data models will be used
to configure service components on network elements. There will be a
strong relationship between the abstracted view provided by this
service model and the detailed configuration view that will be
provided by specific configuration models for network elements such
Wen, et al. Standards Track [Page 76]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
as those defined in [MPLS-L2VPN-YANG] and [EVPN-YANG]. Service
components that would need configuration of network elements in
support of the service model defined in this document include:
o Network instance definitions that include defined VPN policies.
o Physical interfaces.
o Ethernet-layer parameters (e.g., VLAN IDs).
o QoS: classification, profiles, etc.
o Support for Ethernet Service OAM.
7. Service Model Usage Example
As explained in Section 4, this service model is intended to be
instantiated at a management layer and is not intended to be used
directly on network elements. The management system serves as a
central point of configuration of the overall service.
This section provides an example of how a management system can use
this model to configure an L2VPN service on network elements.
This example provides a VPN service for three sites using
point-to-point VPWS and a Hub-and-Spoke VPN service topology as shown
in Figure 29. Load balancing is not considered in this case.
Site 1
............
: : P2P VPWS
:Spoke Site:-----PE1--------------------------+
: : | Site 3
:..........: | ............
| : :
PE3-----: Hub Site :
Site 2 | : :
............ | :..........:
: : P2P VPWS |
:Spoke Site:-----PE2--------------------------+
: :
:..........:
Figure 29: Reference Network for Simple Example
Wen, et al. Standards Track [Page 77]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
The following XML describes the overall simplified service
configuration of this VPN.
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>12456487</vpn-id>
<vpn-svc-type>vpws</vpn-svc-type>
<svc-topo>hub-spoke</svc-topo>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
<vpn-service>
<vpn-id>12456488</vpn-id>
<vpn-svc-type>vpws</vpn-svc-type>
<svc-topo>hub-spoke</svc-topo>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
</l2vpn-svc>
When receiving the request for provisioning the VPN service, the
management system will internally (or through communication with
another OSS component) allocate VPN RTs. In this specific case, two
RTs will be allocated (100:1 for Hubs and 100:2 for Spokes). The
output below describes the configuration of Spoke Site 1.
<?xml version="1.0"?>
<l2vpn-svc xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc">
<vpn-services>
<vpn-service>
<vpn-id>12456487</vpn-id>
<svc-topo>hub-spoke</svc-topo>
<ce-vlan-preservation>true</ce-vlan-preservation>
<ce-vlan-cos-preservation>true</ce-vlan-cos-preservation>
</vpn-service>
</vpn-services>
<sites>
<site>
<site-id>Spoke_Site1</site-id>
<locations>
<location>
<location-id>NY1</location-id>
<city>NY</city>
<country-code>US</country-code>
</location>
Wen, et al. Standards Track [Page 78]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
</locations>
<site-network-accesses>
<site-network-access>
<network-access-id>Spoke_UNI-Site1</network-access-id>
<access-diversity>
<groups>
<group>
<group-id>20</group-id>
</group>
</groups>
</access-diversity>
<connection>
<encapsulation-type>vlan</encapsulation-type>
<tagged-interface>
<dot1q-vlan-tagged>
<cvlan-id>17</cvlan-id>
</dot1q-vlan-tagged>
</tagged-interface>
<l2cp-control>
<stp-rstp-mstp>tunnel</stp-rstp-mstp>
<lldp>true</lldp>
</l2cp-control>
</connection>
<service>
<svc-bandwidth>
<bandwidth>
<direction>input-bw</direction>
<type>bw-per-cos</type>
<cir>450000000</cir>
<cbs>20000000</cbs>
<eir>1000000000</eir>
<ebs>200000000</ebs>
</bandwidth>
</svc-bandwidth>
<carrierscarrier>
<signaling-type>bgp</signaling-type>
</carrierscarrier>
</service>
<vpn-attachment>
<vpn-id>12456487</vpn-id>
<site-role>spoke-role</site-role>
</vpn-attachment>
</site-network-access>
</site-network-accesses>
<management>
<type>provider-managed</type>
</management>
</site>
Wen, et al. Standards Track [Page 79]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
</sites>
</l2vpn-svc>
When receiving the request for provisioning Spoke Site 1, the
management system MUST allocate network resources for this site. It
MUST first determine the target network elements to provision the
access and, in particular, the PE router (or possibly an aggregation
switch). As described in Sections 5.3.1 and 5.6, the management
system SHOULD use the location information and MUST use the
access-diversity constraint to find the appropriate PE. In this
case, we consider that Spoke Site 1 requires PE diversity with Hubs
and that the management system will allocate PEs based on least
distance. Based on the location information, the management system
finds the available PEs in the area closest to the customer and picks
one that fits the access-diversity constraint.
When the PE is chosen, the management system needs to allocate
interface resources on the node. One interface is selected from the
PE's available pool of resources. The management system can start
provisioning the PE node using any means it wishes (e.g., NETCONF,
CLI). The management system will check to see if a VSI that fits its
needs is already present. If not, it will provision the VSI: the RD
will come from the internal allocation policy model, and the RTs will
come from the vpn-policy configuration of the site (i.e., the
management system will allocate some RTs for the VPN). As the site
is a Spoke site (site-role), the management system knows which RTs
must be imported and exported. As the site is provider managed, some
management RTs may also be added (100:5000). Standard provider VPN
policies MAY also be added in the configuration.
Example of a generated PE configuration:
l2vpn vsi context one
vpn id 12456487
autodiscovery bgp signaling bgp
ve id 1001 <---- identify the PE routers within the VPLS domain
ve range 50 <---- VPLS Edge (VE) size
route-distinguisher 100:3123234324
route-target import 100:1
route-target import 100:5000 <---- Standard SP configuration
route-target export 100:2 for provider-managed CE
!
When the VSI has been provisioned, the management system can start
configuring the access on the PE using the allocated interface
information. The tag or VLAN (e.g., service instance tag) is chosen
by the management system. One tag will be picked from an allocated
subnet for the PE, and another will be used for the CE configuration.
Wen, et al. Standards Track [Page 80]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
LACP protocols will also be configured between the PE and the CE; in
the case of the provider-managed model, the choice is left to the SP.
This choice is independent of the LACP protocol chosen by the
customer.
Example of a generated PE configuration:
!
bridge-domain 1
member Ethernet0/0 service-instance 100
member vsi one
!
l2 router-id 198.51.100.1
!
l2 router-id 2001:db8::10:1/64
!
interface Ethernet0/0
no ip address
service instance 100 ethernet
encapsulation dot1q 100
!
!
router bgp 1
bgp log-neighbor-changes
neighbor 198.51.100.4 remote-as 1
neighbor 198.51.100.4 update-source Loopback0
!
address-family l2vpn vpls
neighbor 198.51.100.4 activate
neighbor 198.51.100.4 send-community extended
neighbor 198.51.100.4 suppress-signaling-protocol ldp
neighbor 2001:db8::0a10:4 activate
neighbor 2001:db8::0a10:4 send-community extended
exit-address-family
!
interface vlan 100 <---- Associating the AC with
no ip address the MAC-VRF at the PE
xconnect vsi PE1-VPLS-A
!
vlan 100
state active
Wen, et al. Standards Track [Page 81]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
As the CE router is not reachable at this stage, the management
system can produce a complete CE configuration that can be manually
uploaded to the node (e.g., before sending the CE to the customer
premises at the appropriate postal address, as described in
Section 5.3.1). The CE configuration will be built in the same way
as the PE configuration is built. Based on (1) the CE type
(vendor/model) allocated to the customer and (2) bearer information,
the management system knows which interface must be configured on the
CE. PE-CE link configuration is expected to be handled automatically
using the SP's OSS, as both resources are managed internally.
CE-to-LAN interface parameters, such as dot1Q tags, are derived from
the Ethernet connection, taking into account how the management
system distributes dot1Q tags between the PE and the CE within the
subnet. This will allow a plug'n'play configuration to be produced
for the CE.
Example of a generated CE configuration:
interface Ethernet0/1
switchport trunk allowed vlan none
switchport mode trunk
service instance 100 ethernet
encapsulation default
l2protocol forward cdp
xconnect 203.0.113.1 100 encapsulation mpls
!
8. YANG Module
This YANG module imports typedefs from [RFC6991] and [RFC8341].
<CODE BEGINS> file "ietf-l2vpn-svc@2018-10-09.yang"
module ietf-l2vpn-svc {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc";
prefix l2vpn-svc;
import ietf-inet-types {
prefix inet;
}
import ietf-yang-types {
prefix yang;
}
import ietf-netconf-acm {
prefix nacm;
}
Wen, et al. Standards Track [Page 82]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
organization
"IETF L2SM Working Group.";
contact
"WG Web: <https://datatracker.ietf.org/wg/l2sm/>
WG List: <mailto:l2sm@ietf.org>
Editor: Giuseppe Fioccola
<mailto:giuseppe.fioccola@tim.it>";
description
"This YANG module defines a generic service configuration model
for Layer 2 VPN services common across all vendor
implementations.
Copyright (c) 2018 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8466;
see the RFC itself for full legal notices.";
revision 2018-10-09 {
description
"Initial revision.";
reference
"RFC 8466: A YANG Data Model for Layer 2 Virtual Private
Network (L2VPN) Service Delivery";
}
feature carrierscarrier {
description
"Enables the support of carriers' carriers (CsC).";
}
feature ethernet-oam {
description
"Enables the support of Ethernet Service OAM.";
}
feature extranet-vpn {
description
"Enables the support of extranet VPNs.";
}
Wen, et al. Standards Track [Page 83]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
feature l2cp-control {
description
"Enables the support of L2CP control.";
}
feature input-bw {
description
"Enables the support of input bandwidth in a VPN.";
}
feature output-bw {
description
"Enables the support of output bandwidth in a VPN.";
}
feature uni-list {
description
"Enables the support of a list of UNIs in a VPN.";
}
feature cloud-access {
description
"Allows the VPN to connect to a Cloud Service Provider (CSP)
or an ISP.";
}
feature oam-3ah {
description
"Enables the support of OAM 802.3ah.";
}
feature micro-bfd {
description
"Enables the support of micro-BFD.";
}
feature bfd {
description
"Enables the support of BFD.";
}
feature signaling-options {
description
"Enables the support of signaling options.";
}
feature site-diversity {
description
Wen, et al. Standards Track [Page 84]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Enables the support of site diversity constraints in a VPN.";
}
feature encryption {
description
"Enables the support of encryption.";
}
feature always-on {
description
"Enables support for the 'always-on' access constraint.";
}
feature requested-type {
description
"Enables support for the 'requested-type' access constraint.";
}
feature bearer-reference {
description
"Enables support for the 'bearer-reference' access
constraint.";
}
feature qos {
description
"Enables support for QoS.";
}
feature qos-custom {
description
"Enables the support of a custom QoS profile.";
}
feature lag-interface {
description
"Enables LAG interfaces.";
}
feature vlan {
description
"Enables the support of VLANs.";
}
feature dot1q {
description
"Enables the support of dot1Q.";
}
Wen, et al. Standards Track [Page 85]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
feature qinq {
description
"Enables the support of QinQ.";
}
feature qinany {
description
"Enables the support of QinAny.";
}
feature vxlan {
description
"Enables the support of VXLANs.";
}
feature lan-tag {
description
"Enables LAN tag support in a VPN.";
}
feature target-sites {
description
"Enables the support of the 'target-sites'
match-flow parameter.";
}
feature bum {
description
"Enables BUM capabilities in a VPN.";
}
feature mac-loop-prevention {
description
"Enables the MAC loop-prevention capability in a VPN.";
}
feature lacp {
description
"Enables the Link Aggregation Control Protocol (LACP)
capability in a VPN.";
}
feature mac-addr-limit {
description
"Enables the MAC address limit capability in a VPN.";
}
feature acl {
Wen, et al. Standards Track [Page 86]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Enables the ACL capability in a VPN.";
}
feature cfm {
description
"Enables the 802.1ag CFM capability in a VPN.";
}
feature y-1731 {
description
"Enables the Y.1731 capability in a VPN.";
}
typedef svc-id {
type string;
description
"Defines the type of service component identifier.";
}
typedef ccm-priority-type {
type uint8 {
range "0..7";
}
description
"A 3-bit priority value to be used in the VLAN tag,
if present in the transmitted frame.";
}
typedef control-mode {
type enumeration {
enum peer {
description
"'peer' mode, i.e., participate in the protocol towards
the CE. Peering is common for LACP and the Ethernet
Local Management Interface (E-LMI) and, occasionally,
for LLDP. For VPLSs and VPWSs, the subscriber can also
request that the SP peer enable spanning tree.";
}
enum tunnel {
description
"'tunnel' mode, i.e., pass to the egress or destination
site. For EPLs, the expectation is that L2CP frames are
tunneled.";
}
enum discard {
description
"'discard' mode, i.e., discard the frame.";
Wen, et al. Standards Track [Page 87]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
}
description
"Defines the type of control mode on L2CP protocols.";
}
typedef neg-mode {
type enumeration {
enum full-duplex {
description
"Defines full-duplex mode.";
}
enum auto-neg {
description
"Defines auto-negotiation mode.";
}
}
description
"Defines the type of negotiation mode.";
}
identity site-network-access-type {
description
"Base identity for the site-network-access type.";
}
identity point-to-point {
base site-network-access-type;
description
"Identity for a point-to-point connection.";
}
identity multipoint {
base site-network-access-type;
description
"Identity for a multipoint connection, e.g.,
an Ethernet broadcast segment.";
}
identity tag-type {
description
"Base identity from which all tag types are derived.";
}
identity c-vlan {
base tag-type;
description
"A CVLAN tag, normally using the 0x8100 Ethertype.";
Wen, et al. Standards Track [Page 88]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
identity s-vlan {
base tag-type;
description
"An SVLAN tag.";
}
identity c-s-vlan {
base tag-type;
description
"Using both a CVLAN tag and an SVLAN tag.";
}
identity multicast-tree-type {
description
"Base identity for the multicast tree type.";
}
identity ssm-tree-type {
base multicast-tree-type;
description
"Identity for the Source-Specific Multicast (SSM) tree type.";
reference "RFC 8299: YANG Data Model for L3VPN Service Delivery";
}
identity asm-tree-type {
base multicast-tree-type;
description
"Identity for the Any-Source Multicast (ASM) tree type.";
reference "RFC 8299: YANG Data Model for L3VPN Service Delivery";
}
identity bidir-tree-type {
base multicast-tree-type;
description
"Identity for the bidirectional tree type.";
reference "RFC 8299: YANG Data Model for L3VPN Service Delivery";
}
identity multicast-gp-address-mapping {
description
"Identity for mapping type.";
}
identity static-mapping {
base multicast-gp-address-mapping;
description
Wen, et al. Standards Track [Page 89]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Identity for static mapping, i.e., attach the interface
to the multicast group as a static member.";
}
identity dynamic-mapping {
base multicast-gp-address-mapping;
description
"Identity for dynamic mapping, i.e., an interface was added
to the multicast group as a result of snooping.";
}
identity tf-type {
description
"Identity for the traffic type.";
}
identity multicast-traffic {
base tf-type;
description
"Identity for multicast traffic.";
}
identity broadcast-traffic {
base tf-type;
description
"Identity for broadcast traffic.";
}
identity unknown-unicast-traffic {
base tf-type;
description
"Identity for unknown unicast traffic.";
}
identity encapsulation-type {
description
"Identity for the encapsulation type.";
}
identity ethernet {
base encapsulation-type;
description
"Identity for Ethernet type.";
}
identity vlan {
base encapsulation-type;
description
Wen, et al. Standards Track [Page 90]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Identity for the VLAN type.";
}
identity carrierscarrier-type {
description
"Identity of the CsC type.";
}
identity ldp {
base carrierscarrier-type;
description
"Use LDP as the signaling protocol
between the PE and the CE.";
}
identity bgp {
base carrierscarrier-type;
description
"Use BGP (as per RFC 8277) as the signaling protocol
between the PE and the CE.
In this case, BGP must also be configured as
the routing protocol.";
}
identity eth-inf-type {
description
"Identity of the Ethernet interface type.";
}
identity tagged {
base eth-inf-type;
description
"Identity of the tagged interface type.";
}
identity untagged {
base eth-inf-type;
description
"Identity of the untagged interface type.";
}
identity lag {
base eth-inf-type;
description
"Identity of the LAG interface type.";
}
identity bw-type {
Wen, et al. Standards Track [Page 91]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Identity of the bandwidth type.";
}
identity bw-per-cos {
base bw-type;
description
"Bandwidth is per CoS.";
}
identity bw-per-port {
base bw-type;
description
"Bandwidth is per site network access.";
}
identity bw-per-site {
base bw-type;
description
"Bandwidth is per site. It is applicable to
all the site network accesses within the site.";
}
identity bw-per-svc {
base bw-type;
description
"Bandwidth is per VPN service.";
}
identity site-vpn-flavor {
description
"Base identity for the site VPN service flavor.";
}
identity site-vpn-flavor-single {
base site-vpn-flavor;
description
"Identity for the site VPN service flavor.
Used when the site belongs to only one VPN.";
}
identity site-vpn-flavor-multi {
base site-vpn-flavor;
description
"Identity for the site VPN service flavor.
Used when a logical connection of a site
belongs to multiple VPNs.";
}
Wen, et al. Standards Track [Page 92]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
identity site-vpn-flavor-nni {
base site-vpn-flavor;
description
"Identity for the site VPN service flavor.
Used to describe an NNI option A connection.";
}
identity service-type {
description
"Base identity of the service type.";
}
identity vpws {
base service-type;
description
"Point-to-point Virtual Private Wire Service (VPWS)
service type.";
}
identity pwe3 {
base service-type;
description
"Pseudowire Emulation Edge to Edge (PWE3) service type.";
}
identity ldp-l2tp-vpls {
base service-type;
description
"LDP-based or L2TP-based multipoint Virtual Private LAN
Service (VPLS) service type. This VPLS uses LDP-signaled
Pseudowires or L2TP-signaled Pseudowires.";
}
identity bgp-vpls {
base service-type;
description
"BGP-based multipoint VPLS service type. This VPLS uses a
BGP control plane as described in RFCs 4761 and 6624.";
}
identity vpws-evpn {
base service-type;
description
"VPWS service type using Ethernet VPNs (EVPNs)
as specified in RFC 7432.";
}
identity pbb-evpn {
Wen, et al. Standards Track [Page 93]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
base service-type;
description
"Provider Backbone Bridge (PBB) service type using
EVPNs as specified in RFC 7432.";
}
identity bundling-type {
description
"The base identity for the bundling type. It supports
multiple CE-VLANs associated with an L2VPN service or
all CE-VLANs associated with an L2VPN service.";
}
identity multi-svc-bundling {
base bundling-type;
description
"Identity for multi-service bundling, i.e.,
multiple CE-VLAN IDs can be associated with an
L2VPN service at a site.";
}
identity one2one-bundling {
base bundling-type;
description
"Identity for one-to-one service bundling, i.e.,
each L2VPN can be associated with only one CE-VLAN ID
at a site.";
}
identity all2one-bundling {
base bundling-type;
description
"Identity for all-to-one bundling, i.e., all CE-VLAN IDs
are mapped to one L2VPN service.";
}
identity color-id {
description
"Base identity of the color ID.";
}
identity color-id-cvlan {
base color-id;
description
"Identity of the color ID based on a CVLAN.";
}
identity cos-id {
Wen, et al. Standards Track [Page 94]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Identity of the CoS ID.";
}
identity cos-id-pcp {
base cos-id;
description
"Identity of the CoS ID based on the
Port Control Protocol (PCP).";
}
identity cos-id-dscp {
base cos-id;
description
"Identity of the CoS ID based on DSCP.";
}
identity color-type {
description
"Identity of color types.";
}
identity green {
base color-type;
description
"Identity of the 'green' color type.";
}
identity yellow {
base color-type;
description
"Identity of the 'yellow' color type.";
}
identity red {
base color-type;
description
"Identity of the 'red' color type.";
}
identity policing {
description
"Identity of the type of policing applied.";
}
identity one-rate-two-color {
base policing;
description
Wen, et al. Standards Track [Page 95]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Identity of one-rate, two-color (1R2C).";
}
identity two-rate-three-color {
base policing;
description
"Identity of two-rate, three-color (2R3C).";
}
identity bum-type {
description
"Identity of the BUM type.";
}
identity broadcast {
base bum-type;
description
"Identity of broadcast.";
}
identity unicast {
base bum-type;
description
"Identity of unicast.";
}
identity multicast {
base bum-type;
description
"Identity of multicast.";
}
identity loop-prevention-type {
description
"Identity of loop prevention.";
}
identity shut {
base loop-prevention-type;
description
"Identity of shut protection.";
}
identity trap {
base loop-prevention-type;
description
"Identity of trap protection.";
}
Wen, et al. Standards Track [Page 96]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
identity lacp-state {
description
"Identity of the LACP state.";
}
identity lacp-on {
base lacp-state;
description
"Identity of LACP on.";
}
identity lacp-off {
base lacp-state;
description
"Identity of LACP off.";
}
identity lacp-mode {
description
"Identity of the LACP mode.";
}
identity lacp-passive {
base lacp-mode;
description
"Identity of LACP passive.";
}
identity lacp-active {
base lacp-mode;
description
"Identity of LACP active.";
}
identity lacp-speed {
description
"Identity of the LACP speed.";
}
identity lacp-fast {
base lacp-speed;
description
"Identity of LACP fast.";
}
identity lacp-slow {
base lacp-speed;
description
Wen, et al. Standards Track [Page 97]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Identity of LACP slow.";
}
identity bw-direction {
description
"Identity for the bandwidth direction.";
}
identity input-bw {
base bw-direction;
description
"Identity for the input bandwidth.";
}
identity output-bw {
base bw-direction;
description
"Identity for the output bandwidth.";
}
identity management {
description
"Base identity for the site management scheme.";
}
identity co-managed {
base management;
description
"Identity for a co-managed site.";
}
identity customer-managed {
base management;
description
"Identity for a customer-managed site.";
}
identity provider-managed {
base management;
description
"Identity for a provider-managed site.";
}
identity address-family {
description
"Identity for an address family.";
}
Wen, et al. Standards Track [Page 98]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
identity ipv4 {
base address-family;
description
"Identity for an IPv4 address family.";
}
identity ipv6 {
base address-family;
description
"Identity for an IPv6 address family.";
}
identity vpn-topology {
description
"Base identity for the VPN topology.";
}
identity any-to-any {
base vpn-topology;
description
"Identity for the any-to-any VPN topology.";
}
identity hub-spoke {
base vpn-topology;
description
"Identity for the Hub-and-Spoke VPN topology.";
}
identity hub-spoke-disjoint {
base vpn-topology;
description
"Identity for the Hub-and-Spoke VPN topology,
where Hubs cannot communicate with each other.";
}
identity site-role {
description
"Base identity for a site type.";
}
identity any-to-any-role {
base site-role;
description
"Site in an any-to-any L2VPN.";
}
identity spoke-role {
Wen, et al. Standards Track [Page 99]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
base site-role;
description
"Spoke site in a Hub-and-Spoke L2VPN.";
}
identity hub-role {
base site-role;
description
"Hub site in a Hub-and-Spoke L2VPN.";
}
identity pm-type {
description
"Performance-monitoring type.";
}
identity loss {
base pm-type;
description
"Loss measurement.";
}
identity delay {
base pm-type;
description
"Delay measurement.";
}
identity fault-alarm-defect-type {
description
"Indicates the alarm-priority defect (i.e., the
lowest-priority defect that is allowed to
generate a fault alarm).";
}
identity remote-rdi {
base fault-alarm-defect-type;
description
"Indicates the aggregate health
of the Remote MEPs.";
}
identity remote-mac-error {
base fault-alarm-defect-type;
description
"Indicates that one or more of the Remote MEPs are
reporting a failure in their Port Status TLVs or
Interface Status TLVs.";
Wen, et al. Standards Track [Page 100]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
identity remote-invalid-ccm {
base fault-alarm-defect-type;
description
"Indicates that at least one of the Remote MEP
state machines is not receiving valid
Continuity Check Messages (CCMs) from its Remote MEP.";
}
identity invalid-ccm {
base fault-alarm-defect-type;
description
"Indicates that one or more invalid CCMs have been
received and that a period of time 3.5 times the length
of those CCMs' transmission intervals has not yet expired.";
}
identity cross-connect-ccm {
base fault-alarm-defect-type;
description
"Indicates that one or more cross-connect CCMs have been
received and that 3.5 times the period of at least one of
those CCMs' transmission intervals has not yet expired.";
}
identity frame-delivery-mode {
description
"Delivery types.";
}
identity discard {
base frame-delivery-mode;
description
"Service frames are discarded.";
}
identity unconditional {
base frame-delivery-mode;
description
"Service frames are unconditionally delivered to the
destination site.";
}
identity unknown-discard {
base frame-delivery-mode;
description
"Service frames are conditionally delivered to the
Wen, et al. Standards Track [Page 101]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
destination site. Packets with unknown destination addresses
will be discarded.";
}
identity placement-diversity {
description
"Base identity for site placement constraints.";
}
identity bearer-diverse {
base placement-diversity;
description
"Identity for bearer diversity.
The bearers should not use common elements.";
}
identity pe-diverse {
base placement-diversity;
description
"Identity for PE diversity.";
}
identity pop-diverse {
base placement-diversity;
description
"Identity for POP diversity.";
}
identity linecard-diverse {
base placement-diversity;
description
"Identity for linecard diversity.";
}
identity same-pe {
base placement-diversity;
description
"Identity for having sites connected on the same PE.";
}
identity same-bearer {
base placement-diversity;
description
"Identity for having sites connected using the same bearer.";
}
identity tagged-inf-type {
description
Wen, et al. Standards Track [Page 102]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Identity for the tagged interface type.";
}
identity priority-tagged {
base tagged-inf-type;
description
"Identity for the priority-tagged interface.";
}
identity qinq {
base tagged-inf-type;
description
"Identity for the QinQ tagged interface.";
}
identity dot1q {
base tagged-inf-type;
description
"Identity for the dot1Q VLAN tagged interface.";
}
identity qinany {
base tagged-inf-type;
description
"Identity for the QinAny tagged interface.";
}
identity vxlan {
base tagged-inf-type;
description
"Identity for the VXLAN tagged interface.";
}
identity provision-model {
description
"Base identity for the provision model.";
}
identity single-side-provision {
description
"Identity for single-sided provisioning with discovery.";
}
identity doubled-side-provision {
description
"Identity for double-sided provisioning.";
}
Wen, et al. Standards Track [Page 103]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
identity mac-learning-mode {
description
"MAC learning mode.";
}
identity data-plane {
base mac-learning-mode;
description
"User MAC addresses are learned through ARP broadcast.";
}
identity control-plane {
base mac-learning-mode;
description
"User MAC addresses are advertised through EVPN-BGP.";
}
identity vpn-policy-filter-type {
description
"Base identity for the filter type.";
}
identity lan {
base vpn-policy-filter-type;
description
"Identity for a LAN tag filter type.";
}
identity mac-action {
description
"Base identity for a MAC action.";
}
identity drop {
base mac-action;
description
"Identity for dropping a packet.";
}
identity flood {
base mac-action;
description
"Identity for packet flooding.";
}
identity warning {
base mac-action;
description
Wen, et al. Standards Track [Page 104]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Identity for sending a warning log message.";
}
identity qos-profile-direction {
description
"Base identity for the QoS-profile direction.";
}
identity site-to-wan {
base qos-profile-direction;
description
"Identity for the site-to-WAN direction.";
}
identity wan-to-site {
base qos-profile-direction;
description
"Identity for the WAN-to-site direction.";
}
identity bidirectional {
base qos-profile-direction;
description
"Identity for both the WAN-to-site direction
and the site-to-WAN direction.";
}
identity vxlan-peer-mode {
description
"Base identity for the VXLAN peer mode.";
}
identity static-mode {
base vxlan-peer-mode;
description
"Identity for VXLAN access in the static mode.";
}
identity bgp-mode {
base vxlan-peer-mode;
description
"Identity for VXLAN access by BGP EVPN learning.";
}
identity customer-application {
description
"Base identity for a customer application.";
}
Wen, et al. Standards Track [Page 105]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
identity web {
base customer-application;
description
"Identity for a web application (e.g., HTTP, HTTPS).";
}
identity mail {
base customer-application;
description
"Identity for a mail application.";
}
identity file-transfer {
base customer-application;
description
"Identity for a file-transfer application
(e.g., FTP, SFTP).";
}
identity database {
base customer-application;
description
"Identity for a database application.";
}
identity social {
base customer-application;
description
"Identity for a social-network application.";
}
identity games {
base customer-application;
description
"Identity for a gaming application.";
}
identity p2p {
base customer-application;
description
"Identity for a peer-to-peer application.";
}
identity network-management {
base customer-application;
description
"Identity for a management application
(e.g., Telnet, syslog, SNMP).";
Wen, et al. Standards Track [Page 106]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
identity voice {
base customer-application;
description
"Identity for a voice application.";
}
identity video {
base customer-application;
description
"Identity for a videoconference application.";
}
identity embb {
base customer-application;
description
"Identity for the enhanced Mobile Broadband (eMBB)
application. Note that the eMBB application
requires strict threshold values for a wide variety
of network performance parameters (e.g., data rate,
latency, loss rate, reliability).";
}
identity urllc {
base customer-application;
description
"Identity for the Ultra-Reliable and Low Latency
Communications (URLLC) application. Note that the
URLLC application requires strict threshold values for
a wide variety of network performance parameters
(e.g., latency, reliability).";
}
identity mmtc {
base customer-application;
description
"Identity for the massive Machine Type
Communications (mMTC) application. Note that the
mMTC application requires strict threshold values for
a wide variety of network performance parameters
(e.g., data rate, latency, loss rate, reliability).";
}
grouping site-acl {
container access-control-list {
if-feature "acl";
list mac {
Wen, et al. Standards Track [Page 107]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
key "mac-address";
leaf mac-address {
type yang:mac-address;
description
"MAC addresses.";
}
description
"List of MAC addresses.";
}
description
"Container for the ACL.";
}
description
"Grouping that defines the ACL.";
}
grouping site-bum {
container broadcast-unknown-unicast-multicast {
if-feature "bum";
leaf multicast-site-type {
type enumeration {
enum receiver-only {
description
"The site only has receivers.";
}
enum source-only {
description
"The site only has sources.";
}
enum source-receiver {
description
"The site has both sources and receivers.";
}
}
default "source-receiver";
description
"Type of multicast site.";
}
list multicast-gp-address-mapping {
key "id";
leaf id {
type uint16;
description
"Unique identifier for the mapping.";
}
leaf vlan-id {
type uint16 {
range "0..1024";
Wen, et al. Standards Track [Page 108]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
mandatory true;
description
"The VLAN ID of the multicast group.
The range of the 12-bit VLAN ID is 0 to 1024.";
}
leaf mac-gp-address {
type yang:mac-address;
mandatory true;
description
"The MAC address of the multicast group.";
}
leaf port-lag-number {
type uint32;
description
"The ports/LAGs belonging to the multicast group.";
}
description
"List of port-to-group mappings.";
}
leaf bum-overall-rate {
type uint64;
units "bps";
description
"Overall rate for BUM.";
}
list bum-rate-per-type {
key "type";
leaf type {
type identityref {
base bum-type;
}
description
"BUM type.";
}
leaf rate {
type uint64;
units "bps";
description
"Rate for BUM.";
}
description
"List of limit rates for the BUM type.";
}
description
"Container of BUM configurations.";
}
description
Wen, et al. Standards Track [Page 109]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Grouping for BUM.";
}
grouping site-mac-loop-prevention {
container mac-loop-prevention {
if-feature "mac-loop-prevention";
leaf protection-type {
type identityref {
base loop-prevention-type;
}
default "trap";
description
"Protection type. By default, the protection
type is 'trap'.";
}
leaf frequency {
type uint32;
default "5";
description
"The number of times to detect MAC duplication, where
a 'duplicate MAC address' situation has occurred and
the duplicate MAC address has been added to a list of
duplicate MAC addresses. By default, the number of
times is 5.";
}
leaf retry-timer {
type uint32;
units "seconds";
description
"The retry timer. When the retry timer expires,
the duplicate MAC address will be flushed from
the MAC-VRF.";
}
description
"Container of MAC loop-prevention parameters.";
}
description
"Grouping for MAC loop prevention.";
}
grouping site-service-qos-profile {
container qos {
if-feature "qos";
container qos-classification-policy {
list rule {
key "id";
ordered-by user;
leaf id {
Wen, et al. Standards Track [Page 110]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
type string;
description
"A description identifying the QoS classification
policy rule.";
}
choice match-type {
default "match-flow";
case match-flow {
container match-flow {
leaf dscp {
type inet:dscp;
description
"DSCP value.";
}
leaf dot1q {
type uint16;
description
"802.1Q matching. It is a VLAN tag added into
a frame.";
}
leaf pcp {
type uint8 {
range "0..7";
}
description
"PCP value.";
}
leaf src-mac {
type yang:mac-address;
description
"Source MAC.";
}
leaf dst-mac {
type yang:mac-address;
description
"Destination MAC.";
}
leaf color-type {
type identityref {
base color-type;
}
description
"Color types.";
}
leaf-list target-sites {
if-feature "target-sites";
type svc-id;
description
Wen, et al. Standards Track [Page 111]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Identifies a site as a traffic destination.";
}
leaf any {
type empty;
description
"Allow all.";
}
leaf vpn-id {
type svc-id;
description
"Reference to the target VPN.";
}
description
"Describes flow-matching criteria.";
}
}
case match-application {
leaf match-application {
type identityref {
base customer-application;
}
description
"Defines the application to match.";
}
}
description
"Choice for classification.";
}
leaf target-class-id {
type string;
description
"Identification of the CoS.
This identifier is internal to the
administration.";
}
description
"List of marking rules.";
}
description
"Configuration of the traffic classification policy.";
}
container qos-profile {
choice qos-profile {
description
"Choice for the QoS profile.
Can be a standard profile or a customized profile.";
case standard {
description
Wen, et al. Standards Track [Page 112]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Standard QoS profile.";
leaf profile {
type leafref {
path "/l2vpn-svc/vpn-profiles/"
+ "valid-provider-identifiers/"
+ "qos-profile-identifier";
}
description
"QoS profile to be used.";
}
}
case custom {
description
"Customized QoS profile.";
container classes {
if-feature "qos-custom";
list class {
key "class-id";
leaf class-id {
type string;
description
"Identification of the CoS. This identifier is
internal to the administration.";
}
leaf direction {
type identityref {
base qos-profile-direction;
}
default "bidirectional";
description
"The direction in which the QoS profile is
applied. By default, the direction is
bidirectional.";
}
leaf policing {
type identityref {
base policing;
}
default "one-rate-two-color";
description
"The policing type can be either one-rate,
two-color (1R2C) or two-rate, three-color
(2R3C). By default, the policing type is
'one-rate-two-color'.";
}
leaf byte-offset {
type uint16;
description
Wen, et al. Standards Track [Page 113]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Number of bytes in the service frame header
that are excluded from the QoS calculation
(e.g., extra VLAN tags).";
}
container frame-delay {
choice flavor {
case lowest {
leaf use-lowest-latency {
type empty;
description
"The traffic class should use the path
with the lowest delay.";
}
}
case boundary {
leaf delay-bound {
type uint16;
units "milliseconds";
description
"The traffic class should use a path
with a defined maximum delay.";
}
}
description
"Delay constraint on the traffic class.";
}
description
"Delay constraint on the traffic class.";
}
container frame-jitter {
choice flavor {
case lowest {
leaf use-lowest-jitter {
type empty;
description
"The traffic class should use the path
with the lowest jitter.";
}
}
case boundary {
leaf delay-bound {
type uint32;
units "microseconds";
description
"The traffic class should use a path
with a defined maximum jitter.";
}
}
Wen, et al. Standards Track [Page 114]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Jitter constraint on the traffic class.";
}
description
"Jitter constraint on the traffic class.";
}
container frame-loss {
leaf rate {
type decimal64 {
fraction-digits 2;
range "0..100";
}
units "percent";
description
"Frame loss rate constraint on the traffic
class.";
}
description
"Container for frame loss rate.";
}
container bandwidth {
leaf guaranteed-bw-percent {
type decimal64 {
fraction-digits 5;
range "0..100";
}
units "percent";
mandatory true;
description
"Used to define the guaranteed bandwidth
as a percentage of the available service
bandwidth.";
}
leaf end-to-end {
type empty;
description
"Used if the bandwidth reservation
must be done on the MPLS network too.";
}
description
"Bandwidth constraint on the traffic class.";
}
description
"List of CoS entries.";
}
description
"Container for list of CoS entries.";
}
Wen, et al. Standards Track [Page 115]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
}
description
"Qos profile configuration.";
}
description
"QoS configuration.";
}
description
"Grouping that defines QoS parameters for a site.";
}
grouping site-service-mpls {
container carrierscarrier {
if-feature "carrierscarrier";
leaf signaling-type {
type identityref {
base carrierscarrier-type;
}
default "bgp";
description
"CsC. By default, the signaling type is 'bgp'.";
}
description
"Container for CsC.";
}
description
"Grouping for CsC.";
}
container l2vpn-svc {
container vpn-profiles {
container valid-provider-identifiers {
leaf-list cloud-identifier {
if-feature "cloud-access";
type string;
description
"Identification of the public cloud service or
Internet service. Local to each administration.";
}
leaf-list qos-profile-identifier {
type string;
description
"Identification of the QoS profile to be used.
Local to each administration.";
}
leaf-list bfd-profile-identifier {
type string;
Wen, et al. Standards Track [Page 116]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Identification of the SP BFD profile to be used.
Local to each administration.";
}
leaf-list remote-carrier-identifier {
type string;
description
"Identification of the remote carrier name to be used.
It can be an L2VPN partner, data-center SP, or
private CSP. Local to each administration.";
}
nacm:default-deny-write;
description
"Container for valid provider identifiers.";
}
description
"Container for VPN profiles.";
}
container vpn-services {
list vpn-service {
key "vpn-id";
leaf vpn-id {
type svc-id;
description
"Defines a service identifier.";
}
leaf vpn-svc-type {
type identityref {
base service-type;
}
default "vpws";
description
"Service type. By default, the service type is 'vpws'.";
}
leaf customer-name {
type string;
description
"Customer name.";
}
leaf svc-topo {
type identityref {
base vpn-topology;
}
default "any-to-any";
description
"Defines the service topology, e.g.,
'any-to-any', 'hub-spoke'.";
}
Wen, et al. Standards Track [Page 117]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
container cloud-accesses {
if-feature "cloud-access";
list cloud-access {
key "cloud-identifier";
leaf cloud-identifier {
type leafref {
path "/l2vpn-svc/vpn-profiles/"
+ "valid-provider-identifiers"
+ "/cloud-identifier";
}
description
"Identification of the cloud service.
Local to each administration.";
}
choice list-flavor {
case permit-any {
leaf permit-any {
type empty;
description
"Allow all sites.";
}
}
case deny-any-except {
leaf-list permit-site {
type leafref {
path "/l2vpn-svc/sites/site/site-id";
}
description
"Site ID to be authorized.";
}
}
case permit-any-except {
leaf-list deny-site {
type leafref {
path "/l2vpn-svc/sites/site/site-id";
}
description
"Site ID to be denied.";
}
}
description
"Choice for cloud access policy.
By default, all sites in the L2VPN
MUST be authorized to access the cloud.";
}
description
"Cloud access configuration.";
}
Wen, et al. Standards Track [Page 118]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Container for cloud access configurations.";
}
container frame-delivery {
if-feature "bum";
container customer-tree-flavors {
leaf-list tree-flavor {
type identityref {
base multicast-tree-type;
}
description
"Type of tree to be used.";
}
description
"Types of trees used by the customer.";
}
container bum-deliveries {
list bum-delivery {
key "frame-type";
leaf frame-type {
type identityref {
base tf-type;
}
description
"Type of frame delivery. It supports unicast
frame delivery, multicast frame delivery,
and broadcast frame delivery.";
}
leaf delivery-mode {
type identityref {
base frame-delivery-mode;
}
default "unconditional";
description
"Defines the frame delivery mode
('unconditional' (default), 'conditional',
or 'discard'). By default, service frames are
unconditionally delivered to the destination site.";
}
description
"List of frame delivery types and modes.";
}
description
"Defines the frame delivery types and modes.";
}
leaf multicast-gp-port-mapping {
type identityref {
base multicast-gp-address-mapping;
Wen, et al. Standards Track [Page 119]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
mandatory true;
description
"Describes the way in which each interface is
associated with the multicast group.";
}
description
"Multicast global parameters for the VPN service.";
}
container extranet-vpns {
if-feature "extranet-vpn";
list extranet-vpn {
key "vpn-id";
leaf vpn-id {
type svc-id;
description
"Identifies the target VPN that the local VPN wants to
access.";
}
leaf local-sites-role {
type identityref {
base site-role;
}
default "any-to-any-role";
description
"Describes the role of the local sites in the target
VPN topology. In the any-to-any VPN service topology,
the local sites must have the same role, which will be
'any-to-any-role'. In the Hub-and-Spoke VPN service
topology or the Hub-and-Spoke-Disjoint VPN service
topology, the local sites must have a Hub role or a
Spoke role.";
}
description
"List of extranet VPNs to which the local VPN
is attached.";
}
description
"Container for extranet VPN configurations.";
}
leaf ce-vlan-preservation {
type boolean;
mandatory true;
description
"Preserves the CE-VLAN ID from ingress to egress, i.e.,
the CE-VLAN tag of the egress frame is identical to
that of the ingress frame that yielded this
egress service frame. If all-to-one bundling within
Wen, et al. Standards Track [Page 120]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
a site is enabled, then preservation applies to all
ingress service frames. If all-to-one bundling is
disabled, then preservation applies to tagged
ingress service frames having CE-VLAN IDs 1 through 4094.";
}
leaf ce-vlan-cos-preservation {
type boolean;
mandatory true;
description
"CE VLAN CoS preservation. The PCP bits in the CE-VLAN tag
of the egress frame are identical to those of the
ingress frame that yielded this egress service frame.";
}
leaf carrierscarrier {
if-feature "carrierscarrier";
type boolean;
default "false";
description
"The VPN is using CsC, and so MPLS is required.";
}
description
"List of VPN services.";
}
description
"Container for VPN services.";
}
container sites {
list site {
key "site-id";
leaf site-id {
type string;
description
"Identifier of the site.";
}
leaf site-vpn-flavor {
type identityref {
base site-vpn-flavor;
}
default "site-vpn-flavor-single";
description
"Defines the way that the VPN multiplexing is
done, e.g., whether the site belongs to
a single VPN site or a multi-VPN site. By
default, the site belongs to a single VPN.";
}
container devices {
when "derived-from-or-self(../management/type, "
+ "'l2vpn-svc:provider-managed') or "
Wen, et al. Standards Track [Page 121]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
+ "derived-from-or-self(../management/type, "
+ "'l2vpn-svc:co-managed')" {
description
"Applicable only for a provider-managed or
co-managed device.";
}
list device {
key "device-id";
leaf device-id {
type string;
description
"Identifier for the device.";
}
leaf location {
type leafref {
path "../../../locations/location/location-id";
}
mandatory true;
description
"Location of the device.";
}
container management {
when "derived-from-or-self(../../../management/type, "
+ "'l2vpn-svc:co-managed')" {
description
"Applicable only for a co-managed device.";
}
leaf transport {
type identityref {
base address-family;
}
description
"Transport protocol or address family
used for management.";
}
leaf address {
when '(../ transport)' {
description
"If the address family is specified, then the
address should also be specified. If the
transport is not specified, then the address
should not be specified.";
}
type inet:ip-address;
description
"Management address.";
}
description
Wen, et al. Standards Track [Page 122]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Management configuration. Applicable only for a
co-managed device.";
}
description
"List of devices requested by the customer.";
}
description
"Device configurations.";
}
container management {
leaf type {
type identityref {
base management;
}
mandatory true;
description
"Management type of the connection.";
}
description
"Management configuration.";
}
container locations {
list location {
key "location-id";
leaf location-id {
type string;
description
"Location ID.";
}
leaf address {
type string;
description
"Address (number and street) of the site.";
}
leaf postal-code {
type string;
description
"Postal code of the site. The format of 'postal-code'
is similar to the 'PC' (postal code) label format
defined in RFC 4119.";
}
leaf state {
type string;
description
"State (region) of the site. This leaf can also be used
to describe a region of a country that does not have
states.";
}
Wen, et al. Standards Track [Page 123]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
leaf city {
type string;
description
"City of the site.";
}
leaf country-code {
type string;
description
"Country of the site. The format of 'country-code' is
similar to the 'country' label defined in RFC 4119.";
}
description
"List of locations.";
}
description
"Location of the site.";
}
container site-diversity {
if-feature "site-diversity";
container groups {
list group {
key "group-id";
leaf group-id {
type string;
description
"The group-id to which the site belongs.";
}
description
"List of group-ids.";
}
description
"Groups to which the site belongs.
All site network accesses will inherit those group
values.";
}
description
"The type of diversity constraint.";
}
container vpn-policies {
list vpn-policy {
key "vpn-policy-id";
leaf vpn-policy-id {
type string;
description
"Unique identifier for the VPN policy.";
}
list entries {
key "id";
Wen, et al. Standards Track [Page 124]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
leaf id {
type string;
description
"Unique identifier for the policy entry.";
}
container filters {
list filter {
key "type";
ordered-by user;
leaf type {
type identityref {
base vpn-policy-filter-type;
}
description
"Type of VPN policy filter.";
}
leaf-list lan-tag {
when "derived-from-or-self(../type, "
+ "'l2vpn-svc:lan')" {
description
"Only applies when the VPN policy filter is a
LAN tag filter.";
}
if-feature "lan-tag";
type uint32;
description
"List of Ethernet LAN tags to be matched. An
Ethernet LAN tag identifies a particular
broadcast domain in a VPN.";
}
description
"List of filters used on the site. This list can
be augmented.";
}
description
"If a more granular VPN attachment is necessary,
filtering can be used. If used, it permits the
splitting of site LANs among multiple VPNs. The
site LAN can be split based on either the LAN tag or
the LAN prefix. If no filter is used, all the LANs
will be part of the same VPNs with the same role.";
}
list vpn {
key "vpn-id";
leaf vpn-id {
type leafref {
path "/l2vpn-svc/vpn-services/vpn-service/vpn-id";
}
Wen, et al. Standards Track [Page 125]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Reference to an L2VPN.";
}
leaf site-role {
type identityref {
base site-role;
}
default "any-to-any-role";
description
"Role of the site in the L2VPN.";
}
description
"List of VPNs with which the LAN is associated.";
}
description
"List of entries for an export policy.";
}
description
"List of VPN policies.";
}
description
"VPN policy.";
}
container service {
uses site-service-qos-profile;
uses site-service-mpls;
description
"Service parameters on the attachment.";
}
uses site-bum;
uses site-mac-loop-prevention;
uses site-acl;
leaf actual-site-start {
type yang:date-and-time;
config false;
description
"This leaf is optional. It indicates the date and time
when the service at a particular site actually started.";
}
leaf actual-site-stop {
type yang:date-and-time;
config false;
description
"This leaf is optional. It indicates the date and time
when the service at a particular site actually stopped.";
}
leaf bundling-type {
type identityref {
Wen, et al. Standards Track [Page 126]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
base bundling-type;
}
default "one2one-bundling";
description
"Bundling type. By default, each L2VPN
can be associated with only one
CE-VLAN, i.e., one-to-one bundling is used.";
}
leaf default-ce-vlan-id {
type uint32;
mandatory true;
description
"Default CE VLAN ID set at the site level.";
}
container site-network-accesses {
list site-network-access {
key "network-access-id";
leaf network-access-id {
type string;
description
"Identifier of network access.";
}
leaf remote-carrier-name {
when "derived-from-or-self(../../../site-vpn-flavor,"
+ "'l2vpn-svc:site-vpn-flavor-nni')" {
description
"Relevant when the site's VPN flavor is
'site-vpn-flavor-nni'.";
}
type leafref {
path "/l2vpn-svc/vpn-profiles/"
+ "valid-provider-identifiers"
+ "/remote-carrier-identifier";
}
description
"Remote carrier name. The 'remote-carrier-name'
parameter must be configured only when
'site-vpn-flavor' is set to 'site-vpn-flavor-nni'.
If it is not set, it indicates that the customer
does not know the remote carrier's name
beforehand.";
}
leaf type {
type identityref {
base site-network-access-type;
}
default "point-to-point";
description
Wen, et al. Standards Track [Page 127]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Describes the type of connection, e.g.,
point-to-point or multipoint.";
}
choice location-flavor {
case location {
when "derived-from-or-self(../../management/type, "
+ "'l2vpn-svc:customer-managed')" {
description
"Applicable only for a customer-managed device.";
}
leaf location-reference {
type leafref {
path "../../../locations/location/location-id";
}
description
"Location of the site-network-access.";
}
}
case device {
when "derived-from-or-self(../../management/type, "
+ "'l2vpn-svc:provider-managed') or "
+ "derived-from-or-self(../../management/type, "
+ "'l2vpn-svc:co-managed')" {
description
"Applicable only for a provider-managed
or co-managed device.";
}
leaf device-reference {
type leafref {
path "../../../devices/device/device-id";
}
description
"Identifier of the CE to use.";
}
}
mandatory true;
description
"Choice of how to describe the site's location.";
}
container access-diversity {
if-feature "site-diversity";
container groups {
list group {
key "group-id";
leaf group-id {
type string;
description
"Group-id to which the site belongs.";
Wen, et al. Standards Track [Page 128]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
description
"List of group-ids.";
}
description
"Groups to which the site or site-network-access
belongs.";
}
container constraints {
list constraint {
key "constraint-type";
leaf constraint-type {
type identityref {
base placement-diversity;
}
description
"The type of diversity constraint.";
}
container target {
choice target-flavor {
default "id";
case id {
list group {
key "group-id";
leaf group-id {
type string;
description
"The constraint will apply against this
particular group-id.";
}
description
"List of groups.";
}
}
case all-accesses {
leaf all-other-accesses {
type empty;
description
"The constraint will apply against all other
site network accesses of this site.";
}
}
case all-groups {
leaf all-other-groups {
type empty;
description
"The constraint will apply against all other
groups the customer is managing.";
Wen, et al. Standards Track [Page 129]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
}
description
"Choice for the group definition.";
}
description
"The constraint will apply against
this list of groups.";
}
description
"List of constraints.";
}
description
"Constraints for placing this site network access.";
}
description
"Diversity parameters.";
}
container bearer {
container requested-type {
if-feature "requested-type";
leaf type {
type string;
description
"Type of requested bearer: Ethernet, ATM, Frame
Relay, IP Layer 2 transport, Frame Relay Data
Link Connection Identifier (DLCI), SONET/SDH,
PPP.";
}
leaf strict {
type boolean;
default "false";
description
"Defines whether the requested type is a preference
or a strict requirement.";
}
description
"Container for requested types.";
}
leaf always-on {
if-feature "always-on";
type boolean;
default "true";
description
"Request for an 'always-on' access type.
For example, this could mean no dial-in access
type.";
}
Wen, et al. Standards Track [Page 130]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
leaf bearer-reference {
if-feature "bearer-reference";
type string;
description
"An internal reference for the SP.";
}
description
"Bearer-specific parameters. To be augmented.";
}
container connection {
leaf encapsulation-type {
type identityref {
base encapsulation-type;
}
default "ethernet";
description
"Encapsulation type. By default, the
encapsulation type is set to 'ethernet'.";
}
leaf eth-inf-type {
type identityref {
base eth-inf-type;
}
default "untagged";
description
"Ethernet interface type. By default, the
Ethernet interface type is set to 'untagged'.";
}
container tagged-interface {
leaf type {
type identityref {
base tagged-inf-type;
}
default "priority-tagged";
description
"Tagged interface type. By default,
the type of the tagged interface is
'priority-tagged'.";
}
container dot1q-vlan-tagged {
when "derived-from-or-self(../type, "
+ "'l2vpn-svc:dot1q')" {
description
"Only applies when the type of the tagged
interface is 'dot1q'.";
}
if-feature "dot1q";
leaf tg-type {
Wen, et al. Standards Track [Page 131]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
type identityref {
base tag-type;
}
default "c-vlan";
description
"Tag type. By default, the tag type is
'c-vlan'.";
}
leaf cvlan-id {
type uint16;
mandatory true;
description
"VLAN identifier.";
}
description
"Tagged interface.";
}
container priority-tagged {
when "derived-from-or-self(../type, "
+ "'l2vpn-svc:priority-tagged')" {
description
"Only applies when the type of the tagged
interface is 'priority-tagged'.";
}
leaf tag-type {
type identityref {
base tag-type;
}
default "c-vlan";
description
"Tag type. By default, the tag type is
'c-vlan'.";
}
description
"Priority tagged.";
}
container qinq {
when "derived-from-or-self(../type, "
+ "'l2vpn-svc:qinq')" {
description
"Only applies when the type of the tagged
interface is 'qinq'.";
}
if-feature "qinq";
leaf tag-type {
type identityref {
base tag-type;
}
Wen, et al. Standards Track [Page 132]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
default "c-s-vlan";
description
"Tag type. By default, the tag type is
'c-s-vlan'.";
}
leaf svlan-id {
type uint16;
mandatory true;
description
"SVLAN identifier.";
}
leaf cvlan-id {
type uint16;
mandatory true;
description
"CVLAN identifier.";
}
description
"QinQ.";
}
container qinany {
when "derived-from-or-self(../type, "
+ "'l2vpn-svc:qinany')" {
description
"Only applies when the type of the tagged
interface is 'qinany'.";
}
if-feature "qinany";
leaf tag-type {
type identityref {
base tag-type;
}
default "s-vlan";
description
"Tag type. By default, the tag type is
's-vlan'.";
}
leaf svlan-id {
type uint16;
mandatory true;
description
"SVLAN ID.";
}
description
"Container for QinAny.";
}
container vxlan {
when "derived-from-or-self(../type, "
Wen, et al. Standards Track [Page 133]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
+ "'l2vpn-svc:vxlan')" {
description
"Only applies when the type of the tagged
interface is 'vxlan'.";
}
if-feature "vxlan";
leaf vni-id {
type uint32;
mandatory true;
description
"VXLAN Network Identifier (VNI).";
}
leaf peer-mode {
type identityref {
base vxlan-peer-mode;
}
default "static-mode";
description
"Specifies the VXLAN access mode. By default,
the peer mode is set to 'static-mode'.";
}
list peer-list {
key "peer-ip";
leaf peer-ip {
type inet:ip-address;
description
"Peer IP.";
}
description
"List of peer IP addresses.";
}
description
"QinQ.";
}
description
"Container for tagged interfaces.";
}
container untagged-interface {
leaf speed {
type uint32;
units "mbps";
default "10";
description
"Port speed.";
}
leaf mode {
type neg-mode;
default "auto-neg";
Wen, et al. Standards Track [Page 134]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Negotiation mode.";
}
leaf phy-mtu {
type uint32;
units "bytes";
description
"PHY MTU.";
}
leaf lldp {
type boolean;
default "false";
description
"LLDP. Indicates that LLDP is supported.";
}
container oam-802.3ah-link {
if-feature "oam-3ah";
leaf enabled {
type boolean;
default "false";
description
"Indicates whether or not to support
OAM 802.3ah links.";
}
description
"Container for OAM 802.3ah links.";
}
leaf uni-loop-prevention {
type boolean;
default "false";
description
"If this leaf is set to 'true', then the port
automatically goes down when a physical
loopback is detected.";
}
description
"Container of untagged interface attribute
configurations.";
}
container lag-interfaces {
if-feature "lag-interface";
list lag-interface {
key "index";
leaf index {
type string;
description
"LAG interface index.";
}
Wen, et al. Standards Track [Page 135]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
container lacp {
if-feature "lacp";
leaf enabled {
type boolean;
default "false";
description
"LACP on/off. By default, LACP is disabled.";
}
leaf mode {
type neg-mode;
description
"LACP mode. LACP modes have active mode and
passive mode ('false'). 'Active mode' means
initiating the auto-speed negotiation and
trying to form an Ethernet channel with the
other end. 'Passive mode' means not initiating
the negotiation but responding to LACP packets
initiated by the other end (e.g., full duplex
or half duplex).";
}
leaf speed {
type uint32;
units "mbps";
default "10";
description
"LACP speed. By default, the LACP speed is 10
Mbps.";
}
leaf mini-link-num {
type uint32;
description
"Defines the minimum number of links that must
be active before the aggregating link is put
into service.";
}
leaf system-priority {
type uint16;
default "32768";
description
"Indicates the LACP priority for the system.
The range is from 0 to 65535.
The default is 32768.";
}
container micro-bfd {
if-feature "micro-bfd";
leaf enabled {
type enumeration {
enum on {
Wen, et al. Standards Track [Page 136]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"Micro-bfd on.";
}
enum off {
description
"Micro-bfd off.";
}
}
default "off";
description
"Micro-BFD on/off. By default, micro-BFD
is set to 'off'.";
}
leaf interval {
type uint32;
units "milliseconds";
description
"BFD interval.";
}
leaf hold-timer {
type uint32;
units "milliseconds";
description
"BFD hold timer.";
}
description
"Container of micro-BFD configurations.";
}
container bfd {
if-feature "bfd";
leaf enabled {
type boolean;
default "false";
description
"BFD activation. By default, BFD is not
activated.";
}
choice holdtime {
default "fixed";
case profile {
leaf profile-name {
type leafref {
path "/l2vpn-svc/vpn-profiles/"
+ "valid-provider-identifiers"
+ "/bfd-profile-identifier";
}
description
"SP well-known profile.";
Wen, et al. Standards Track [Page 137]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
description
"SP well-known profile.";
}
case fixed {
leaf fixed-value {
type uint32;
units "milliseconds";
description
"Expected hold time expressed in
milliseconds.";
}
}
description
"Choice for the hold-time flavor.";
}
description
"Container for BFD.";
}
container member-links {
list member-link {
key "name";
leaf name {
type string;
description
"Member link name.";
}
leaf speed {
type uint32;
units "mbps";
default "10";
description
"Port speed.";
}
leaf mode {
type neg-mode;
default "auto-neg";
description
"Negotiation mode.";
}
leaf link-mtu {
type uint32;
units "bytes";
description
"Link MTU size.";
}
container oam-802.3ah-link {
if-feature "oam-3ah";
Wen, et al. Standards Track [Page 138]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
leaf enabled {
type boolean;
default "false";
description
"Indicates whether OAM 802.3ah links are
supported.";
}
description
"Container for OAM 802.3ah links.";
}
description
"Member link.";
}
description
"Container of the member link list.";
}
leaf flow-control {
type boolean;
default "false";
description
"Flow control. Indicates whether flow control
is supported.";
}
leaf lldp {
type boolean;
default "false";
description
"LLDP. Indicates whether LLDP is supported.";
}
description
"LACP.";
}
description
"List of LAG interfaces.";
}
description
"Container of LAG interface attribute
configurations.";
}
list cvlan-id-to-svc-map {
key "svc-id";
leaf svc-id {
type leafref {
path "/l2vpn-svc/vpn-services/vpn-service/vpn-id";
}
description
"VPN service identifier.";
}
Wen, et al. Standards Track [Page 139]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
list cvlan-id {
key "vid";
leaf vid {
type uint16;
description
"CVLAN ID.";
}
description
"List of CVLAN-ID-to-SVC-map configurations.";
}
description
"List of CVLAN-ID-to-L2VPN-service-map
configurations.";
}
container l2cp-control {
if-feature "l2cp-control";
leaf stp-rstp-mstp {
type control-mode;
description
"STP / Rapid STP (RSTP) / Multiple STP (MSTP)
protocol type applicable to all sites.";
}
leaf pause {
type control-mode;
description
"Pause protocol type applicable to all sites.";
}
leaf lacp-lamp {
type control-mode;
description
"LACP / Link Aggregation Marker Protocol (LAMP).";
}
leaf link-oam {
type control-mode;
description
"Link OAM.";
}
leaf esmc {
type control-mode;
description
"Ethernet Synchronization Messaging Channel
(ESMC).";
}
leaf l2cp-802.1x {
type control-mode;
description
"IEEE 802.1x.";
}
Wen, et al. Standards Track [Page 140]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
leaf e-lmi {
type control-mode;
description
"E-LMI.";
}
leaf lldp {
type boolean;
description
"LLDP protocol type applicable to all sites.";
}
leaf ptp-peer-delay {
type control-mode;
description
"Precision Time Protocol (PTP) peer delay.";
}
leaf garp-mrp {
type control-mode;
description
"GARP/MRP.";
}
description
"Container of L2CP control configurations.";
}
container oam {
if-feature "ethernet-oam";
leaf md-name {
type string;
mandatory true;
description
"Maintenance domain name.";
}
leaf md-level {
type uint16 {
range "0..255";
}
mandatory true;
description
"Maintenance domain level. The level may be
restricted in certain protocols (e.g.,
protocols in Layer 0 to Layer 7).";
}
list cfm-8021-ag {
if-feature "cfm";
key "maid";
leaf maid {
type string;
mandatory true;
description
Wen, et al. Standards Track [Page 141]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Identifies a Maintenance Association (MA).";
}
leaf mep-id {
type uint32;
description
"Local Maintenance Entity Group End Point (MEP)
ID. The non-existence of this leaf means
that no defects are to be reported.";
}
leaf mep-level {
type uint32;
description
"Defines the MEP level. The non-existence of this
leaf means that no defects are to be reported.";
}
leaf mep-up-down {
type enumeration {
enum up {
description
"MEP up.";
}
enum down {
description
"MEP down.";
}
}
default "up";
description
"MEP up/down. By default, MEP up is used.
The non-existence of this leaf means that
no defects are to be reported.";
}
leaf remote-mep-id {
type uint32;
description
"Remote MEP ID. The non-existence of this leaf
means that no defects are to be reported.";
}
leaf cos-for-cfm-pdus {
type uint32;
description
"CoS for CFM PDUs. The non-existence of this leaf
means that no defects are to be reported.";
}
leaf ccm-interval {
type uint32;
units "milliseconds";
default "10000";
Wen, et al. Standards Track [Page 142]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
description
"CCM interval. By default, the CCM interval is
10,000 milliseconds (10 seconds).";
}
leaf ccm-holdtime {
type uint32;
units "milliseconds";
default "35000";
description
"CCM hold time. By default, the CCM hold time
is 3.5 times the CCM interval.";
}
leaf alarm-priority-defect {
type identityref {
base fault-alarm-defect-type;
}
default "remote-invalid-ccm";
description
"The lowest-priority defect that is
allowed to generate a fault alarm. By default,
'fault-alarm-defect-type' is set to
'remote-invalid-ccm'. The non-existence of
this leaf means that no defects are
to be reported.";
}
leaf ccm-p-bits-pri {
type ccm-priority-type;
description
"The priority parameter for CCMs transmitted by
the MEP. The non-existence of this leaf means
that no defects are to be reported.";
}
description
"List of 802.1ag CFM attributes.";
}
list y-1731 {
if-feature "y-1731";
key "maid";
leaf maid {
type string;
mandatory true;
description
"Identifies an MA.";
}
leaf mep-id {
type uint32;
description
"Local MEP ID. The non-existence of this leaf
Wen, et al. Standards Track [Page 143]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
means that no measurements are to be reported.";
}
leaf type {
type identityref {
base pm-type;
}
default "delay";
description
"Performance-monitoring types. By default, the
performance-monitoring type is set to 'delay'.
The non-existence of this leaf means that no
measurements are to be reported.";
}
leaf remote-mep-id {
type uint32;
description
"Remote MEP ID. The non-existence of this
leaf means that no measurements are to be
reported.";
}
leaf message-period {
type uint32;
units "milliseconds";
default "10000";
description
"Defines the interval between Y.1731
performance-monitoring messages. The message
period is expressed in milliseconds.";
}
leaf measurement-interval {
type uint32;
units "seconds";
description
"Specifies the measurement interval for
statistics. The measurement interval is
expressed in seconds.";
}
leaf cos {
type uint32;
description
"CoS. The non-existence of this leaf means that
no measurements are to be reported.";
}
leaf loss-measurement {
type boolean;
default "false";
description
"Indicates whether or not to enable loss
Wen, et al. Standards Track [Page 144]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
measurement. By default, loss
measurement is not enabled.";
}
leaf synthetic-loss-measurement {
type boolean;
default "false";
description
"Indicates whether or not to enable synthetic loss
measurement. By default, synthetic loss
measurement is not enabled.";
}
container delay-measurement {
leaf enable-dm {
type boolean;
default "false";
description
"Indicates whether or not to enable delay
measurement. By default, delay measurement
is not enabled.";
}
leaf two-way {
type boolean;
default "false";
description
"Indicates whether delay measurement is two-way
('true') or one-way ('false'). By default,
one-way measurement is enabled.";
}
description
"Container for delay measurement.";
}
leaf frame-size {
type uint32;
units "bytes";
description
"Frame size. The non-existence of this leaf
means that no measurements are to be reported.";
}
leaf session-type {
type enumeration {
enum proactive {
description
"Proactive mode.";
}
enum on-demand {
description
"On-demand mode.";
}
Wen, et al. Standards Track [Page 145]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
default "on-demand";
description
"Session type. By default, the session type
is 'on-demand'. The non-existence of this
leaf means that no measurements are to be
reported.";
}
description
"List of configured Y-1731 instances.";
}
description
"Container for Ethernet Service OAM.";
}
description
"Container for connection requirements.";
}
container availability {
leaf access-priority {
type uint32;
default "100";
description
"Access priority. The higher the access-priority
value, the higher the preference will be for the
access in question.";
}
choice redundancy-mode {
case single-active {
leaf single-active {
type empty;
description
"Single-active mode.";
}
description
"In single-active mode, only one node forwards
traffic to and from the Ethernet segment.";
}
case all-active {
leaf all-active {
type empty;
description
"All-active mode.";
}
description
"In all-active mode, all nodes can forward
traffic.";
}
description
Wen, et al. Standards Track [Page 146]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
"Redundancy mode choice.";
}
description
"Container of available optional configurations.";
}
container vpn-attachment {
choice attachment-flavor {
case vpn-id {
leaf vpn-id {
type leafref {
path "/l2vpn-svc/vpn-services/vpn-service/vpn-id";
}
description
"Reference to an L2VPN. Referencing a vpn-id
provides an easy way to attach a particular
logical access to a VPN. In this case,
the vpn-id must be configured.";
}
leaf site-role {
type identityref {
base site-role;
}
default "any-to-any-role";
description
"Role of the site in the L2VPN. When referencing
a vpn-id, the site-role setting must be added to
express the role of the site in the target VPN
service topology.";
}
}
case vpn-policy-id {
leaf vpn-policy-id {
type leafref {
path "../../../../vpn-policies/vpn-policy/"
+ "vpn-policy-id";
}
description
"Reference to a VPN policy.";
}
}
mandatory true;
description
"Choice for the VPN attachment flavor.";
}
description
"Defines the VPN attachment of a site.";
}
container service {
Wen, et al. Standards Track [Page 147]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
container svc-bandwidth {
if-feature "input-bw";
list bandwidth {
key "direction type";
leaf direction {
type identityref {
base bw-direction;
}
description
"Indicates the bandwidth direction. It can be
the bandwidth download direction from the SP to
the site or the bandwidth upload direction from
the site to the SP.";
}
leaf type {
type identityref {
base bw-type;
}
description
"Bandwidth type. By default, the bandwidth type
is set to 'bw-per-cos'.";
}
leaf cos-id {
when "derived-from-or-self(../type, "
+ "'l2vpn-svc:bw-per-cos')" {
description
"Relevant when the bandwidth type is set to
'bw-per-cos'.";
}
type uint8;
description
"Identifier of the CoS, indicated by DSCP or a
CE-VLAN CoS (802.1p) value in the service frame.
If the bandwidth type is set to 'bw-per-cos',
the CoS ID MUST also be specified.";
}
leaf vpn-id {
when "derived-from-or-self(../type, "
+ "'l2vpn-svc:bw-per-svc')" {
description
"Relevant when the bandwidth type is
set as bandwidth per VPN service.";
}
type svc-id;
description
"Identifies the target VPN. If the bandwidth
type is set as bandwidth per VPN service, the
vpn-id MUST be specified.";
Wen, et al. Standards Track [Page 148]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
leaf cir {
type uint64;
units "bps";
mandatory true;
description
"Committed Information Rate. The maximum number
of bits that a port can receive or send over
an interface in one second.";
}
leaf cbs {
type uint64;
units "bps";
mandatory true;
description
"Committed Burst Size (CBS). Controls the bursty
nature of the traffic. Traffic that does not
use the configured Committed Information Rate
(CIR) accumulates credits until the credits
reach the configured CBS.";
}
leaf eir {
type uint64;
units "bps";
description
"Excess Information Rate (EIR), i.e., excess frame
delivery allowed that is not subject to an SLA.
The traffic rate can be limited by the EIR.";
}
leaf ebs {
type uint64;
units "bps";
description
"Excess Burst Size (EBS). The bandwidth available
for burst traffic from the EBS is subject to the
amount of bandwidth that is accumulated during
periods when traffic allocated by the EIR
policy is not used.";
}
leaf pir {
type uint64;
units "bps";
description
"Peak Information Rate, i.e., maximum frame
delivery allowed. It is equal to or less
than the sum of the CIR and the EIR.";
}
leaf pbs {
Wen, et al. Standards Track [Page 149]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
type uint64;
units "bps";
description
"Peak Burst Size. It is measured in bytes per
second.";
}
description
"List of bandwidth values (e.g., per CoS,
per vpn-id).";
}
description
"From the customer site's perspective, the service
input/output bandwidth of the connection or
download/upload bandwidth from the SP/site
to the site/SP.";
}
leaf svc-mtu {
type uint16;
units "bytes";
mandatory true;
description
"SVC MTU. It is also known as the maximum
transmission unit or maximum frame size. When
a frame is larger than the MTU, it is broken
down, or fragmented, into smaller pieces by
the network protocol to accommodate the MTU
of the network. If CsC is enabled,
the requested svc-mtu leaf will refer to the
MPLS MTU and not to the link MTU.";
}
uses site-service-qos-profile;
uses site-service-mpls;
description
"Container for services.";
}
uses site-bum;
uses site-mac-loop-prevention;
uses site-acl;
container mac-addr-limit {
if-feature "mac-addr-limit";
leaf limit-number {
type uint16;
default "2";
description
"Maximum number of MAC addresses learned from
the subscriber for a single service instance.
The default allowed maximum number of MAC
addresses is 2.";
Wen, et al. Standards Track [Page 150]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
}
leaf time-interval {
type uint32;
units "seconds";
default "300";
description
"The aging time of the MAC address. By default,
the aging time is set to 300 seconds.";
}
leaf action {
type identityref {
base mac-action;
}
default "warning";
description
"Specifies the action taken when the upper limit is
exceeded: drop the packet, flood the packet, or
simply send a warning log message. By default,
the action is set to 'warning'.";
}
description
"Container of MAC address limit configurations.";
}
description
"List of site network accesses.";
}
description
"Container of port configurations.";
}
description
"List of sites.";
}
description
"Container of site configurations.";
}
description
"Container for L2VPN services.";
}
}
<CODE ENDS>
Wen, et al. Standards Track [Page 151]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
9. Security Considerations
The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
The NETCONF access control model [RFC8341] provides the means to
restrict access for particular NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.
There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
to these data nodes without proper protection can have a negative
effect on network operations. These are the subtrees and data nodes
and their sensitivity/vulnerability:
o /l2vpn-svc/vpn-services/vpn-service
The entries in the list above include all of the VPN service
configurations to which the customer subscribes and will use to
indirectly create or modify the PE and CE device configurations.
Unexpected changes to these entries could lead to service
disruptions and/or network misbehavior.
o /l2vpn-svc/sites/site
The entries in the list above include the customer site
configurations. As noted in the previous paragraph, unexpected
changes to these entries could lead to service disruptions and/or
network misbehavior.
Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes. These are the subtrees and data
nodes and their sensitivity/vulnerability:
o /l2vpn-svc/vpn-services/vpn-service
o /l2vpn-svc/sites/site
Wen, et al. Standards Track [Page 152]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
The entries in the lists above include customer-proprietary or
confidential information, e.g., customer name, site location,
services to which the customer subscribes.
When an SP collaborates with multiple customers, it has to ensure
that a given customer can only view and modify its (the customer's)
own service information.
The data model defines some security parameters that can be extended
via augmentation as part of the customer service request; those
parameters are described in Sections 5.12 and 5.13.
10. IANA Considerations
IANA has assigned a new URI from the "IETF XML Registry" [RFC3688].
URI: urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace
IANA has assigned a new YANG module name in the "YANG Module Names"
registry [RFC6020].
name: ietf-l2vpn-svc
namespace: urn:ietf:params:xml:ns:yang:ietf-l2vpn-svc
prefix: l2vpn-svc
reference: RFC 8466
11. References
11.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
2006, <https://www.rfc-editor.org/info/rfc4364>.
Wen, et al. Standards Track [Page 153]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
[RFC4761] Kompella, K., Ed. and Y. Rekhter, Ed., "Virtual Private
LAN Service (VPLS) Using BGP for Auto-Discovery and
Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007,
<https://www.rfc-editor.org/info/rfc4761>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6073] Martini, L., Metz, C., Nadeau, T., Bocci, M., and M.
Aissaoui, "Segmented Pseudowire", RFC 6073,
DOI 10.17487/RFC6073, January 2011,
<https://www.rfc-editor.org/info/rfc6073>.
[RFC6074] Rosen, E., Davie, B., Radoaca, V., and W. Luo,
"Provisioning, Auto-Discovery, and Signaling in Layer 2
Virtual Private Networks (L2VPNs)", RFC 6074,
DOI 10.17487/RFC6074, January 2011,
<https://www.rfc-editor.org/info/rfc6074>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
2015, <https://www.rfc-editor.org/info/rfc7432>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
Wen, et al. Standards Track [Page 154]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8214] Boutros, S., Sajassi, A., Salam, S., Drake, J., and J.
Rabadan, "Virtual Private Wire Service Support in Ethernet
VPN", RFC 8214, DOI 10.17487/RFC8214, August 2017,
<https://www.rfc-editor.org/info/rfc8214>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/info/rfc8342>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[W3C.REC-xml-20081126]
Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
Edition)", World Wide Web Consortium Recommendation
REC-xml-20081126, November 2008,
<https://www.w3.org/TR/2008/REC-xml-20081126>.
11.2. Informative References
[EVPN-YANG]
Brissette, P., Ed., Shah, H., Ed., Chen, I., Ed., Hussain,
I., Ed., Tiruveedhula, K., Ed., and J. Rabadan, Ed., "Yang
Data Model for EVPN", Work in Progress, draft-ietf-bess-
evpn-yang-05, February 2018.
[IEEE-802-1ag]
IEEE, "802.1ag - 2007 - IEEE Standard for Local and
Metropolitan Area Networks - Virtual Bridged Local Area
Networks Amendment 5: Connectivity Fault Management",
DOI 10.1109/IEEESTD.2007.4431836.
[IEEE-802-1D]
IEEE, "802.1D-2004 - IEEE Standard for Local and
metropolitan area networks: Media Access Control (MAC)
Bridges", DOI 10.1109/IEEESTD.2004.94569.
Wen, et al. Standards Track [Page 155]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
[IEEE-802-1Q]
IEEE, "802.1Q - 2014 - IEEE Standard for Local and
metropolitan area networks--Bridges and Bridged Networks",
DOI 10.1109/IEEESTD.2014.6991462.
[IEEE-802-3ah]
IEEE, "802.3ah - 2004 - IEEE Standard for Information
technology-- Local and metropolitan area networks-- Part
3: CSMA/CD Access Method and Physical Layer Specifications
Amendment: Media Access Control Parameters, Physical
Layers, and Management Parameters for Subscriber Access
Networks", DOI 10.1109/IEEESTD.2004.94617.
[ITU-T-Y-1731]
International Telecommunication Union, "Operations,
administration and maintenance (OAM) functions and
mechanisms for Ethernet-based networks",
ITU-T Recommendation Y.1731, August 2015,
<https://www.itu.int/rec/T-REC-Y.1731/en>.
[MEF-6] Metro Ethernet Forum, "Ethernet Services Definitions -
Phase 2", April 2008, <https://mef.net/PDF_Documents/
technical-specifications/MEF6-1.pdf>.
[MPLS-L2VPN-YANG]
Shah, H., Ed., Brissette, P., Ed., Chen, I., Ed., Hussain,
I., Ed., Wen, B., Ed., and K. Tiruveedhula, Ed., "YANG
Data Model for MPLS-based L2VPN", Work in Progress,
draft-ietf-bess-l2vpn-yang-08, February 2018.
[RFC4119] Peterson, J., "A Presence-based GEOPRIV Location Object
Format", RFC 4119, DOI 10.17487/RFC4119, December 2005,
<https://www.rfc-editor.org/info/rfc4119>.
[RFC6624] Kompella, K., Kothari, B., and R. Cherukuri, "Layer 2
Virtual Private Networks Using BGP for Auto-Discovery and
Signaling", RFC 6624, DOI 10.17487/RFC6624, May 2012,
<https://www.rfc-editor.org/info/rfc6624>.
[RFC7130] Bhatia, M., Ed., Chen, M., Ed., Boutros, S., Ed.,
Binderberger, M., Ed., and J. Haas, Ed., "Bidirectional
Forwarding Detection (BFD) on Link Aggregation Group (LAG)
Interfaces", RFC 7130, DOI 10.17487/RFC7130, February
2014, <https://www.rfc-editor.org/info/rfc7130>.
Wen, et al. Standards Track [Page 156]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
[RFC7209] Sajassi, A., Aggarwal, R., Uttaro, J., Bitar, N.,
Henderickx, W., and A. Isaac, "Requirements for Ethernet
VPN (EVPN)", RFC 7209, DOI 10.17487/RFC7209, May 2014,
<https://www.rfc-editor.org/info/rfc7209>.
[RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3
Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
<https://www.rfc-editor.org/info/rfc7348>.
[RFC7436] Shah, H., Rosen, E., Le Faucheur, F., and G. Heron,
"IP-Only LAN Service (IPLS)", RFC 7436,
DOI 10.17487/RFC7436, January 2015,
<https://www.rfc-editor.org/info/rfc7436>.
[RFC8199] Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module
Classification", RFC 8199, DOI 10.17487/RFC8199, July
2017, <https://www.rfc-editor.org/info/rfc8199>.
[RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
"YANG Data Model for L3VPN Service Delivery", RFC 8299,
DOI 10.17487/RFC8299, January 2018,
<https://www.rfc-editor.org/info/rfc8299>.
[RFC8309] Wu, Q., Liu, W., and A. Farrel, "Service Models
Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
<https://www.rfc-editor.org/info/rfc8309>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
Acknowledgements
Thanks to Qin Wu and Adrian Farrel for facilitating work on the
initial draft revisions of this document. Thanks to Zonghe Huang,
Wei Deng, and Xiaoling Song for their review of this document.
Special thanks to Jan Lindblad for his careful review of the YANG.
This document has drawn on the work of the L3SM Working Group as
provided in [RFC8299].
Wen, et al. Standards Track [Page 157]
^L
RFC 8466 L2VPN Service Model (L2SM) October 2018
Authors' Addresses
Bin Wen
Comcast
Email: bin_wen@comcast.com
Giuseppe Fioccola (editor)
Telecom Italia
Email: giuseppe.fioccola@tim.it
Chongfeng Xie
China Telecom
Email: xiechf.bri@chinatelecom.cn
Luay Jalil
Verizon
Email: luay.jalil@verizon.com
Wen, et al. Standards Track [Page 158]
^L
|