1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
|
Internet Engineering Task Force (IETF) D. Kumar
Request for Comments: 8532 Cisco
Category: Standards Track M. Wang
ISSN: 2070-1721 Q. Wu, Ed.
Huawei
R. Rahman
S. Raghavan
Cisco
April 2019
Generic YANG Data Model for the Management of
Operations, Administration, and Maintenance (OAM) Protocols
That Use Connectionless Communications
Abstract
This document presents a base YANG Data model for the management of
Operations, Administration, and Maintenance (OAM) protocols that use
connectionless communications. The data model is defined using the
YANG data modeling language, as specified in RFC 7950. It provides a
technology-independent abstraction of key OAM constructs for OAM
protocols that use connectionless communication. The base model
presented here can be extended to include technology-specific
details.
There are two key benefits of this approach: First, it leads to
uniformity between OAM protocols. Second, it supports both nested
OAM workflows (i.e., performing OAM functions at the same level or
different levels through a unified interface) as well as interactive
OAM workflows (i.e., performing OAM functions at the same level
through a unified interface).
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8532.
Kumar, et al. Standards Track [Page 1]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Conventions Used in This Document . . . . . . . . . . . . . . 4
2.1. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 5
3. Overview of the Connectionless OAM Model . . . . . . . . . . 5
3.1. TP Address . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3. OAM Neighboring Test Points . . . . . . . . . . . . . . . 7
3.4. Test Point Location Information . . . . . . . . . . . . . 8
3.5. Test Point Locations . . . . . . . . . . . . . . . . . . 8
3.6. Path Discovery Data . . . . . . . . . . . . . . . . . . . 8
3.7. Continuity Check Data . . . . . . . . . . . . . . . . . . 9
3.8. OAM Data Hierarchy . . . . . . . . . . . . . . . . . . . 9
4. LIME Time Types YANG Module . . . . . . . . . . . . . . . . . 12
5. Connectionless OAM YANG Module . . . . . . . . . . . . . . . 15
6. Connectionless Model Applicability . . . . . . . . . . . . . 44
6.1. BFD Extension . . . . . . . . . . . . . . . . . . . . . . 45
6.1.1. Augment Method . . . . . . . . . . . . . . . . . . . 45
6.1.2. Schema Mount . . . . . . . . . . . . . . . . . . . . 47
6.2. LSP Ping Extension . . . . . . . . . . . . . . . . . . . 49
6.2.1. Augment Method . . . . . . . . . . . . . . . . . . . 49
6.2.2. Schema Mount . . . . . . . . . . . . . . . . . . . . 50
7. Security Considerations . . . . . . . . . . . . . . . . . . . 52
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 54
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1. Normative References . . . . . . . . . . . . . . . . . . 54
9.2. Informative References . . . . . . . . . . . . . . . . . 56
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 58
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 59
Kumar, et al. Standards Track [Page 2]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
1. Introduction
Operations, Administration, and Maintenance (OAM) are important
networking functions that allow operators to:
1. monitor network communications (i.e., reachability verification
and Continuity Check)
2. troubleshoot failures (i.e., fault verification and localization)
3. monitor service-level agreements and performance (i.e.,
performance management)
An overview of OAM tools is presented in [RFC7276].
Ping and Traceroute (see [RFC792] and [RFC4443]) are respectively
well-known fault verification and isolation tools for IP networks.
Over the years, different technologies have developed similar
toolsets for equivalent purposes.
The different sets of OAM tools may support both connection-oriented
or connectionless technologies. In connection-oriented technologies,
a connection is established prior to the transmission of data. After
the connection is established, no additional control information such
as signaling or operations and maintenance information is required to
transmit the actual user data. In connectionless technologies, data
is typically sent between communicating endpoints without prior
arrangement, but control information is required to identify the
destination (e.g., [G.800] and [RFC7276]). The YANG data model for
OAM protocols using connection-oriented communications is specified
in [RFC8531].
This document defines a base YANG data model for OAM protocols that
use connectionless communications. The data model is defined using
the YANG data modeling language [RFC7950]. This generic YANG data
model for connectionless OAM includes only configuration and state
data. It can be used in conjunction with the data retrieval method
model described in [RFC8533], which focuses on the data retrieval
procedures such as RPC, or it can be used independently of this data
retrieval method model.
Kumar, et al. Standards Track [Page 3]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
2. Conventions Used in This Document
The following terms are defined in [RFC6241] and are used in this
specification:
o client
o configuration data
o server
o state data
The following terms are defined in [RFC7950] and are used in this
specification:
o augment
o data model
o data node
The terminology for describing YANG data models is found in
[RFC7950].
2.1. Abbreviations
BFD - Bidirectional Forwarding Detection [RFC5880].
RPC - Remote Procedure Call [RFC1831].
DSCP - Differentiated Services Code Point.
VRF - Virtual Routing and Forwarding [RFC4382].
OWAMP - One-Way Active Measurement Protocol [RFC4656].
TWAMP - Two-Way Active Measurement Protocol [RFC5357].
AS - Autonomous System.
LSP - Label Switched Path.
TE - Traffic Engineering.
MPLS - Multiprotocol Label Switching.
NI - Network Instance.
Kumar, et al. Standards Track [Page 4]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
PTP - Precision Time Protocol [IEEE.1588v2].
NTP - Network Time Protocol [RFC5905].
2.2. Terminology
MAC - Media Access Control.
MAC address - Address for the data-link layer interface.
TP - Test Point. The TP is a functional entity that is defined at a
node in the network and can initiate and/or react to OAM diagnostic
tests. This document focuses on the data-plane functionality of TPs.
RPC operation - A specific Remote Procedure Call.
CC - A Continuity Check [RFC7276] is used to verify that a
destination is reachable and therefore also referred to as
reachability verification.
2.3. Tree Diagrams
Tree diagrams used in this document follow the notation defined in
[RFC8340].
3. Overview of the Connectionless OAM Model
The YANG data model for OAM protocols that use connectionless
communications has been split into two modules:
o The "ietf-lime-time-types" module provides common definitions such
as Time-related data types and Timestamp-related data types.
o The "ietf-connectionless-oam" module defines technology-
independent abstraction of key OAM constructs for OAM protocols
that use connectionless communication.
The "ietf-connectionless-oam" module augments the "/networks/network/
node" path defined in the "ietf-network" module [RFC8345] with the
'test-point-locations' grouping defined in Section 3.5. The network
nodes in the "/networks/network/node" path are used to describe the
network hierarchies and the inventory of nodes contained in a
network.
Under the 'test-point-locations' grouping, each test point location
is chosen based on the 'tp-location-type' leaf, which, when chosen,
leads to a container that includes a list of 'test-point-locations'.
Kumar, et al. Standards Track [Page 5]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
Each 'test-point-locations' list includes a 'test-point-location-
info' grouping. The 'test-point-location-info' grouping includes:
o 'tp-technology' grouping,
o 'tp-tools' grouping, and
o 'connectionless-oam-tps' grouping.
The groupings of 'tp-address' and 'tp-address-ni' are kept out of the
'test-point-location-info' grouping to make it addressing agnostic
and allow varied composition. Depending upon the choice of the
'tp-location-type' (determined by the 'tp-address-ni'), each
container differs in its composition of 'test-point-locations', while
the 'test-point-location-info' is a common aspect of every
'test-point-locations'.
The 'tp-address-ni' grouping is used to describe the corresponding
network instance. The 'tp-technology' grouping indicates OAM
technology details. The 'connectionless-oam-tps' grouping is used to
describe the relationship of one test point with other test points.
The 'tp-tools' grouping describes the OAM tools supported.
In addition, at the top of the model, there is an 'cc-oper-data'
container for session statistics. A grouping is also defined for
common session statistics, and these are only applicable for
proactive OAM sessions (see Section 3.2).
3.1. TP Address
With connectionless OAM protocols, the TP address can be one of the
following types:
o MAC address [RFC6136] at the data-link layer for TPs
o IPv4 or IPv6 address at the IP layer for TPs
o TP-attribute identifying a TP associated with an application-layer
function
o Router-id to represent the device or node, which is commonly used
to identify nodes in routing and other control-plane protocols
[RFC8294].
To define a forwarding treatment of a test packet, the 'tp-address'
grouping needs to be associated with additional parameters, e.g.,
DSCP for IP or Traffic Class [RFC5462] for MPLS. In the generic
Kumar, et al. Standards Track [Page 6]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
connectionless OAM YANG data model, these parameters are not
explicitly configured. The model user can add corresponding
parameters according to their requirements.
3.2. Tools
The different OAM tools may be used in one of two basic types of
activation: proactive and on-demand. Proactive OAM refers to OAM
actions that are carried out continuously to permit proactive
reporting of faults. The proactive OAM method requires persistent
configuration. On-demand OAM refers to OAM actions that are
initiated via manual intervention for a limited time to carry out
specific diagnostics. The on-demand OAM method requires only
transient configuration (e.g., [RFC7276] and [G.8013]). In
connectionless OAM, the 'session-type' grouping is defined to
indicate which kind of activation will be used by the current
session.
In connectionless OAM, the tools attribute is used to describe a
toolset for fault detection and isolation. In addition, it can serve
as a constraint condition when the base model is extended to a
specific OAM technology. For example, to fulfill the ICMP PING
configuration, the "../coam:continuity-check" leaf should be set to
"true", and then the LIME base model should be augmented with details
specific to ICMP PING.
3.3. OAM Neighboring Test Points
Given that typical network communication stacks have a multi-layer
architecture, the set of associated OAM protocols has also a multi-
layer structure; each communication layer in the stack may have its
own OAM protocol [RFC7276] that may also be linked to a specific
administrative domain. Management of these OAM protocols will
necessitate associated test points in the nodes accessible by
appropriate management domains. Accordingly, a given network
interface may actually present several test points.
Each OAM test point may have an associated list of neighboring test
points that are in other layers up and down the protocol stack for
the same interface and are therefore related to the current test
point. This allows users to easily navigate between related
neighboring layers to efficiently troubleshoot a defect. In this
model, the 'position' leaf defines the relative position of the
neighboring test point corresponding to the current test point, and
it is provided to allow correlation of faults at different locations.
If there is one neighboring test point placed before the current test
point, the 'position' leaf is set to -1. If there is one neighboring
Kumar, et al. Standards Track [Page 7]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
test point placed after the current test point, the 'position' leaf
is set to 1. If there is no neighboring test point placed before or
after the current test point, the 'position' leaf is set to 0.
+-- oam-neighboring-tps* [index]
+-- index? uint16
+-- position? int8
+-- (tp-location)?
+--:(mac-address)
| +-- mac-address-location? yang:mac-address
+--:(ipv4-address)
| +-- ipv4-address-location? inet:ipv4-address
+--:(ipv6-address)
| +-- ipv6-address-location? inet:ipv6-address
+--:(as-number)
| +-- as-number-location? inet:as-number
+--:(router-id)
+-- router-id-location? rt:router-id
3.4. Test Point Location Information
This is a generic grouping for Test Point Location Information (i.e.,
'test-point-location-info' grouping). It provides details of Test
Point Location using the 'tp-technology', 'tp-tools', and
'oam-neighboring-tps' groupings, all of which are defined above.
3.5. Test Point Locations
This is a generic grouping for Test Point Locations. 'tp-location-
type' leaf is used to define location types -- for example,
'ipv4-location-type', 'ipv6-location-type', etc. Container is
defined under each location type containing a list keyed to a test
point address, Test Point Location Information defined in the section
above, and network instance name (e.g., VRF instance name) if
required.
3.6. Path Discovery Data
This is a generic grouping for the path discovery data model that can
be retrieved by any data retrieval method, including RPC operations.
Path discovery data output from methods, includes 'src-test-point'
container, 'dst-test-point' container, 'sequence-number' leaf,
'hop-cnt' leaf, session statistics of various kinds, and information
related to path verification and path trace. Path discovery includes
data to be retrieved on a 'per-hop' basis via a list of 'path-trace-
info-list' items which includes information such as 'timestamp'
grouping, 'ingress-intf-name', 'egress-intf-name', and 'app-meta-
data'. The path discovery data model is made generic enough to allow
Kumar, et al. Standards Track [Page 8]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
different methods of data retrieval. None of the fields are made
mandatory for that reason. Note that a set of retrieval methods are
defined in [RFC8533].
3.7. Continuity Check Data
This is a generic grouping for the Continuity Check data model that
can be retrieved by any data retrieval methods including RPC
operations. Continuity Check data output from methods, includes
'src-test-point' container, 'dst-test-point' container,
'sequence-number' leaf, 'hop-cnt' leaf, and session statistics of
various kinds. The Continuity Check data model is made generic
enough to allow different methods of data retrieval. None of the
fields are made mandatory for that reason. Noted that a set of
retrieval methods are defined in [RFC8533].
3.8. OAM Data Hierarchy
The complete data hierarchy related to the OAM YANG data model is
presented below.
module: ietf-connectionless-oam
+--ro cc-session-statistics-data {continuity-check}?
+--ro cc-session-statistics* [type]
+--ro type identityref
+--ro cc-ipv4-sessions-statistics
| +--ro cc-session-statistics
| +--ro session-count? uint32
| +--ro session-up-count? uint32
| +--ro session-down-count? uint32
| +--ro session-admin-down-count? uint32
+--ro cc-ipv6-sessions-statistics
+--ro cc-session-statistics
+--ro session-count? uint32
+--ro session-up-count? uint32
+--ro session-down-count? uint32
+--ro session-admin-down-count? uint32
augment /nd:networks/nd:network/nd:node:
+--rw tp-location-type? identityref
+--rw ipv4-location-type
| +--rw test-point-ipv4-location-list
| +--rw test-point-locations* [ipv4-location ni]
| +--rw ipv4-location inet:ipv4-address
| +--rw ni routing-instance-ref
| +--rw (technology)?
| | +--:(technology-null)
| | +--rw tech-null? empty
| +--rw tp-tools
Kumar, et al. Standards Track [Page 9]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
| | +--rw continuity-check boolean
| | +--rw path-discovery boolean
| +--rw root? <anydata>
| +--rw oam-neighboring-tps* [index]
| +--rw index uint16
| +--rw position? int8
| +--rw (tp-location)?
| +--:(mac-address)
| | +--rw mac-address-location? yang:mac-address
| +--:(ipv4-address)
| | +--rw ipv4-address-location? inet:ipv4-address
| +--:(ipv6-address)
| | +--rw ipv6-address-location? inet:ipv6-address
| +--:(as-number)
| | +--rw as-number-location? inet:as-number
| +--:(router-id)
| +--rw router-id-location? rt:router-id
+--rw ipv6-location-type
| +--rw test-point-ipv6-location-list
| +--rw test-point-locations* [ipv6-location ni]
| +--rw ipv6-location inet:ipv6-address
| +--rw ni routing-instance-ref
| +--rw (technology)?
| | +--:(technology-null)
| | +--rw tech-null? empty
| +--rw tp-tools
| | +--rw continuity-check boolean
| | +--rw path-discovery boolean
| +--rw root? <anydata>
| +--rw oam-neighboring-tps* [index]
| +--rw index uint16
| +--rw position? int8
| +--rw (tp-location)?
| +--:(mac-address)
| | +--rw mac-address-location? yang:mac-address
| +--:(ipv4-address)
| | +--rw ipv4-address-location? inet:ipv4-address
| +--:(ipv6-address)
| | +--rw ipv6-address-location? inet:ipv6-address
| +--:(as-number)
| | +--rw as-number-location? inet:as-number
| +--:(router-id)
| +--rw router-id-location? rt:router-id
+--rw mac-location-type
| +--rw test-point-mac-address-location-list
| +--rw test-point-locations* [mac-address-location]
| +--rw mac-address-location yang:mac-address
| +--rw (technology)?
Kumar, et al. Standards Track [Page 10]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
| | +--:(technology-null)
| | +--rw tech-null? empty
| +--rw tp-tools
| | +--rw continuity-check boolean
| | +--rw path-discovery boolean
| +--rw root? <anydata>
| +--rw oam-neighboring-tps* [index]
| +--rw index uint16
| +--rw position? int8
| +--rw (tp-location)?
| +--:(mac-address)
| | +--rw mac-address-location? yang:mac-address
| +--:(ipv4-address)
| | +--rw ipv4-address-location? inet:ipv4-address
| +--:(ipv6-address)
| | +--rw ipv6-address-location? inet:ipv6-address
| +--:(as-number)
| | +--rw as-number-location? inet:as-number
| +--:(router-id)
| +--rw router-id-location? rt:router-id
+--rw group-as-number-location-type
| +--rw test-point-as-number-location-list
| +--rw test-point-locations* [as-number-location]
| +--rw as-number-location inet:as-number
| +--rw ni? routing-instance-ref
| +--rw (technology)?
| | +--:(technology-null)
| | +--rw tech-null? empty
| +--rw tp-tools
| | +--rw continuity-check boolean
| | +--rw path-discovery boolean
| +--rw root? <anydata>
| +--rw oam-neighboring-tps* [index]
| +--rw index uint16
| +--rw position? int8
| +--rw (tp-location)?
| +--:(mac-address)
| | +--rw mac-address-location? yang:mac-address
| +--:(ipv4-address)
| | +--rw ipv4-address-location? inet:ipv4-address
| +--:(ipv6-address)
| | +--rw ipv6-address-location? inet:ipv6-address
| +--:(as-number)
| | +--rw as-number-location? inet:as-number
| +--:(router-id)
| +--rw router-id-location? rt:router-id
+--rw group-router-id-location-type
+--rw test-point-system-info-location-list
Kumar, et al. Standards Track [Page 11]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
+--rw test-point-locations* [router-id-location]
+--rw router-id-location rt:router-id
+--rw ni? routing-instance-ref
+--rw (technology)?
| +--:(technology-null)
| +--rw tech-null? empty
+--rw tp-tools
| +--rw continuity-check boolean
| +--rw path-discovery boolean
+--rw root? <anydata>
+--rw oam-neighboring-tps* [index]
+--rw index uint16
+--rw position? int8
+--rw (tp-location)?
+--:(mac-address)
| +--rw mac-address-location? yang:mac-address
+--:(ipv4-address)
| +--rw ipv4-address-location? inet:ipv4-address
+--:(ipv6-address)
| +--rw ipv6-address-location? inet:ipv6-address
+--:(as-number)
| +--rw as-number-location? inet:as-number
+--:(router-id)
+--rw router-id-location? rt:router-id
4. LIME Time Types YANG Module
<CODE BEGINS> file "ietf-lime-time-types@2019-04-16.yang"
module ietf-lime-time-types {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-lime-time-types";
prefix lime;
organization
"IETF LIME Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/lime>
WG List: <mailto:lmap@ietf.org>
Editor: Qin Wu
<bill.wu@huawei.com>";
description
"This module provides time-related definitions used by the data
models written for Layer Independent OAM Management in the
Multi-Layer Environment (LIME). This module defines
identities but no schema tree elements.
Kumar, et al. Standards Track [Page 12]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
Copyright (c) 2019 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8532; see
the RFC itself for full legal notices.";
revision 2019-04-16 {
description
"Initial version.";
reference
"RFC 8532: Generic YANG Data Model for the Management of
Operations, Administration, and Maintenance (OAM) Protocols
That Use Connectionless Communications";
}
/*** Collection of common types related to time ***/
/*** Time unit identity ***/
identity time-unit-type {
description
"Time unit type.";
}
identity hours {
base time-unit-type;
description
"Time unit in hours.";
}
identity minutes {
base time-unit-type;
description
"Time unit in minutes.";
}
identity seconds {
base time-unit-type;
description
"Time unit in seconds.";
}
Kumar, et al. Standards Track [Page 13]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
identity milliseconds {
base time-unit-type;
description
"Time unit in milliseconds.";
}
identity microseconds {
base time-unit-type;
description
"Time unit in microseconds.";
}
identity nanoseconds {
base time-unit-type;
description
"Time unit in nanoseconds.";
}
/*** Timestamp format Identity ***/
identity timestamp-type {
description
"Base identity for Timestamp Type.";
}
identity truncated-ptp {
base timestamp-type;
description
"Identity for 64-bit short-format PTP timestamp.";
}
identity truncated-ntp {
base timestamp-type;
description
"Identity for 32-bit short-format NTP timestamp.";
}
identity ntp64 {
base timestamp-type;
description
"Identity for 64-bit NTP timestamp.";
}
identity icmp {
base timestamp-type;
description
"Identity for 32-bit ICMP timestamp.";
}
Kumar, et al. Standards Track [Page 14]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
identity ptp80 {
base timestamp-type;
description
"Identity for 80-bit PTP timestamp.";
}
}
<CODE ENDS>
5. Connectionless OAM YANG Module
This module imports the Core YANG Derived Types definition ("ietf-
yang-types" module) and Internet-Specific Derived Types definitions
("ietf-inet-types" module) from [RFC6991], the "ietf-routing-types"
module from [RFC8294], the "ietf-interfaces" module from [RFC8343],
the "ietf-network" module from [RFC8345], the "ietf-network-instance"
module from [RFC8529], and the "ietf-lime-time-types" module in
Section 4. This module references [IEEE.1588v1], [IEEE.1588v2],
[RFC8029], and additional RFCs cited elsewhere in this document.
<CODE BEGINS> file "ietf-connectionless-oam@2019-04-16.yang"
module ietf-connectionless-oam {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-connectionless-oam";
prefix cl-oam;
import ietf-yang-schema-mount {
prefix yangmnt;
}
import ietf-network {
prefix nd;
}
import ietf-yang-types {
prefix yang;
}
import ietf-interfaces {
prefix if;
}
import ietf-inet-types {
prefix inet;
}
import ietf-network-instance {
prefix ni;
}
import ietf-routing-types {
prefix rt;
}
Kumar, et al. Standards Track [Page 15]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
import ietf-lime-time-types {
prefix lime;
}
organization
"IETF LIME Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/lime>
WG List: <mailto:lmap@ietf.org>
Deepak Kumar <dekumar@cisco.com>
Qin Wu <bill.wu@huawei.com>
Srihari Raghavan <srihari@cisco.com>
Michael Wang <wangzitao@huawei.com>
Reshad Rahman <rrahman@cisco.com>";
description
"This YANG module defines the generic configuration,
data model, and statistics for OAM protocols using
connectionless communications, described in a
protocol independent manner. It is assumed that each
protocol maps corresponding abstracts to its native
format. Each protocol may extend the YANG data model defined
here to include protocol specific extensions.
Copyright (c) 2019 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8532; see
the RFC itself for full legal notices.";
revision 2019-04-16 {
description
"Base model for Connectionless Operations, Administration,
and Maintenance (OAM).";
reference
"RFC 8532: Generic YANG Data Model for the Management of
Operations, Administration, and Maintenance (OAM) Protocols
That Use Connectionless Communications";
}
feature connectionless {
Kumar, et al. Standards Track [Page 16]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
description
"This feature indicates that the OAM solution is connectionless.";
}
feature continuity-check {
description
"This feature indicates that the server supports
executing a Continuity Check OAM command and
returning a response. Servers that do not advertise
this feature will not support executing
Continuity Check commands or the RPC operation model for
Continuity Check commands.";
}
feature path-discovery {
description
"This feature indicates that the server supports
executing a path discovery OAM command and
returning a response. Servers that do not advertise
this feature will not support executing
path discovery commands or the RPC operation model for
path discovery commands.";
}
feature ptp-long-format {
description
"This feature indicates that the timestamp is PTP long format.";
}
feature ntp-short-format {
description
"This feature indicates that the timestamp is NTP short format.";
}
feature icmp-timestamp {
description
"This feature indicates that the timestamp is ICMP timestamp.";
}
identity traffic-type {
description
"This is the base identity of the traffic type,
which includes IPv4, IPv6, etc.";
}
identity ipv4 {
base traffic-type;
description
Kumar, et al. Standards Track [Page 17]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
"identity for IPv4 traffic type.";
}
identity ipv6 {
base traffic-type;
description
"identity for IPv6 traffic type.";
}
identity address-attribute-types {
description
"This is the base identity of the address attribute types, which
are Generic IPv4/IPv6 Prefix, BGP Labeled IPv4/IPv6 Prefix,
Tunnel ID, PW ID, VPLS VE ID, etc. (See RFC 8029 for details.)";
}
typedef address-attribute-type {
type identityref {
base address-attribute-types;
}
description
"Target address attribute type.";
}
typedef percentage {
type decimal64 {
fraction-digits 5;
range "0..100";
}
description
"Percentage.";
}
typedef routing-instance-ref {
type leafref {
path "/ni:network-instances/ni:network-instance/ni:name";
}
description
"This type is used for leafs that reference a routing instance
configuration.";
}
grouping cc-session-statistics {
description
"Grouping for session statistics.";
container cc-session-statistics {
description
"CC session counters.";
Kumar, et al. Standards Track [Page 18]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
leaf session-count {
type uint32;
default "0";
description
"Number of Continuity Check sessions.
A value of zero indicates that no session
count is sent.";
}
leaf session-up-count {
type uint32;
default "0";
description
"Number of sessions that are up.
A value of zero indicates that no up
session count is sent.";
}
leaf session-down-count {
type uint32;
default "0";
description
"Number of sessions that are down.
A value of zero indicates that no down
session count is sent.";
}
leaf session-admin-down-count {
type uint32;
default "0";
description
"Number of sessions that are admin-down.
A value of zero indicates that no admin-
down session count is sent.";
}
}
}
grouping session-packet-statistics {
description
"Grouping for statistics per session packet.";
container session-packet-statistics {
description
"Statistics per session packet.";
leaf rx-packet-count {
type uint32 {
range "0..4294967295";
}
default "0";
description
"Total count of received OAM packets.
Kumar, et al. Standards Track [Page 19]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
leaf tx-packet-count {
type uint32 {
range "0..4294967295";
}
default "0";
description
"Total count of transmitted OAM packets.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
leaf rx-bad-packet {
type uint32 {
range "0..4294967295";
}
default "0";
description
"Total number of received bad OAM packets.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
leaf tx-packet-failed {
type uint32 {
range "0..4294967295";
}
default "0";
description
"Total number of OAM packets that failed when sent.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
}
}
Kumar, et al. Standards Track [Page 20]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
grouping cc-per-session-statistics {
description
"Grouping for per-session statistics.";
container cc-per-session-statistics {
description
"Per-session statistics.";
leaf create-time {
type yang:date-and-time;
description
"Time and date when session is created.";
}
leaf last-down-time {
type yang:date-and-time;
description
"Time and date of the last time session was down.";
}
leaf last-up-time {
type yang:date-and-time;
description
"Time and date of the last time session was up.";
}
leaf down-count {
type uint32 {
range "0..4294967295";
}
default "0";
description
"Total count of Continuity Check sessions down.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
leaf admin-down-count {
type uint32 {
range "0..4294967295";
}
default "0";
description
"Total count of Continuity Check sessions admin down.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
uses session-packet-statistics;
Kumar, et al. Standards Track [Page 21]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
}
}
grouping session-error-statistics {
description
"Grouping for per-session error statistics.";
container session-error-statistics {
description
"Per-session error statistics.";
leaf packet-loss-count {
type uint32 {
range "0..4294967295";
}
default "0";
description
"Total count of received packet drops.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
leaf loss-ratio {
type percentage;
description
"Loss ratio of the packets. Expressed as percentage
of packets lost with respect to packets sent.";
}
leaf packet-reorder-count {
type uint32 {
range "0..4294967295";
}
default "0";
description
"Total count of received packets that were reordered.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
leaf packets-out-of-seq-count {
type uint32 {
range "0..4294967295";
}
description
"Total count of packets received out of sequence.
The value of count will be set to zero (0)
Kumar, et al. Standards Track [Page 22]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
leaf packets-dup-count {
type uint32 {
range "0..4294967295";
}
description
"Total count of received packet duplicates.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
}
}
grouping session-delay-statistics {
description
"Grouping for delay statistics per session.";
container session-delay-statistics {
description
"Session delay summarized information. By default, a
one-way measurement protocol (e.g., OWAMP) is used
to measure delay. When a two-way measurement protocol
(e.g., TWAMP) is used instead, it can be indicated
using the protocol-id defined in RPC operation of
retrieval methods for connectionless OAM (RFC 8533),
i.e., set protocol-id as OWAMP. Note that only one
measurement protocol for delay is specified for
interoperability reasons.";
leaf time-unit-value {
type identityref {
base lime:time-unit-type;
}
default "lime:milliseconds";
description
"Time units, where the options are s, ms, ns, etc.";
}
leaf min-delay-value {
type uint32;
description
"Minimum delay value observed.";
}
leaf max-delay-value {
Kumar, et al. Standards Track [Page 23]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
type uint32;
description
"Maximum delay value observed.";
}
leaf average-delay-value {
type uint32;
description
"Average delay value observed.";
}
}
}
grouping session-jitter-statistics {
description
"Grouping for per session jitter statistics.";
container session-jitter-statistics {
description
"Summarized information about session jitter. By default,
jitter is measured using IP Packet Delay Variation
(IPDV) as defined in RFC 3393. When the other measurement
method is used instead (e.g., Packet Delay Variation used
in ITU-T Recommendation Y.1540, it can be indicated using
protocol-id-meta-data defined in RPC operation of
retrieval methods for connectionless OAM (RFC 8533).
Note that only one measurement method for jitter is
specified for interoperability reasons.";
leaf unit-value {
type identityref {
base lime:time-unit-type;
}
default "lime:milliseconds";
description
"Time units, where the options are s, ms, ns, etc.";
}
leaf min-jitter-value {
type uint32;
description
"Minimum jitter value observed.";
}
leaf max-jitter-value {
type uint32;
description
"Maximum jitter value observed.";
}
leaf average-jitter-value {
type uint32;
description
"Average jitter value observed.";
Kumar, et al. Standards Track [Page 24]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
}
}
}
grouping session-path-verification-statistics {
description
"Grouping for path verification statistics per session.";
container session-path-verification-statistics {
description
"OAM path verification statistics per session.";
leaf verified-count {
type uint32 {
range "0..4294967295";
}
description
"Total number of OAM packets that
went through a path as intended.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
leaf failed-count {
type uint32 {
range "0..4294967295";
}
description
"Total number of OAM packets that
went through an unintended path.
The value of count will be set to zero (0)
on creation and will thereafter increase
monotonically until it reaches a maximum value
of 2^32-1 (4294967295 decimal), when it wraps
around and starts increasing again from zero.";
}
}
}
grouping session-type {
description
"This object indicates which kind of activation will
be used by the current session.";
leaf session-type {
type enumeration {
enum proactive {
description
"The current session is a proactive session.";
Kumar, et al. Standards Track [Page 25]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
}
enum on-demand {
description
"The current session is an on-demand session.";
}
}
default "on-demand";
description
"Indicate which kind of activation will be used
by the current session.";
}
}
identity tp-address-technology-type {
description
"Test point address type.";
}
identity mac-address-type {
base tp-address-technology-type;
description
"MAC address type.";
}
identity ipv4-address-type {
base tp-address-technology-type;
description
"IPv4 address type.";
}
identity ipv6-address-type {
base tp-address-technology-type;
description
"IPv6 address type.";
}
identity tp-attribute-type {
base tp-address-technology-type;
description
"Test point attribute type.";
}
identity router-id-address-type {
base tp-address-technology-type;
description
"System ID address type.";
}
Kumar, et al. Standards Track [Page 26]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
identity as-number-address-type {
base tp-address-technology-type;
description
"AS number address type.";
}
identity route-distinguisher-address-type {
base tp-address-technology-type;
description
"Route Distinguisher address type.";
}
grouping tp-address {
leaf tp-location-type {
type identityref {
base tp-address-technology-type;
}
mandatory true;
description
"Test point address type.";
}
container mac-address {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:mac-address-type')" {
description
"MAC address type.";
}
leaf mac-address {
type yang:mac-address;
mandatory true;
description
"MAC address.";
}
description
"MAC address based TP addressing.";
}
container ipv4-address {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:ipv4-address-type')" {
description
"IPv4 address type.";
}
leaf ipv4-address {
type inet:ipv4-address;
mandatory true;
description
"IPv4 address.";
}
Kumar, et al. Standards Track [Page 27]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
description
"IP address based TP addressing.";
}
container ipv6-address {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:ipv6-address-type')" {
description
"IPv6 address type.";
}
leaf ipv6-address {
type inet:ipv6-address;
mandatory true;
description
"IPv6 address.";
}
description
"IPv6 address based TP addressing.";
}
container tp-attribute {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:tp-attribute-type')" {
description
"Test point attribute type.";
}
leaf tp-attribute-type {
type address-attribute-type;
description
"Test point type.";
}
choice tp-attribute-value {
description
"Test point value.";
case ip-prefix {
leaf ip-prefix {
type inet:ip-prefix;
description
"Generic IPv4/IPv6 prefix. See Sections 3.2.13 and
3.2.14 of RFC 8029.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures";
}
}
case bgp {
leaf bgp {
type inet:ip-prefix;
description
"BGP Labeled IPv4/IPv6 Prefix. See Sections
Kumar, et al. Standards Track [Page 28]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
3.2.11 and 3.2.12 of RFC 8029 for details.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures";
}
}
case tunnel {
leaf tunnel-interface {
type uint32;
description
"Basic IPv4/IPv6 Tunnel ID. See Sections 3.2.3
and 3.2.4 of RFC 8029 for details.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures.";
}
}
case pw {
leaf remote-pe-address {
type inet:ip-address;
description
"Remote PE address. See Section 3.2.8
of RFC 8029 for details.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures";
}
leaf pw-id {
type uint32;
description
"Pseudowire ID is a non-zero 32-bit ID. See Sections
3.2.8 and 3.2.9 of RFC 8029 for details.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures";
}
}
case vpls {
leaf route-distinguisher {
type rt:route-distinguisher;
description
"Route Distinguisher is an 8-octet identifier
used to distinguish information about various
L2VPNs advertised by a node.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures";
}
Kumar, et al. Standards Track [Page 29]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
leaf sender-ve-id {
type uint16;
description
"Sender's VE ID. The VE ID (VPLS Edge Identifier)
is a 2-octet identifier.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures";
}
leaf receiver-ve-id {
type uint16;
description
"Receiver's VE ID. The VE ID (VPLS Edge Identifier)
is a 2-octet identifier.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures";
}
}
case mpls-mldp {
choice root-address {
description
"Root address choice.";
case ip-address {
leaf source-address {
type inet:ip-address;
description
"IP address.";
}
leaf group-ip-address {
type inet:ip-address;
description
"Group IP address.";
}
}
case vpn {
leaf as-number {
type inet:as-number;
description
"The AS number that identifies an Autonomous
System.";
}
}
case global-id {
leaf lsp-id {
type string;
description
"LSP ID is an identifier of a LSP
Kumar, et al. Standards Track [Page 30]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
within a MPLS network.";
reference
"RFC 8029: Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures";
}
}
}
}
}
description
"Test Point Attribute Container.";
}
container system-info {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:router-id-address-type')" {
description
"System ID address type.";
}
leaf router-id {
type rt:router-id;
description
"Router ID assigned to this node.";
}
description
"Router ID container.";
}
description
"TP Address.";
}
grouping tp-address-ni {
description
"Test point address with VRF.";
leaf ni {
type routing-instance-ref;
description
"The ni is used to describe virtual resource partitioning
that may be present on a network device. An example of a
common industry term for virtual resource partitioning is
'VRF instance'.";
}
uses tp-address;
}
grouping connectionless-oam-tps {
list oam-neighboring-tps {
key "index";
leaf index {
Kumar, et al. Standards Track [Page 31]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
type uint16 {
range "0..65535";
}
description
"Index of a list of neighboring test points
in layers up and down the stack for
the same interface that are related to the
current test point.";
}
leaf position {
type int8 {
range "-1..1";
}
default "0";
description
"The position of the neighboring test point relative to
the current test point. Level 0 indicates a test point
corresponding to a specific index in the same layer as
the current test point. -1 means there is a test point
corresponding to a specific index in the test point down
the stack, and +1 means there is a test point corresponding
to a specific index in the test point up the stack.";
}
choice tp-location {
case mac-address {
leaf mac-address-location {
type yang:mac-address;
description
"MAC address.";
}
description
"MAC address based TP addressing.";
}
case ipv4-address {
leaf ipv4-address-location {
type inet:ipv4-address;
description
"IPv4 address.";
}
description
"IP address based TP addressing.";
}
case ipv6-address {
leaf ipv6-address-location {
type inet:ipv6-address;
description
"IPv6 address.";
}
Kumar, et al. Standards Track [Page 32]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
description
"IPv6 address based TP addressing.";
}
case as-number {
leaf as-number-location {
type inet:as-number;
description
"AS number location.";
}
description
"AS number for point-to-multipoint OAM.";
}
case router-id {
leaf router-id-location {
type rt:router-id;
description
"System ID location.";
}
description
"System ID.";
}
description
"TP location.";
}
description
"List of neighboring test points in the same layer that are
related to current test point. If the neighboring test point
is placed after the current test point, the position is
specified as +1. If the neighboring test point is placed
before the current test point, the position is specified
as -1; if no neighboring test points are placed before or
after the current test point in the same layer, the
position is specified as 0.";
}
description
"List of neighboring test points related to connectionless OAM.";
}
grouping tp-technology {
choice technology {
default "technology-null";
case technology-null {
description
"This is a placeholder when no technology is needed.";
leaf tech-null {
type empty;
description
"There is no technology to be defined.";
Kumar, et al. Standards Track [Page 33]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
}
}
description
"Technology choice.";
}
description
"OAM technology.";
}
grouping tp-tools {
description
"Test point OAM toolset.";
container tp-tools {
leaf continuity-check {
type boolean;
mandatory true;
description
"A flag indicating whether or not the
Continuity Check function is supported.";
reference
"RFC 792: INTERNET CONTROL MESSAGE PROTOCOL
RFC 4443: Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification
RFC 5880: Bidirectional Forwarding Detection
RFC 5881: BFD for IPv4 and IPv6
RFC 5883: BFD for Multihop Paths
RFC 5884: BFD for MPLS Label Switched Paths
RFC 5885: BFD for PW VCCV
RFC 6450: Multicast Ping Protocol
RFC 8029: Detecting Multiprotocol Label Switched (MPLS)
Data-Plane Failures";
}
leaf path-discovery {
type boolean;
mandatory true;
description
"A flag indicating whether or not the
path discovery function is supported.";
reference
"RFC 792: INTERNET CONTROL MESSAGE PROTOCOL
RFC 4443: Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification
RFC 4884: Extended ICMP to Support Multi-Part Messages
RFC 5837: Extending ICMP for Interface and Next-Hop
Identification
RFC 8029: Detecting Multiprotocol Label Switched (MPLS)
Data-Plane Failures";
}
Kumar, et al. Standards Track [Page 34]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
description
"Container for test point OAM toolset.";
}
}
grouping test-point-location-info {
uses tp-technology;
uses tp-tools;
anydata root {
yangmnt:mount-point "root";
description
"Root for models supported per test point.";
}
uses connectionless-oam-tps;
description
"Test point location.";
}
grouping test-point-locations {
description
"Group of test point locations.";
leaf tp-location-type {
type identityref {
base tp-address-technology-type;
}
description
"Test point location type.";
}
container ipv4-location-type {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:ipv4-address-type')" {
description
"When test point location type is equal to IPv4 address.";
}
container test-point-ipv4-location-list {
list test-point-locations {
key "ipv4-location ni";
leaf ipv4-location {
type inet:ipv4-address;
description
"IPv4 address.";
}
leaf ni {
type routing-instance-ref;
description
"The ni is used to describe the
corresponding network instance";
}
Kumar, et al. Standards Track [Page 35]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
uses test-point-location-info;
description
"List of test point locations.";
}
description
"Serves as top-level container
for test point location list.";
}
description
"Container for IPv4 location types.";
}
container ipv6-location-type {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:ipv6-address-type')" {
description
"When test point location is equal to IPv6 address.";
}
container test-point-ipv6-location-list {
list test-point-locations {
key "ipv6-location ni";
leaf ipv6-location {
type inet:ipv6-address;
description
"IPv6 address.";
}
leaf ni {
type routing-instance-ref;
description
"The ni is used to describe the
corresponding network instance.";
}
uses test-point-location-info;
description
"List of test point locations.";
}
description
"Serves as top-level container
for test point location list.";
}
description
"ipv6 location type container.";
}
container mac-location-type {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:mac-address-type')" {
description
"When test point location type is equal to MAC address.";
}
Kumar, et al. Standards Track [Page 36]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
container test-point-mac-address-location-list {
list test-point-locations {
key "mac-address-location";
leaf mac-address-location {
type yang:mac-address;
description
"MAC address.";
}
uses test-point-location-info;
description
"List of test point locations.";
}
description
"Serves as top-level container
for test point location list.";
}
description
"Container for MAC address location types.";
}
container group-as-number-location-type {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:as-number-address-type')" {
description
"When test point location type is equal to AS number.";
}
container test-point-as-number-location-list {
list test-point-locations {
key "as-number-location";
leaf as-number-location {
type inet:as-number;
description
"AS number for point-to-multipoint OAM.";
}
leaf ni {
type routing-instance-ref;
description
"The ni is used to describe the
corresponding network instance.";
}
uses test-point-location-info;
description
"List of test point locations.";
}
description
"Serves as top-level container
for test point location list.";
}
description
Kumar, et al. Standards Track [Page 37]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
"Container for AS number location types.";
}
container group-router-id-location-type {
when "derived-from-or-self(../tp-location-type,"
+ "'cl-oam:router-id-address-type')" {
description
"When test point location type is equal to system-info.";
}
container test-point-system-info-location-list {
list test-point-locations {
key "router-id-location";
leaf router-id-location {
type rt:router-id;
description
"System ID.";
}
leaf ni {
type routing-instance-ref;
description
"The ni is used to describe the
corresponding network instance.";
}
uses test-point-location-info;
description
"List of test point locations.";
}
description
"Serves as top-level container for
test point location list.";
}
description
"Container for system ID location types.";
}
}
augment "/nd:networks/nd:network/nd:node" {
description
"Augments the /networks/network/node path defined in the
ietf-network module (RFC 8345) with test-point-locations
grouping.";
uses test-point-locations;
}
grouping timestamp {
description
"Grouping for timestamp.";
leaf timestamp-type {
type identityref {
Kumar, et al. Standards Track [Page 38]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
base lime:timestamp-type;
}
description
"Type of timestamp, such as Truncated PTP or NTP.";
}
container timestamp-64bit {
when "derived-from-or-self(../timestamp-type,"
+ "'lime:truncated-ptp')"
+ "or derived-from-or-self(../timestamp-type,"
+ "'lime:ntp64')" {
description
"Only applies when PTP truncated or 64-bit NTP timestamp.";
}
leaf timestamp-sec {
type uint32;
description
"Absolute timestamp in seconds as per IEEE 1588v2
or seconds part in 64-bit NTP timestamp.";
}
leaf timestamp-nanosec {
type uint32;
description
"Fractional part in nanoseconds as per IEEE 1588v2
or fractional part in 64-bit NTP timestamp.";
}
description
"Container for 64-bit timestamp. The Network Time Protocol
(NTP) 64-bit timestamp format is defined in RFC 5905. The
PTP truncated timestamp format is defined in IEEE 1588v1.";
reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification
IEEE 1588v1: IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and
Control Systems Version 1";
}
container timestamp-80bit {
when "derived-from-or-self(../timestamp-type, 'lime:ptp80')" {
description
"Only applies when 80-bit PTP timestamp.";
}
if-feature "ptp-long-format";
leaf timestamp-sec {
type uint64 {
range "0..281474976710655";
}
description
"48-bit timestamp in seconds as per IEEE 1588v2.";
Kumar, et al. Standards Track [Page 39]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
}
leaf timestamp-nanosec {
type uint32;
description
"Fractional part in nanoseconds as per IEEE 1588v2.";
}
description
"Container for 80-bit timestamp.";
}
container ntp-timestamp-32bit {
when "derived-from-or-self(../timestamp-type,"
+ "'lime:truncated-ntp')" {
description
"Only applies when 32-bit NTP short-format timestamp.";
}
if-feature "ntp-short-format";
leaf timestamp-sec {
type uint16;
description
"Timestamp in seconds as per short-format NTP.";
}
leaf timestamp-nanosec {
type uint16;
description
"Truncated fractional part in 16-bit NTP timestamp.";
}
description
"Container for 32-bit timestamp RFC5905.";
reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification.";
}
container icmp-timestamp-32bit {
when "derived-from-or-self(../timestamp-type, 'lime:icmp')" {
description
"Only applies when ICMP timestamp.";
}
if-feature "icmp-timestamp";
leaf timestamp-millisec {
type uint32;
description
"Timestamp in milliseconds for ICMP timestamp.";
}
description
"Container for 32-bit timestamp. See RFC 792 for ICMP
timestamp format.";
}
}
Kumar, et al. Standards Track [Page 40]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
grouping path-discovery-data {
description
"Data output from nodes related to path discovery.";
container src-test-point {
description
"Source test point.";
uses tp-address-ni;
}
container dest-test-point {
description
"Destination test point.";
uses tp-address-ni;
}
leaf sequence-number {
type uint64;
default "0";
description
"Sequence number in data packets. A value of
zero indicates that no sequence number is sent.";
}
leaf hop-cnt {
type uint8;
default "0";
description
"Hop count. A value of zero indicates
that no hop count is sent.";
}
uses session-packet-statistics;
uses session-error-statistics;
uses session-delay-statistics;
uses session-jitter-statistics;
container path-verification {
description
"Optional information related to path verification.";
leaf flow-info {
type string;
description
"Information that refers to the flow.";
}
uses session-path-verification-statistics;
}
container path-trace-info {
description
"Optional per-hop path trace information about test points.
The path trace information list typically has a single
element for per-hop cases such as path-discovery RPC operation
but allows a list of hop-related information for other types of
data retrieval methods.";
Kumar, et al. Standards Track [Page 41]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
list path-trace-info-list {
key "index";
description
"Path trace information list.";
leaf index {
type uint32;
description
"Trace information index.";
}
uses tp-address-ni;
uses timestamp;
leaf ingress-intf-name {
type if:interface-ref;
description
"Ingress interface name.";
}
leaf egress-intf-name {
type if:interface-ref;
description
"Egress interface name.";
}
leaf queue-depth {
type uint32;
description
"Length of the queue of the interface from where
the packet is forwarded out. The queue depth could
be the current number of memory buffers used by the
queue, and a packet can consume one or more memory buffers,
thus constituting device-level information.";
}
leaf transit-delay {
type uint32;
description
"Time in nanoseconds that the packet spent transiting a
node.";
}
leaf app-meta-data {
type uint64;
description
"Application-specific data added by node.";
}
}
}
}
grouping continuity-check-data {
description
"Continuity Check data output from nodes.";
Kumar, et al. Standards Track [Page 42]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
container src-test-point {
description
"Source test point.";
uses tp-address-ni;
leaf egress-intf-name {
type if:interface-ref;
description
"Egress interface name.";
}
}
container dest-test-point {
description
"Destination test point.";
uses tp-address-ni;
leaf ingress-intf-name {
type if:interface-ref;
description
"Ingress interface name.";
}
}
leaf sequence-number {
type uint64;
default "0";
description
"Sequence number in data packets. A value of
zero indicates that no sequence number is sent.";
}
leaf hop-cnt {
type uint8;
default "0";
description
"Hop count. A value of zero indicates
that no hop count is sent.";
}
uses session-packet-statistics;
uses session-error-statistics;
uses session-delay-statistics;
uses session-jitter-statistics;
}
container cc-session-statistics-data {
if-feature "continuity-check";
config false;
list cc-session-statistics {
key "type";
leaf type {
type identityref {
base traffic-type;
Kumar, et al. Standards Track [Page 43]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
}
description
"Type of traffic.";
}
container cc-ipv4-sessions-statistics {
when "../type = 'ipv4'" {
description
"Only applies when traffic type is IPv4.";
}
description
"CC ipv4 sessions.";
uses cc-session-statistics;
}
container cc-ipv6-sessions-statistics {
when "../type = 'ipv6'" {
description
"Only applies when traffic type is IPv6.";
}
description
"CC IPv6 sessions.";
uses cc-session-statistics;
}
description
"List of CC session statistics data.";
}
description
"CC operational information.";
}
}
<CODE ENDS>
6. Connectionless Model Applicability
The "ietf-connectionless-oam" module defined in this document
provides a technology-independent abstraction of key OAM constructs
for OAM protocols that use connectionless communication. This module
can be further extended to include technology-specific details, e.g.,
adding new data nodes with technology-specific functions and
parameters into proper anchor points of the base model, so as to
develop a technology-specific connectionless OAM model.
This section demonstrates the usability of the connectionless YANG
OAM data model to various connectionless OAM technologies, e.g., BFD
and LSP ping. Note that, in this section, several snippets of
technology-specific model extensions are presented for illustrative
purposes. The complete model extensions should be worked on in the
working groups of the respective protocols.
Kumar, et al. Standards Track [Page 44]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
6.1. BFD Extension
RFC 7276 defines BFD as a connection-oriented protocol. It is used
to monitor a connectionless protocol in the case of basic BFD for IP.
6.1.1. Augment Method
The following sections show how the "ietf-connectionless-oam" module
can be extended to cover BFD technology. For this purpose, a set of
extensions are introduced such as the technology-type extension and
test-point attributes extension.
Note that a dedicated BFD YANG data model [BFD-YANG] is also
standardized. Augmentation of the "ietf-connectionless-oam" module
with BFD-specific details provides an alternative approach with a
unified view of management information across various OAM protocols.
The BFD-specific details can be the grouping defined in the BFD
model, thereby avoiding duplication of effort.
6.1.1.1. Technology-Type Extension
No BFD technology type has been defined in the "ietf-connectionless-
oam" module. Therefore, a technology-type extension is required in
the module extension.
The snippet below depicts an example of adding the "bfd" type as an
augment to the "ietf-connectionless-oam" module:
augment "/nd:networks/nd:network/nd:node/"
+"coam:location-type/coam:ipv4-location-type"
+"/coam:test-point-ipv4-location-list/"
+"coam:test-point-locations/coam:technology"
{
leaf bfd{
type string;
}
}
6.1.1.2. Test Point Attributes Extension
To support BFD, the "ietf-connectionless-oam" module can be extended
by adding specific parameters into the "test-point-locations" list
and/or adding a new location type such as "BFD over MPLS TE" under
"location-type".
Kumar, et al. Standards Track [Page 45]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
6.1.1.2.1. Define and Insert New Nodes into Corresponding test-point-
location
In the "ietf-connectionless-oam" module, multiple "test-point-
location" lists are defined under the "location-type" choice node.
Therefore, to derive a model for some BFD technologies (such as IP
single-hop, IP multihop, etc.), data nodes for BFD-specific details
need to be added to the corresponding "test-point-locations" list.
In this section, some groupings that are defined in [BFD-YANG] are
reused as follows.
The snippet below shows how the "ietf-connectionless-oam" module can
be extended to support "BFD IP Single-Hop":
augment "/nd:networks/nd:network/nd:node/"
+"coam:location-type/coam:ipv4-location-type"
+"/coam:test-point-ipv4-location-list/"
+"coam:test-point-locations"
{
container session-cfg {
description "BFD IP single-hop session configuration";
list sessions {
key "interface dest-addr";
description "List of IP single-hop sessions";
leaf interface {
type if:interface-ref;
description
"Interface on which the BFD session is running.";
}
leaf dest-addr {
type inet:ip-address;
description "IP address of the peer";
}
uses bfd:bfd-grouping-common-cfg-parms;
uses bfd:bfd-grouping-echo-cfg-parms;
}
}
}
Similar augmentations can be defined to support other BFD
technologies such as BFD IP Multihop, BFD over MPLS, etc.
Kumar, et al. Standards Track [Page 46]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
6.1.1.2.2. Add New location-type Cases
In the "ietf-connectionless-oam" module, If there is no appropriate
"location-type" case that can be extended, a new "location-type" case
can be defined and inserted into the "location-type" choice node.
Therefore, there is flexibility -- the module user can add "location-
type" to support other types of test point that are not defined in
the "ietf-connectionless-oam" module. In this section, a new
"location-type" case is added, and some groupings that are defined in
[BFD-YANG] are reused as follows.
The snippet below shows how the "ietf-connectionless-oam" module can
be extended to support "BFD over MPLS-TE":
augment "/nd:networks/nd:network/nd:node/coam:location-type"{
case te-location{
list test-point-location-list{
key "tunnel-name";
leaf tunnel-name{
type leafref{
path "/te:te/te:tunnels/te:tunnel/te:name";
}
description
"Point to a TE instance.";
}
uses bfd:bfd-grouping-common-cfg-parms;
uses bfd-mpls:bfd-encap-cfg;
}
}
}
Similar augmentations can be defined to support other BFD
technologies such as BFD over LAG, etc.
6.1.2. Schema Mount
An alternative method is using the schema mount mechanism [RFC8528]
in the "ietf-connectionless-oam" module. Within the "test-point-
locations" list, a "root" attribute is defined to provide a mount
point for models that will be added onto per "test-point-locations".
Therefore, the "ietf-connectionless-oam" module can provide a place
in the node hierarchy where other OAM YANG data models can be
attached, without any special extension in the "ietf-connectionless-
oam" YANG data module [RFC8528]. Note that the limitation of the
schema mount method is that it's not allowed to specify certain
modules that are required to be mounted under a mount point.
Kumar, et al. Standards Track [Page 47]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
The snippet below depicts the definition of the "root" attribute.
anydata root {
yangmnt:mount-point root;
description
"Root for models that are supported per test point";
}
The following section shows how the "ietf-connectionless-oam" module
can use schema mount to support BFD technology.
6.1.2.1. BFD Modules Might Be Populated in schema-mounts
To support BFD technology, "ietf-bfd-ip-sh" and "ietf-bfd-ip-mh" YANG
modules might be populated in the "schema-mounts" container:
<schema-mounts
xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount">
<mount-point>
<module> ietf-connectionless-oam </module>
<name>root</name>
<use-schema>
<name>root</name>
</use-schema>
</mount-point>
<schema>
<name>root</name>
<module>
<name>ietf-bfd-ip-sh </name>
<revision>2016-07-04</revision>
<namespace>
urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh
</namespace>
<conformance-type>implement</conformance-type>
</module>
<module>
<name>ietf-bfd-ip-mh</name>
<revision> 2016-07-04</revision>
<namespace>
urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh
</namespace>
<conformance-type>implement</conformance-type>
</module>
</schema>
</schema-mounts>
Kumar, et al. Standards Track [Page 48]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
and the "ietf-connectionless-oam" module might have:
<ietf-connectionless-oam
uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam">
......
<test-point-locations>
<ipv4-location>192.0.2.1</ipv4-location>
......
<root>
<ietf-bfd-ip-sh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh">
<ip-sh>
foo
......
</ip-sh>
</ietf-bfd-ip-sh>
<ietf-bfd-ip-mh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh">
<ip-mh>
foo
......
</ip-mh>
</ietf-bfd-ip-mh>
</root>
</test-point-locations>
</ietf-connectionless-oam>
6.2. LSP Ping Extension
6.2.1. Augment Method
The following sections show how the "ietf-connectionless-oam" module
can be extended to support LSP ping technology. For this purpose, a
set of extensions are introduced such as the "technology-type"
extension and the test-point "attributes" extension.
Note that an LSP Ping YANG data model is being specified
[LSP-PING-YANG]. As with BFD, users can choose to use the
"ietf-connectionless-oam" as the basis and augment the
"ietf-connectionless-oam" model with details specific to LSP Ping in
the model extension to provide a unified view across different
technologies. The details that are specific to LSP Ping can be the
grouping defined in the LSP ping model to avoid duplication of
effort.
6.2.1.1. Technology-Type Extension
No LSP Ping technology type has been defined in the
"ietf-connectionless-oam" module. Therefore, a technology-type
extension is required in the module extension.
Kumar, et al. Standards Track [Page 49]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
The snippet below depicts an example of augmenting
"ietf-connectionless-oam" with "lsp-ping" type:
augment "/nd:networks/nd:network/nd:node/"
+"coam:location-type/coam:ipv4-location-type"
+"/coam:test-point-ipv4-location-list/"
+"coam:test-point-locations/coam:technology"
{
leaf lsp-ping{
type string;
}
}
6.2.1.2. Test Point Attributes Extension
To support LSP Ping, the "ietf-connectionless-oam" module can be
extended and parameters specific to LSP Ping can be defined and put
on the "test-point-locations" list.
Users can reuse the attributes or groupings that are defined in
[LSP-PING-YANG] as follows:
The snippet below depicts an example of augmenting the "test-point-
locations" list with LSP Ping attributes:
augment "/nd:networks/nd:network/nd:node/"
+"coam:location-type/coam:ipv4-location-type"
+"/coam:test-point-ipv4-location-list/"
+"coam:test-point-locations"
{
list lsp-ping {
key "lsp-ping-name";
leaf lsp-ping-name {
type string {
length "1..31";
}
mandatory "true";
description "LSP Ping test name.";
......
}
6.2.2. Schema Mount
An alternative method is using the schema mount mechanism [RFC8528]
in the "ietf-connectionless-oam" module. Within the "test-point-
locations" list, a "root" attribute is defined to provide a mounted
point for models mounted per "test-point-locations". Therefore, the
"ietf-connectionless-oam" model can provide a place in the node
Kumar, et al. Standards Track [Page 50]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
hierarchy where other OAM YANG data models can be attached, without
any special extension in the "ietf-connectionless-oam" YANG data
module [RFC8528]. Note that the limitation of the schema mount
method is that it's not allowed to specify certain modules that are
required to be mounted under a mount point.
The snippet below depicts the definition of "root" attribute.
anydata root {
yangmnt:mount-point root;
description
"Root for models supported per test point";
}
The following section shows how the "ietf-connectionless-oam" module
can use schema mount to support LSP Ping technology.
6.2.2.1. LSP Ping Modules Might Be Populated in schema-mounts
To support LSP Ping technology, the "ietf-lsp-ping" YANG module
[LSP-PING-YANG] might be populated in the "schema-mounts" container:
<schema-mounts
xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount">
<mount-point>
<module> ietf-connectionless-oam </module>
<name>root</name>
<use-schema>
<name>root</name>
</use-schema>
</mount-point>
<schema>
<name>root</name>
<module>
<name>ietf-lsp-ping </name>
<revision>2016-03-18</revision>
<namespace>
urn:ietf:params:xml:ns:yang: ietf-lsp-ping
</namespace>
<conformance-type>implement</conformance-type>
</module>
</schema>
</schema-mounts>
Kumar, et al. Standards Track [Page 51]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
and the "ietf-connectionless-oam" module might have:
<ietf-connectionless-oam
uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam">
......
<test-point-locations>
<ipv4-location> 192.0.2.1</ipv4-location>
......
<root>
<ietf-lsp-ping uri="urn:ietf:params:xml:ns:yang:ietf-lsp-ping">
<lsp-pings>
foo
......
</lsp-pings>
</ietf-lsp-ping>
</root>
</test-point-locations>
</ietf-connectionless-oam>
7. Security Considerations
The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
The NETCONF Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.
There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive in some
network environments. Write operations (e.g., edit-config) to these
data nodes without proper protection can have a negative effect on
network operations. These are the subtrees and data nodes and their
sensitivity/vulnerability:
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv4-
location-type/cl-oam:test-point-ipv4-location-list/cl-oam:test-
point-locations/
Kumar, et al. Standards Track [Page 52]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv6-
location-type/cl-oam:test-point-ipv6-location-list/cl-oam:test-
point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:mac-
location-type/cl-oam:test-point-mac-address-location-list/cl-
oam:test-point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group-
as-number-location-type/cl-oam:test-point-as-number-location-list/
cl-oam:test-point-locations/
/nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group-
router-id-location-type/cl-oam:test-point-system-info-location-
list/cl-oam:test-point-locations/
Unauthorized access to any of these lists can adversely affect OAM
management system handling of end-to-end OAM and coordination of OAM
within underlying network layers. This may lead to inconsistent
configuration, reporting, and presentation for the OAM mechanisms
used to manage the network.
Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes. These are the subtrees and data
nodes and their sensitivity/vulnerability:
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions-
statistics/cl-oam:cc-session-statistics/cl-oam:session-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions-
statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions-
statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions-
statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down-
count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions-
statistics/cl-oam:cc-session-statistics/cl-oam:session-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions-
statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count//
Kumar, et al. Standards Track [Page 53]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions-
statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/
/coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions-
statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down-
count/
8. IANA Considerations
This document registers URIs in the "IETF XML Registry" [RFC3688].
Following the format in [RFC3688], the following registrations have
been made.
URI: urn:ietf:params:xml:ns:yang:ietf-lime-time-types
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
This document registers two YANG modules in the "YANG Module Names"
registry [RFC6020].
Name: ietf-lime-time-types
Namespace: urn:ietf:params:xml:ns:yang:ietf-lime-time-types
Prefix: lime
Reference: RFC 8532
Name: ietf-connectionless-oam
Namespace: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam
Prefix: cl-oam
Reference: RFC 8532
9. References
9.1. Normative References
[RFC792] Postel, J., "Internet Control Message Protocol", RFC 792,
September 1981.
[RFC1831] Srinivasan, R., "RPC: Remote Procedure Call Protocol
Specification Version 2", RFC 1831, DOI 10.17487/RFC1831,
August 1995, <https://www.rfc-editor.org/info/rfc1831>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
Kumar, et al. Standards Track [Page 54]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
[RFC4382] Nadeau, T., Ed. and H. van der Linde, Ed., "MPLS/BGP Layer
3 Virtual Private Network (VPN) Management Information
Base", RFC 4382, DOI 10.17487/RFC4382, February 2006,
<https://www.rfc-editor.org/info/rfc4382>.
[RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification", STD 89,
RFC 4443, DOI 10.17487/RFC4443, March 2006,
<https://www.rfc-editor.org/info/rfc4443>.
[RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and
M. Zekauskas, "A One-way Active Measurement Protocol
(OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
<https://www.rfc-editor.org/info/rfc4656>.
[RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and
J. Babiarz, "A Two-Way Active Measurement Protocol
(TWAMP)", RFC 5357, DOI 10.17487/RFC5357, October 2008,
<https://www.rfc-editor.org/info/rfc5357>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<https://www.rfc-editor.org/info/rfc5880>.
[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
"Network Time Protocol Version 4: Protocol and Algorithms
Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
<https://www.rfc-editor.org/info/rfc5905>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
Kumar, et al. Standards Track [Page 55]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
[RFC8029] Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N.,
Aldrin, S., and M. Chen, "Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures", RFC 8029,
DOI 10.17487/RFC8029, March 2017,
<https://www.rfc-editor.org/info/rfc8029>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
"Common YANG Data Types for the Routing Area", RFC 8294,
DOI 10.17487/RFC8294, December 2017,
<https://www.rfc-editor.org/info/rfc8294>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface
Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
<https://www.rfc-editor.org/info/rfc8343>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
2018, <https://www.rfc-editor.org/info/rfc8345>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[RFC8529] Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and
X. Liu, "YANG Model for Network Instances", RFC 8529,
DOI 10.17487/RFC8529, March 2019,
<https://www.rfc-editor.org/info/rfc8529>.
9.2. Informative References
[BFD-YANG] Rahman, R., Zheng, L., Jethanandani, M., Networks, J., and
G. Mirsky, "YANG Data Model for Bidirectional Forwarding
Detection (BFD)", Work in Progress, draft-ietf-bfd-yang-
17, August 2018.
[G.800] "Unified functional architecture of transport networks",
ITU-T Recommendation G.800, 2016.
Kumar, et al. Standards Track [Page 56]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
[G.8013] "OAM functions and mechanisms for Ethernet based
networks", ITU-T Recommendation G.8013/Y.1731, 2013.
[IEEE.1588v1]
"IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems
Version 1", IEEE Std 1588, 2002.
[IEEE.1588v2]
"IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems
Version 2", IEEE Std 1588, 2008.
[LSP-PING-YANG]
Zheng, L., Zheng, G., Mirsky, G., Rahman, R., and F.
Iqbal, "YANG Data Model for LSP-Ping", Work in Progress,
draft-zheng-mpls-lsp-ping-yang-cfg-10, January 2019.
[RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching
(MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
Class" Field", RFC 5462, DOI 10.17487/RFC5462, February
2009, <https://www.rfc-editor.org/info/rfc5462>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6136] Sajassi, A., Ed. and D. Mohan, Ed., "Layer 2 Virtual
Private Network (L2VPN) Operations, Administration, and
Maintenance (OAM) Requirements and Framework", RFC 6136,
DOI 10.17487/RFC6136, March 2011,
<https://www.rfc-editor.org/info/rfc6136>.
[RFC7276] Mizrahi, T., Sprecher, N., Bellagamba, E., and
Y. Weingarten, "An Overview of Operations, Administration,
and Maintenance (OAM) Tools", RFC 7276,
DOI 10.17487/RFC7276, June 2014,
<https://www.rfc-editor.org/info/rfc7276>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8528] Bjorklund, M. and L. Lhotka, "YANG Schema Mount",
RFC 8528, DOI 10.17487/RFC8528, March 2019,
<https://www.rfc-editor.org/info/rfc8528>.
Kumar, et al. Standards Track [Page 57]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
[RFC8531] Kumar, D., Wu, Q., and M. Wang, "Generic YANG Data Model
for Connection-Oriented Operations, Administration, and
Maintenance (OAM) Protocols", RFC 8531,
DOI 10.17487/RFC8531, April 2019,
<https://www.rfc-editor.org/info/rfc8531>.
[RFC8533] Kumar, D., Wang, M., Wu, Q., Ed., Rahman, R., and
S. Raghavan, " A YANG Data Model for Retrieval Methods for
the Management of Operations, Administration, and
Maintenance (OAM) Protocols That Use Connectionless
Communications", RFC 8533, DOI 10.17487/RFC8533, April
2019.
Acknowledgments
The authors of this document would like to thank Elwyn Davies, Alia
Atlas, Brian E. Carpenter, Greg Mirsky, Adam Roach, Alissa Cooper,
Eric Rescorla, Ben Campbell, Benoit Claise, Kathleen Moriarty, Carlos
Pignataro, and others for their substantive review and comments, and
proposals to stabilize and improve the document.
Kumar, et al. Standards Track [Page 58]
^L
RFC 8532 Connectionless OAM YANG Data Model April 2019
Authors' Addresses
Deepak Kumar
CISCO Systems
510 McCarthy Blvd
Milpitas, CA 95035
United States of America
Email: dekumar@cisco.com
Michael Wang
Huawei Technologies, Co., Ltd
101 Software Avenue, Yuhua District
Nanjing 210012
China
Email: wangzitao@huawei.com
Qin Wu (editor)
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China
Email: bill.wu@huawei.com
Reshad Rahman
Cisco Systems
2000 Innovation Drive
Kanata, Ontario K2K 3E8
Canada
Email: rrahman@cisco.com
Srihari Raghavan
Cisco Systems
Tril Infopark Sez, Ramanujan IT City
Neville Block, 2nd floor, Old Mahabalipuram Road
Chennai, Tamil Nadu 600113
India
Email: srihari@cisco.com
Kumar, et al. Standards Track [Page 59]
^L
|