summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8551.txt
blob: b07ea0897c0b8495b2065698e394133ae0e76bc6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
Internet Engineering Task Force (IETF)                         J. Schaad
Request for Comments: 8551                                August Cellars
Obsoletes: 5751                                              B. Ramsdell
Category: Standards Track                         Brute Squad Labs, Inc.
ISSN: 2070-1721                                                S. Turner
                                                                   sn3rd
                                                              April 2019


   Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
                         Message Specification

Abstract

   This document defines Secure/Multipurpose Internet Mail Extensions
   (S/MIME) version 4.0.  S/MIME provides a consistent way to send and
   receive secure MIME data.  Digital signatures provide authentication,
   message integrity, and non-repudiation with proof of origin.
   Encryption provides data confidentiality.  Compression can be used to
   reduce data size.  This document obsoletes RFC 5751.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8551.

















Schaad, et al.               Standards Track                    [Page 1]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

























Schaad, et al.               Standards Track                    [Page 2]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   5
     1.1.  Specification Overview  . . . . . . . . . . . . . . . . .   5
     1.2.  Definitions . . . . . . . . . . . . . . . . . . . . . . .   6
     1.3.  Conventions Used in This Document . . . . . . . . . . . .   7
     1.4.  Compatibility with Prior Practice of S/MIME . . . . . . .   8
     1.5.  Changes from S/MIME v3 to S/MIME v3.1 . . . . . . . . . .   9
     1.6.  Changes from S/MIME v3.1 to S/MIME v3.2 . . . . . . . . .   9
     1.7.  Changes for S/MIME v4.0 . . . . . . . . . . . . . . . . .  11
   2.  CMS Options . . . . . . . . . . . . . . . . . . . . . . . . .  12
     2.1.  DigestAlgorithmIdentifier . . . . . . . . . . . . . . . .  12
     2.2.  SignatureAlgorithmIdentifier  . . . . . . . . . . . . . .  12
     2.3.  KeyEncryptionAlgorithmIdentifier  . . . . . . . . . . . .  13
     2.4.  General Syntax  . . . . . . . . . . . . . . . . . . . . .  13
       2.4.1.  Data Content Type . . . . . . . . . . . . . . . . . .  14
       2.4.2.  SignedData Content Type . . . . . . . . . . . . . . .  14
       2.4.3.  EnvelopedData Content Type  . . . . . . . . . . . . .  14
       2.4.4.  AuthEnvelopedData Content Type  . . . . . . . . . . .  14
       2.4.5.  CompressedData Content Type . . . . . . . . . . . . .  14
     2.5.  Attributes and the SignerInfo Type  . . . . . . . . . . .  15
       2.5.1.  Signing Time Attribute  . . . . . . . . . . . . . . .  15
       2.5.2.  SMIMECapabilities Attribute . . . . . . . . . . . . .  16
       2.5.3.  Encryption Key Preference Attribute . . . . . . . . .  17
     2.6.  SignerIdentifier SignerInfo Type  . . . . . . . . . . . .  19
     2.7.  ContentEncryptionAlgorithmIdentifier  . . . . . . . . . .  19
       2.7.1.  Deciding Which Encryption Method to Use . . . . . . .  19
       2.7.2.  Choosing Weak Encryption  . . . . . . . . . . . . . .  21
       2.7.3.  Multiple Recipients . . . . . . . . . . . . . . . . .  21
   3.  Creating S/MIME Messages  . . . . . . . . . . . . . . . . . .  21
     3.1.  Preparing the MIME Entity for Signing, Enveloping, or
           Compressing . . . . . . . . . . . . . . . . . . . . . . .  22
       3.1.1.  Canonicalization  . . . . . . . . . . . . . . . . . .  23
       3.1.2.  Transfer Encoding . . . . . . . . . . . . . . . . . .  24
       3.1.3.  Transfer Encoding for Signing Using multipart/signed   25
       3.1.4.  Sample Canonical MIME Entity  . . . . . . . . . . . .  25
     3.2.  The application/pkcs7-mime Media Type . . . . . . . . . .  26
       3.2.1.  The name and filename Parameters  . . . . . . . . . .  27
       3.2.2.  The smime-type Parameter  . . . . . . . . . . . . . .  28
     3.3.  Creating an Enveloped-Only Message  . . . . . . . . . . .  29
     3.4.  Creating an Authenticated Enveloped-Only Message  . . . .  30
     3.5.  Creating a Signed-Only Message  . . . . . . . . . . . . .  31
       3.5.1.  Choosing a Format for Signed-Only Messages  . . . . .  32
       3.5.2.  Signing Using application/pkcs7-mime with SignedData   32
       3.5.3.  Signing Using the multipart/signed Format . . . . . .  33
     3.6.  Creating a Compressed-Only Message  . . . . . . . . . . .  36
     3.7.  Multiple Operations . . . . . . . . . . . . . . . . . . .  37
     3.8.  Creating a Certificate Management Message . . . . . . . .  38



Schaad, et al.               Standards Track                    [Page 3]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


     3.9.  Registration Requests . . . . . . . . . . . . . . . . . .  38
     3.10. Identifying an S/MIME Message . . . . . . . . . . . . . .  39
   4.  Certificate Processing  . . . . . . . . . . . . . . . . . . .  39
     4.1.  Key Pair Generation . . . . . . . . . . . . . . . . . . .  40
     4.2.  Signature Generation  . . . . . . . . . . . . . . . . . .  40
     4.3.  Signature Verification  . . . . . . . . . . . . . . . . .  40
     4.4.  Encryption  . . . . . . . . . . . . . . . . . . . . . . .  41
     4.5.  Decryption  . . . . . . . . . . . . . . . . . . . . . . .  41
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  41
     5.1.  Media Type for application/pkcs7-mime . . . . . . . . . .  42
     5.2.  Media Type for application/pkcs7-signature  . . . . . . .  43
     5.3.  authEnveloped-data smime-type . . . . . . . . . . . . . .  44
     5.4.  Reference Updates . . . . . . . . . . . . . . . . . . . .  44
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  44
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  48
     7.1.  Reference Conventions . . . . . . . . . . . . . . . . . .  48
     7.2.  Normative References  . . . . . . . . . . . . . . . . . .  49
     7.3.  Informative References  . . . . . . . . . . . . . . . . .  52
   Appendix A.  ASN.1 Module . . . . . . . . . . . . . . . . . . . .  57
   Appendix B.  Historic Mail Considerations . . . . . . . . . . . .  59
     B.1.  DigestAlgorithmIdentifier . . . . . . . . . . . . . . . .  59
     B.2.  Signature Algorithms  . . . . . . . . . . . . . . . . . .  59
     B.3.  ContentEncryptionAlgorithmIdentifier  . . . . . . . . . .  61
     B.4.  KeyEncryptionAlgorithmIdentifier  . . . . . . . . . . . .  62
   Appendix C.  Moving S/MIME v2 Message Specification to Historic
                Status . . . . . . . . . . . . . . . . . . . . . . .  62
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  62
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  63























Schaad, et al.               Standards Track                    [Page 4]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


1.  Introduction

   S/MIME (Secure/Multipurpose Internet Mail Extensions) provides a
   consistent way to send and receive secure MIME data.  Based on the
   popular Internet MIME standard, S/MIME provides the following
   cryptographic security services for electronic messaging
   applications: authentication, message integrity, and non-repudiation
   of origin (using digital signatures), and data confidentiality (using
   encryption).  As a supplementary service, S/MIME provides message
   compression.

   S/MIME can be used by traditional mail user agents (MUAs) to add
   cryptographic security services to mail that is sent, and to
   interpret cryptographic security services in mail that is received.
   However, S/MIME is not restricted to mail; it can be used with any
   transport mechanism that transports MIME data, such as HTTP or SIP.
   As such, S/MIME takes advantage of the object-based features of MIME
   and allows secure messages to be exchanged in mixed-transport
   systems.

   Further, S/MIME can be used in automated message transfer agents that
   use cryptographic security services that do not require any human
   intervention, such as the signing of software-generated documents and
   the encryption of FAX messages sent over the Internet.

   This document defines version 4.0 of the S/MIME Message
   Specification.  As such, this document obsoletes version 3.2 of the
   S/MIME Message Specification [RFC5751].

   This specification contains a number of references to documents that
   have been obsoleted or replaced.  This is intentional, as the updated
   documents often do not have the same information or protocol
   requirements in them.

1.1.  Specification Overview

   This document describes a protocol for adding cryptographic signature
   and encryption services to MIME data.  The MIME standard [MIME-SPEC]
   provides a general structure for the content of Internet messages and
   allows extensions for new applications based on content-type.

   This specification defines how to create a MIME body part that has
   been cryptographically enhanced according to the Cryptographic
   Message Syntax (CMS) [CMS], which is derived from PKCS #7 [RFC2315].
   This specification also defines the application/pkcs7-mime media
   type, which can be used to transport those body parts.





Schaad, et al.               Standards Track                    [Page 5]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   This document also discusses how to use the multipart/signed media
   type defined in [RFC1847] to transport S/MIME signed messages.
   multipart/signed is used in conjunction with the
   application/pkcs7-signature media type, which is used to transport a
   detached S/MIME signature.

   In order to create S/MIME messages, an S/MIME agent MUST follow the
   specifications in this document, as well as the specifications listed
   in [CMS], [RFC3370], [RFC4056], [RFC3560], and [RFC5754].

   Throughout this specification, there are requirements and
   recommendations made for how receiving agents handle incoming
   messages.  There are separate requirements and recommendations for
   how sending agents create outgoing messages.  In general, the best
   strategy is to follow the Robustness Principle (be liberal in what
   you receive and conservative in what you send).  Most of the
   requirements are placed on the handling of incoming messages, while
   the recommendations are mostly on the creation of outgoing messages.

   The separation for requirements on receiving agents and sending
   agents also derives from the likelihood that there will be S/MIME
   systems that involve software other than traditional Internet mail
   clients.  S/MIME can be used with any system that transports MIME
   data.  An automated process that sends an encrypted message might not
   be able to receive an encrypted message at all, for example.  Thus,
   the requirements and recommendations for the two types of agents are
   listed separately when appropriate.

1.2.  Definitions

   For the purposes of this specification, the following definitions
   apply.

   ASN.1:
      Abstract Syntax Notation One, as defined in ITU-T Recommendations
      X.680, X.681, X.682, and X.683 [ASN.1].

   BER:
      Basic Encoding Rules for ASN.1, as defined in ITU-T Recommendation
      X.690 [X.690].

   Certificate:
      A type that binds an entity's name to a public key with a digital
      signature.

   DER:
      Distinguished Encoding Rules for ASN.1, as defined in ITU-T
      Recommendation X.690 [X.690].



Schaad, et al.               Standards Track                    [Page 6]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   7-bit data:
      Text data with lines less than 998 characters long, where none of
      the characters have the 8th bit set, and there are no NULL
      characters.  <CR> and <LF> occur only as part of a <CR><LF>
      end-of-line delimiter.

   8-bit data:
      Text data with lines less than 998 characters, and where none of
      the characters are NULL characters.  <CR> and <LF> occur only as
      part of a <CR><LF> end-of-line delimiter.

   Binary data:
      Arbitrary data.

   Transfer encoding:
      A reversible transformation made on data so 8-bit or binary data
      can be sent via a channel that only transmits 7-bit data.

   Receiving agent:
      Software that interprets and processes S/MIME CMS objects, MIME
      body parts that contain CMS content types, or both.

   Sending agent:
      Software that creates S/MIME CMS content types, MIME body parts
      that contain CMS content types, or both.

   S/MIME agent:
      User software that is a receiving agent, a sending agent, or both.

   Data integrity service:
      A security service that protects against unauthorized changes to
      data by ensuring that changes to the data are detectable
      [RFC4949].

   Data confidentiality:
      The property that data is not disclosed to system entities unless
      they have been authorized to know the data [RFC4949].

1.3.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.






Schaad, et al.               Standards Track                    [Page 7]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   We define the additional requirement levels:

   SHOULD+   This term means the same as SHOULD.  However, the authors
             expect that a requirement marked as SHOULD+ will be
             promoted at some future time to be a MUST.

   SHOULD-   This term means the same as SHOULD.  However, the authors
             expect that a requirement marked as SHOULD- will be demoted
             to a MAY in a future version of this document.

   MUST-     This term means the same as MUST.  However, the authors
             expect that this requirement will no longer be a MUST in a
             future document.  Although its status will be determined at
             a later time, it is reasonable to expect that if a future
             revision of a document alters the status of a MUST-
             requirement, it will remain at least a SHOULD or a SHOULD-.

   The term "RSA" in this document almost always refers to the
   PKCS #1 v1.5 RSA [RFC2313] signature or encryption algorithms even
   when not qualified as such.  There are a couple of places where it
   refers to the general RSA cryptographic operation; these can be
   determined from the context where it is used.

1.4.  Compatibility with Prior Practice of S/MIME

   S/MIME version 4.0 agents ought to attempt to have the greatest
   interoperability possible with agents for prior versions of S/MIME.

   -  S/MIME version 2 is described in RFC 2311 through RFC 2315
      inclusive [SMIMEv2].

   -  S/MIME version 3 is described in RFC 2630 through RFC 2634
      inclusive and RFC 5035 [SMIMEv3].

   -  S/MIME version 3.1 is described in RFC 2634, RFC 3850, RFC 3851,
      RFC 3852, and RFC 5035 [SMIMEv3.1].

   -  S/MIME version 3.2 is described in RFC 2634, RFC 5035, RFC 5652,
      RFC 5750, and RFC 5751 [SMIMEv3.2].

   -  [RFC2311] also has historical information about the development of
      S/MIME.









Schaad, et al.               Standards Track                    [Page 8]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


1.5.  Changes from S/MIME v3 to S/MIME v3.1

   This section describes the changes made between S/MIME v3 and
   S/MIME v3.1.  Note that the requirement levels indicated by the
   capitalized key words ("MUST", "SHOULD", etc.) may have changed in
   later versions of S/MIME.

   -  The RSA public key algorithm was changed to a MUST implement.  The
      key wrap algorithm and the Diffie-Hellman (DH) algorithm [RFC2631]
      were changed to a SHOULD implement.

   -  The AES symmetric encryption algorithm has been included as a
      SHOULD implement.

   -  The RSA public key algorithm was changed to a MUST implement
      signature algorithm.

   -  Ambiguous language about the use of "empty" SignedData messages to
      transmit certificates was clarified to reflect that transmission
      of Certificate Revocation Lists is also allowed.

   -  The use of binary encoding for some MIME entities is now
      explicitly discussed.

   -  Header protection through the use of the message/rfc822 media type
      has been added.

   -  Use of the CompressedData CMS type is allowed, along with required
      media type and file extension additions.

1.6.  Changes from S/MIME v3.1 to S/MIME v3.2

   This section describes the changes made between S/MIME v3.1 and
   S/MIME v3.2.  Note that the requirement levels indicated by the
   capitalized key words ("MUST", "SHOULD", etc.) may have changed in
   later versions of S/MIME.  Note that the section numbers listed here
   (e.g., 3.4.3.2) are from [RFC5751].

   -  Made editorial changes, e.g., replaced "MIME type" with "media
      type", "content-type" with "Content-Type".

   -  Moved "Conventions Used in This Document" to Section 1.3.  Added
      definitions for SHOULD+, SHOULD-, and MUST-.

   -  Section 1.1 and Appendix A: Added references to RFCs for
      RSASSA-PSS, RSAES-OAEP, and SHA2 CMS algorithms.  Added CMS
      Multiple Signers Clarification to CMS reference.




Schaad, et al.               Standards Track                    [Page 9]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   -  Section 1.2: Updated references to ASN.1 to X.680, and BER and DER
      to X.690.

   -  Section 1.4: Added references to S/MIME v3.1 RFCs.

   -  Section 2.1 (digest algorithm): SHA-256 added as MUST, SHA-1 and
      MD5 made SHOULD-.

   -  Section 2.2 (signature algorithms): RSA with SHA-256 added as
      MUST; DSA with SHA-256 added as SHOULD+; RSA with SHA-1, DSA with
      SHA-1, and RSA with MD5 changed to SHOULD-; and RSASSA-PSS with
      SHA-256 added as SHOULD+.  Also added note about what S/MIME v3.1
      clients support.

   -  Section 2.3 (key encryption): DH changed to SHOULD-, and RSAES-
      OAEP added as SHOULD+.  Elaborated on requirements for key wrap
      algorithm.

   -  Section 2.5.1: Added requirement that receiving agents MUST
      support both GeneralizedTime and UTCTime.

   -  Section 2.5.2: Replaced reference "sha1WithRSAEncryption" with
      "sha256WithRSAEncryption", replaced "DES-3EDE-CBC" with "AES-128
      CBC", and deleted the RC5 example.

   -  Section 2.5.2.1: Deleted entire section (discussed
      deprecated RC2).

   -  Section 2.7, Section 2.7.1, and Appendix A: References to RC2/40
      removed.

   -  Section 2.7 (content encryption): AES-128 CBC added as MUST,
      AES-192 and AES-256 CBC SHOULD+, and tripleDES now SHOULD-.

   -  Section 2.7.1: Updated pointers from 2.7.2.1 through 2.7.2.4 to
      2.7.1.1 and 2.7.1.2.

   -  Section 3.1.1: Removed text about MIME character sets.

   -  Sections 3.2.2 and 3.6: Replaced "encrypted" with "enveloped".
      Updated OID example to use AES-128 CBC OID.

   -  Section 3.4.3.2: Replaced "micalg" parameter for "SHA-1" with
      "sha-1".

   -  Section 4: Updated reference to CERT v3.2.





Schaad, et al.               Standards Track                   [Page 10]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   -  Section 4.1: Updated RSA and DSA key size discussion.  Moved last
      four sentences to security considerations.  Updated reference to
      randomness requirements for security.

   -  Section 5: Added IANA registration templates to update media type
      registry to point to this document as opposed to RFC 2311.

   -  Section 6: Updated security considerations.

   -  Section 7: Moved references from Appendix B to this section.
      Updated references.  Added informative references to SMIMEv2,
      SMIMEv3, and SMIMEv3.1.

   -  Appendix B: Added Appendix B to move S/MIME v2 to Historic status.

1.7.  Changes for S/MIME v4.0

   This section describes the changes made between S/MIME v3.2 and
   S/MIME v4.0.

   -  Added the use of AuthEnvelopedData, including defining and
      registering an smime-type value (Sections 2.4.4 and 3.4).

   -  Updated the content-encryption algorithms (Sections 2.7 and
      2.7.1.2): added AES-256 Galois/Counter Mode (GCM), added
      ChaCha20-Poly1305, removed mention of AES-192 Cipher Block
      Chaining (CBC), and marked tripleDES as historic.

   -  Updated the set of signature algorithms (Section 2.2): added the
      Edwards-curve Digital Signature Algorithm (EdDSA), added the
      Elliptic Curve Digital Signature Algorithm (ECDSA), and marked DSA
      as historic.

   -  Updated the set of digest algorithms (Section 2.1): added SHA-512,
      and marked SHA-1 as historic.

   -  Updated the size of keys to be used for RSA encryption and RSA
      signing (Section 4).

   -  Created Appendix B, which discusses considerations for dealing
      with historic email messages.










Schaad, et al.               Standards Track                   [Page 11]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


2.  CMS Options

   CMS allows for a wide variety of options in content, attributes, and
   algorithm support.  This section puts forth a number of support
   requirements and recommendations in order to achieve a base level of
   interoperability among all S/MIME implementations.  [RFC3370] and
   [RFC5754] provide additional details regarding the use of the
   cryptographic algorithms.  [ESS] provides additional details
   regarding the use of additional attributes.

2.1.  DigestAlgorithmIdentifier

   The algorithms here are used for digesting the body of the message
   and are not the same as the digest algorithms used as part of the
   signature algorithms.  The result of this is placed in the
   message-digest attribute of the signed attributes.  It is RECOMMENDED
   that the algorithm used for digesting the body of the message be of
   similar strength to, or greater strength than, the signature
   algorithm.

   Sending and receiving agents:

   -  MUST support SHA-256.

   -  MUST support SHA-512.

   [RFC5754] provides the details for using these algorithms with
   S/MIME.

2.2.  SignatureAlgorithmIdentifier

   There are different sets of requirements placed on receiving and
   sending agents.  By having the different requirements, the maximum
   amount of interoperability is achieved, as it allows for specialized
   protection of private key material but maximum signature validation.

   Receiving agents:

   -  MUST support ECDSA with curve P-256 and SHA-256.

   -  MUST support EdDSA with curve25519 using PureEdDSA mode [RFC8419].

   -  MUST- support RSA PKCS #1 v1.5 with SHA-256.

   -  SHOULD support the RSA Probabilistic Signature Scheme (RSASSA-PSS)
      with SHA-256.





Schaad, et al.               Standards Track                   [Page 12]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   Sending agents:

   -  MUST support at least one of the following algorithms: ECDSA with
      curve P-256 and SHA-256, or EdDSA with curve25519 using PureEdDSA
      mode.

   -  MUST- support RSA PKCS #1 v1.5 with SHA-256.

   -  SHOULD support RSASSA-PSS with SHA-256.

   See Section 4.1 for information on key size and algorithm references.

2.3.  KeyEncryptionAlgorithmIdentifier

   Receiving and sending agents:

   -  MUST support Elliptic Curve Diffie-Hellman (ECDH) ephemeral-static
      mode for P-256, as specified in [RFC5753].

   -  MUST support ECDH ephemeral-static mode for X25519 using HKDF-256
      ("HKDF" stands for "HMAC-based Key Derivation Function") for the
      KDF, as specified in [RFC8418].

   -  MUST- support RSA encryption, as specified in [RFC3370].

   -  SHOULD+ support RSA Encryption Scheme - Optimal Asymmetric
      Encryption Padding (RSAES-OAEP), as specified in [RFC3560].

   When ECDH ephemeral-static is used, a key wrap algorithm is also
   specified in the KeyEncryptionAlgorithmIdentifier [RFC5652].  The
   underlying encryption functions for the key wrap and content-
   encryption algorithms [RFC3370] [RFC3565] and the key sizes for the
   two algorithms MUST be the same (e.g., AES-128 key wrap algorithm
   with AES-128 content-encryption algorithm).  As both 128-bit and
   256-bit AES modes are mandatory to implement as content-encryption
   algorithms (Section 2.7), both the AES-128 and AES-256 key wrap
   algorithms MUST be supported when ECDH ephemeral-static is used.
   Recipients MAY enforce this but MUST use the weaker of the two as
   part of any cryptographic strength computations they might do.

   Appendix B provides information on algorithm support in older
   versions of S/MIME.

2.4.  General Syntax

   There are several CMS content types.  Of these, only the Data,
   SignedData, EnvelopedData, AuthEnvelopedData, and CompressedData
   content types are currently used for S/MIME.



Schaad, et al.               Standards Track                   [Page 13]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


2.4.1.  Data Content Type

   Sending agents MUST use the id-data content type identifier to
   identify the "inner" MIME message content.  For example, when
   applying a digital signature to MIME data, the CMS SignedData
   encapContentInfo eContentType MUST include the id-data object
   identifier (OID), and the media type MUST be stored in the SignedData
   encapContentInfo eContent OCTET STRING (unless the sending agent is
   using multipart/signed, in which case the eContent is absent, per
   Section 3.5.3 of this document).  As another example, when applying
   encryption to MIME data, the CMS EnvelopedData encryptedContentInfo
   contentType MUST include the id-data OID and the encrypted MIME
   content MUST be stored in the EnvelopedData encryptedContentInfo
   encryptedContent OCTET STRING.

2.4.2.  SignedData Content Type

   Sending agents MUST use the SignedData content type to apply a
   digital signature to a message or, in a degenerate case where there
   is no signature information, to convey certificates.  Applying a
   signature to a message provides authentication, message integrity,
   and non-repudiation of origin.

2.4.3.  EnvelopedData Content Type

   This content type is used to apply data confidentiality to a message.
   In order to distribute the symmetric key, a sender needs to have
   access to a public key for each intended message recipient to use
   this service.

2.4.4.  AuthEnvelopedData Content Type

   This content type is used to apply data confidentiality and message
   integrity to a message.  This content type does not provide
   authentication or non-repudiation.  In order to distribute the
   symmetric key, a sender needs to have access to a public key for each
   intended message recipient to use this service.

2.4.5.  CompressedData Content Type

   This content type is used to apply data compression to a message.
   This content type does not provide authentication, message integrity,
   non-repudiation, or data confidentiality; it is only used to reduce
   the message's size.

   See Section 3.7 for further guidance on the use of this type in
   conjunction with other CMS types.




Schaad, et al.               Standards Track                   [Page 14]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


2.5.  Attributes and the SignerInfo Type

   The SignerInfo type allows the inclusion of unsigned and signed
   attributes along with a signature.  These attributes can be required
   for the processing of messages (e.g., message digest), information
   the signer supplied (e.g., SMIME capabilities) that should be
   processed, or attributes that are not relevant to the current
   situation (e.g., mlExpansionHistory [RFC2634] for mail viewers).

   Receiving agents MUST be able to handle zero or one instance of each
   of the signed attributes listed here.  Sending agents SHOULD generate
   one instance of each of the following signed attributes in each
   S/MIME message:

   -  Signing time (Section 2.5.1 in this document)

   -  SMIME capabilities (Section 2.5.2 in this document)

   -  Encryption key Preference (Section 2.5.3 in this document)

   -  Message digest (Section 11.2 in [RFC5652])

   -  Content type (Section 11.1 in [RFC5652])

   Further, receiving agents SHOULD be able to handle zero or one
   instance of the signingCertificate and signingCertificateV2 signed
   attributes, as defined in Section 5 of RFC 2634 [ESS] and Section 3
   of RFC 5035 [ESS], respectively.

   Sending agents SHOULD generate one instance of the signingCertificate
   or signingCertificateV2 signed attribute in each SignerInfo
   structure.

   Additional attributes and values for these attributes might be
   defined in the future.  Receiving agents SHOULD handle attributes or
   values that they do not recognize in a graceful manner.

   Interactive sending agents that include signed attributes that are
   not listed here SHOULD display those attributes to the user, so that
   the user is aware of all of the data being signed.

2.5.1.  Signing Time Attribute

   The signingTime attribute is used to convey the time that a message
   was signed.  The time of signing will most likely be created by a
   signer and therefore is only as trustworthy as that signer.





Schaad, et al.               Standards Track                   [Page 15]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   Sending agents MUST encode signing time through the year 2049 as
   UTCTime; signing times in 2050 or later MUST be encoded as
   GeneralizedTime.  When the UTCTime CHOICE is used, S/MIME agents MUST
   interpret the year field (YY) as follows:

      If YY is greater than or equal to 50, the year is interpreted as
      19YY; if YY is less than 50, the year is interpreted as 20YY.

   Receiving agents MUST be able to process signingTime attributes that
   are encoded in either UTCTime or GeneralizedTime.

2.5.2.  SMIMECapabilities Attribute

   The SMIMECapabilities attribute includes signature algorithms (such
   as "sha256WithRSAEncryption"), symmetric algorithms (such as "AES-128
   CBC"), authenticated symmetric algorithms (such as "AES-128 GCM"),
   and key encipherment algorithms (such as "rsaEncryption").  The
   presence of an SMIMECapability attribute containing an algorithm
   implies that the sender can deal with the algorithm as well as
   understand the ASN.1 structures associated with that algorithm.
   There are also several identifiers that indicate support for other
   optional features such as binary encoding and compression.  The
   SMIMECapabilities attribute was designed to be flexible and
   extensible so that, in the future, a means of identifying other
   capabilities and preferences such as certificates can be added in a
   way that will not cause current clients to break.

   If present, the SMIMECapabilities attribute MUST be a
   SignedAttribute.  CMS defines SignedAttributes as a SET OF Attribute.
   The SignedAttributes in a signerInfo MUST include a single instance
   of the SMIMECapabilities attribute.  CMS defines the ASN.1 syntax for
   Attribute to include attrValues SET OF AttributeValue.  An
   SMIMECapabilities attribute MUST only include a single instance of
   AttributeValue.  If a signature is detected as violating these
   requirements, the signature SHOULD be treated as failing.

   The semantics of the SMIMECapabilities attribute specify a partial
   list as to what the client announcing the SMIMECapabilities can
   support.  A client does not have to list every capability it
   supports, and it need not list all its capabilities so that the
   capabilities list doesn't get too long.  In an SMIMECapabilities
   attribute, the OIDs are listed in order of their preference but
   SHOULD be separated logically along the lines of their categories
   (signature algorithms, symmetric algorithms, key encipherment
   algorithms, etc.).






Schaad, et al.               Standards Track                   [Page 16]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   The structure of the SMIMECapabilities attribute is to facilitate
   simple table lookups and binary comparisons in order to determine
   matches.  For instance, the encoding for the SMIMECapability for
   sha256WithRSAEncryption includes rather than omits the NULL
   parameter.  Because of the requirement for identical encoding,
   individuals documenting algorithms to be used in the
   SMIMECapabilities attribute SHOULD explicitly document the correct
   byte sequence for the common cases.

   For any capability, the associated parameters for the OID MUST
   specify all of the parameters necessary to differentiate between two
   instances of the same algorithm.

   The same OID that is used to identify an algorithm SHOULD also be
   used in the SMIMECapability for that algorithm.  There are cases
   where a single OID can correspond to multiple algorithms.  In these
   cases, a single algorithm MUST be assigned to the SMIMECapability
   using that OID.  Additional OIDs from the smimeCapabilities OID tree
   are then allocated for the other algorithms usages.  For instance, in
   an earlier specification, rsaEncryption was ambiguous because it
   could refer to either a signature algorithm or a key encipherment
   algorithm.  In the event that an OID is ambiguous, it needs to be
   arbitrated by the maintainer of the registered SMIMECapabilities list
   as to which type of algorithm will use the OID, and a new OID MUST be
   allocated under the smimeCapabilities OID to satisfy the other use of
   the OID.

   The registered SMIMECapabilities list specifies the parameters for
   OIDs that need them, most notably key lengths in the case of
   variable-length symmetric ciphers.  In the event that there are no
   differentiating parameters for a particular OID, the parameters MUST
   be omitted and MUST NOT be encoded as NULL.  Additional values for
   the SMIMECapabilities attribute might be defined in the future.
   Receiving agents MUST handle an SMIMECapabilities object that has
   values that it does not recognize in a graceful manner.

   Section 2.7.1 explains a strategy for caching capabilities.

2.5.3.  Encryption Key Preference Attribute

   The encryption key preference attribute allows the signer to
   unambiguously describe which of the signer's certificates has the
   signer's preferred encryption key.  This attribute is designed to
   enhance behavior for interoperating with those clients that use
   separate keys for encryption and signing.  This attribute is used to
   convey to anyone viewing the attribute which of the listed
   certificates is appropriate for encrypting a session key for future
   encrypted messages.



Schaad, et al.               Standards Track                   [Page 17]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   If present, the SMIMEEncryptionKeyPreference attribute MUST be a
   SignedAttribute.  CMS defines SignedAttributes as a SET OF Attribute.
   The SignedAttributes in a signerInfo MUST include a single instance
   of the SMIMEEncryptionKeyPreference attribute.  CMS defines the ASN.1
   syntax for Attribute to include attrValues SET OF AttributeValue.  An
   SMIMEEncryptionKeyPreference attribute MUST only include a single
   instance of AttributeValue.  If a signature is detected as violating
   these requirements, the signature SHOULD be treated as failing.

   The sending agent SHOULD include the referenced certificate in the
   set of certificates included in the signed message if this attribute
   is used.  The certificate MAY be omitted if it has been previously
   made available to the receiving agent.  Sending agents SHOULD use
   this attribute if the commonly used or preferred encryption
   certificate is not the same as the certificate used to sign the
   message.

   Receiving agents SHOULD store the preference data if the signature on
   the message is valid and the signing time is greater than the
   currently stored value.  (As with the SMIMECapabilities, the clock
   skew SHOULD be checked and the data not used if the skew is too
   great.)  Receiving agents SHOULD respect the sender's encryption key
   preference attribute if possible.  This, however, represents only a
   preference, and the receiving agent can use any certificate in
   replying to the sender that is valid.

   Section 2.7.1 explains a strategy for caching preference data.

2.5.3.1.  Selection of Recipient Key Management Certificate

   In order to determine the key management certificate to be used when
   sending a future CMS EnvelopedData message for a particular
   recipient, the following steps SHOULD be followed:

   -  If an SMIMEEncryptionKeyPreference attribute is found in a
      SignedData object received from the desired recipient, this
      identifies the X.509 certificate that SHOULD be used as the X.509
      key management certificate for the recipient.

   -  If an SMIMEEncryptionKeyPreference attribute is not found in a
      SignedData object received from the desired recipient, the set of
      X.509 certificates SHOULD be searched for an X.509 certificate
      with the same subject name as the signer of an X.509 certificate
      that can be used for key management.







Schaad, et al.               Standards Track                   [Page 18]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   -  Or, use some other method of determining the user's key management
      key.  If an X.509 key management certificate is not found, then
      encryption cannot be done with the signer of the message.  If
      multiple X.509 key management certificates are found, the S/MIME
      agent can make an arbitrary choice between them.

2.6.  SignerIdentifier SignerInfo Type

   S/MIME v4.0 implementations MUST support both issuerAndSerialNumber
   and subjectKeyIdentifier.  Messages that use the subjectKeyIdentifier
   choice cannot be read by S/MIME v2 clients.

   It is important to understand that some certificates use a value for
   subjectKeyIdentifier that is not suitable for uniquely identifying a
   certificate.  Implementations MUST be prepared for multiple
   certificates for potentially different entities to have the same
   value for subjectKeyIdentifier and MUST be prepared to try each
   matching certificate during signature verification before indicating
   an error condition.

2.7.  ContentEncryptionAlgorithmIdentifier

   Sending and receiving agents:

   -  MUST support encryption and decryption with AES-128 GCM and
      AES-256 GCM [RFC5084].

   -  MUST- support encryption and decryption with AES-128 CBC
      [RFC3565].

   -  SHOULD+ support encryption and decryption with ChaCha20-Poly1305
      [RFC7905].

2.7.1.  Deciding Which Encryption Method to Use

   When a sending agent creates an encrypted message, it has to decide
   which type of encryption to use.  The decision process involves using
   information garnered from the capabilities lists included in messages
   received from the recipient, as well as out-of-band information such
   as private agreements, user preferences, legal restrictions, and
   so on.

   Section 2.5.2 defines a method by which a sending agent can
   optionally announce, among other things, its decrypting capabilities
   in its order of preference.  The following method for processing and
   remembering the encryption capabilities attribute in incoming signed
   messages SHOULD be used.




Schaad, et al.               Standards Track                   [Page 19]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   -  If the receiving agent has not yet created a list of capabilities
      for the sender's public key, then, after verifying the signature
      on the incoming message and checking the timestamp, the receiving
      agent SHOULD create a new list containing at least the signing
      time and the symmetric capabilities.

   -  If such a list already exists, the receiving agent SHOULD verify
      that the signing time in the incoming message is greater than the
      signing time stored in the list and that the signature is valid.
      If so, the receiving agent SHOULD update both the signing time and
      capabilities in the list.  Values of the signing time that lie far
      in the future (that is, a greater discrepancy than any reasonable
      clock skew), or a capabilities list in messages whose signature
      could not be verified, MUST NOT be accepted.

   The list of capabilities SHOULD be stored for future use in creating
   messages.

   Before sending a message, the sending agent MUST decide whether it is
   willing to use weak encryption for the particular data in the
   message.  If the sending agent decides that weak encryption is
   unacceptable for this data, then the sending agent MUST NOT use a
   weak algorithm.  The decision to use or not use weak encryption
   overrides any other decision in this section about which encryption
   algorithm to use.

   Sections 2.7.1.1 and 2.7.1.2 describe the decisions a sending agent
   SHOULD use when choosing which type of encryption will be applied to
   a message.  These rules are ordered, so the sending agent SHOULD make
   its decision in the order given.

2.7.1.1.  Rule 1: Known Capabilities

   If the sending agent has received a set of capabilities from the
   recipient for the message the agent is about to encrypt, then the
   sending agent SHOULD use that information by selecting the first
   capability in the list (that is, the capability most preferred by the
   intended recipient) that the sending agent knows how to encrypt.  The
   sending agent SHOULD use one of the capabilities in the list if the
   agent reasonably expects the recipient to be able to decrypt the
   message.

2.7.1.2.  Rule 2: Unknown Capabilities, Unknown Version of S/MIME

   If the following two conditions are met, the sending agent SHOULD use
   AES-256 GCM, as AES-256 GCM is a stronger algorithm and is required
   by S/MIME v4.0:




Schaad, et al.               Standards Track                   [Page 20]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   -  The sending agent has no knowledge of the encryption capabilities
      of the recipient.

   -  The sending agent has no knowledge of the version of S/MIME used
      or supported by the recipient.

   If the sending agent chooses not to use AES-256 GCM in this step,
   given the presumption is that a client implementing AES-GCM would do
   both AES-256 and AES-128, it SHOULD use AES-128 CBC.

2.7.2.  Choosing Weak Encryption

   Algorithms such as RC2 are considered to be weak encryption
   algorithms.  Algorithms such as TripleDES are not state of the art
   and are considered to be weaker algorithms than AES.  A sending agent
   that is controlled by a human SHOULD allow a human sender to
   determine the risks of sending data using a weaker encryption
   algorithm before sending the data, and possibly allow the human to
   use a stronger encryption algorithm such as AES GCM or AES CBC even
   if there is a possibility that the recipient will not be able to
   process that algorithm.

2.7.3.  Multiple Recipients

   If a sending agent is composing an encrypted message to a group of
   recipients where the encryption capabilities of some of the
   recipients do not overlap, the sending agent is forced to send more
   than one message.  Please note that if the sending agent chooses to
   send a message encrypted with a strong algorithm and then send the
   same message encrypted with a weak algorithm, someone watching the
   communications channel could learn the contents of the strongly
   encrypted message simply by decrypting the weakly encrypted message.

3.  Creating S/MIME Messages

   This section describes the S/MIME message formats and how they are
   created.  S/MIME messages are a combination of MIME bodies and CMS
   content types.  Several media types as well as several CMS content
   types are used.  The data to be secured is always a canonical MIME
   entity.  The MIME entity and other data, such as certificates and
   algorithm identifiers, are given to CMS processing facilities that
   produce a CMS object.  Finally, the CMS object is wrapped in MIME.
   The "Enhanced Security Services for S/MIME" documents [ESS] provide
   descriptions of how nested, secured S/MIME messages are formatted.
   ESS provides a description of how a triple-wrapped S/MIME message is
   formatted using multipart/signed and application/pkcs7-mime for the
   signatures.




Schaad, et al.               Standards Track                   [Page 21]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   S/MIME provides one format for enveloped-only data, several formats
   for signed-only data, and several formats for signed and enveloped
   data.  Several formats are required to accommodate several
   environments -- in particular, for signed messages.  The criteria for
   choosing among these formats are also described.

   Anyone reading this section is expected to understand MIME as
   described in [MIME-SPEC] and [RFC1847].

3.1.  Preparing the MIME Entity for Signing, Enveloping, or Compressing

   S/MIME is used to secure MIME entities.  A MIME message is composed
   of a MIME header and a MIME body.  A body can consist of a single
   MIME entity or a tree of MIME entities (rooted with a multipart).
   S/MIME can be used to secure either a single MIME entity or a tree of
   MIME entities.  These entities can be in locations other than the
   root.  S/MIME can be applied multiple times to different entities in
   a single message.  A MIME entity that is the whole message includes
   only the MIME message headers and MIME body and does not include the
   rfc822 header.  Note that S/MIME can also be used to secure MIME
   entities used in applications other than Internet mail.  For cases
   where protection of the rfc822 header is required, the use of the
   message/rfc822 media type is explained later in this section.

   The MIME entity that is secured and described in this section can be
   thought of as the "inside" MIME entity.  That is, it is the
   "innermost" object in what is possibly a larger MIME message.
   Processing "outside" MIME entities into CMS EnvelopedData,
   CompressedData, and AuthEnvelopedData content types is described in
   Sections 3.2 and 3.5.  Other documents define additional CMS content
   types; those documents should be consulted for processing those CMS
   content types.

   The procedure for preparing a MIME entity is given in [MIME-SPEC].
   The same procedure is used here with some additional restrictions
   when signing.  The description of the procedures from [MIME-SPEC] is
   repeated here, but it is suggested that the reader refer to those
   documents for the exact procedures.  This section also describes
   additional requirements.

   A single procedure is used for creating MIME entities that are to
   have any combination of signing, enveloping, and compressing applied.
   Some additional steps are recommended to defend against known
   corruptions that can occur during mail transport that are of
   particular importance for clear-signing using the multipart/signed
   format.  It is recommended that these additional steps be performed
   on enveloped messages, or signed and enveloped messages, so that the
   messages can be forwarded to any environment without modification.



Schaad, et al.               Standards Track                   [Page 22]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   These steps are descriptive rather than prescriptive.  The
   implementer is free to use any procedure as long as the result is
   the same.

   Step 1.  The MIME entity is prepared according to local conventions.

   Step 2.  The leaf parts of the MIME entity are converted to
            canonical form.

   Step 3.  Appropriate transfer encoding is applied to the leaves
            of the MIME entity.

   When an S/MIME message is received, the security services on the
   message are processed, and the result is the MIME entity.  That MIME
   entity is typically passed to a MIME-capable user agent where it is
   further decoded and presented to the user or receiving application.

   In order to protect outer, non-content-related message header fields
   (for instance, the "Subject", "To", "From", and "Cc" fields), the
   sending client MAY wrap a full MIME message in a message/rfc822
   wrapper in order to apply S/MIME security services to these header
   fields.  It is up to the receiving client to decide how to present
   this "inner" header along with the unprotected "outer" header.  Given
   the security difference between headers, it is RECOMMENDED that the
   receiving client provide a distinction between header fields,
   depending on where they are located.

   When an S/MIME message is received, if the top-level protected MIME
   entity has a Content-Type of message/rfc822, it can be assumed that
   the intent was to provide header protection.  This entity SHOULD be
   presented as the top-level message, taking into account
   header-merging issues as previously discussed.

3.1.1.  Canonicalization

   Each MIME entity MUST be converted to a canonical form that is
   uniquely and unambiguously representable in the environment where the
   signature is created and the environment where the signature will be
   verified.  MIME entities MUST be canonicalized for enveloping and
   compressing as well as signing.

   The exact details of canonicalization depend on the actual media type
   and subtype of an entity and are not described here.  Instead, the
   standard for the particular media type SHOULD be consulted.  For
   example, canonicalization of type text/plain is different from
   canonicalization of audio/basic.  Other than text types, most types
   have only one representation, regardless of computing platform or
   environment, that can be considered their canonical representation.



Schaad, et al.               Standards Track                   [Page 23]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   In general, canonicalization will be performed by the non-security
   part of the sending agent rather than the S/MIME implementation.

   The most common and important canonicalization is for text, which is
   often represented differently in different environments.  MIME
   entities of major type "text" MUST have both their line endings and
   character set canonicalized.  The line ending MUST be the pair of
   characters <CR><LF>, and the charset SHOULD be a registered charset
   [CHARSETS].  The details of the canonicalization are specified in
   [MIME-SPEC].

   Note that some charsets such as ISO-2022 have multiple
   representations for the same characters.  When preparing such text
   for signing, the canonical representation specified for the charset
   MUST be used.

3.1.2.  Transfer Encoding

   When generating any of the secured MIME entities below, except the
   signing using the multipart/signed format, no transfer encoding is
   required at all.  S/MIME implementations MUST be able to deal with
   binary MIME objects.  If no Content-Transfer-Encoding header field is
   present, the transfer encoding is presumed to be 7BIT.

   As a rule, S/MIME implementations SHOULD use transfer encoding as
   described in Section 3.1.3 for all MIME entities they secure.  The
   reason for securing only 7-bit MIME entities, even for enveloped data
   that is not exposed to the transport, is that it allows the MIME
   entity to be handled in any environment without changing it.  For
   example, a trusted gateway might remove the envelope, but not the
   signature, of a message, and then forward the signed message on to
   the end recipient so that they can verify the signatures directly.
   If the transport internal to the site is not 8-bit clean, such as on
   a wide-area network with a single mail gateway, verifying the
   signature will not be possible unless the original MIME entity was
   only 7-bit data.

   In the case where S/MIME implementations can determine that all
   intended recipients are capable of handling inner (all but the
   outermost) binary MIME objects, implementations SHOULD use binary
   encoding as opposed to a 7-bit-safe transfer encoding for the inner
   entities.  The use of a 7-bit-safe encoding (such as base64)
   unnecessarily expands the message size.  Implementations MAY
   determine that recipient implementations are capable of
   handling inner binary MIME entities by (1) interpreting the
   id-cap-preferBinaryInside SMIMECapabilities attribute, (2) prior
   agreement, or (3) other means.




Schaad, et al.               Standards Track                   [Page 24]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   If one or more intended recipients are unable to handle inner binary
   MIME objects or if this capability is unknown for any of the intended
   recipients, S/MIME implementations SHOULD use transfer encoding as
   described in Section 3.1.3 for all MIME entities they secure.

3.1.3.  Transfer Encoding for Signing Using multipart/signed

   If a multipart/signed entity is ever to be transmitted over the
   standard Internet SMTP infrastructure or other transport that is
   constrained to 7-bit text, it MUST have transfer encoding applied so
   that it is represented as 7-bit text.  MIME entities that are already
   7-bit data need no transfer encoding.  Entities such as 8-bit text
   and binary data can be encoded with quoted-printable or base64
   transfer encoding.

   The primary reason for the 7-bit requirement is that the Internet
   mail transport infrastructure cannot guarantee transport of 8-bit or
   binary data.  Even though many segments of the transport
   infrastructure now handle 8-bit and even binary data, it is sometimes
   not possible to know whether the transport path is 8-bit clean.  If a
   mail message with 8-bit data were to encounter a message transfer
   agent that cannot transmit 8-bit or binary data, the agent has three
   options, none of which are acceptable for a clear-signed message:

   -  The agent could change the transfer encoding; this would
      invalidate the signature.

   -  The agent could transmit the data anyway, which would most likely
      result in the 8th bit being corrupted; this too would invalidate
      the signature.

   -  The agent could return the message to the sender.

   [RFC1847] prohibits an agent from changing the transfer encoding of
   the first part of a multipart/signed message.  If a compliant agent
   that cannot transmit 8-bit or binary data encountered a
   multipart/signed message with 8-bit or binary data in the first part,
   it would have to return the message to the sender as undeliverable.

3.1.4.  Sample Canonical MIME Entity

   This example shows a multipart/mixed message with full transfer
   encoding.  This message contains a text part and an attachment.  The
   sample message text includes characters that are not ASCII and thus
   need to be transfer encoded.  Though not shown here, the end of each
   line is <CR><LF>.  The line ending of the MIME headers, the text, and
   the transfer-encoded parts all MUST be <CR><LF>.




Schaad, et al.               Standards Track                   [Page 25]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   Note that this example is not an example of an S/MIME message.

   Content-Type: multipart/mixed; boundary=bar

   --bar
   Content-Type: text/plain; charset=iso-8859-1
   Content-Transfer-Encoding: quoted-printable

   =A1Hola Michael!

   How do you like the new S/MIME specification?

   It's generally a good idea to encode lines that begin with
   From=20because some mail transport agents will insert a
   greater-than (>) sign, thus invalidating the signature.

   Also, in some cases it might be desirable to encode any =20
   trailing whitespace that occurs on lines in order to ensure =20
   that the message signature is not invalidated when passing =20
   a gateway that modifies such whitespace (like BITNET). =20

   --bar
   Content-Type: image/jpeg
   Content-Transfer-Encoding: base64

   iQCVAwUBMJrRF2N9oWBghPDJAQE9UQQAtl7LuRVndBjrk4EqYBIb3h5QXIX/LC//
   jJV5bNvkZIGPIcEmI5iFd9boEgvpirHtIREEqLQRkYNoBActFBZmh9GC3C041WGq
   uMbrbxc+nIs1TIKlA08rVi9ig/2Yh7LFrK5Ein57U/W72vgSxLhe/zhdfolT9Brn
   HOxEa44b+EI=

   --bar--

3.2.  The application/pkcs7-mime Media Type

   The application/pkcs7-mime media type is used to carry CMS content
   types, including EnvelopedData, SignedData, and CompressedData.  The
   details of constructing these entities are described in subsequent
   sections.  This section describes the general characteristics of the
   application/pkcs7-mime media type.

   The carried CMS object always contains a MIME entity that is prepared
   as described in Section 3.1 if the eContentType is id-data.  Other
   contents MAY be carried when the eContentType contains different
   values.  See [ESS] for an example of this with signed receipts.

   Since CMS content types are binary data, in most cases base64
   transfer encoding is appropriate -- in particular, when used with
   SMTP transport.  The transfer encoding used depends on the transport



Schaad, et al.               Standards Track                   [Page 26]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   through which the object is to be sent and is not a characteristic of
   the media type.

   Note that this discussion refers to the transfer encoding of the CMS
   object or "outside" MIME entity.  It is completely distinct from, and
   unrelated to, the transfer encoding of the MIME entity secured by the
   CMS object -- the "inside" object, which is described in Section 3.1.

   Because there are several types of application/pkcs7-mime objects, a
   sending agent SHOULD do as much as possible to help a receiving agent
   know about the contents of the object without forcing the receiving
   agent to decode the ASN.1 for the object.  The Content-Type header
   field of all application/pkcs7-mime objects SHOULD include the
   optional "smime-type" parameter, as described in the following
   sections.

3.2.1.  The name and filename Parameters

   For application/pkcs7-mime, sending agents SHOULD emit the
   optional "name" parameter to the Content-Type field for compatibility
   with older systems.  Sending agents SHOULD also emit the optional
   Content-Disposition field [RFC2183] with the "filename" parameter.
   If a sending agent emits the above parameters, the value of the
   parameters SHOULD be a filename with the appropriate extension:

                                                                File
   Media Type                                                Extension
   -------------------------------------------------------------------
   application/pkcs7-mime (SignedData, EnvelopedData,           .p7m
      AuthEnvelopedData)
   application/pkcs7-mime (degenerate SignedData certificate    .p7c
      management message)
   application/pkcs7-mime (CompressedData)                      .p7z
   application/pkcs7-signature (SignedData)                     .p7s

   In addition, the filename SHOULD be limited to eight characters
   followed by a three-letter extension.  The eight-character filename
   base can be any distinct name; the use of the filename base "smime"
   SHOULD be used to indicate that the MIME entity is associated with
   S/MIME.

   Including a filename serves two purposes.  It facilitates easier use
   of S/MIME objects as files on disk.  It also can convey type
   information across gateways.  When a MIME entity of type
   application/pkcs7-mime (for example) arrives at a gateway that has no
   special knowledge of S/MIME, it will default the entity's media type
   to application/octet-stream and treat it as a generic attachment,
   thus losing the type information.  However, the suggested filename



Schaad, et al.               Standards Track                   [Page 27]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   for an attachment is often carried across a gateway.  This often
   allows the receiving systems to determine the appropriate application
   to hand the attachment off to -- in this case, a standalone S/MIME
   processing application.  Note that this mechanism is provided as a
   convenience for implementations in certain environments.  A proper
   S/MIME implementation MUST use the media types and MUST NOT rely on
   the file extensions.

3.2.2.  The smime-type Parameter

   The application/pkcs7-mime content type defines the optional
   "smime-type" parameter.  The intent of this parameter is to convey
   details about the security applied (signed or enveloped) along with
   information about the contained content.  This specification defines
   the following smime-types.

       Name                   CMS Type              Inner Content
       ----------------------------------------------------------
       enveloped-data         EnvelopedData         id-data
       signed-data            SignedData            id-data
       certs-only             SignedData            id-data
       compressed-data        CompressedData        id-data
       authEnveloped-data     AuthEnvelopedData     id-data

   In order for consistency to be obtained with future specifications,
   the following guidelines SHOULD be followed when assigning a new
   smime-type parameter.

   1.  If both signing and encryption can be applied to the content,
       then three values for smime-type SHOULD be assigned: "signed-*",
       "authEnv-*", and "enveloped-*".  If one operation can be
       assigned, then this can be omitted.  Thus, since "certs-only" can
       only be signed, "signed-" is omitted.

   2.  A common string for a content OID SHOULD be assigned.  We use
       "data" for the id-data content OID when MIME is the inner
       content.

   3.  If no common string is assigned, then the common string of
       "OID.<oid>" is recommended (for example,
       "OID.2.16.840.1.101.3.4.1.2" would be AES-128 CBC).

   It is explicitly intended that this field be a suitable hint for mail
   client applications to indicate whether a message is "signed",
   "authEnveloped", or "enveloped" without having to tunnel into the CMS
   payload.





Schaad, et al.               Standards Track                   [Page 28]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   A registry for additional smime-type parameter values has been
   defined in [RFC7114].

3.3.  Creating an Enveloped-Only Message

   This section describes the format for enveloping a MIME entity
   without signing it.  It is important to note that sending enveloped
   but not signed messages does not provide for data integrity.  The
   "enveloped-only" structure does not support authenticated symmetric
   algorithms.  Use the "authenticated enveloped" structure for these
   algorithms.  Thus, it is possible to replace ciphertext in such a way
   that the processed message will still be valid, but the meaning can
   be altered.

   Step 1.  The MIME entity to be enveloped is prepared according to
            Section 3.1.

   Step 2.  The MIME entity and other required data are processed into a
            CMS object of type EnvelopedData.  In addition to encrypting
            a copy of the content-encryption key (CEK) for each
            recipient, a copy of the CEK SHOULD be encrypted for the
            originator and included in the EnvelopedData (see [RFC5652],
            Section 6).

   Step 3.  The EnvelopedData object is wrapped in a CMS ContentInfo
            object.

   Step 4.  The ContentInfo object is inserted into an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for enveloped-only messages is
   "enveloped-data".  The file extension for this type of message
   is ".p7m".

   A sample message would be:

   Content-Type: application/pkcs7-mime; name=smime.p7m;
      smime-type=enveloped-data
   Content-Transfer-Encoding: base64
   Content-Disposition: attachment; filename=smime.p7m

   MIIBHgYJKoZIhvcNAQcDoIIBDzCCAQsCAQAxgcAwgb0CAQAwJjASMRAwDgYDVQQDEw
   dDYXJsUlNBAhBGNGvHgABWvBHTbi7NXXHQMA0GCSqGSIb3DQEBAQUABIGAC3EN5nGI
   iJi2lsGPcP2iJ97a4e8kbKQz36zg6Z2i0yx6zYC4mZ7mX7FBs3IWg+f6KgCLx3M1eC
   bWx8+MDFbbpXadCDgO8/nUkUNYeNxJtuzubGgzoyEd8Ch4H/dd9gdzTd+taTEgS0ip
   dSJuNnkVY4/M652jKKHRLFf02hosdR8wQwYJKoZIhvcNAQcBMBQGCCqGSIb3DQMHBA
   gtaMXpRwZRNYAgDsiSf8Z9P43LrY4OxUk660cu1lXeCSFOSOpOJ7FuVyU=




Schaad, et al.               Standards Track                   [Page 29]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


3.4.  Creating an Authenticated Enveloped-Only Message

   This section describes the format for enveloping a MIME entity
   without signing it.  Authenticated enveloped messages provide
   confidentiality and data integrity.  It is important to note that
   sending authenticated enveloped messages does not provide for proof
   of origination when using S/MIME.  It is possible for a third party
   to replace ciphertext in such a way that the processed message will
   still be valid, but the meaning can be altered.  However, this is
   substantially more difficult than it is for an enveloped-only
   message, as the algorithm does provide a level of authentication.
   Any recipient for whom the message is encrypted can replace it
   without detection.

   Step 1.  The MIME entity to be enveloped is prepared according to
            Section 3.1.

   Step 2.  The MIME entity and other required data are processed into a
            CMS object of type AuthEnvelopedData.  In addition to
            encrypting a copy of the CEK for each recipient, a copy of
            the CEK SHOULD be encrypted for the originator and included
            in the AuthEnvelopedData (see [RFC5083]).

   Step 3.  The AuthEnvelopedData object is wrapped in a CMS ContentInfo
            object.

   Step 4.  The ContentInfo object is inserted into an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for authenticated enveloped-only messages is
   "authEnveloped-data".  The file extension for this type of message
   is ".p7m".



















Schaad, et al.               Standards Track                   [Page 30]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   A sample message would be:

   Content-Type: application/pkcs7-mime; smime-type=authEnveloped-data;
      name=smime.p7m
   Content-Transfer-Encoding: base64
   Content-Disposition: attachment; filename=smime.p7m

   MIIDWQYLKoZIhvcNAQkQARegggNIMIIDRAIBADGBvjCBuwIBADAmMBIxEDAO
   BgNVBAMTB0NhcmxSU0ECEEY0a8eAAFa8EdNuLs1dcdAwCwYJKoZIhvcNAQEB
   BIGAgyZJo0ERTxA4xdTri5P5tVMyh0RARepTUCORZvlUbcUlaI8IpJZH3/J1
   Fv6MxTRS4O/K+ZcTlQmYeWLQvwdltQdOIP3mhpqXzTnOYhTK1IDtF2zx75Lg
   vE+ilpcLIzXfJB4RCBPtBWaHAof4Wb+VMQvLkk9OolX4mRSH1LPktgAwggJq
   BgkqhkiG9w0BBwEwGwYJYIZIAWUDBAEGMA4EDGPizioC9OHSsnNx4oCCAj7Y
   Cb8rOy8+55106newEJohC/aDgWbJhrMKzSOwa7JraXOV3HXD3NvKbl665dRx
   vmDwSCNaLCRU5q8/AxQx2SvnAbM+JKcEfC/VFdd4SiHNiUECAApLku2rMi5B
   WrhW/FXmx9d+cjum2BRwB3wj0q1wajdB0/kVRbQwg697dnlYyUog4vpJERjr
   7KAkawZx1RMHaM18wgZjUNpCBXFS3chQi9mTBp2i2Hf5iZ8OOtTx+rCQUmI6
   Jhy03vdcPCCARBjn3v0d3upZYDZddMA41CB9fKnnWFjadV1KpYwv80tqsEfx
   Vo0lJQ5VtJ8MHJiBpLVKadRIZ4iH2ULC0JtN5mXE1SrFKh7cqbJ4+7nqSRL3
   oBTud3rX41DGshOjpqcYHT4sqYlgZkc6dp0g1+hF1p3cGmjHdpysV2NVSUev
   ghHbvSqhIsXFzRSWKiZOigmlkv3R5LnjpYyP4brM62Jl7y0qborvV4dNMz7m
   D+5YxSlH0KAe8z6TT3LHuQdN7QCkFoiUSCaNhpAFaakkGIpqcqLhpOK4lXxt
   kptCG93eUwNCcTxtx6bXufPR5TUHohvZvfeqMp42kL37FJC/A8ZHoOxXy8+X
   X5QYxCQNuofWlvnIWv0Nr8w65x6lgVjPYmd/cHwzQKBTBMXN6pBud/PZL5zF
   tw3QHlQkBR+UflMWZKeN9L0KdQ27mQlCo5gQS85aifxoiiA2v9+0hxZw91rP
   IW4D+GS7oMMoKj8ZNyCJJsyf5smRZ+WxeBoolb3+TiGcBBCsRnfe6noLZiFO
   6Zeu2ZwE

3.5.  Creating a Signed-Only Message

   There are two formats for signed messages defined for S/MIME:

   -  application/pkcs7-mime with SignedData.

   -  multipart/signed.

   In general, the multipart/signed form is preferred for sending, and
   receiving agents MUST be able to handle both.













Schaad, et al.               Standards Track                   [Page 31]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


3.5.1.  Choosing a Format for Signed-Only Messages

   There are no hard-and-fast rules as to when a particular signed-only
   format is chosen.  It depends on the capabilities of all the
   receivers and the relative importance of receivers with S/MIME
   facilities being able to verify the signature versus the importance
   of receivers without S/MIME software being able to view the message.

   Messages signed using the multipart/signed format can always be
   viewed by the receiver whether or not they have S/MIME software.
   They can also be viewed whether they are using a MIME-native user
   agent or they have messages translated by a gateway.  In this
   context, "be viewed" means the ability to process the message
   essentially as if it were not a signed message, including any other
   MIME structure the message might have.

   Messages signed using the SignedData format cannot be viewed by a
   recipient unless they have S/MIME facilities.  However, the
   SignedData format protects the message content from being changed by
   benign intermediate agents.  Such agents might do line wrapping or
   content-transfer encoding changes that would break the signature.

3.5.2.  Signing Using application/pkcs7-mime with SignedData

   This signing format uses the application/pkcs7-mime media type.  The
   steps to create this format are as follows:

   Step 1.  The MIME entity is prepared according to Section 3.1.

   Step 2.  The MIME entity and other required data are processed into a
            CMS object of type SignedData.

   Step 3.  The SignedData object is wrapped in a CMS ContentInfo
            object.

   Step 4.  The ContentInfo object is inserted into an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for messages using application/pkcs7-mime
   with SignedData is "signed-data".  The file extension for this type
   of message is ".p7m".










Schaad, et al.               Standards Track                   [Page 32]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   A sample message would be:

   Content-Type: application/pkcs7-mime; smime-type=signed-data;
      name=smime.p7m
   Content-Transfer-Encoding: base64
   Content-Disposition: attachment; filename=smime.p7m

   MIIDmQYJKoZIhvcNAQcCoIIDijCCA4YCAQExCTAHBgUrDgMCGjAtBgkqhkiG9w0BBw
   GgIAQeDQpUaGlzIGlzIHNvbWUgc2FtcGxlIGNvbnRlbnQuoIIC4DCCAtwwggKboAMC
   AQICAgDIMAkGByqGSM44BAMwEjEQMA4GA1UEAxMHQ2FybERTUzAeFw05OTA4MTcwMT
   EwNDlaFw0zOTEyMzEyMzU5NTlaMBMxETAPBgNVBAMTCEFsaWNlRFNTMIIBtjCCASsG
   ByqGSM44BAEwggEeAoGBAIGNze2D6gqeOT7CSCij5EeT3Q7XqA7sU8WrhAhP/5Thc0
   h+DNbzREjR/p+vpKGJL+HZMMg23j+bv7dM3F9piuR10DcMkQiVm96nXvn89J8v3UOo
   i1TxP7AHCEdNXYjDw7Wz41UIddU5dhDEeL3/nbCElzfy5FEbteQJllzzflvbAhUA4k
   emGkVmuBPG2o+4NyErYov3k80CgYAmONAUiTKqOfs+bdlLWWpMdiM5BAI1XPLLGjDD
   HlBd3ZtZ4s2qBT1YwHuiNrhuB699ikIlp/R1z0oIXks+kPht6pzJIYo7dhTpzi5dow
   fNI4W4LzABfG1JiRGJNkS9+MiVSlNWteL5c+waYTYfEX/Cve3RUP+YdMLRgUpgObo2
   OQOBhAACgYBc47ladRSWC6l63eM/qeysXty9txMRNKYWiSgRI9k0hmd1dRMSPUNbb+
   VRv/qJ8qIbPiR9PQeNW2PIu0WloErjhdbOBoA/6CN+GvIkq1MauCcNHu8Iv2YUgFxi
   rGX6FYvxuzTU0pY39mFHssQyhPB+QUD9RqdjTjPypeL08oPluKOBgTB/MAwGA1UdEw
   EB/wQCMAAwDgYDVR0PAQH/BAQDAgbAMB8GA1UdIwQYMBaAFHBEPoIub4feStN14z0g
   vEMrk/EfMB0GA1UdDgQWBBS+bKGz48H37UNwpM4TAeL945f+zTAfBgNVHREEGDAWgR
   RBbGljZURTU0BleGFtcGxlLmNvbTAJBgcqhkjOOAQDAzAAMC0CFFUMpBkfQiuJcSIz
   jYNqtT1na79FAhUAn2FTUlQLXLLd2ud2HeIQUltDXr0xYzBhAgEBMBgwEjEQMA4GA1
   UEAxMHQ2FybERTUwICAMgwBwYFKw4DAhowCQYHKoZIzjgEAwQuMCwCFD1cSW6LIUFz
   eXle3YI5SKSBer/sAhQmCq7s/CTFHOEjgASeUjbMpx5g6A==

3.5.3.  Signing Using the multipart/signed Format

   This format is a clear-signing format.  Recipients without any S/MIME
   or CMS processing facilities are able to view the message.  It makes
   use of the multipart/signed media type described in [RFC1847].  The
   multipart/signed media type has two parts.  The first part contains
   the MIME entity that is signed; the second part contains the
   "detached signature" CMS SignedData object in which the
   encapContentInfo eContent field is absent.

3.5.3.1.  The application/pkcs7-signature Media Type

   This media type always contains a CMS ContentInfo containing a single
   CMS object of type SignedData.  The SignedData encapContentInfo
   eContent field MUST be absent.  The signerInfos field contains the
   signatures for the MIME entity.

   The file extension for signed-only messages using
   application/pkcs7-signature is ".p7s".





Schaad, et al.               Standards Track                   [Page 33]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


3.5.3.2.  Creating a multipart/signed Message

   Step 1.  The MIME entity to be signed is prepared according to
            Section 3.1, taking special care for clear-signing.

   Step 2.  The MIME entity is presented to CMS processing in order to
            obtain an object of type SignedData in which the
            encapContentInfo eContent field is absent.

   Step 3.  The MIME entity is inserted into the first part of a
            multipart/signed message with no processing other than that
            described in Section 3.1.

   Step 4.  Transfer encoding is applied to the "detached signature" CMS
            SignedData object, and it is inserted into a MIME entity of
            type application/pkcs7-signature.

   Step 5.  The MIME entity of the application/pkcs7-signature is
            inserted into the second part of the multipart/signed
            entity.

   The multipart/signed Content-Type has two required parameters: the
   protocol parameter and the micalg parameter.

   The protocol parameter MUST be "application/pkcs7-signature".  Note
   that quotation marks are required around the protocol parameter
   because MIME requires that the "/" character in the parameter value
   MUST be quoted.























Schaad, et al.               Standards Track                   [Page 34]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   The micalg parameter allows for one-pass processing when the
   signature is being verified.  The value of the micalg parameter is
   dependent on the message digest algorithm(s) used in the calculation
   of the Message Integrity Check.  If multiple message digest
   algorithms are used, they MUST be separated by commas per [RFC1847].
   The values to be placed in the micalg parameter SHOULD be from the
   following:

        Algorithm      Value Used
        -----------------------------------------------------------
        MD5*           md5
        SHA-1*         sha-1
        SHA-224        sha-224
        SHA-256        sha-256
        SHA-384        sha-384
        SHA-512        sha-512
        Any other      (defined separately in the algorithm profile
                        or "unknown" if not defined)

   *Note: MD5 and SHA-1 are historical and no longer considered secure.
   See Appendix B for details.

   (Historical note: Some early implementations of S/MIME emitted and
   expected "rsa-md5", "rsa-sha1", and "sha1" for the micalg parameter.)
   Receiving agents SHOULD be able to recover gracefully from a micalg
   parameter value that they do not recognize.  Future values for this
   parameter will be taken from the IANA "Hash Function Textual Names"
   registry.























Schaad, et al.               Standards Track                   [Page 35]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


3.5.3.3.  Sample multipart/signed Message

   Content-Type: multipart/signed;
       micalg=sha-256;
       boundary="----=_NextBoundary____Fri,_06_Sep_2002_00:25:21";
       protocol="application/pkcs7-signature"

   This is a multipart message in MIME format.

   ------=_NextBoundary____Fri,_06_Sep_2002_00:25:21

   This is some sample content.
   ------=_NextBoundary____Fri,_06_Sep_2002_00:25:21
   Content-Type: application/pkcs7-signature; name=smime.p7s
   Content-Transfer-Encoding: base64
   Content-Disposition: attachment; filename=smime.p7s

   MIIBJgYJKoZIhvcNAQcCoIIBFzCCARMCAQExADALBgkqhkiG9w0BBwExgf4w
   gfsCAQIwJjASMRAwDgYDVQQDEwdDYXJsUlNBAhBGNGvHgABWvBHTbi7EELOw
   MAsGCWCGSAFlAwQCAaAxMC8GCSqGSIb3DQEJBDEiBCCxwpZGNZzTSsugsn+f
   lEidzQK4mf/ozKqfmbxhcIkKqjALBgkqhkiG9w0BAQsEgYB0XJV7fjPa5Nuh
   oth5msDfP8A5urYUMjhNpWgXG8ae3XpppqVrPi2nVO41onHnkByjkeD/wc31
   A9WH8MzFQgSTsrJ65JvffTTXkOpRPxsSHn3wJFwP/atWHkh8YK/jR9bULhUl
   Mv5jQEDiwVX5DRasxu6Ld8zv9u5/TsdBNiufGw==

   ------=_NextBoundary____Fri,_06_Sep_2002_00:25:21--

   The content that is digested (the first part of the multipart/signed)
   consists of the bytes:

   54 68 69 73 20 69 73 20 73 6f 6d 65 20 73 61 6d 70 6c 65 20 63 6f 6e
   74 65 6e 74 2e 0d 0a

3.6.  Creating a Compressed-Only Message

   This section describes the format for compressing a MIME entity.
   Please note that versions of S/MIME prior to version 3.1 did not
   specify any use of CompressedData and will not recognize it.  The use
   of a capability to indicate the ability to receive CompressedData is
   described in [RFC3274] and is the preferred method for compatibility.

   Step 1.  The MIME entity to be compressed is prepared according to
            Section 3.1.

   Step 2.  The MIME entity and other required data are processed into a
            CMS object of type CompressedData.





Schaad, et al.               Standards Track                   [Page 36]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   Step 3.  The CompressedData object is wrapped in a CMS ContentInfo
            object.

   Step 4.  The ContentInfo object is inserted into an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for compressed-only messages is
   "compressed-data".  The file extension for this type of message
   is ".p7z".

   A sample message would be:

   Content-Type: application/pkcs7-mime; smime-type=compressed-data;
      name=smime.p7z
   Content-Transfer-Encoding: base64
   Content-Disposition: attachment; filename=smime.p7z

   eNoLycgsVgCi4vzcVIXixNyCnFSF5Py8ktS8Ej0AlCkKVA==

3.7.  Multiple Operations

   The signed-only, enveloped-only, and compressed-only MIME formats can
   be nested.  This works because these formats are all MIME entities
   that encapsulate other MIME entities.

   An S/MIME implementation MUST be able to receive and process
   arbitrarily nested S/MIME within reasonable resource limits of the
   recipient computer.

   It is possible to apply any of the signing, encrypting, and
   compressing operations in any order.  It is up to the implementer and
   the user to choose.  When signing first, the signatories are then
   securely obscured by the enveloping.  When enveloping first, the
   signatories are exposed, but it is possible to verify signatures
   without removing the enveloping.  This can be useful in an
   environment where automatic signature verification is desired, as no
   private key material is required to verify a signature.

   There are security ramifications related to choosing whether to sign
   first or encrypt first.  A recipient of a message that is encrypted
   and then signed can validate that the encrypted block was unaltered
   but cannot determine any relationship between the signer and the
   unencrypted contents of the message.  A recipient of a message that
   is signed and then encrypted can assume that the signed message
   itself has not been altered but that a careful attacker could have
   changed the unauthenticated portions of the encrypted message.





Schaad, et al.               Standards Track                   [Page 37]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   When using compression, keep the following guidelines in mind:

   -  Compression of encrypted data that is transferred as binary data
   is discouraged, since it will not yield significant compression.
   Encrypted data that is transferred as base64-encoded data could
   benefit as well.

   -  If a lossy compression algorithm is used with signing, you will
   need to compress first, then sign.

3.8.  Creating a Certificate Management Message

   The certificate management message or MIME entity is used to
   transport certificates and/or Certificate Revocation Lists (CRLs),
   such as in response to a registration request.

   Step 1.  The certificates and/or CRLs are made available to the CMS
            generating process that creates a CMS object of type
            SignedData.  The SignedData encapContentInfo eContent field
            MUST be absent, and the signerInfos field MUST be empty.

   Step 2.  The SignedData object is wrapped in a CMS ContentInfo
            object.

   Step 3.  The ContentInfo object is enclosed in an
            application/pkcs7-mime MIME entity.

   The smime-type parameter for a certificate management message is
   "certs-only".  The file extension for this type of message is ".p7c".

3.9.  Registration Requests

   A sending agent that signs messages MUST have a certificate for the
   signature so that a receiving agent can verify the signature.  There
   are many ways of getting certificates, such as through an exchange
   with a certification authority, through a hardware token or diskette,
   and so on.

   S/MIME v2 [SMIMEv2] specified a method for "registering" public keys
   with certificate authorities using an application/pkcs10 body part.
   Since that time, the IETF PKIX Working Group has developed other
   methods for requesting certificates.  However, S/MIME v4.0 does not
   require a particular certificate request mechanism.








Schaad, et al.               Standards Track                   [Page 38]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


3.10.  Identifying an S/MIME Message

   Because S/MIME takes into account interoperation in non-MIME
   environments, several different mechanisms are employed to carry the
   type information, and it becomes a bit difficult to identify S/MIME
   messages.  The following table lists criteria for determining whether
   or not a message is an S/MIME message.  A message is considered an
   S/MIME message if it matches any of the criteria listed below.

   The file suffix in the table below comes from the "name" parameter in
   the Content-Type header field or the "filename" parameter in the
   Content-Disposition header field.  The MIME parameters that carry the
   file suffix are not listed below.

   Media Type                 Parameters                     File Suffix
   ---------------------------------------------------------------------
   application/pkcs7-mime     N/A                            N/A

   multipart/signed           protocol=                      N/A
                              "application/pkcs7-signature"

   application/octet-stream   N/A                            p7m, p7s,
                                                             p7c, p7z

4.  Certificate Processing

   A receiving agent MUST provide some certificate retrieval mechanism
   in order to gain access to certificates for recipients of digital
   envelopes.  This specification does not cover how S/MIME agents
   handle certificates -- only what they do after a certificate has been
   validated or rejected.  S/MIME certificate issues are covered in
   [RFC5750].

   At a minimum, for initial S/MIME deployment, a user agent could
   automatically generate a message to an intended recipient requesting
   that recipient's certificate in a signed return message.  Receiving
   and sending agents SHOULD also provide a mechanism to allow a user to
   "store and protect" certificates for correspondents in such a way as
   to guarantee their later retrieval.












Schaad, et al.               Standards Track                   [Page 39]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


4.1.  Key Pair Generation

   All key pairs MUST be generated from a good source of
   non-deterministic random input [RFC4086], and the private key MUST be
   protected in a secure fashion.

   An S/MIME user agent MUST NOT generate asymmetric keys less than
   2048 bits for use with an RSA signature algorithm.

   For 2048-bit through 4096-bit RSA with SHA-256, see [RFC5754] and
   [FIPS186-4].  The first reference provides the signature algorithm's
   OID, and the second provides the signature algorithm's definition.

   For RSASSA-PSS with SHA-256, see [RFC4056].  For RSAES-OAEP, see
   [RFC3560].

4.2.  Signature Generation

   The following are the requirements for an S/MIME agent when
   generating RSA and RSASSA-PSS signatures:

           key size <= 2047 : SHOULD NOT (Note 2)
   2048 <= key size <= 4096 : SHOULD     (Note 1)
   4096 <  key size         : MAY        (Note 1)

   Note 1: See Security Considerations in Section 6.
   Note 2: See Historical Mail Considerations in Appendix B.

   Key sizes for ECDSA and EdDSA are fixed by the curve.

4.3.  Signature Verification

   The following are the requirements for S/MIME receiving agents during
   verification of RSA and RSASSA-PSS signatures:

           key size <= 2047 : SHOULD NOT (Note 2)
   2048 <= key size <= 4096 : MUST       (Note 1)
   4096 <  key size         : MAY        (Note 1)

   Note 1: See Security Considerations in Section 6.
   Note 2: See Historical Mail Considerations in Appendix B.

   Key sizes for ECDSA and EdDSA are fixed by the curve.








Schaad, et al.               Standards Track                   [Page 40]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


4.4.  Encryption

   The following are the requirements for an S/MIME agent when
   establishing keys for content encryption using the RSA and RSA-OAEP
   algorithms:

           key size <= 2047 : SHOULD NOT (Note 2)
   2048 <= key size <= 4096 : SHOULD     (Note 1)
   4096 <  key size         : MAY        (Note 1)

   Note 1: See Security Considerations in Section 6.
   Note 2: See Historical Mail Considerations in Appendix B.

   Key sizes for ECDH are fixed by the curve.

4.5.  Decryption

   The following are the requirements for an S/MIME agent when
   establishing keys for content decryption using the RSA and RSAES-OAEP
   algorithms:

           key size <= 2047 : MAY        (Note 2)
   2048 <= key size <= 4096 : MUST       (Note 1)
   4096 <  key size         : MAY        (Note 1)

   Note 1: See Security Considerations in Section 6.
   Note 2: See Historical Mail Considerations in Appendix B.

   Key sizes for ECDH are fixed by the curve.

5.  IANA Considerations

   This section (1) updates the media type registrations for
   application/pkcs7-mime and application/pkcs7-signature to refer to
   this document as opposed to RFC 5751, (2) adds authEnveloped-data to
   the list of values for smime-type, and (3) updates references from
   RFC 5751 to this document in general.

   Note that other documents can define additional media types for
   S/MIME.











Schaad, et al.               Standards Track                   [Page 41]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


5.1.  Media Type for application/pkcs7-mime

   Type name: application

   Subtype Name: pkcs7-mime

   Required Parameters: NONE

   Optional Parameters: smime-type
                        name

   Encoding Considerations: See Section 3 of this document

   Security Considerations: See Section 6 of this document

   Interoperability Considerations: See Sections 1-6 of this document

   Published Specification: RFC 2311, RFC 2633, RFC 5751,
                            and this document

   Applications that use this media type: Security applications

   Fragment identifier considerations: N/A

   Additional information:
       Deprecated alias names for this type: N/A
       Magic number(s): N/A
       File extensions(s): See Section 3.2.1 of this document
       Macintosh file type code(s): N/A

   Person & email address to contact for further information:
      The IESG <iesg@ietf.org>

   Intended usage: COMMON

   Restrictions on usage: NONE

   Author: Sean Turner

   Change Controller: LAMPS working group delegated from the IESG











Schaad, et al.               Standards Track                   [Page 42]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


5.2.  Media Type for application/pkcs7-signature

   Type name: application

   Subtype Name: pkcs7-signature

   Required Parameters: N/A

   Optional Parameters: N/A

   Encoding Considerations: See Section 3 of this document

   Security Considerations: See Section 6 of this document

   Interoperability Considerations: See Sections 1-6 of this document

   Published Specification: RFC 2311, RFC 2633, RFC 5751,
                            and this document

   Applications that use this media type: Security applications

   Fragment identifier considerations: N/A

   Additional information:
       Deprecated alias names for this type: N/A
       Magic number(s): N/A
       File extensions(s): See Section 3.2.1 of this document
       Macintosh file type code(s): N/A

   Person & email address to contact for further information:
      The IESG <iesg@ietf.org>

   Intended usage: COMMON

   Restrictions on usage: N/A

   Author: Sean Turner

   Change Controller: LAMPS working group delegated from the IESG












Schaad, et al.               Standards Track                   [Page 43]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


5.3.  authEnveloped-data smime-type

   IANA has registered the following value in the "Parameter Values for
   the smime-type Parameter" registry.

      smime-type value: authEnveloped-data

      Reference: RFC 8551, Section 3.2.2

5.4.  Reference Updates

   IANA is to update all references to RFC 5751 to this document.  Known
   registries to be updated are "CoAP Content-Formats" and "media-
   types".

6.  Security Considerations

   Cryptographic algorithms will be broken or weakened over time.
   Implementers and users need to check that the cryptographic
   algorithms listed in this document continue to provide the expected
   level of security.  The IETF from time to time may issue documents
   dealing with the current state of the art.  For example:

   -  The Million Message Attack described in RFC 3218 [RFC3218].

   -  The Diffie-Hellman "small-subgroup" attacks described in RFC 2785
      [RFC2785].

   -  The attacks against hash algorithms described in RFC 4270
      [RFC4270].

   This specification uses Public-Key Cryptography technologies.  It is
   assumed that the private key is protected to ensure that it is not
   accessed or altered by unauthorized parties.

   It is impossible for most people or software to estimate the value of
   a message's content.  Further, it is impossible for most people or
   software to estimate the actual cost of recovering an encrypted
   message's content that is encrypted with a key of a particular size.
   Further, it is quite difficult to determine the cost of a failed
   decryption if a recipient cannot process a message's content.  Thus,
   choosing between different key sizes (or choosing whether to just use
   plaintext) is also impossible for most people or software.  However,
   decisions based on these criteria are made all the time, and
   therefore this specification gives a framework for using those
   estimates in choosing algorithms.





Schaad, et al.               Standards Track                   [Page 44]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   The choice of 2048 bits as an RSA asymmetric key size in this
   specification is based on the desire to provide at least 100 bits of
   security.  The key sizes that must be supported to conform to this
   specification seem appropriate for the Internet, based on [RFC3766].
   Of course, there are environments, such as financial and medical
   systems, that may select different key sizes.  For this reason, an
   implementation MAY support key sizes beyond those recommended in this
   specification.

   Receiving agents that validate signatures and sending agents that
   encrypt messages need to be cautious of cryptographic processing
   usage when validating signatures and encrypting messages using keys
   larger than those mandated in this specification.  An attacker could
   send certificates with keys that would result in excessive
   cryptographic processing -- for example, keys larger than those
   mandated in this specification, as such keys could swamp the
   processing element.  Agents that use such keys without first
   validating the certificate to a trust anchor are advised to have some
   sort of cryptographic resource management system to prevent such
   attacks.

   Some cryptographic algorithms such as RC2 offer little actual
   security over sending plaintext.  Other algorithms such as TripleDES
   provide security but are no longer considered to be state of the art.
   S/MIME requires the use of current state-of-the-art algorithms such
   as AES and provides the ability to announce cryptographic
   capabilities to parties with whom you communicate.  This allows the
   sender to create messages that can use the strongest common
   encryption algorithm.  Using algorithms such as RC2 is never
   recommended unless the only alternative is no cryptography.

   RSA and DSA keys of less than 2048 bits are now considered by many
   experts to be cryptographically insecure (due to advances in
   computing power) and should no longer be used to protect messages.
   Such keys were previously considered secure, so processing previously
   received signed and encrypted mail will often result in the use of
   weak keys.  Implementations that wish to support previous versions of
   S/MIME or process old messages need to consider the security risks
   that result from smaller key sizes (e.g., spoofed messages) versus
   the costs of denial of service.  If an implementation supports
   verification of digital signatures generated with RSA and DSA keys of
   less than 1024 bits, it MUST warn the user.  Implementers should
   consider providing different warnings for newly received messages and
   previously stored messages.  Server implementations (e.g., secure
   mail list servers) where user warnings are not appropriate SHOULD
   reject messages with weak signatures.





Schaad, et al.               Standards Track                   [Page 45]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   Implementers SHOULD be aware that multiple active key pairs can be
   associated with a single individual.  For example, one key pair can
   be used to support confidentiality, while a different key pair can be
   used for digital signatures.

   If a sending agent is sending the same message using different
   strengths of cryptography, an attacker watching the communications
   channel might be able to determine the contents of the strongly
   encrypted message by decrypting the weakly encrypted version.  In
   other words, a sender SHOULD NOT send a copy of a message using
   weaker cryptography than they would use for the original of the
   message.

   Modification of the ciphertext in EnvelopedData can go undetected if
   authentication is not also used, which is the case when sending
   EnvelopedData without wrapping it in SignedData or enclosing
   SignedData within it.  This is one of the reasons for moving from
   EnvelopedData to AuthEnvelopedData, as the authenticated encryption
   algorithms provide the authentication without needing the SignedData
   layer.

   If an implementation is concerned about compliance with National
   Institute of Standards and Technology (NIST) key size
   recommendations, then see [SP800-57].

   If messaging environments make use of the fact that a message is
   signed to change the behavior of message processing (examples would
   be running rules or UI display hints), without first verifying that
   the message is actually signed and knowing the state of the
   signature, this can lead to incorrect handling of the message.
   Visual indicators on messages may need to have the signature
   validation code checked periodically if the indicator is supposed to
   give information on the current status of a message.

   Many people assume that the use of an authenticated encryption
   algorithm is all that is needed for the sender of the message to be
   authenticated.  In almost all cases, this is not a correct statement.
   There are a number of preconditions that need to hold for an
   authenticated encryption algorithm to provide this service:

   -  The starting key must be bound to a single entity.  The use of a
      group key only would allow for the statement that a message was
      sent by one of the entities that held the key but will not
      identify a specific entity.







Schaad, et al.               Standards Track                   [Page 46]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   -  The message must have exactly one sender and one recipient.
      Having more than one recipient would allow for the second
      recipient to create a message that the first recipient would
      believe is from the sender by stripping the second recipient from
      the message.

   -  A direct path needs to exist from the starting key to the key used
      as the CEK.  That path needs to guarantee that no third party
      could have seen the resulting CEK.  This means that one needs to
      be using an algorithm that is called a "Direct Encryption" or a
      "Direct Key Agreement" algorithm in other contexts.  This means
      that the starting key is (1) used directly as the CEK or (2) used
      to create a secret that is then transformed into the CEK via a
      KDF step.

   S/MIME implementations almost universally use ephemeral-static rather
   than static-static key agreement and do not use a shared secret for
   encryption.  This means that the first precondition is not met.
   [RFC6278] defines how to use static-static key agreement with CMS, so
   the first precondition can be met.  Currently, all S/MIME key
   agreement methods derive a key-encryption key (KEK) and wrap a CEK.
   This violates the third precondition above.  New key agreement
   algorithms that directly created the CEK without creating an
   intervening KEK would need to be defined.

   Even when all of the preconditions are met and origination of a
   message is established by the use of an authenticated encryption
   algorithm, users need to be aware that there is no way to prove this
   to a third party.  This is because either of the parties can
   successfully create the message (or just alter the content) based on
   the fact that the CEK is going to be known to both parties.  Thus,
   the origination is always built on a presumption that "I did not send
   this message to myself."

   All of the authenticated encryption algorithms in this document use
   counter mode for the encryption portion of the algorithm.  This means
   that the length of the plaintext will always be known, as the
   ciphertext length and the plaintext length are always the same.  This
   information can enable passive observers to infer information based
   solely on the length of the message.  Applications for which this is
   a concern need to provide some type of padding so that the length of
   the message does not provide this information.

   When compression is used with encryption, it has the potential to
   provide an additional layer of security.  However, care needs to be
   taken when designing a protocol that relies on using compression, so
   as not to create a compression oracle.  Compression oracle attacks
   require an adaptive input to the process and attack the unknown



Schaad, et al.               Standards Track                   [Page 47]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   content of a message based on the length of the compressed output.
   This means that no attack on the encryption key is necessarily
   required.

   A recent paper on S/MIME and OpenPGP email security [Efail] has
   pointed out a number of problems with the current S/MIME
   specifications and how people have implemented mail clients.  Due to
   the nature of how CBC mode operates, the modes allow for malleability
   of plaintexts.  This malleability allows for attackers to make
   changes in the ciphertext and, if parts of the plaintext are known,
   create arbitrary blocks of plaintext.  These changes can be made
   without the weak integrity check in CBC mode being triggered.  This
   type of attack can be prevented by the use of an Authenticated
   Encryption with Associated Data (AEAD) algorithm with a more robust
   integrity check on the decryption process.  It is therefore
   recommended that mail systems migrate to using AES-GCM as quickly as
   possible and that the decrypted content not be acted on prior to
   finishing the integrity check.

   The other attack that is highlighted in [Efail] is due to an error in
   how mail clients deal with HTML and multipart/mixed messages.
   Clients MUST require that a text/html content type be a complete HTML
   document (per [RFC1866]).  Clients SHOULD treat each of the different
   pieces of the multipart/mixed construct as being of different
   origins.  Clients MUST treat each encrypted or signed piece of a MIME
   message as being of different origins both from unprotected content
   and from each other.

7.  References

7.1.  Reference Conventions

   [ASN.1] refers to [X.680], [X.681], [X.682], and [X.683].

   [CMS] refers to [RFC5083] and [RFC5652].

   [ESS] refers to [RFC2634] and [RFC5035].

   [MIME-SPEC] refers to [RFC2045], [RFC2046], [RFC2047], [RFC2049],
   [RFC6838], and [RFC4289].

   [SMIMEv2] refers to [RFC2311], [RFC2312], [RFC2313], [RFC2314], and
   [RFC2315].

   [SMIMEv3] refers to [RFC2630], [RFC2631], [RFC2632], [RFC2633],
   [RFC2634], and [RFC5035].





Schaad, et al.               Standards Track                   [Page 48]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   [SMIMEv3.1] refers to [RFC2634], [RFC5035], [RFC5652], [RFC5750], and
   [RFC5751].

   [SMIMEv3.2] refers to [RFC2634], [RFC3850], [RFC3851], [RFC3852], and
   [RFC5035].

   [SMIMEv4] refers to [RFC2634], [RFC5035], [RFC5652], [RFC8550], and
   this document.

7.2.  Normative References

   [CHARSETS] IANA, "Character sets assigned by IANA",
              <http://www.iana.org/assignments/character-sets>.

   [FIPS186-4]
              National Institute of Standards and Technology (NIST),
              "Digital Signature Standard (DSS)", Federal Information
              Processing Standards Publication 186-4,
              DOI 10.6028/NIST.FIPS.186-4, July 2013,
              <https://nvlpubs.nist.gov/nistpubs/fips/
              nist.fips.186-4.pdf>.

   [RFC1847]  Galvin, J., Murphy, S., Crocker, S., and N. Freed,
              "Security Multiparts for MIME: Multipart/Signed and
              Multipart/Encrypted", RFC 1847, DOI 10.17487/RFC1847,
              October 1995, <https://www.rfc-editor.org/info/rfc1847>.

   [RFC2045]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part One: Format of Internet Message
              Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
              <https://www.rfc-editor.org/info/rfc2045>.

   [RFC2046]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part Two: Media Types", RFC 2046,
              DOI 10.17487/RFC2046, November 1996,
              <https://www.rfc-editor.org/info/rfc2046>.

   [RFC2047]  Moore, K., "MIME (Multipurpose Internet Mail Extensions)
              Part Three: Message Header Extensions for Non-ASCII Text",
              RFC 2047, DOI 10.17487/RFC2047, November 1996,
              <https://www.rfc-editor.org/info/rfc2047>.

   [RFC2049]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part Five: Conformance Criteria and
              Examples", RFC 2049, DOI 10.17487/RFC2049, November 1996,
              <https://www.rfc-editor.org/info/rfc2049>.





Schaad, et al.               Standards Track                   [Page 49]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2183]  Troost, R., Dorner, S., and K. Moore, Ed., "Communicating
              Presentation Information in Internet Messages: The
              Content-Disposition Header Field", RFC 2183,
              DOI 10.17487/RFC2183, August 1997,
              <https://www.rfc-editor.org/info/rfc2183>.

   [RFC2634]  Hoffman, P., Ed., "Enhanced Security Services for S/MIME",
              RFC 2634, DOI 10.17487/RFC2634, June 1999,
              <https://www.rfc-editor.org/info/rfc2634>.

   [RFC3274]  Gutmann, P., "Compressed Data Content Type for
              Cryptographic Message Syntax (CMS)", RFC 3274,
              DOI 10.17487/RFC3274, June 2002,
              <https://www.rfc-editor.org/info/rfc3274>.

   [RFC3370]  Housley, R., "Cryptographic Message Syntax (CMS)
              Algorithms", RFC 3370, DOI 10.17487/RFC3370, August 2002,
              <https://www.rfc-editor.org/info/rfc3370>.

   [RFC3560]  Housley, R., "Use of the RSAES-OAEP Key Transport
              Algorithm in Cryptographic Message Syntax (CMS)",
              RFC 3560, DOI 10.17487/RFC3560, July 2003,
              <https://www.rfc-editor.org/info/rfc3560>.

   [RFC3565]  Schaad, J., "Use of the Advanced Encryption Standard (AES)
              Encryption Algorithm in Cryptographic Message Syntax
              (CMS)", RFC 3565, DOI 10.17487/RFC3565, July 2003,
              <https://www.rfc-editor.org/info/rfc3565>.

   [RFC4289]  Freed, N. and J. Klensin, "Multipurpose Internet Mail
              Extensions (MIME) Part Four: Registration Procedures",
              BCP 13, RFC 4289, DOI 10.17487/RFC4289, December 2005,
              <https://www.rfc-editor.org/info/rfc4289>.

   [RFC4056]  Schaad, J., "Use of the RSASSA-PSS Signature Algorithm in
              Cryptographic Message Syntax (CMS)", RFC 4056,
              DOI 10.17487/RFC4056, June 2005,
              <https://www.rfc-editor.org/info/rfc4056>.

   [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
              "Randomness Requirements for Security", BCP 106, RFC 4086,
              DOI 10.17487/RFC4086, June 2005,
              <https://www.rfc-editor.org/info/rfc4086>.



Schaad, et al.               Standards Track                   [Page 50]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   [RFC5083]  Housley, R., "Cryptographic Message Syntax (CMS)
              Authenticated-Enveloped-Data Content Type", RFC 5083,
              DOI 10.17487/RFC5083, November 2007,
              <https://www.rfc-editor.org/info/rfc5083>.

   [RFC5084]  Housley, R., "Using AES-CCM and AES-GCM Authenticated
              Encryption in the Cryptographic Message Syntax (CMS)",
              RFC 5084, DOI 10.17487/RFC5084, November 2007,
              <https://www.rfc-editor.org/info/rfc5084>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [RFC5753]  Turner, S. and D. Brown, "Use of Elliptic Curve
              Cryptography (ECC) Algorithms in Cryptographic Message
              Syntax (CMS)", RFC 5753, DOI 10.17487/RFC5753,
              January 2010, <https://www.rfc-editor.org/info/rfc5753>.

   [RFC5754]  Turner, S., "Using SHA2 Algorithms with Cryptographic
              Message Syntax", RFC 5754, DOI 10.17487/RFC5754,
              January 2010, <https://www.rfc-editor.org/info/rfc5754>.

   [RFC6838]  Freed, N., Klensin, J., and T. Hansen, "Media Type
              Specifications and Registration Procedures", BCP 13,
              RFC 6838, DOI 10.17487/RFC6838, January 2013,
              <https://www.rfc-editor.org/info/rfc6838>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8418]  Housley, R., "Use of the Elliptic Curve Diffie-Hellman Key
              Agreement Algorithm with X25519 and X448 in the
              Cryptographic Message Syntax (CMS)", RFC 8418,
              DOI 10.17487/RFC8418, August 2018,
              <https://www.rfc-editor.org/info/rfc8418>.

   [RFC8419]  Housley, R., "Use of Edwards-Curve Digital Signature
              Algorithm (EdDSA) Signatures in the Cryptographic Message
              Syntax (CMS)", RFC 8419, DOI 10.17487/RFC8419,
              August 2018, <https://www.rfc-editor.org/info/rfc8419>.

   [RFC8550]  Schaad, J., Ramsdell, B., and S. Turner,
              "Secure/Multipurpose Internet Mail Extensions (S/MIME)
              Version 4.0 Certificate Handling", RFC 8550,
              DOI 10.17487/RFC8550, April 2019,
              <https://www.rfc-editor.org/info/rfc8550>.



Schaad, et al.               Standards Track                   [Page 51]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   [X.680]    "Information Technology - Abstract Syntax Notation One
              (ASN.1): Specification of basic notation", ITU-T
              Recommendation X.680, ISO/IEC 8824-1:2015, August 2015,
              <https://www.itu.int/rec/T-REC-X.680>.

   [X.681]    "Information Technology - Abstract Syntax Notation One
              (ASN.1): Information object specification", ITU-T
              Recommendation X.681, ISO/IEC 8824-2:2015, August 2015,
              <https://www.itu.int/rec/T-REC-X.681>.

   [X.682]    "Information Technology - Abstract Syntax Notation One
              (ASN.1): Constraint specification", ITU-T
              Recommendation X.682, ISO/IEC 8824-3:2015, August 2015,
              <https://www.itu.int/rec/T-REC-X.682>.

   [X.683]    "Information Technology - Abstract Syntax Notation One
              (ASN.1): Parameterization of ASN.1 specifications", ITU-T
              Recommendation X.683, ISO/IEC 8824-4:2015, August 2015,
              <https://www.itu.int/rec/T-REC-X.683>.

   [X.690]    "Information Technology - ASN.1 encoding rules:
              Specification of Basic Encoding Rules (BER), Canonical
              Encoding Rules (CER) and Distinguished Encoding Rules
              (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2015,
              August 2015, <https://www.itu.int/rec/T-REC-X.690>.

7.3.  Informative References

   [Efail]    Poddebniak, D., Dresen, C., Muller, J., Ising, F.,
              Schinzel, S., Friedberger, S., Somorovsky, J., and J.
              Schwenk, "Efail: Breaking S/MIME and OpenPGP Email
              Encryption using Exfiltration Channels",
              UsenixSecurity 2018, August 2018,
              <https://www.usenix.org/system/files/conference/
              usenixsecurity18/sec18-poddebniak.pdf>.

   [FIPS186-2]
              National Institute of Standards and Technology (NIST),
              "Digital Signature Standard (DSS) (also with Change
              Notice 1)", Federal Information Processing Standards
              Publication 186-2, January 2000,
              <https://csrc.nist.gov/publications/detail/fips/186/2/
              archive/2000-01-27>.

   [RFC1866]  Berners-Lee, T. and D. Connolly, "Hypertext Markup
              Language - 2.0", RFC 1866, DOI 10.17487/RFC1866,
              November 1995, <https://www.rfc-editor.org/info/rfc1866>.




Schaad, et al.               Standards Track                   [Page 52]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   [RFC2268]  Rivest, R., "A Description of the RC2(r) Encryption
              Algorithm", RFC 2268, DOI 10.17487/RFC2268, March 1998,
              <https://www.rfc-editor.org/info/rfc2268>.

   [RFC2311]  Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L., and
              L. Repka, "S/MIME Version 2 Message Specification",
              RFC 2311, DOI 10.17487/RFC2311, March 1998,
              <https://www.rfc-editor.org/info/rfc2311>.

   [RFC2312]  Dusse, S., Hoffman, P., Ramsdell, B., and J. Weinstein,
              "S/MIME Version 2 Certificate Handling", RFC 2312, DOI
              10.17487/RFC2312, March 1998,
              <https://www.rfc-editor.org/info/rfc2312>.

   [RFC2313]  Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
              RFC 2313, DOI 10.17487/RFC2313, March 1998,
              <https://www.rfc-editor.org/info/rfc2313>.

   [RFC2314]  Kaliski, B., "PKCS #10: Certification Request Syntax
              Version 1.5", RFC 2314, DOI 10.17487/RFC2314, March 1998,
              <https://www.rfc-editor.org/info/rfc2314>.

   [RFC2315]  Kaliski, B., "PKCS #7: Cryptographic Message Syntax
              Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
              <https://www.rfc-editor.org/info/rfc2315>.

   [RFC2630]  Housley, R., "Cryptographic Message Syntax", RFC 2630,
              DOI 10.17487/RFC2630, June 1999,
              <https://www.rfc-editor.org/info/rfc2630>.

   [RFC2631]  Rescorla, E., "Diffie-Hellman Key Agreement Method",
              RFC 2631, DOI 10.17487/RFC2631, June 1999,
              <https://www.rfc-editor.org/info/rfc2631>.

   [RFC2632]  Ramsdell, B., Ed., "S/MIME Version 3 Certificate
              Handling", RFC 2632, DOI 10.17487/RFC2632, June 1999,
              <https://www.rfc-editor.org/info/rfc2632>.

   [RFC2633]  Ramsdell, B., Ed., "S/MIME Version 3 Message
              Specification", RFC 2633, DOI 10.17487/RFC2633, June 1999,
              <https://www.rfc-editor.org/info/rfc2633>.

   [RFC2785]  Zuccherato, R., "Methods for Avoiding the "Small-Subgroup"
              Attacks on the Diffie-Hellman Key Agreement Method for
              S/MIME", RFC 2785, DOI 10.17487/RFC2785, March 2000,
              <https://www.rfc-editor.org/info/rfc2785>.





Schaad, et al.               Standards Track                   [Page 53]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   [RFC3218]  Rescorla, E., "Preventing the Million Message Attack on
              Cryptographic Message Syntax", RFC 3218,
              DOI 10.17487/RFC3218, January 2002,
              <https://www.rfc-editor.org/info/rfc3218>.

   [RFC3766]  Orman, H. and P. Hoffman, "Determining Strengths For
              Public Keys Used For Exchanging Symmetric Keys", BCP 86,
              RFC 3766, DOI 10.17487/RFC3766, April 2004,
              <https://www.rfc-editor.org/info/rfc3766>.

   [RFC3850]  Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
              Extensions (S/MIME) Version 3.1 Certificate Handling",
              RFC 3850, DOI 10.17487/RFC3850, July 2004,
              <https://www.rfc-editor.org/info/rfc3850>.

   [RFC3851]  Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
              Extensions (S/MIME) Version 3.1 Message Specification",
              RFC 3851, DOI 10.17487/RFC3851, July 2004,
              <https://www.rfc-editor.org/info/rfc3851>.

   [RFC3852]  Housley, R., "Cryptographic Message Syntax (CMS)",
              RFC 3852, DOI 10.17487/RFC3852, July 2004,
              <https://www.rfc-editor.org/info/rfc3852>.

   [RFC4134]  Hoffman, P., Ed., "Examples of S/MIME Messages", RFC 4134,
              DOI 10.17487/RFC4134, July 2005,
              <https://www.rfc-editor.org/info/rfc4134>.

   [RFC4270]  Hoffman, P. and B. Schneier, "Attacks on Cryptographic
              Hashes in Internet Protocols", RFC 4270,
              DOI 10.17487/RFC4270, November 2005,
              <https://www.rfc-editor.org/info/rfc4270>.

   [RFC4949]  Shirey, R., "Internet Security Glossary, Version 2",
              FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
              <https://www.rfc-editor.org/info/rfc4949>.

   [RFC5035]  Schaad, J., "Enhanced Security Services (ESS) Update:
              Adding CertID Algorithm Agility", RFC 5035, DOI
              10.17487/RFC5035, August 2007,
              <https://www.rfc-editor.org/info/rfc5035>.

   [RFC5750]  Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
              Mail Extensions (S/MIME) Version 3.2 Certificate
              Handling", RFC 5750, DOI 10.17487/RFC5750, January 2010,
              <https://www.rfc-editor.org/info/rfc5750>.





Schaad, et al.               Standards Track                   [Page 54]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   [RFC5751]  Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
              Mail Extensions (S/MIME) Version 3.2 Message
              Specification", RFC 5751, DOI 10.17487/RFC5751,
              January 2010, <https://www.rfc-editor.org/info/rfc5751>.

   [RFC6151]  Turner, S. and L. Chen, "Updated Security Considerations
              for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
              RFC 6151, DOI 10.17487/RFC6151, March 2011,
              <https://www.rfc-editor.org/info/rfc6151>.

   [RFC6194]  Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
              Considerations for the SHA-0 and SHA-1 Message-Digest
              Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
              <https://www.rfc-editor.org/info/rfc6194>.

   [RFC6268]  Schaad, J. and S. Turner, "Additional New ASN.1 Modules
              for the Cryptographic Message Syntax (CMS) and the Public
              Key Infrastructure Using X.509 (PKIX)", RFC 6268,
              DOI 10.17487/RFC6268, July 2011,
              <https://www.rfc-editor.org/info/rfc6268>.

   [RFC6278]  Herzog, J. and R. Khazan, "Use of Static-Static Elliptic
              Curve Diffie-Hellman Key Agreement in Cryptographic
              Message Syntax", RFC 6278, DOI 10.17487/RFC6278,
              June 2011, <https://www.rfc-editor.org/info/rfc6278>.

   [RFC7114]  Leiba, B., "Creation of a Registry for smime-type
              Parameter Values", RFC 7114, DOI 10.17487/RFC7114,
              January 2014, <https://www.rfc-editor.org/info/rfc7114>.

   [RFC7905]  Langley, A., Chang, W., Mavrogiannopoulos, N.,
              Strombergson, J., and S. Josefsson, "ChaCha20-Poly1305
              Cipher Suites for Transport Layer Security (TLS)",
              RFC 7905, DOI 10.17487/RFC7905, June 2016,
              <https://www.rfc-editor.org/info/rfc7905>.

   [SP800-56A]
              National Institute of Standards and Technology (NIST),
              "Recommendation for Pair-Wise Key Establishment Schemes
              Using Discrete Logarithm Cryptography", NIST Special
              Publication 800-56A Revision 2,
              DOI 10.6028/NIST.SP.800-56Ar2, May 2013,
              <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-56Ar2.pdf>.







Schaad, et al.               Standards Track                   [Page 55]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   [SP800-57] National Institute of Standards and Technology (NIST),
              "Recommendation for Key Management - Part 1: General",
              NIST Special Publication 800-57 Revision 4,
              DOI 10.6028/NIST.SP.800-57pt1r4, January 2016,
              <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-57pt1r4.pdf>.

   [TripleDES]
              Tuchman, W., "Hellman Presents No Shortcut Solutions to
              the DES", IEEE Spectrum v. 16, n. 7, pp. 40-41,
              DOI 10.1109/MSPEC.1979.6368160, July 1979.








































Schaad, et al.               Standards Track                   [Page 56]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


Appendix A.  ASN.1 Module

   Note: The ASN.1 module contained herein is unchanged from RFC 5751
   [SMIMEv2] and RFC 3851 [SMIMEv3.1], with the exception of a change to
   the preferBinaryInside ASN.1 comment in RFC 3851 [SMIMEv3.1].  If a
   module is needed that is compatible with current ASN.1 standards, one
   can be found in [RFC6268].  This module uses the 1988 version
   of ASN.1.

   SecureMimeMessageV3dot1

     { iso(1) member-body(2) us(840) rsadsi(113549)
            pkcs(1) pkcs-9(9) smime(16) modules(0) msg-v3dot1(21) }

   DEFINITIONS IMPLICIT TAGS ::=

   BEGIN

   IMPORTS

   -- Cryptographic Message Syntax [CMS]
      SubjectKeyIdentifier, IssuerAndSerialNumber,
      RecipientKeyIdentifier
          FROM  CryptographicMessageSyntax
                { iso(1) member-body(2) us(840) rsadsi(113549)
                  pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2001(14) };

   -- id-aa is the arc with all new authenticated and unauthenticated
   -- attributes produced by the S/MIME Working Group.

   id-aa OBJECT IDENTIFIER ::= {iso(1) member-body(2) usa(840)
           rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) attributes(2)}

   -- S/MIME Capabilities provides a method of broadcasting the
   -- symmetric capabilities understood.  Algorithms SHOULD be ordered
   -- by preference and grouped by type.

   smimeCapabilities OBJECT IDENTIFIER ::= {iso(1) member-body(2)
           us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 15}

   SMIMECapability ::= SEQUENCE {
      capabilityID OBJECT IDENTIFIER,
      parameters ANY DEFINED BY capabilityID OPTIONAL }

   SMIMECapabilities ::= SEQUENCE OF SMIMECapability

   -- Encryption Key Preference provides a method of broadcasting the
   -- preferred encryption certificate.



Schaad, et al.               Standards Track                   [Page 57]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   id-aa-encrypKeyPref OBJECT IDENTIFIER ::= {id-aa 11}

   SMIMEEncryptionKeyPreference ::= CHOICE {
      issuerAndSerialNumber   [0] IssuerAndSerialNumber,
      receipentKeyId          [1] RecipientKeyIdentifier,
      subjectAltKeyIdentifier [2] SubjectKeyIdentifier
   }

   -- "receipentKeyId" is spelled incorrectly but is kept for
   -- historical reasons.

   id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
           rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

   id-cap  OBJECT IDENTIFIER ::= { id-smime 11 }

   -- The preferBinaryInside OID indicates an ability to receive
   -- messages with binary encoding inside the CMS wrapper.
   -- The preferBinaryInside attribute's value field is ABSENT.

   id-cap-preferBinaryInside  OBJECT IDENTIFIER ::= { id-cap 1 }

   -- The following is a list of OIDs to be used with S/MIME v3.

   -- Signature Algorithms Not Found in [RFC3370], [RFC5754], [RFC4056],
   -- and [RFC3560]

   --
   -- md2WithRSAEncryption OBJECT IDENTIFIER ::=
   --    {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
   --     2}

   --
   -- Other Signed Attributes
   --
   -- signingTime OBJECT IDENTIFIER ::=
   --    {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
   --     5}
   --    See [CMS] for a description of how to encode the attribute
   --    value.

   SMIMECapabilitiesParametersForRC2CBC ::= INTEGER
   --        (RC2 Key Length (number of bits))

   END






Schaad, et al.               Standards Track                   [Page 58]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


Appendix B.  Historic Mail Considerations

   Over the course of updating the S/MIME specifications, the set of
   recommended algorithms has been modified each time the documents have
   been updated.  This means that if a user has historic emails and
   their user agent has been updated to only support the current set of
   recommended algorithms, some of those old emails will no longer be
   accessible.  It is strongly suggested that user agents implement some
   of the following algorithms for dealing with historic emails.

   This appendix contains a number of references to documents that have
   been obsoleted or replaced.  This is intentional, as the updated
   documents often do not have the same information in them.

B.1.  DigestAlgorithmIdentifier

   The following algorithms have been called out for some level of
   support by previous S/MIME specifications:

   -  SHA-1 was dropped in [SMIMEv4].  SHA-1 is no longer considered to
      be secure, as it is no longer collision resistant.  The IETF
      statement on SHA-1 can be found in [RFC6194], but it is out of
      date relative to the most recent advances.

   -  MD5 was dropped in [SMIMEv4].  MD5 is no longer considered to be
      secure, as it is no longer collision resistant.  Details can be
      found in [RFC6151].

B.2.  Signature Algorithms

   There are a number of problems with validating signatures on
   sufficiently historic messages.  For this reason, it is strongly
   suggested that user agents treat these signatures differently from
   those on current messages.  These problems include the following:

   -  Certification authorities are not required to keep certificates on
      a CRL beyond one update after a certificate has expired.  This
      means that unless CRLs are cached as part of the message it is not
      always possible to check to see if a certificate has been revoked.
      The same problems exist with Online Certificate Status Protocol
      (OCSP) responses, as they may be based on a CRL rather than on the
      certificate database.









Schaad, et al.               Standards Track                   [Page 59]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   -  RSA and DSA keys of less than 2048 bits are now considered by many
      experts to be cryptographically insecure (due to advances in
      computing power).  Such keys were previously considered secure, so
      the processing of historic signed messages will often result in
      the use of weak keys.  Implementations that wish to support
      previous versions of S/MIME or process old messages need to
      consider the security risks that result from smaller key sizes
      (e.g., spoofed messages) versus the costs of denial of service.

      [SMIMEv3.1] set the lower limit on suggested key sizes for
      creating and validation at 1024 bits.  Prior to that, the lower
      bound on key sizes was 512 bits.

   -  Hash functions used to validate signatures on historic messages
      may no longer be considered to be secure (see below).  While there
      are not currently any known practical pre-image or second
      pre-image attacks against MD5 or SHA-1, the fact that they are no
      longer considered to be collision resistant implies that the
      security levels of the signatures are generally considered
      suspect.  If a message is known to be historic and it has been in
      the possession of the client for some time, then it might still be
      considered to be secure.

   -  The previous two issues apply to the certificates used to validate
      the binding of the public key to the identity that signed the
      message as well.

   The following algorithms have been called out for some level of
   support by previous S/MIME specifications:

   -  RSA with MD5 was dropped in [SMIMEv4].  MD5 is no longer
      considered to be secure, as it is no longer collision resistant.
      Details can be found in [RFC6151].

   -  RSA and DSA with SHA-1 were dropped in [SMIMEv4].  SHA-1 is no
      longer considered to be secure, as it is no longer collision
      resistant.  The IETF statement on SHA-1 can be found in [RFC6194],
      but it is out of date relative to the most recent advances.

   -  DSA with SHA-256 was dropped in [SMIMEv4].  DSA has been replaced
      by elliptic curve versions.










Schaad, et al.               Standards Track                   [Page 60]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


   As requirements for "mandatory to implement" have changed over time,
   some issues have been created that can cause interoperability
   problems:

   -  S/MIME v2 clients are only required to verify digital signatures
      using the rsaEncryption algorithm with SHA-1 or MD5 and might not
      implement id-dsa-with-sha1 or id-dsa at all.

   -  S/MIME v3 clients might only implement signing or signature
      verification using id-dsa-with-sha1 and might also use id-dsa as
      an AlgorithmIdentifier in this field.

   -  Note that S/MIME v3.1 clients support verifying id-dsa-with-sha1
      and rsaEncryption and might not implement sha256WithRSAEncryption.

   NOTE: Receiving clients SHOULD recognize id-dsa as equivalent to
   id-dsa-with-sha1.

   For 512-bit RSA with SHA-1, see [RFC3370] and [FIPS186-2] without
   Change Notice 1; for 512-bit RSA with SHA-256, see [RFC5754] and
   [FIPS186-2] without Change Notice 1; and for 1024-bit through
   2048-bit RSA with SHA-256, see [RFC5754] and [FIPS186-2] with Change
   Notice 1.  The first reference provides the signature algorithm's
   OID, and the second provides the signature algorithm's definition.

   For 512-bit DSA with SHA-1, see [RFC3370] and [FIPS186-2] without
   Change Notice 1; for 512-bit DSA with SHA-256, see [RFC5754] and
   [FIPS186-2] without Change Notice 1; for 1024-bit DSA with SHA-1, see
   [RFC3370] and [FIPS186-2] with Change Notice 1; and for 1024-bit and
   above DSA with SHA-256, see [RFC5754] and [FIPS186-4].  The first
   reference provides the signature algorithm's OID, and the second
   provides the signature algorithm's definition.

B.3.  ContentEncryptionAlgorithmIdentifier

   The following algorithms have been called out for some level of
   support by previous S/MIME specifications:

   -  RC2/40 [RFC2268] was dropped in [SMIMEv3.2].  The algorithm is
      known to be insecure and, if supported, should only be used to
      decrypt existing email.

   -  DES EDE3 CBC [TripleDES], also known as "tripleDES", was dropped
      in [SMIMEv4].  This algorithm is removed from the list of
      supported algorithms because (1) it has a 64-bit block size and
      (2) it offers less than 128 bits of security.  This algorithm
      should be supported only to decrypt existing email; it should not
      be used to encrypt new emails.



Schaad, et al.               Standards Track                   [Page 61]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


B.4.  KeyEncryptionAlgorithmIdentifier

   The following algorithms have been called out for some level of
   support by previous S/MIME specifications:

   -  DH ephemeral-static mode, as specified in [RFC3370] and
      [SP800-57], was dropped in [SMIMEv4].

   -  RSA key sizes have been increased over time.  Decrypting old mail
      with smaller key sizes is reasonable; however, new mail should use
      the updated key sizes.

   For 1024-bit DH, see [RFC3370].  For 1024-bit and larger DH, see
   [SP800-56A]; regardless, use the KDF, which is from X9.42, specified
   in [RFC3370].

Appendix C.  Moving S/MIME v2 Message Specification to Historic Status

   The S/MIME v3 [SMIMEv3], v3.1 [SMIMEv3.1], and v3.2 [SMIMEv3.2]
   specifications are backward compatible with the S/MIME v2 Message
   Specification [SMIMEv2], with the exception of the algorithms
   (dropped RC2/40 requirement and added DSA and RSASSA-PSS
   requirements).  Therefore, RFC 2311 [SMIMEv2] was moved to Historic
   status.

Acknowledgements

   Many thanks go out to the other authors of the S/MIME version 2
   Message Specification RFC: Steve Dusse, Paul Hoffman, Laurence
   Lundblade, and Lisa Repka.  Without v2, there wouldn't be a v3, v3.1,
   v3.2, or v4.0.

   Some of the examples in this document were copied from [RFC4134].
   Thanks go to the people who wrote and verified the examples in that
   document.

   A number of the members of the S/MIME Working Group have also worked
   very hard and contributed to this document.  Any list of people is
   doomed to omission, and for that I apologize.  In alphabetical order,
   the following people stand out in my mind because they made direct
   contributions to this document:

   Tony Capel, Piers Chivers, Dave Crocker, Bill Flanigan, Peter
   Gutmann, Alfred Hoenes, Paul Hoffman, Russ Housley, William Ottaway,
   and John Pawling.

   The version 4 update to the S/MIME documents was done under the
   auspices of the LAMPS Working Group.



Schaad, et al.               Standards Track                   [Page 62]
^L
RFC 8551            S/MIME 4.0 Message Specification          April 2019


Authors' Addresses

   Jim Schaad
   August Cellars

   Email: ietf@augustcellars.com


   Blake Ramsdell
   Brute Squad Labs, Inc.

   Email: blaker@gmail.com


   Sean Turner
   sn3rd

   Email: sean@sn3rd.com

































Schaad, et al.               Standards Track                   [Page 63]
^L