1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
Internet Engineering Task Force (IETF) D. Katz
Request for Comments: 8563 Juniper Networks
Category: Standards Track D. Ward
ISSN: 2070-1721 Cisco Systems
S. Pallagatti, Ed.
VMware
G. Mirsky, Ed.
ZTE Corp.
April 2019
Bidirectional Forwarding Detection (BFD) Multipoint Active Tails
Abstract
This document describes active tail extensions to the Bidirectional
Forwarding Detection (BFD) protocol for multipoint networks.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8563.
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Katz, et al. Standards Track [Page 1]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology and Acronyms . . . . . . . . . . . . . . . . . . 3
3. Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5. Operational Scenarios . . . . . . . . . . . . . . . . . . . . 5
5.1. No Head Notification . . . . . . . . . . . . . . . . . . 5
5.2. Head Notification . . . . . . . . . . . . . . . . . . . . 5
5.2.1. Head Notification without Polling . . . . . . . . . . 5
5.2.2. Head Notification and Tail Solicitation with
Multipoint Polling . . . . . . . . . . . . . . . . . 6
5.2.3. Head Notification with Composite Polling . . . . . . 6
6. Protocol Details . . . . . . . . . . . . . . . . . . . . . . 7
6.1. Multipoint Client Session . . . . . . . . . . . . . . . . 8
6.2. Multipoint Client Session Failure . . . . . . . . . . . . 8
6.3. State Variables . . . . . . . . . . . . . . . . . . . . . 8
6.3.1. New State Variables . . . . . . . . . . . . . . . . . 8
6.3.2. New State Variable Value . . . . . . . . . . . . . . 9
6.3.3. State Variable Initialization and Maintenance . . . . 10
6.4. Controlling Multipoint BFD Options . . . . . . . . . . . 11
6.5. State Machine . . . . . . . . . . . . . . . . . . . . . . 11
6.6. Session Establishment . . . . . . . . . . . . . . . . . . 12
6.7. Discriminators and Packet Demultiplexing . . . . . . . . 12
6.8. Controlling Tail Packet Transmission . . . . . . . . . . 12
6.9. Soliciting the Tails . . . . . . . . . . . . . . . . . . 13
6.10. Verifying Connectivity to Specific Tails . . . . . . . . 13
6.11. Detection Times . . . . . . . . . . . . . . . . . . . . . 14
6.12. MultipointClient Down/AdminDown Sessions . . . . . . . . 15
6.13. Base BFD for Multipoint Networks Specification Text
Replacement . . . . . . . . . . . . . . . . . . . . . . . 15
6.13.1. Reception of BFD Control Packets . . . . . . . . . . 15
6.13.2. Demultiplexing BFD Control Packets . . . . . . . . . 16
6.13.3. Transmitting BFD Control Packets . . . . . . . . . . 16
7. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 17
8. Operational Considerations . . . . . . . . . . . . . . . . . 18
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 18
10. Security Considerations . . . . . . . . . . . . . . . . . . . 18
11. Normative References . . . . . . . . . . . . . . . . . . . . 19
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 19
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 20
Katz, et al. Standards Track [Page 2]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
1. Introduction
This application of BFD is an extension to Multipoint BFD [RFC8562],
which allows tails to notify the head of the lack of multipoint
connectivity. As a further option, heads can request a notification
from the tails by means of a polling mechanism. Notification to the
head can be enabled for all tails, or for only a subset of the tails.
The goal of this application is for the head to have reasonably rapid
knowledge of tails that have lost connectivity from the head.
Since scaling is a primary concern (particularly state explosion
toward the head), it is required that the head be in control of all
timing aspects of the mechanism and that BFD packets from the tails
to the head not be synchronized.
Throughout this document, the term "multipoint" is defined as a
mechanism by which one or more systems receive packets sent by a
single sender. This specifically includes such things as IP
multicast and point-to-multipoint MPLS.
The term "connectivity" in this document is not being used in the
context of connectivity verification in a transport network but as an
alternative to "continuity", i.e., the existence of a path between
the sender and the receiver.
This document effectively modifies and adds to Sections 5.12 and 5.13
of the base BFD multipoint networks specification [RFC8562].
2. Terminology and Acronyms
BFD: Bidirectional Forwarding Detection
c-poll: Composite Poll
m-poll: Multipoint Poll
3. Keywords
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
Katz, et al. Standards Track [Page 3]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
4. Overview
A head may wish to be alerted of the tails' connectivity (or lack
thereof), and there are a number of options to achieve that. First,
if all that is needed is a best-effort failure notification, as
discussed in Section 5.2.1, the tails can send unsolicited unicast
BFD Control packets to the head when the path fails, as described in
Section 6.4.
If the head wishes to know of the active tails on the multipoint
path, it may send a multipoint BFD Control packet with the Poll (P)
bit set, which will induce the tails to return a unicast BFD Control
packet with the Final (F) bit set (see a detailed description in
Section 5.2.2). The head can then create BFD session state for each
of the tails that have multipoint connectivity. If the head sends
such a packet on occasion, it can keep track of which tails answer,
thus providing a more deterministic mechanism for detecting which
tails fail to respond (implying a loss of multipoint connectivity).
In this document, this method is referred to as the Multipoint Poll
(m-poll).
If the head wishes the definite indication of the tails'
connectivity, it may do all of the above, but if it detects that a
tail did not answer the previous multipoint poll, it may initiate a
Demand mode Poll Sequence as a unicast to that tail (see a detailed
description in Section 5.2.3). This covers the case where either the
multipoint poll or the single reply is also lost in transit. If
desired, the head may Poll one or more tails proactively to track the
tails' connectivity. In this document, the method that combines the
use of multipoint and unicast polling of tails by the head is
referred to as the Composite Poll (c-poll).
If the awareness of the state of some nodes is more important for the
head, in the sense that the head needs to detect the lack of
multipoint connectivity to a subset of tails at a different rate, the
head may transmit unicast BFD Polls to that subset of tails. In this
case, the timing may be independent on a tail-by-tail basis.
Individual tails may be configured so that they never send BFD
Control packets to the head. Such tails will never be known to the
head but will still be able to detect multipoint path failures from
the head.
Katz, et al. Standards Track [Page 4]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
5. Operational Scenarios
It is worth analyzing how this protocol reacts to various scenarios.
There are three path components present: namely, the multipoint path,
the forward unicast path (from the head to a particular tail), and
the reverse unicast path (from a tail to the head). There are also
four options as to how the head is notified about failures from the
tail. For the different modes described below, the setting of new
state variables are given even if these are only introduced later in
the document (see Section 6.3).
5.1. No Head Notification
In this scenario, only the multipoint path is used and none of the
others matter. A failure in the multipoint path will result in the
tail noticing the failure within a Detection Time, and the head will
remain ignorant of the tail state. This mode emulates the behavior
described in [RFC8562]. In this mode, bfd.SessionType is
MultipointTail, and the variable bfd.SilentTail (see Section 6.3.1)
MUST be set to 1. If bfd.SessionType is MultipointHead or
MultipointClient, bfd.ReportTailDown MUST be set to zero. The head
MAY set bfd.RequiredMinRxInterval to zero and thus suppress tails
sending any BFD Control packets.
5.2. Head Notification
In these scenarios, the tail sends unsolicited or solicited BFD
packets in response to the detection of a multipoint path failure.
All these scenarios have common settings:
o if bfd.SessionType is MultipointTail, the variable bfd.SilentTail
(see Section 6.3.1) MUST be set to zero;
o if bfd.SessionType is MultipointHead or MultipointClient,
bfd.ReportTailDown MUST be set to 1;
o the head MUST set bfd.RequiredMinRxInterval to nonzero and thus
allow tails to send BFD Control packets.
5.2.1. Head Notification without Polling
In this scenario, the tail sends unsolicited BFD packets in response
to the detection of a multipoint path failure. It uses the reverse
unicast path, but not the forward unicast path.
Katz, et al. Standards Track [Page 5]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
If the multipoint path fails but the reverse unicast path stays up,
the tail will detect the failure within a Detection Time, and the
head will know about it within one reverse packet time (since the
notification is delayed).
If both the multipoint path and the reverse unicast paths fail, the
tail will detect the failure, but the head will remain unaware of it.
5.2.2. Head Notification and Tail Solicitation with Multipoint Polling
In this scenario, the head sends occasional multipoint Polls in
addition to (or in lieu of) non-Poll multipoint BFD Control packets,
expecting the tails to reply with Final. This also uses the reverse
unicast path, but not the forward unicast path.
If the multipoint path fails but the reverse unicast path stays up,
the tail will detect the failure within a Detection Time, and the
head will know about it within one reverse packet time (the
notification is delayed to avoid synchronization of the tails).
If both the multipoint path and the reverse unicast paths fail, the
tail will detect the failure, but the head will remain unaware of
this fact.
If the reverse unicast path fails but the multipoint path stays up,
the head will see the BFD session fail, but the state of the
multipoint path will be unknown to the head. The tail will continue
to receive multipoint data traffic.
If either the multipoint Poll or the unicast reply is lost in
transit, the head will see the BFD session fail, but the state of the
multipoint path will be unknown to the head. The tail will continue
to receive multipoint data traffic.
5.2.3. Head Notification with Composite Polling
In this scenario, the head sends occasional multipoint Polls in
addition to (or in lieu of) non-Poll multipoint BFD Control packets,
expecting the tails to reply with Final. If a tail that had
previously replied to a multipoint Poll fails to reply (or if the
head simply wishes to verify tail connectivity), the head issues a
unicast Poll Sequence to the tail. This scenario makes use of all
three paths. In this mode for bfd.SessionType of MultipointTail,
variable bfd.SilentTail (see Section 6.3.1) MUST be set to zero.
If the multipoint path fails but the two unicast paths stay up, the
tail will detect the failure within a Detection Time, and the head
will know about it within one reverse packet time (since the
Katz, et al. Standards Track [Page 6]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
notification is delayed). Note that the reverse packet time may be
smaller in this case if the head has previously issued a unicast Poll
(since the tail will not delay transmission of the notification in
this case).
If both the multipoint path and the reverse unicast paths fail
(regardless of the state of the forward unicast path), the tail will
detect the failure, but the head will remain unaware of this fact.
The head will detect a BFD session failure to the tail but cannot
make a determination about the state of the tail's multipoint
connectivity.
If the forward unicast path fails but the reverse unicast path stays
up, the head will detect a BFD session failure to the tail if it
happens to send a unicast Poll sequence but cannot make a
determination about the state of the tail's multipoint connectivity.
If the multipoint path to the tail fails prior to any unicast Poll
being sent, the tail will detect the failure within a Detection Time,
and the head will know about it within one reverse packet time (since
the notification is delayed).
If the multipoint path stays up but the reverse unicast path fails,
the head will see the particular MultipointClient session fail if it
happens to send a Poll Sequence, but the state of the multipoint path
will be unknown to the head. The tail will continue to receive
multipoint data traffic.
If the multipoint path and the reverse unicast path both stay up but
the forward unicast path fails, neither side will notice this failure
as long as a unicast Poll Sequence is never sent by the head. If the
head sends a unicast Poll Sequence, the head will detect the failure
in the forward unicast path. The state of the multipoint path will
be determined by the multipoint Poll. The tail will continue to
receive multipoint data traffic.
6. Protocol Details
This section describes the operation of the BFD Multipoint active
tail in detail. This section modifies Section 4 of [RFC8562] as
follows:
o Section 6.3 introduces new state variables and modifies the usage
of a few existing ones;
o Section 6.13 replaces the corresponding sections in the base BFD
for multipoint networks specification.
Katz, et al. Standards Track [Page 7]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
6.1. Multipoint Client Session
If the head is keeping track of some or all of the tails, it has a
session of type MultipointClient per tail that it cares about. All
of the MultipointClient sessions for tails on a particular multipoint
path are associated with the MultipointHead session to which the
clients are listening. A BFD Poll Sequence may be sent over a
MultipointClient session to a tail if the head wishes to verify
connectivity. These sessions receive any BFD Control packets sent by
the tails and MUST NOT transmit periodic BFD Control packets other
than Poll Sequences (since periodic transmission is always done by
the MultipointHead session). Note that the settings of all BFD
variables in a MultipointClient session for a particular tail
override the corresponding settings in the MultipointHead session.
6.2. Multipoint Client Session Failure
If a MultipointClient session receives a BFD Control packet from the
tail with state Down or AdminDown, the head reliably knows that the
tail has lost multipoint connectivity. If the Detection Time expires
on a MultipointClient session, it is ambiguous as to whether the
multipoint connectivity failed or whether there was a unicast path
problem in one direction or the other, so the head does not reliably
know the tail's state.
6.3. State Variables
BFD Multipoint active tail introduces new state variables and
modifies the usage of a few existing ones defined in Section 5.4 of
[RFC8562].
6.3.1. New State Variables
A few state variables are added in support of multipoint BFD active
tail.
bfd.SilentTail
If zero, a tail may send packets to the head according to other
parts of this specification. Setting this to 1 allows tails to
be provisioned to always be silent, even when the head is
soliciting traffic from the tails. This can be useful, for
example, in deployments of a large number of tails when the
head wishes to track the state of a subset of them. This
variable MUST be initialized based on configuration. The
default value MUST be 1.
Katz, et al. Standards Track [Page 8]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
This variable is only pertinent when bfd.SessionType is
MultipointTail and SHOULD NOT be modified after the
MultipointTail session has been created.
bfd.ReportTailDown
Set to 1 if the head wishes tails to notify the head, via
periodic BFD Control packets, when they see the BFD session
fail. If zero, the tail will never send periodic BFD Control
packets, and the head will not be notified of session failures
by the tails. This variable MUST be initialized based on
configuration. The default value MUST be zero.
This variable is only pertinent when bfd.SessionType is
MultipointHead or MultipointClient.
bfd.UnicastRcvd
Set to 1 if a tail has received a unicast BFD Control packet
from the head while being in Up state. This variable MUST be
set to zero if the session transitions from Up state to some
other state.
This variable MUST be initialized to zero.
This variable is only pertinent when bfd.SessionType is
MultipointTail.
6.3.2. New State Variable Value
A new state variable value being added to:
bfd.SessionType
The type of this session as defined in [RFC7880]. A new value
introduced is:
MultipointClient: A session on the head that tracks the state
of an individual tail, when desirable.
This variable MUST be initialized to the appropriate type when the
session is created, according to the rules in Section 5.4 of
[RFC8562].
Katz, et al. Standards Track [Page 9]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
6.3.3. State Variable Initialization and Maintenance
Some state variables defined in Section 6.8.1 of [RFC5880] need to be
initialized or manipulated differently depending on the session type.
The values of some of these variables relate to those of the same
variables of a MultipointHead session (see Section 5.4.2 of
[RFC8562]).
bfd.LocalDiscr
For session type MultipointClient, this variable MUST always
match the value of bfd.LocalDiscr in the associated
MultipointHead session.
bfd.DesiredMinTxInterval
For session type MultipointClient, this variable MUST always
match the value of bfd.DesiredMinTxInterval in the associated
MultipointHead session.
bfd.RequiredMinRxInterval
It MAY be set to zero at the head BFD system to suppress
traffic from the tails. Setting it to zero in the
MultipointHead session suppresses traffic from all tails; the
setting in a MultipointClient session suppresses traffic from a
single tail.
bfd.DemandMode
This variable MUST be initialized to 1 for session types
MultipointClient.
bfd.DetectMult
For session type MultipointClient, this variable MUST always
match the value of bfd.DetectMult in the associated
MultipointHead session.
Katz, et al. Standards Track [Page 10]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
6.4. Controlling Multipoint BFD Options
The state variables defined above are used to choose which
operational options are active.
The most basic form of the BFD operation in multipoint networks is
explained in [RFC8562]. In this scenario, BFD Control packets flow
only from the head, and no tracking of tail state at the head is
desired. That can be accomplished by setting bfd.ReportTailDown to
zero in the MultipointHead session (Section 5.1).
If the head wishes to know of active tails, it sends multipoint Polls
as needed. Previously known tails that don't respond to the Polls
will be detected (as per Section 5.2.2).
If the head wishes to request a notification from the tails when they
lose connectivity, it sets bfd.ReportTailDown to 1 in either the
MultipointHead session (if such notification is desired from all
tails) or the MultipointClient session (if notification is desired
from a particular tail). Note that the setting of this variable in a
MultipointClient session for a particular tail overrides the setting
in the MultipointHead session.
If the head wishes to verify the state of a tail on an ongoing basis,
it sends a Poll Sequence from the MultipointClient session associated
with that tail as needed. This has the effect of eliminating the
initial delay, as described in Section 6.13.3, that the tail would
otherwise insert prior to transmission of the packet; thus, the head
may have notification of the session failure more quickly when
comparing with use of m-poll.
If a tail wishes to operate silently (sending no BFD Control packets
to the head), it sets bfd.SilentTail to 1 in the MultipointTail
session. This allows a tail to be silent independent of the settings
on the head.
6.5. State Machine
Though the state transitions for the state machine, as defined in
Section 5.5 of [RFC8562], for a session type MultipointHead are only
administratively driven, the state machine for a session of type
MultipointClient is the same, and the diagram is applicable.
Katz, et al. Standards Track [Page 11]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
6.6. Session Establishment
If BFD Control packets are received at the head, they are
demultiplexed to sessions of type MultipointClient, which represent
the set of tails that the head is interested in tracking. These
sessions will typically also be established dynamically based on the
receipt of BFD Control packets. The head has broad latitude in
choosing which tails to track, if any, without affecting the basic
operation of the protocol. The head directly controls whether or not
tails are allowed to send BFD Control packets back to the head by
setting bfd.RequiredMinRxInterval to zero in a MultipointHead or a
MultipointClient session.
6.7. Discriminators and Packet Demultiplexing
When the tails send BFD Control packets to the head from the
MultipointTail session, the contents of Your Discriminator (the
discriminator received from the head) will not be sufficient for the
head to demultiplex the packet, since the same value will be received
from all tails on the multicast tree. In this case, the head MUST
demultiplex packets based on the source address and the value of Your
Discriminator, which together uniquely identify the tail and the
multipoint path.
When the head sends unicast BFD Control packets to a tail from a
MultipointClient session, the value of Your Discriminator will be
valid, and the tail MUST demultiplex the packet based solely on Your
Discriminator.
6.8. Controlling Tail Packet Transmission
As the fan-in from the tails to the head may be very large, it is
critical that the flow of BFD Control packets from the tails is
controlled.
The head always operates in Demand mode. This means that no tail
will send an asynchronous BFD Control packet as long as the session
is Up.
The value of Required Min Rx Interval received by a tail in a unicast
BFD Control packet, if any, always takes precedence over the value
received in multipoint BFD Control packets. This allows the packet
rate from individual tails to be controlled separately as desired by
sending a BFD Control packet from the corresponding MultipointClient
session. This also eliminates the random delay, as discussed in
Section 6.13.3, prior to transmission from the tail that would
otherwise be inserted, reducing the latency of reporting a failure to
the head.
Katz, et al. Standards Track [Page 12]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
If the head wishes to suppress traffic from the tails when they
detect a session failure, it MAY set bfd.RequiredMinRxInterval to
zero, which is a reserved value that indicates that the sender wishes
to receive no periodic traffic. This can be set in the
MultipointHead session (suppressing traffic from all tails), or it
can be set in a MultipointClient session (suppressing traffic from
only a single tail).
Any tail may be provisioned to never send *any* BFD Control packets
to the head by setting bfd.SilentTail to 1. This provides a
mechanism by which only a subset of tails reports their session
status to the head.
6.9. Soliciting the Tails
If the head wishes to know of the active tails, the MultipointHead
session can send a BFD Control packet as specified in Section 6.13.3,
with the Poll (P) bit set to 1. This will cause all of the tails to
reply with a unicast BFD Control Packet, randomized across one packet
interval.
The decision as to when to send a multipoint Poll is outside the
scope of this specification. However, it MUST NOT be sent more often
than the regular multipoint BFD Control packet. Since the tail will
treat a multipoint Poll like any other multipoint BFD Control packet,
Polls may be sent in lieu of non-Poll packets.
Soliciting the tails also starts the Detection Timer for each of the
associated MultipointClient sessions, which will cause those sessions
to time out if the associated tails do not respond.
Note that for this mechanism to work properly, the Detection Time
(which is equal to bfd.DesiredMinTxInterval) MUST be greater than the
round-trip time of BFD Control packets from the head to the tail (via
the multipoint path) and back (via a unicast path). See Section 6.11
for more details.
6.10. Verifying Connectivity to Specific Tails
If the head wishes to verify connectivity to a specific tail, the
corresponding MultipointClient session can send a BFD Poll Sequence
to said tail. This might be done in reaction to the expiration of
the Detection Timer (the tail didn't respond to a multipoint Poll),
or it might be done on a proactive basis.
The interval between transmitted packets in the Poll Sequence MUST be
calculated as specified in the base BFD specification [RFC5880] (the
greater of bfd.DesiredMinTxInterval and bfd.RemoteMinRxInterval).
Katz, et al. Standards Track [Page 13]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
The value transmitted in Required Min RX Interval will be used by the
tail (rather than the value received in any multipoint packet) when
it transmits BFD Control packets to the head to notify it of a
session failure, and the transmitted packets will not be delayed.
This value can potentially be set much lower than in the multipoint
case, in order to speed up a notification to the head, since the
value will be used only by the single tail. This value (and the lack
of delay) are "sticky", in that once the tail receives it, it will
continue to use it indefinitely. Therefore, if the head no longer
wishes to single out the tail, it SHOULD reset the timer to the
default by sending a Poll Sequence with the same value of Required
Min Rx Interval as is carried in the multipoint packets, or it MAY
reset the tail session by sending a Poll Sequence with state
AdminDown (after the completion of which the session will come back
up).
Note that a failure of the head to receive a response to a Poll
Sequence does not necessarily mean that the tail has lost multipoint
connectivity, though a reply to a Poll Sequence does reliably
indicate connectivity or lack thereof (by virtue of the tail's state
not being Up in the BFD Control packet).
6.11. Detection Times
MultipointClient sessions at the head are always in the Demand mode,
and as such only care about Detection Time in two cases. First, if a
Poll Sequence is being sent on a MultipointClient session, the
Detection Time on this session is calculated according to the base
BFD specification [RFC5880], that is, the transmission interval
multiplied by bfd.DetectMult. Second, when a multipoint Poll is sent
to solicit tail replies, the Detection Time on all associated
MultipointClient sessions that aren't currently sending Poll
Sequences is set to a value greater than or equal to
bfd.RequiredMinRxInterval (one packet time). This value can be made
arbitrarily large in order to ensure that the Detection Time is
greater than the round-trip time of a BFD Control packet between the
head and the tail with no ill effects, other than delaying the
detection of unresponsive tails. Note that a Detection Time
expiration on a MultipointClient session at the head, while
indicating a BFD session failure, cannot be construed to mean that
the tail is not hearing multipoint packets from the head.
Katz, et al. Standards Track [Page 14]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
6.12. MultipointClient Down/AdminDown Sessions
If the MultipointHead session is in Down/AdminDown state (which only
happens administratively), all associated MultipointClient sessions
SHOULD be destroyed as they are superfluous.
If a MultipointClient session goes down due to the receipt of an
unsolicited BFD Control packet from the tail with state Down or
AdminDown (not in response to a Poll), and tail connectivity
verification is not being done, the session MAY be destroyed. If
verification is desired, the session SHOULD send a Poll Sequence and
the session SHOULD be maintained.
If the tail replies to a Poll Sequence with state Down or AdminDown,
it means that the tail session is definitely down. In this case, the
session MAY be destroyed.
If the Detection Time expires on a MultipointClient session (meaning
that the tail did not reply to a Poll Sequence), the session MAY be
destroyed.
6.13. Base BFD for Multipoint Networks Specification Text Replacement
The following sections are meant to extend the corresponding sections
in the base BFD for multipoint networks specification [RFC8562].
6.13.1. Reception of BFD Control Packets
The following procedure modifies parts of Section 5.13.1 of
[RFC8562].
When a BFD Control packet is received, the procedure defined in
Section 5.13.1 of [RFC8562] MUST be followed, in the order specified.
If the packet is discarded according to these rules, processing of
the packet MUST cease at that point. In addition to that, if tail
tracking is desired by the head, the following procedure MUST be
applied.
If bfd.SessionType is MultipointTail
If bfd.UnicastRcvd is zero or the Multipoint (M) bit is clear,
set bfd.RemoteMinRxInterval to the value of Required Min RX
Interval.
If the Multipoint (M) bit is clear, set bfd.UnicastRcvd to 1.
Katz, et al. Standards Track [Page 15]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
Else (not MultipointTail)
Set bfd.RemoteMinRxInterval to the value of Required Min RX
Interval.
If the Poll (P) bit is set, and bfd.SilentTail is zero, send a BFD
Control packet to the remote system with the Poll (P) bit clear
and the Final (F) bit set (see Section 6.13.3).
6.13.2. Demultiplexing BFD Control Packets
This section is part of the addition to Section 5.13.2 of [RFC8562],
separated for clarity.
If the Multipoint (M) bit is clear
If the Your Discriminator field is nonzero:
Select a session based on the value of Your Discriminator.
If no session is found, the packet MUST be discarded.
If bfd.SessionType is MultipointHead:
Find a MultipointClient session grouped to this
MultipointHead session, based on the source address and
the value of Your Discriminator. If a session is found
and is not MultipointClient, the packet MUST be
discarded. If no session is found, a new session of type
MultipointClient MAY be created, or the packet MAY be
discarded. This choice is outside the scope of this
specification.
If bfd.SessionType is not MultipointClient, the packet
MUST be discarded.
6.13.3. Transmitting BFD Control Packets
A system MUST NOT periodically transmit BFD Control packets if
bfd.SessionType is MultipointClient and a Poll Sequence is not being
transmitted.
If the bfd.SessionType value is MultipointTail and the periodic
transmission of BFD Control packets is just starting (due to Demand
mode not being active on the remote system), the first packet to be
transmitted MUST be delayed by a random amount of time between zero
and (0.9 * bfd.RemoteMinRxInterval).
Katz, et al. Standards Track [Page 16]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
If a BFD Control packet is received with the Poll (P) bit set to 1,
the receiving system MUST transmit a BFD Control packet with the Poll
(P) bit clear and the Final (F) bit, without respect to the
transmission timer or any other transmission limitations, the session
state, and whether Demand mode is active on either system. A system
MAY limit the rate at which such packets are transmitted. If rate
limiting is in effect, the advertised value of Desired Min TX
Interval MUST be greater than or equal to the interval between
transmitted packets imposed by the rate-limiting function. If the
Multipoint (M) bit is set in the received packet, the packet
transmission MUST be delayed by a random amount of time between zero
and (0.9 * bfd.RemoteMinRxInterval). Otherwise, the packet MUST be
transmitted as soon as practicable.
A system MUST NOT set the Demand (D) bit if bfd.SessionType is
MultipointClient unless bfd.DemandMode is 1, bfd.SessionState is Up,
and bfd.RemoteSessionState is Up.
Content of the transmitted packet MUST be as explained in
Section 5.13.3 of [RFC8562].
7. Assumptions
If the head notification is to be used, it is assumed that a
multipoint BFD packet encapsulation contains enough information so
that a tail can address a unicast BFD packet to the head.
If the head notification is to be used, it is assumed that there is
bidirectional unicast communication available (at the same protocol
layer within which BFD is being run) between the tail and head.
For the head to know reliably that a tail has lost multipoint
connectivity, the unicast paths in both directions between that tail
and the head must remain operational when the multipoint path fails.
It is thus desirable that unicast paths not share fate with the
multipoint path to the extent possible if the head wants more
definite knowledge of the tail state.
Since the normal BFD three-way handshake is not used in this
application, a tail transitioning from state Up to Down and back to
Up again may not be reliably detected at the head.
Katz, et al. Standards Track [Page 17]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
8. Operational Considerations
Section 7 of [RFC5880] includes the requirements for implementation
of a congestion control mechanism when BFD is used across multiple
hops and a mechanism that uses congestion detection to reduce the
amount of BFD packets the system generates. These requirements are
also applicable to this specification. When this specification is
used in the mode with no head notifications by tails, as discussed in
Section 5.1, the head MUST limit the packet transmission rate to no
higher than one BFD packet per second (see Section 5.13.3 of
[RFC8562]). When the BFD uses one of the notifications by the tails
to the head mechanisms described in Section 5.2, Min RX Interval can
be used by the tail to control the packet transmission rate of the
head. The exact mechanism of processing changes in the Min RX
Interval value in the received from the tail response to multicast or
the unicast Poll BFD packet is outside the scope of this document.
As noted in Section 7 of [RFC5880], "any mechanism that increases the
transmit or receive intervals will increase the Detection Time for
the session".
9. IANA Considerations
This document has no IANA actions.
10. Security Considerations
The same security considerations as those described in [RFC5880] and
[RFC8562] apply to this document.
Additionally, implementations that create MultpointClient sessions
dynamically upon receipt of a BFD Control packet from a tail MUST
implement protective measures to prevent a number of MultipointClient
sessions from being created and growing out of control. Below are
some points to be considered in such implementations.
When the number of MultipointClient sessions exceeds the number of
expected tails, the implementation should generate an alarm to
users to indicate the anomaly.
The implementation should have a reasonable upper bound on the
number of MultipointClient sessions that can be created, with the
upper bound potentially being computed based on the number of
multicast streams that the system is expecting.
This specification does not raise any additional security issues
beyond those of the specifications referred to in the list of
normative references.
Katz, et al. Standards Track [Page 18]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
11. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<https://www.rfc-editor.org/info/rfc5880>.
[RFC7880] Pignataro, C., Ward, D., Akiya, N., Bhatia, M., and
S. Pallagatti, "Seamless Bidirectional Forwarding
Detection (S-BFD)", RFC 7880, DOI 10.17487/RFC7880, July
2016, <https://www.rfc-editor.org/info/rfc7880>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8562] Katz, D., Ward, D., Pallagatti, S., Ed., and G. Mirsky,
Ed., "Bidirectional Forwarding Detection (BFD) for
Multipoint Networks", RFC 8562, DOI 10.17487/RFC8562,
April 2019, <https://www.rfc-editor.org/info/rfc8562>.
Acknowledgments
The authors would like to thank Nobo Akiya, Vengada Prasad Govindan,
Jeff Haas, Wim Henderickx, and Mingui Zhang who have greatly
contributed to this document.
Contributors
Rahul Aggarwal of Juniper Networks and George Swallow of Cisco
Systems provided the initial idea for this specification and
contributed to its development.
Katz, et al. Standards Track [Page 19]
^L
RFC 8563 BFD Multipoint Active Tails April 2019
Authors' Addresses
Dave Katz
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, California 94089-1206
United States of America
Email: dkatz@juniper.net
Dave Ward
Cisco Systems
170 West Tasman Dr.
San Jose, California 95134
United States of America
Email: wardd@cisco.com
Santosh Pallagatti (editor)
VMware
Email: santosh.pallagatti@gmail.com
Greg Mirsky (editor)
ZTE Corp.
Email: gregimirsky@gmail.com
Katz, et al. Standards Track [Page 20]
^L
|