summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8636.txt
blob: 5227ca0b67ccff20feac6fab6a4b0ce1eda5ba87 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
Internet Engineering Task Force (IETF)              L. Hornquist Astrand
Request for Comments: 8636                                    Apple, Inc
Updates: 4556                                                     L. Zhu
Category: Standards Track                             Oracle Corporation
ISSN: 2070-1721                                                M. Cullen
                                                       Painless Security
                                                               G. Hudson
                                                                     MIT
                                                               July 2019


Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)
                           Algorithm Agility

Abstract

   This document updates the Public Key Cryptography for Initial
   Authentication in Kerberos (PKINIT) standard (RFC 4556) to remove
   protocol structures tied to specific cryptographic algorithms.  The
   PKINIT key derivation function is made negotiable, and the digest
   algorithms for signing the pre-authentication data and the client's
   X.509 certificates are made discoverable.

   These changes provide preemptive protection against vulnerabilities
   discovered in the future in any specific cryptographic algorithm and
   allow incremental deployment of newer algorithms.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8636.











Hornquist Astrand, et al.    Standards Track                    [Page 1]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents

   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.
























Hornquist Astrand, et al.    Standards Track                    [Page 2]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Requirements Notation . . . . . . . . . . . . . . . . . . . .   4
   3.  paChecksum Agility  . . . . . . . . . . . . . . . . . . . . .   4
   4.  CMS Digest Algorithm Agility  . . . . . . . . . . . . . . . .   5
   5.  X.509 Certificate Signer Algorithm Agility  . . . . . . . . .   5
   6.  KDF Agility . . . . . . . . . . . . . . . . . . . . . . . . .   6
   7.  Interoperability  . . . . . . . . . . . . . . . . . . . . . .  11
   8.  Test Vectors  . . . . . . . . . . . . . . . . . . . . . . . .  12
     8.1.  Common Inputs . . . . . . . . . . . . . . . . . . . . . .  12
     8.2.  Test Vector for SHA-1, enctype 18 . . . . . . . . . . . .  12
       8.2.1.  Specific Inputs . . . . . . . . . . . . . . . . . . .  12
       8.2.2.  Outputs . . . . . . . . . . . . . . . . . . . . . . .  12
     8.3.  Test Vector for SHA-256, enctype 18 . . . . . . . . . . .  13
       8.3.1.  Specific Inputs . . . . . . . . . . . . . . . . . . .  13
       8.3.2.  Outputs . . . . . . . . . . . . . . . . . . . . . . .  13
     8.4.  Test Vector for SHA-512, enctype 16 . . . . . . . . . . .  13
       8.4.1.  Specific Inputs . . . . . . . . . . . . . . . . . . .  13
       8.4.2.  Outputs . . . . . . . . . . . . . . . . . . . . . . .  13
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  15
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  15
     11.2.  Informative References . . . . . . . . . . . . . . . . .  16
   Appendix A.  PKINIT ASN.1 Module  . . . . . . . . . . . . . . . .  18
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  21
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  21

1.  Introduction

   The Public Key Cryptography for Initial Authentication in Kerberos
   (PKINIT) standard [RFC4556] defines several protocol structures that
   are either tied to SHA-1 [RFC6234] or do not support negotiation or
   discovery but are instead based on local policy:

   o  The checksum algorithm in the authentication request is hardwired
      to use SHA-1.

   o  The acceptable digest algorithms for signing the authentication
      data are not discoverable.

   o  The key derivation function in Section 3.2.3.1 of [RFC4556] is
      hardwired to use SHA-1.

   o  The acceptable digest algorithms for signing the client X.509
      certificates are not discoverable.




Hornquist Astrand, et al.    Standards Track                    [Page 3]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   In August 2004, Xiaoyun Wang's research group reported MD4 [RFC6150]
   collisions [WANG04], alongside attacks on later hash functions
   including MD5 [RFC1321] and SHA-1 [RFC6234].  These attacks and their
   consequences are discussed in [RFC6194].  These discoveries
   challenged the security of protocols relying on the collision-
   resistance properties of these hashes.

   The Internet Engineering Task Force (IETF) called for action to
   update existing protocols to provide crypto algorithm agility so that
   protocols support multiple cryptographic algorithms (including hash
   functions) and provide clean, tested transition strategies between
   algorithms, as recommended by BCP 201 [RFC7696].

   To address these concerns, new key derivation functions (KDFs),
   identified by object identifiers, are defined.  The PKINIT client
   provides a list of KDFs in the request, and the Key Distribution
   Center (KDC) picks one in the response.  Thus, a mutually supported
   KDF is negotiated.

   Furthermore, structures are defined to allow the client to discover
   the Cryptographic Message Syntax (CMS) [RFC5652] digest algorithms
   supported by the KDC for signing the pre-authentication data and the
   client X.509 certificate.

2.  Requirements Notation

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  paChecksum Agility

   The paChecksum defined in Section 3.2.1 of [RFC4556] provides a
   cryptographic binding between the client's pre-authentication data
   and the corresponding Kerberos request body.  This also prevents the
   KDC-REQ body from being tampered with.  SHA-1 is the only allowed
   checksum algorithm defined in [RFC4556].  This facility relies on the
   collision-resistance properties of the SHA-1 checksum [RFC6234].

   When the reply key delivery mechanism is based on public key
   encryption as described in Section 3.2.3.2 of [RFC4556], the
   asChecksum in the KDC reply provides integrity protection for the
   unauthenticated clear text in these messages and the binding between
   the pre-authentication and the ticket request and response messages.
   However, if the reply key delivery mechanism is based on the Diffie-
   Hellman key agreement as described in Section 3.2.3.1 of [RFC4556],



Hornquist Astrand, et al.    Standards Track                    [Page 4]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   the security provided by using SHA-1 in the paChecksum is weak, and
   nothing else cryptographically binds the Authentication Service (AS)
   request to the ticket response.  In this case, the new KDF selected
   by the KDC, as described in Section 6, provides the cryptographic
   binding and integrity protection.

4.  CMS Digest Algorithm Agility

   Section 3.2.2 of [RFC4556] is updated to add optional typed data to
   the KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error.  When a KDC
   implementation conforming to this specification returns this error
   code, it MAY include a list of supported CMS types signifying the
   digest algorithms supported by the KDC in decreasing order of
   preference.  This is accomplished by including a
   TD_CMS_DATA_DIGEST_ALGORITHMS typed data element in the error data.

   td-cms-digest-algorithms INTEGER ::= 111

   The corresponding data for the TD_CMS_DATA_DIGEST_ALGORITHMS contains
   the TD-CMS-DIGEST-ALGORITHMS-DATA structure, which is ASN.1
   Distinguished Encoding Rules (DER) [X680] [X690] encoded and is
   defined as follows:

   TD-CMS-DIGEST-ALGORITHMS-DATA ::= SEQUENCE OF
       AlgorithmIdentifier
           -- Contains the list of CMS algorithm [RFC5652]
           -- identifiers indicating the digest algorithms
           -- acceptable to the KDC for signing CMS data in
           -- decreasing order of preference.

   The algorithm identifiers in TD-CMS-DIGEST-ALGORITHMS identify the
   digest algorithms supported by the KDC.

   This information sent by the KDC via TD_CMS_DATA_DIGEST_ALGORITHMS
   can facilitate troubleshooting when none of the digest algorithms
   supported by the client is supported by the KDC.

5.  X.509 Certificate Signer Algorithm Agility

   Section 3.2.2 of [RFC4556] is updated to add optional typed data to
   the KDC_ERR_DIGEST_IN_CERT_NOT_ACCEPTED error.  When a KDC conforming
   to this specification returns this error, it MAY send a list of
   digest algorithms acceptable to the KDC for use by the certification
   authority (CA) in signing the client's X.509 certificate in
   decreasing order of preference.  This is accomplished by including a
   TD_CERT_DIGEST_ALGORITHMS typed data element in the error data.  The
   corresponding data contains the ASN.1 DER encoding of the TD-CERT-
   DIGEST-ALGORITHMS-DATA structure defined as follows:



Hornquist Astrand, et al.    Standards Track                    [Page 5]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   td-cert-digest-algorithms INTEGER ::= 112

   TD-CERT-DIGEST-ALGORITHMS-DATA ::= SEQUENCE {
           allowedAlgorithms [0] SEQUENCE OF AlgorithmIdentifier,
                      -- Contains the list of CMS algorithm [RFC5652]
                      -- identifiers indicating the digest algorithms
                      -- that are used by the CA to sign the client's
                      -- X.509 certificate and are acceptable to the KDC
                      -- in the process of validating the client's X.509
                      -- certificate in decreasing order of
                      -- preference.
           rejectedAlgorithm [1] AlgorithmIdentifier OPTIONAL,
                      -- This identifies the digest algorithm that was
                      -- used to sign the client's X.509 certificate and
                      -- has been rejected by the KDC in the process of
                      -- validating the client's X.509 certificate
                      -- [RFC5280].
           ...
   }

   The KDC fills in the allowedAlgorithm field with the list of
   algorithm [RFC5652] identifiers indicating digest algorithms that are
   used by the CA to sign the client's X.509 certificate and are
   acceptable to the KDC in the process of validating the client's X.509
   certificate in decreasing order of preference.  The rejectedAlgorithm
   field identifies the signing algorithm for use in signing the
   client's X.509 certificate that has been rejected by the KDC in the
   process of validating the client's certificate [RFC5280].

6.  KDF Agility

   Section 3.2.3.1 of [RFC4556] is updated to define additional key
   derivation functions (KDFs) to derive a Kerberos protocol key based
   on the secret value generated by the Diffie-Hellman key exchange.
   Section 3.2.1 of [RFC4556] is updated to add a new field to the
   AuthPack structure to indicate which new KDFs are supported by the
   client.  Section 3.2.3 of [RFC4556] is updated to add a new field to
   the DHRepInfo structure to indicate which KDF is selected by the KDC.

   The KDF algorithm described in this document (based on [SP80056A])
   can be implemented using any cryptographic hash function.










Hornquist Astrand, et al.    Standards Track                    [Page 6]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   A new KDF for PKINIT usage is identified by an object identifier.
   The following KDF object identifiers are defined:

   id-pkinit OBJECT IDENTIFIER ::=
            { iso(1) identified-organization(3) dod(6) internet(1)
              security(5) kerberosv5(2) pkinit (3) }
       -- Defined in RFC 4556 and quoted here for the reader.

   id-pkinit-kdf OBJECT IDENTIFIER      ::= { id-pkinit kdf(6) }
       -- PKINIT KDFs

   id-pkinit-kdf-ah-sha1 OBJECT IDENTIFIER
       ::= { id-pkinit-kdf sha1(1) }
       -- SP800-56A ASN.1 structured hash-based KDF using SHA-1

   id-pkinit-kdf-ah-sha256 OBJECT IDENTIFIER
       ::= { id-pkinit-kdf sha256(2) }
       -- SP800-56A ASN.1 structured hash-based KDF using SHA-256

   id-pkinit-kdf-ah-sha512 OBJECT IDENTIFIER
       ::= { id-pkinit-kdf sha512(3) }
       -- SP800-56A ASN.1 structured hash-based KDF using SHA-512

   id-pkinit-kdf-ah-sha384 OBJECT IDENTIFIER
       ::= { id-pkinit-kdf sha384(4) }
       -- SP800-56A ASN.1 structured hash-based KDF using SHA-384

   Where id-pkinit is defined in [RFC4556].  All key derivation
   functions specified above use the one-step key derivation method
   described in Section 5.8.2.1 of [SP80056A], choosing the ASN.1 format
   for FixedInfo, and Section 4.1 of [SP80056C], choosing option 1 for
   the auxiliary function H.  id-pkinit-kdf-ah-sha1 uses SHA-1 [RFC6234]
   as the hash function.  id-pkinit-kdf-ah-sha256, id-pkinit-kdf-ah-
   sha356, and id-pkinit-kdf-ah-sha512 use SHA-256 [RFC6234], SHA-384
   [RFC6234], and SHA-512 [RFC6234], respectively.

   To name the input parameters, an abbreviated version of the key
   derivation method is described below.

   1.  reps = ceiling(L/H_outputBits)

   2.  Initialize a 32-bit, big-endian bit string counter as 1.

   3.  For i = 1 to reps by 1, do the following:

       1.  Compute Hashi = H(counter || Z || OtherInfo).

       2.  Increment counter (not to exceed 2^32-1)



Hornquist Astrand, et al.    Standards Track                    [Page 7]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   4.  Set key_material = Hash1 || Hash2 || ... so that the length of
       key_material is L bits, truncating the last block as necessary.

   5.  The above KDF produces a bit string of length L in bits as the
       keying material.  The AS reply key is the output of random-to-
       key() [RFC3961], using that keying material as the input.

   The input parameters for these KDFs are provided as follows:

   o  H_outputBits is 160 bits for id-pkinit-kdf-ah-sha1, 256 bits for
      id-pkinit-kdf-ah-sha256, 384 bits for id-pkinit-kdf-ah-sha384, and
      512 bits for id-pkinit-kdf-ah-sha512.

   o  max_H_inputBits is 2^64.

   o  The secret value (Z) is the shared secret value generated by the
      Diffie-Hellman exchange.  The Diffie-Hellman shared value is first
      padded with leading zeros such that the size of the secret value
      in octets is the same as that of the modulus, then represented as
      a string of octets in big-endian order.

   o  The key data length (L) is the key-generation seed length in bits
      [RFC3961] for the Authentication Service (AS) reply key.  The
      enctype of the AS reply key is selected according to [RFC4120].

   o  The algorithm identifier (algorithmID) input parameter is the
      identifier of the respective KDF.  For example, this is id-pkinit-
      kdf-ah-sha1 if the KDF uses SHA-1 as the hash.

   o  The initiator identifier (partyUInfo) contains the ASN.1 DER
      encoding of the KRB5PrincipalName [RFC4556] that identifies the
      client as specified in the AS-REQ [RFC4120] in the request.

   o  The recipient identifier (partyVInfo) contains the ASN.1 DER
      encoding of the KRB5PrincipalName [RFC4556] that identifies the
      ticket-granting server (TGS) as specified in the AS-REQ [RFC4120]
      in the request.

   o  The supplemental public information (suppPubInfo) is the ASN.1 DER
      encoding of the PkinitSuppPubInfo structure, as defined later in
      this section.

   o  The supplemental private information (suppPrivInfo) is absent.








Hornquist Astrand, et al.    Standards Track                    [Page 8]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   OtherInfo is the ASN.1 DER encoding of the following sequence:

   OtherInfo ::= SEQUENCE {
           algorithmID   AlgorithmIdentifier,
           partyUInfo     [0] OCTET STRING,
           partyVInfo     [1] OCTET STRING,
           suppPubInfo    [2] OCTET STRING OPTIONAL,
           suppPrivInfo   [3] OCTET STRING OPTIONAL
   }

   The PkinitSuppPubInfo structure is defined as follows:

   PkinitSuppPubInfo ::= SEQUENCE {
          enctype           [0] Int32,
              -- The enctype of the AS reply key.
          as-REQ            [1] OCTET STRING,
              -- The DER encoding of the AS-REQ [RFC4120] from the
              -- client.
          pk-as-rep         [2] OCTET STRING,
              -- The DER encoding of the PA-PK-AS-REP [RFC4556] in the
              -- KDC reply.
          ...
   }

   The PkinitSuppPubInfo structure contains mutually known public
   information specific to the authentication exchange.  The enctype
   field is the enctype of the AS reply key as selected according to
   [RFC4120].  The as-REQ field contains the DER encoding of the AS-REQ
   type [RFC4120] in the request sent from the client to the KDC.  Note
   that the as-REQ field does not include the wrapping 4-octet length
   when TCP is used.  The pk-as-rep field contains the DER encoding of
   the PA-PK-AS-REP [RFC4556] type in the KDC reply.  The
   PkinitSuppPubInfo provides a cryptographic binding between the pre-
   authentication data and the corresponding ticket request and
   response, thus addressing the concerns described in Section 3.

   The KDF is negotiated between the client and the KDC.  The client
   sends an unordered set of supported KDFs in the request, and the KDC
   picks one from the set in the reply.












Hornquist Astrand, et al.    Standards Track                    [Page 9]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   To accomplish this, the AuthPack structure in [RFC4556] is extended
   as follows:

   AuthPack ::= SEQUENCE {
          pkAuthenticator   [0] PKAuthenticator,
          clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL,
          supportedCMSTypes [2] SEQUENCE OF AlgorithmIdentifier
                   OPTIONAL,
          clientDHNonce     [3] DHNonce OPTIONAL,
          ...,
          supportedKDFs     [4] SEQUENCE OF KDFAlgorithmId OPTIONAL,
              -- Contains an unordered set of KDFs supported by the
              -- client.
          ...
   }

   KDFAlgorithmId ::= SEQUENCE {
          kdf-id            [0] OBJECT IDENTIFIER,
              -- The object identifier of the KDF
          ...
   }

   The new supportedKDFs field contains an unordered set of KDFs
   supported by the client.

   The KDFAlgorithmId structure contains an object identifier that
   identifies a KDF.  The algorithm of the KDF and its parameters are
   defined by the corresponding specification of that KDF.

   The DHRepInfo structure in [RFC4556] is extended as follows:

   DHRepInfo ::= SEQUENCE {
           dhSignedData         [0] IMPLICIT OCTET STRING,
           serverDHNonce        [1] DHNonce OPTIONAL,
           ...,
           kdf                  [2] KDFAlgorithmId OPTIONAL,
               -- The KDF picked by the KDC.
           ...
   }

   The new kdf field in the extended DHRepInfo structure identifies the
   KDF picked by the KDC.  If the supportedKDFs field is present in the
   request, a KDC conforming to this specification MUST choose one of
   the KDFs supported by the client and indicate its selection in the
   kdf field in the reply.  If the supportedKDFs field is absent in the
   request, the KDC MUST omit the kdf field in the reply and use the key





Hornquist Astrand, et al.    Standards Track                   [Page 10]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   derivation function from Section 3.2.3.1 of [RFC4556].  If none of
   the KDFs supported by the client is acceptable to the KDC, the KDC
   MUST reply with the new error code KDC_ERR_NO_ACCEPTABLE_KDF:

   o  KDC_ERR_NO_ACCEPTABLE_KDF 100

   If the client fills the supportedKDFs field in the request but the
   kdf field in the reply is not present, the client can deduce that the
   KDC is not updated to conform with this specification, or that the
   exchange was subjected to a downgrade attack.  It is a matter of
   local policy on the client whether to reject the reply when the kdf
   field is absent in the reply; if compatibility with non-updated KDCs
   is not a concern, the reply should be rejected.

   Implementations conforming to this specification MUST support
   id-pkinit-kdf-ah-sha256.

7.  Interoperability

   An old client interoperating with a new KDC will not recognize a
   TD-CMS-DIGEST-ALGORITHMS-DATA element in a
   KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error or a TD-CERT-DIGEST-
   ALGORITHMS-DATA element in a KDC_ERR_DIGEST_IN_CERT_NOT_ACCEPTED
   error.  Because the error data is encoded as typed data, the client
   will ignore the unrecognized elements.

   An old KDC interoperating with a new client will not include a
   TD-CMS-DIGEST-ALGORITHMS-DATA element in a
   KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error or a TD-CERT-DIGEST-
   ALGORITHMS-DATA element in a KDC_ERR_DIGEST_IN_CERT_NOT_ACCEPTED
   error.  To the client, this appears just as if a new KDC elected not
   to include a list of digest algorithms.

   An old client interoperating with a new KDC will not include the
   supportedKDFs field in the request.  The KDC MUST omit the kdf field
   in the reply and use the [RFC4556] KDF as expected by the client or
   reject the request if local policy forbids use of the old KDF.

   A new client interoperating with an old KDC will include the
   supportedKDFs field in the request; this field will be ignored as an
   unknown extension by the KDC.  The KDC will omit the kdf field in the
   reply and will use the [RFC4556] KDF.  The client can deduce from the
   omitted kdf field that the KDC is not updated to conform to this
   specification or that the exchange was subjected to a downgrade
   attack.  The client MUST use the [RFC4556] KDF or reject the reply if
   local policy forbids the use of the old KDF.





Hornquist Astrand, et al.    Standards Track                   [Page 11]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


8.  Test Vectors

   This section contains test vectors for the KDF defined above.

8.1.  Common Inputs

Z: Length = 256 bytes, Hex Representation = (All Zeros)
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000

client: Length = 9 bytes, ASCII Representation = lha@SU.SE

server: Length = 18 bytes, ASCII Representation = krbtgt/SU.SE@SU.SE

as-req: Length = 10 bytes, Hex Representation =
AAAAAAAA AAAAAAAA AAAA

pk-as-rep:  Length = 9 bytes, Hex Representation =
BBBBBBBB BBBBBBBB BB

ticket: Length =  55 bytes, Hex Representation =
61353033 A0030201 05A1071B 0553552E 5345A210 300EA003 020101A1 0730051B
036C6861 A311300F A0030201 12A20804 0668656A 68656A

8.2.  Test Vector for SHA-1, enctype 18

8.2.1.  Specific Inputs

   algorithm-id: (id-pkinit-kdf-ah-sha1) Length = 8 bytes, Hex
   Representation = 2B060105 02030601

   enctype: (aes256-cts-hmac-sha1-96) Length = 1 byte, Decimal
   Representation = 18

8.2.2.  Outputs

 key-material: Length = 32 bytes, Hex Representation =
 E6AB38C9 413E035B B079201E D0B6B73D 8D49A814 A737C04E E6649614 206F73AD

 key: Length = 32 bytes, Hex Representation =
 E6AB38C9 413E035B B079201E D0B6B73D 8D49A814 A737C04E E6649614 206F73AD




Hornquist Astrand, et al.    Standards Track                   [Page 12]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


8.3.  Test Vector for SHA-256, enctype 18

8.3.1.  Specific Inputs

   algorithm-id: (id-pkinit-kdf-ah-sha256) Length = 8 bytes, Hex
   Representation = 2B060105 02030602

   enctype: (aes256-cts-hmac-sha1-96) Length = 1 byte, Decimal
   Representation = 18

8.3.2.  Outputs

 key-material: Length = 32 bytes, Hex Representation =
 77EF4E48 C420AE3F EC75109D 7981697E ED5D295C 90C62564 F7BFD101 FA9bC1D5

 key: Length = 32 bytes, Hex Representation =
 77EF4E48 C420AE3F EC75109D 7981697E ED5D295C 90C62564 F7BFD101 FA9bC1D5

8.4.  Test Vector for SHA-512, enctype 16

8.4.1.  Specific Inputs

   algorithm-id: (id-pkinit-kdf-ah-sha512) Length = 8 bytes, Hex
   Representation = 2B060105 02030603

   enctype: (des3-cbc-sha1-kd) Length = 1 byte, Decimal
   Representation = 16

8.4.2.  Outputs

   key-material: Length = 24 bytes, Hex Representation =
   D3C78A79 D65213EF E9A826F7 5DFB01F7 2362FB16 FB01DAD6

   key: Length = 32 bytes, Hex Representation =
   D3C78A79 D65213EF E9A826F7 5DFB01F7 2362FB16 FB01DAD6

9.  Security Considerations

   This document describes negotiation of checksum types, key derivation
   functions, and other cryptographic functions.  If a given negotiation
   is unauthenticated, care must be taken to accept only secure values;
   to do otherwise allows an active attacker to perform a downgrade
   attack.

   The discovery method described in Section 4 uses a Kerberos error
   message, which is unauthenticated in a typical exchange.  An attacker
   may attempt to downgrade a client to a weaker CMS type by forging a
   KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error.  It is a matter of



Hornquist Astrand, et al.    Standards Track                   [Page 13]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   local policy whether a client accepts a downgrade to a weaker CMS
   type and whether the KDC accepts the weaker CMS type.  A client may
   reasonably assume that the real KDC implements all hash functions
   used in the client's X.509 certificate, and so the client may refuse
   attempts to downgrade to weaker hash functions.

   The discovery method described in Section 5 also uses a Kerberos
   error message.  An attacker may attempt to downgrade a client to a
   certificate using a weaker signing algorithm by forging a
   KDC_ERR_DIGEST_IN_CERT_NOT_ACCEPTED error.  It is a matter of local
   policy whether a client accepts a downgrade to a weaker certificate
   and whether the KDC accepts the weaker certificate.  This attack is
   only possible if the client device possesses multiple client
   certificates of varying strengths.

   In the KDF negotiation method described in Section 6, the client
   supportedKDFs value is protected by the signature on the
   signedAuthPack field in the request.  If this signature algorithm is
   vulnerable to collision attacks, an attacker may attempt to downgrade
   the negotiation by substituting an AuthPack with a different or
   absent supportedKDFs value, using a PKINIT freshness token [RFC8070]
   to partially control the legitimate AuthPack value.  A client that is
   performing anonymous PKINIT [RFC8062] does not sign the AuthPack, so
   an attacker can easily remove the supportedKDFs value in this case.
   Finally, the kdf field in the DHRepInfo of the KDC response is
   unauthenticated and could be altered or removed by an attacker,
   although this alteration will likely result in a decryption failure
   by the client rather than a successful downgrade.  It is a matter of
   local policy whether a client accepts a downgrade to the old KDF and
   whether the KDC allows the use of the old KDF.

   The paChecksum field, which binds the client pre-authentication data
   to the Kerberos request body, remains fixed at SHA-1.  If an attacker
   substitutes a different request body using an attack against SHA-1 (a
   second preimage attack is likely required as the attacker does not
   control any part of the legitimate request body), the KDC will not
   detect the substitution.  Instead, if a new KDF is negotiated, the
   client will detect the substitution by failing to decrypt the reply.

   An attacker may attempt to impersonate the KDC to the client via an
   attack on the hash function used in the dhSignedData signature,
   substituting the attacker's subjectPublicKey for the legitimate one
   without changing the hash value.  It is a matter of local policy
   which hash function the KDC uses in its signature and which hash
   functions the client will accept in the KDC signature.  A KDC may
   reasonably assume that the client implements all hash functions used
   in the KDF algorithms listed the supportedKDFs field of the request.




Hornquist Astrand, et al.    Standards Track                   [Page 14]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


10.  IANA Considerations

   IANA has made the following assignments in the Kerberos "Pre-
   authentication and Typed Data" registry created by Section 7.1 of RFC
   6113.

               TD-CMS-DIGEST-ALGORITHMS   111  [RFC8636]
               TD-CERT-DIGEST-ALGORITHMS  112  [RFC8636]

11.  References

11.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3961]  Raeburn, K., "Encryption and Checksum Specifications for
              Kerberos 5", RFC 3961, DOI 10.17487/RFC3961, February
              2005, <https://www.rfc-editor.org/info/rfc3961>.

   [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
              Kerberos Network Authentication Service (V5)", RFC 4120,
              DOI 10.17487/RFC4120, July 2005,
              <https://www.rfc-editor.org/info/rfc4120>.

   [RFC4556]  Zhu, L. and B. Tung, "Public Key Cryptography for Initial
              Authentication in Kerberos (PKINIT)", RFC 4556,
              DOI 10.17487/RFC4556, June 2006,
              <https://www.rfc-editor.org/info/rfc4556>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234,
              DOI 10.17487/RFC6234, May 2011,
              <https://www.rfc-editor.org/info/rfc6234>.





Hornquist Astrand, et al.    Standards Track                   [Page 15]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [SP80056A] Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
              Davis, "Recommendation for Pair-Wise Key-Establishment
              Schemes Using Discrete Logarithm Cryptography", NIST
              Special Publications 800-56A, Revision 3,
              DOI 10.6028/NIST.SP.800-56Ar3, April 2018,
              <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-56Ar3.pdf>.

   [SP80056C] Barker, E., Chen, L., and R. Davis, "Recommendation for
              Key-Derivation Methods in Key-Establishment Schemes", NIST
              Special Publications 800-56C, Revision 1,
              DOI 10.6028/NIST.SP.800-56Cr1, April 2018,
              <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-56Cr1.pdf>.

   [X680]     ITU-T, "Information technology - Abstract Syntax Notation
              One (ASN.1): Specification of basic notation", ITU-T
              Recommendation X.680, August 2015,
              <https://www.itu.int/rec/T-REC-X.680-201508-I/en>.

   [X690]     ITU-T, "Information technology - ASN.1 encoding Rules:
              Specification of Basic Encoding Rules (BER), Canonical
              Encoding Rules (CER) and Distinguished Encoding Rules
              (DER)", ITU-T Recommendation X.690, August 2015,
              <https://www.itu.int/rec/T-REC-X.690-201508-I/en>.

11.2.  Informative References

   [RFC1321]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
              DOI 10.17487/RFC1321, April 1992,
              <https://www.rfc-editor.org/info/rfc1321>.

   [RFC6150]  Turner, S. and L. Chen, "MD4 to Historic Status",
              RFC 6150, DOI 10.17487/RFC6150, March 2011,
              <https://www.rfc-editor.org/info/rfc6150>.

   [RFC6194]  Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
              Considerations for the SHA-0 and SHA-1 Message-Digest
              Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
              <https://www.rfc-editor.org/info/rfc6194>.







Hornquist Astrand, et al.    Standards Track                   [Page 16]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   [RFC7696]  Housley, R., "Guidelines for Cryptographic Algorithm
              Agility and Selecting Mandatory-to-Implement Algorithms",
              BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
              <https://www.rfc-editor.org/info/rfc7696>.

   [RFC8062]  Zhu, L., Leach, P., Hartman, S., and S. Emery, Ed.,
              "Anonymity Support for Kerberos", RFC 8062,
              DOI 10.17487/RFC8062, February 2017,
              <https://www.rfc-editor.org/info/rfc8062>.

   [RFC8070]  Short, M., Ed., Moore, S., and P. Miller, "Public Key
              Cryptography for Initial Authentication in Kerberos
              (PKINIT) Freshness Extension", RFC 8070,
              DOI 10.17487/RFC8070, February 2017,
              <https://www.rfc-editor.org/info/rfc8070>.

   [WANG04]   Wang, X., Lai, X., Feng, D., Chen, H., and X. Yu,
              "Cryptanalysis of the Hash Functions MD4 and RIPEMD",
              Advances in Cryptology - EUROCRYPT 2005,
              DOI 10.1007/11426639_1, August 2004.































Hornquist Astrand, et al.    Standards Track                   [Page 17]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


Appendix A.  PKINIT ASN.1 Module

   KerberosV5-PK-INIT-Agility-SPEC {
          iso(1) identified-organization(3) dod(6) internet(1)
          security(5) kerberosV5(2) modules(4) pkinit(5) agility (1)
   } DEFINITIONS EXPLICIT TAGS ::= BEGIN

   IMPORTS
      AlgorithmIdentifier, SubjectPublicKeyInfo
          FROM PKIX1Explicit88 { iso (1)
            identified-organization (3) dod (6) internet (1)
            security (5) mechanisms (5) pkix (7) id-mod (0)
            id-pkix1-explicit (18) }
            -- As defined in RFC 5280.

      Ticket, Int32, Realm, EncryptionKey, Checksum
          FROM KerberosV5Spec2 { iso(1) identified-organization(3)
            dod(6) internet(1) security(5) kerberosV5(2)
            modules(4) krb5spec2(2) }
            -- as defined in RFC 4120.

      PKAuthenticator, DHNonce, id-pkinit
          FROM KerberosV5-PK-INIT-SPEC {
            iso(1) identified-organization(3) dod(6) internet(1)
            security(5) kerberosV5(2) modules(4) pkinit(5) };
            -- as defined in RFC 4556.

   id-pkinit-kdf OBJECT IDENTIFIER      ::= { id-pkinit kdf(6) }
       -- PKINIT KDFs

   id-pkinit-kdf-ah-sha1 OBJECT IDENTIFIER
       ::= { id-pkinit-kdf sha1(1) }
       -- SP800-56A ASN.1 structured hash-based KDF using SHA-1

   id-pkinit-kdf-ah-sha256 OBJECT IDENTIFIER
       ::= { id-pkinit-kdf sha256(2) }
       -- SP800-56A ASN.1 structured hash-based KDF using SHA-256

   id-pkinit-kdf-ah-sha512 OBJECT IDENTIFIER
       ::= { id-pkinit-kdf sha512(3) }
       -- SP800-56A ASN.1 structured hash-based KDF using SHA-512

   id-pkinit-kdf-ah-sha384 OBJECT IDENTIFIER
       ::= { id-pkinit-kdf sha384(4) }
       -- SP800-56A ASN.1 structured hash-based KDF using SHA-384






Hornquist Astrand, et al.    Standards Track                   [Page 18]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   TD-CMS-DIGEST-ALGORITHMS-DATA ::= SEQUENCE OF
       AlgorithmIdentifier
           -- Contains the list of CMS algorithm [RFC5652]
           -- identifiers indicating the digest algorithms
           -- acceptable to the KDC for signing CMS data in
           -- decreasing order of preference.

   TD-CERT-DIGEST-ALGORITHMS-DATA ::= SEQUENCE {
          allowedAlgorithms [0] SEQUENCE OF AlgorithmIdentifier,
              -- Contains the list of CMS algorithm [RFC5652]
              -- identifiers indicating the digest algorithms
              -- that are used by the CA to sign the client's
              -- X.509 certificate and are acceptable to the KDC
              -- in the process of validating the client's X.509
              -- certificate in decreasing order of
              -- preference.
          rejectedAlgorithm [1] AlgorithmIdentifier OPTIONAL,
              -- This identifies the digest algorithm that was
              -- used to sign the client's X.509 certificate and
              -- has been rejected by the KDC in the process of
              -- validating the client's X.509 certificate
              -- [RFC5280].
          ...
   }

   OtherInfo ::= SEQUENCE {
           algorithmID   AlgorithmIdentifier,
           partyUInfo     [0] OCTET STRING,
           partyVInfo     [1] OCTET STRING,
           suppPubInfo    [2] OCTET STRING OPTIONAL,
           suppPrivInfo   [3] OCTET STRING OPTIONAL
   }

   PkinitSuppPubInfo ::= SEQUENCE {
          enctype           [0] Int32,
              -- The enctype of the AS reply key.
          as-REQ            [1] OCTET STRING,
              -- The DER encoding of the AS-REQ [RFC4120] from the
              -- client.
          pk-as-rep         [2] OCTET STRING,
              -- The DER encoding of the PA-PK-AS-REP [RFC4556] in the
              -- KDC reply.
          ...
   }







Hornquist Astrand, et al.    Standards Track                   [Page 19]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


   AuthPack ::= SEQUENCE {
          pkAuthenticator   [0] PKAuthenticator,
          clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL,
          supportedCMSTypes [2] SEQUENCE OF AlgorithmIdentifier
                   OPTIONAL,
          clientDHNonce     [3] DHNonce OPTIONAL,
          ...,
          supportedKDFs     [4] SEQUENCE OF KDFAlgorithmId OPTIONAL,
              -- Contains an unordered set of KDFs supported by the
              -- client.
          ...
   }

   KDFAlgorithmId ::= SEQUENCE {
          kdf-id            [0] OBJECT IDENTIFIER,
              -- The object identifier of the KDF
          ...
   }

   DHRepInfo ::= SEQUENCE {
          dhSignedData      [0] IMPLICIT OCTET STRING,
          serverDHNonce     [1] DHNonce OPTIONAL,
          ...,
          kdf               [2] KDFAlgorithmId OPTIONAL,
              -- The KDF picked by the KDC.
          ...
   }
   END























Hornquist Astrand, et al.    Standards Track                   [Page 20]
^L
RFC 8636                PKINIT Algorithm Agility               July 2019


Acknowledgements

   Jeffery Hutzelman, Shawn Emery, Tim Polk, Kelley Burgin, Ben Kaduk,
   Scott Bradner, and Eric Rescorla reviewed the document and provided
   suggestions for improvements.

Authors' Addresses

   Love Hornquist Astrand
   Apple, Inc
   Cupertino, CA
   United States of America

   Email: lha@apple.com


   Larry Zhu
   Oracle Corporation
   500 Oracle Parkway
   Redwood Shores, CA  94065
   United States of America

   Email: larryzhu@live.com


   Margaret Cullen
   Painless Security
   4 High St, Suite 134
   North Andover, MA  01845
   United States of America

   Phone: +1 781-405-7464
   Email: margaret@painless-security.com


   Greg Hudson
   MIT

   Email: ghudson@mit.edu












Hornquist Astrand, et al.    Standards Track                   [Page 21]
^L