summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8645.txt
blob: 8c60bf0489fbedf0c6fc2a6c43faf9fa0daf7abd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
Internet Research Task Force (IRTF)                   S. Smyshlyaev, Ed.
Request for Comments: 8645                                     CryptoPro
Category: Informational                                      August 2019
ISSN: 2070-1721


                Re-keying Mechanisms for Symmetric Keys

Abstract

   A certain maximum amount of data can be safely encrypted when
   encryption is performed under a single key.  This amount is called
   the "key lifetime".  This specification describes a variety of
   methods for increasing the lifetime of symmetric keys.  It provides
   two types of re-keying mechanisms based on hash functions and block
   ciphers that can be used with modes of operations such as CTR, GCM,
   CBC, CFB, and OMAC.

   This document is a product of the Crypto Forum Research Group (CFRG)
   in the IRTF.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Research Task Force
   (IRTF).  The IRTF publishes the results of Internet-related research
   and development activities.  These results might not be suitable for
   deployment.  This RFC represents the consensus of the Crypto Forum
   Research Group of the Internet Research Task Force (IRTF).  Documents
   approved for publication by the IRSG are not candidates for any level
   of Internet Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8645.














Smyshlyaev                    Informational                     [Page 1]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.








































Smyshlyaev                    Informational                     [Page 2]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Conventions Used in This Document . . . . . . . . . . . . . .   7
   3.  Basic Terms and Definitions . . . . . . . . . . . . . . . . .   7
   4.  Choosing Constructions and Security Parameters  . . . . . . .   9
   5.  External Re-keying Mechanisms . . . . . . . . . . . . . . . .  11
     5.1.  Methods of Key Lifetime Control . . . . . . . . . . . . .  14
     5.2.  Parallel Constructions  . . . . . . . . . . . . . . . . .  14
       5.2.1.  Parallel Construction Based on a KDF on a Block
               Cipher  . . . . . . . . . . . . . . . . . . . . . . .  15
       5.2.2.  Parallel Construction Based on a KDF on a Hash
               Function  . . . . . . . . . . . . . . . . . . . . . .  16
       5.2.3.  Tree-Based Construction . . . . . . . . . . . . . . .  16
     5.3.  Serial Constructions  . . . . . . . . . . . . . . . . . .  17
       5.3.1.  Serial Construction Based on a KDF on a Block Cipher   19
       5.3.2.  Serial Construction Based on a KDF on a Hash Function  19
     5.4.  Using Additional Entropy during Re-keying . . . . . . . .  19
   6.  Internal Re-keying Mechanisms . . . . . . . . . . . . . . . .  20
     6.1.  Methods of Key Lifetime Control . . . . . . . . . . . . .  22
     6.2.  Constructions that Do Not Require a Master Key  . . . . .  23
       6.2.1.  ACPKM Re-keying Mechanisms  . . . . . . . . . . . . .  23
       6.2.2.  CTR-ACPKM Encryption Mode . . . . . . . . . . . . . .  25
       6.2.3.  GCM-ACPKM Authenticated Encryption Mode . . . . . . .  26
     6.3.  Constructions that Require a Master Key . . . . . . . . .  29
       6.3.1.  ACPKM-Master Key Derivation from the Master Key . . .  29
       6.3.2.  CTR-ACPKM-Master Encryption Mode  . . . . . . . . . .  31
       6.3.3.  GCM-ACPKM-Master Authenticated Encryption Mode  . . .  33
       6.3.4.  CBC-ACPKM-Master Encryption Mode  . . . . . . . . . .  37
       6.3.5.  CFB-ACPKM-Master Encryption Mode  . . . . . . . . . .  39
       6.3.6.  OMAC-ACPKM-Master Authentication Mode . . . . . . . .  40
   7.  Joint Usage of External and Internal Re-keying  . . . . . . .  42
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  43
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  43
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  44
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  44
     10.2.  Informative References . . . . . . . . . . . . . . . . .  45
   Appendix A.  Test Examples  . . . . . . . . . . . . . . . . . . .  48
     A.1.  Test Examples for External Re-keying  . . . . . . . . . .  48
       A.1.1.  External Re-keying with a Parallel Construction . . .  48
       A.1.2.  External Re-keying with a Serial Construction . . . .  49
     A.2.  Test Examples for Internal Re-keying  . . . . . . . . . .  52
       A.2.1.  Internal Re-keying Mechanisms that Do Not
               Require a Master Key  . . . . . . . . . . . . . . . .  52
       A.2.2.  Internal Re-keying Mechanisms with a Master Key . . .  56
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  69
   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  69
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  69



Smyshlyaev                    Informational                     [Page 3]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


1.  Introduction

   A certain maximum amount of data can be safely encrypted when
   encryption is performed under a single key.  Hereinafter, this amount
   will be referred to as the "key lifetime".  The need for such a
   limitation is dictated by the following methods of cryptanalysis:

   1.  Methods based on the combinatorial properties of the used block
       cipher mode of operation

          These methods do not depend on the underlying block cipher.
          Common mode restrictions derived from such methods are of
          order 2^{n/2}, where n is a block size defined in Section 3.
          [Sweet32] includes an example of an attack that is based on
          such methods.

   2.  Methods based on side-channel analysis issues

          In most cases, these methods do not depend on the used
          encryption modes and weakly depend on the used cipher
          features.  Limitations resulting from these considerations are
          usually the most restrictive ones.  [TEMPEST] is an example of
          an attack that is based on such methods.

   3.  Methods based on the properties of the used block cipher

          The most common methods of this type are linear and
          differential cryptanalysis [LDC].  In most cases, these
          methods do not depend on the used modes of operation.  In the
          case of secure block ciphers, bounds resulting from such
          methods are roughly the same as the natural bounds of 2^n and
          are dominated by the other bounds above.  Therefore, they can
          be excluded from the considerations here.

   As a result, it is important to replace a key when the total size of
   the processed plaintext under that key approaches the lifetime
   limitation.  A specific value of the key lifetime should be
   determined in accordance with some safety margin for protocol
   security and the methods outlined above.

   Suppose L is a key lifetime limitation in some protocol P.  For
   simplicity, assume that all messages have the same length m.  Hence,
   the number of messages q that can be processed with a single key K
   should be such that m * q <= L.  This can be depicted graphically as
   a rectangle with sides m and q enclosed by area L (see Figure 1).






Smyshlyaev                    Informational                     [Page 4]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


                      +------------------------+
                      |                      L |
                      | +--------m---------+   |
                      | |==================|   |
                      | |==================|   |
                      | q==================|   |       m * q <= L
                      | |==================|   |
                      | |==================|   |
                      | +------------------+   |
                      +------------------------+

         Figure 1: Graphic Display of the Key Lifetime Limitation

   In practice, the amount of data that corresponds to limitation L may
   not be enough.  The simplest and obvious solution in this situation
   is a regular renegotiation of an initial key after processing this
   threshold amount of data L.  However, this reduces the total
   performance, since it usually entails termination of application data
   transmission, additional service messages, the use of a random number
   generator, and many other additional calculations, including
   resource-intensive public key cryptography.

   For protocols based on block ciphers or stream ciphers, a more
   efficient way to increase the key lifetime is to use various
   re-keying mechanisms.  This specification considers re-keying
   mechanisms for block ciphers only; re-keying mechanisms typical for
   stream ciphers (e.g., [Pietrzak2009], [FPS2012]) are beyond the scope
   of this document.

   Re-keying mechanisms can be applied at the different protocol levels:
   the block cipher level (this approach is known as fresh re-keying and
   is described, for instance, in [FRESHREKEYING]; the block cipher mode
   of operation level (see Section 6); and the protocol level above the
   block cipher mode of operation (see Section 5).  The usage of the
   first approach is highly inefficient due to the key changing after
   each message block is processed.  Moreover, fresh re-keying
   mechanisms can change the block cipher internal structure and,
   consequently, can require an additional security analysis for each
   particular block cipher.  As a result, this approach depends on
   particular primitive properties and cannot be applied to any
   arbitrary block cipher without additional security analysis.
   Therefore, fresh re-keying mechanisms go beyond the scope of this
   document.

   Thus, this document contains the list of recommended re-keying
   mechanisms that can be used in the symmetric encryption schemes based
   on the block ciphers.  These mechanisms are independent from the




Smyshlyaev                    Informational                     [Page 5]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   particular block cipher specification, and their security properties
   rely only on the standard block cipher security assumption.

   This specification presents two basic approaches to extending the
   lifetime of a key while avoiding renegotiation, which were introduced
   in [AAOS2017]:

   1.  External re-keying

      External re-keying is performed by a protocol, and it is
      independent of the underlying block cipher and the mode of
      operation.  External re-keying can use parallel and serial
      constructions.  In the parallel case, data processing keys K^1,
      K^2, ... are generated directly from the initial key K
      independently of each other.  In the serial case, every data-
      processing key depends on the state that is updated after the
      generation of each new data-processing key.

      As a generalization of external parallel re-keying, an external
      tree-based mechanism can be considered.  It is specified in
      Section 5.2.3 and can be viewed as the tree generalization in
      [GGM].  Similar constructions are used in the one-way tree
      mechanism ([OWT]) and [AESDUKPT] standard.

   2.  Internal re-keying

      Internal re-keying is built into the mode, and it depends heavily
      on the properties of the mode of operation and the block size.

   The re-keying approaches extend the key lifetime for a single initial
   key by allowing the leakages to be limited (via side channels) and by
   improving the combinatorial properties of the used block cipher mode
   of operation.

   In practical applications, re-keying can be useful for protocols that
   need to operate in hostile environments or under restricted resource
   conditions (e.g., those that require lightweight cryptography, where
   ciphers have a small block size that imposes strict combinatorial
   limitations).  Moreover, mechanisms that use external or internal
   re-keying may provide some protection against possible future attacks
   (by limiting the number of plaintext-ciphertext pairs that an
   adversary can collect) and some properties of forward or backward
   security (meaning that past or future data-processing keys remain
   secure even if the current key is compromised; see [AbBell] for more
   details).  External or internal re-keying can be used in network
   protocols as well as in the systems for data-at-rest encryption.





Smyshlyaev                    Informational                     [Page 6]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Depending on the concrete protocol characteristics, there might be
   situations in which both external and internal re-keying mechanisms
   (see Section 7) can be applied.  For example, a similar approach was
   used in Taha's tree construction (see [TAHA]).

   Note that there are key-updating (key regression) algorithms (e.g.,
   [FKK2005] and [KMNT2003]) that are called "re-keying" as well, but
   they pursue goals other than increasing the key lifetime.  Therefore,
   key regression algorithms are excluded from the considerations here.

   This document represents the consensus of the Crypto Forum Research
   Group (CFRG).

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Basic Terms and Definitions

   This document uses the following terms and definitions for the sets
   and operations on the elements of these sets:

   V*      the set of all bit strings of a finite length (hereinafter
           referred to as strings), including the empty string;

   V_s     the set of all bit strings of length s, where s is a
           non-negative integer;

   |X|     the bit length of the bit string X;

   A | B   the concatenation of strings A and B both belonging to V*,
           i.e., a string in V_{|A|+|B|}, where the left substring in
           V_|A| is equal to A and the right substring in V_|B| is equal
           to B;

   (xor)   the exclusive-or of two bit strings of the same length;

   Z_{2^n} the ring of residues modulo 2^n;

   Int_s: V_s -> Z_{2^s}
           the transformation that maps the string a = (a_s, ... , a_1)
           in V_s into the integer Int_s(a) = 2^{s-1} * a_s + ... + 2 *
           a_2 + a_1 (the interpretation of the binary string as an
           integer);



Smyshlyaev                    Informational                     [Page 7]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Vec_s: Z_{2^s} -> V_s
           the transformation inverse to the mapping Int_s (the
           interpretation of an integer as a binary string);

   MSB_i: V_s -> V_i
           the transformation that maps the string a = (a_s, ... , a_1)
           in V_s into the string MSB_i(a) = (a_s, ... , a_{s-i+1}) in
           V_i (most significant bits);

   LSB_i: V_s -> V_i
           the transformation that maps the string a = (a_s, ... , a_1)
           in V_s into the string LSB_i(a) = (a_i, ... , a_1) in V_i
           (least significant bits);

   Inc_c: V_s -> V_s
           the transformation that maps the string a = (a_s, ... , a_1)
           in V_s into the string Inc_c(a) = MSB_{|a|-c}(a) |
           Vec_c(Int_c(LSB_c(a)) + 1(mod 2^c)) in V_s (incrementing the
           least significant c bits of the bit string, regarded as the
           binary representation of an integer);

   a^s     the string in V_s that consists of s 'a' bits;

   E_{K}: V_n -> V_n
           the block cipher permutation under the key K in V_k;

   ceil(x) the smallest integer that is greater than or equal to x;

   floor(x)
           the biggest integer that is less than or equal to x;

   k       the bit length of the K; k is assumed to be divisible by 8;

   n       the block size of the block cipher (in bits); n is assumed to
           be divisible by 8;

   b       the number of data blocks in the plaintext P (b =
           ceil(|P|/n));

   N       the section size (the number of bits that are processed with
           one section key before this key is transformed).

   A plaintext message P and the corresponding ciphertext C are divided
   into b = ceil(|P|/n) blocks, denoted as P = P_1 | P_2 | ... | P_b and
   C = C_1 | C_2 | ... | C_b, respectively.  The first b-1 blocks P_i
   and C_i are in V_n for i = 1, 2, ... , b-1.  The b-th blocks P_b and
   C_b may be incomplete blocks, i.e., in V_r, where r <= n if not
   otherwise specified.



Smyshlyaev                    Informational                     [Page 8]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


4.  Choosing Constructions and Security Parameters

   External re-keying is an approach assuming that a key is transformed
   after encrypting a limited number of entire messages.  The external
   re-keying method is chosen at the protocol level, regardless of the
   underlying block cipher or the encryption mode.  External re-keying
   is recommended for protocols that process relatively short messages
   or protocols that have a way to divide a long message into manageable
   pieces.  Through external re-keying, the number of messages that can
   be securely processed with a single initial key K is substantially
   increased without a loss of message length.

   External re-keying has the following advantages

   1.  It increases the lifetime of an initial key by increasing the
       number of messages processed with this key.

   2.  It has minimal impact on performance when the number of messages
       processed under one initial key is sufficiently large.

   3.  It provides forward and backward security of data-processing
       keys.

   However, the use of external re-keying has the following
   disadvantage: in cases with restrictive key lifetime limitations, the
   message sizes can become obstructive due to the impossibility of
   processing sufficiently large messages, so it may be necessary to
   perform additional fragmentation at the protocol level.  For example,
   if the key lifetime L is 1 GB and the message length m = 3 GB, then
   this message cannot be processed as a whole, and it should be divided
   into three fragments that will be processed separately.

   Internal re-keying is an approach assuming that a key is transformed
   during each separate message processing.  Such procedures are
   integrated into the base modes of operations, so every internal
   re-keying mechanism is defined for the particular operation mode and
   the block size of the used cipher.  Internal re-keying is recommended
   for protocols that process long messages: the size of each single
   message can be substantially increased without loss in the number of
   messages that can be securely processed with a single initial key.

   Internal re-keying has the following advantages:

   1.  It increases the lifetime of an initial key by increasing the
       size of the messages processed with one initial key.

   2.  It has minimal impact on performance.




Smyshlyaev                    Informational                     [Page 9]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   3.  Internal re-keying mechanisms without a master key do not affect
       short-message transformation at all.

   4.  It is transparent (works like any mode of operation): it does not
       require changes of initialization vectors (IVs) and a restart of
       MACing.

   However, the use of internal re-keying has the following
   disadvantages:

   1.  a specific method must not be chosen independently of a mode of
       operation.

   2.  internal re-keying mechanisms without a master key do not provide
       backward security of data-processing keys.

   Any block cipher modes of operations with internal re-keying can be
   jointly used with any external re-keying mechanisms.  Such joint
   usage increases both the number of messages processed with one
   initial key and their maximum possible size.

   If the adversary has access to the data-processing interface, the use
   of the same cryptographic primitives both for data-processing and
   re-keying transformation decreases the code size but can lead to some
   possible vulnerabilities (the possibility of mounting a chosen-
   plaintext attack may lead to the compromise of the following keys).
   This vulnerability can be eliminated by using different primitives
   for data processing and re-keying, e.g., block cipher for data
   processing and hash for re-keying (see Section 5.2.2 and
   Section 5.3.2).  However, in this case, the security of the whole
   scheme cannot be reduced to standard notions like a pseudorandom
   function (PRF) or pseudorandom permutation (PRP), so security
   estimations become more difficult and unclear.

   Summing up the abovementioned issues briefly:

   1.  If a protocol assumes processing of long records (e.g., [CMS]),
       internal re-keying should be used.  If a protocol assumes
       processing of a significant number of ordered records, which can
       be considered as a single data stream (e.g., [TLS], [SSH]),
       internal re-keying may also be used.

   2.  For protocols that allow out-of-order delivery and lost records
       (e.g., [DTLS], [ESP]), external re-keying should be used as, in
       this case, records cannot be considered as a single data stream.
       If the records are also long enough, internal re-keying should
       also be used during each separate message processing.




Smyshlyaev                    Informational                    [Page 10]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   For external re-keying:

   1.  If it is desirable to separate transformations used for data
       processing and key updates, hash function-based re-keying should
       be used.

   2.  If parallel data processing is required, then parallel external
       re-keying should be used.

   3.  If restrictive key lifetime limitations are present, external
       tree-based re-keying should be used.

   For internal re-keying:

   1.  If the property of forward and backward security is desirable for
       data-processing keys and if additional key material can be easily
       obtained for the data-processing stage, internal re-keying with a
       master key should be used.

5.  External Re-keying Mechanisms

   This section presents an approach to increasing the initial key
   lifetime by using a transformation of a data-processing key (frame
   key) after processing a limited number of entire messages (frame).
   The approach provides external parallel and serial re-keying
   mechanisms (see [AbBell]).  These mechanisms use initial key K only
   for frame key generation and never use it directly for data
   processing.  Such mechanisms operate outside of the base modes of
   operations and do not change them at all; therefore, they are called
   "external re-keying" mechanisms in this document.

   External re-keying mechanisms are recommended for usage in protocols
   that process quite small messages, since the maximum gain in
   increasing the initial key lifetime is achieved by increasing the
   number of messages.

   External re-keying increases the initial key lifetime through the
   following approach.  Suppose there is a protocol P with some mode of
   operation (base encryption or authentication mode).  Let L1 be a key
   lifetime limitation induced by side-channel analysis methods (side-
   channel limitation), let L2 be a key lifetime limitation induced by
   methods based on the combinatorial properties of a used mode of
   operation (combinatorial limitation), and let q1, q2 be the total
   numbers of messages of length m that can be safely processed with an
   initial key K according to these limitations.






Smyshlyaev                    Informational                    [Page 11]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Let L = min(L1, L2), q = min(q1, q2), and q * m <= L.  As the L1
   limitation is usually much stronger than the L2 limitation (L1 < L2),
   the final key lifetime restriction is equal to the most restrictive
   limitation L1.  Thus, as displayed in Figure 2, without re-keying,
   only q1 (q1 * m <= L1) messages can be safely processed.

                         <--------m------->
                         +----------------+ ^ ^
                         |================| | |
                         |================| | |
                     K-->|================| q1|
                         |================| | |
                         |==============L1| | |
                         +----------------+ v |
                         |                |   |
                         |                |   |
                         |                |   q2
                         |                |   |
                         |                |   |
                         |                |   |
                         |                |   |
                         |                |   |
                         |                |   |
                         |                |   |
                         |                |   |
                         |              L2|   |
                         +----------------+   v

             Figure 2: Basic Principles of Message Processing
                        without External Re-keying

   Suppose that the safety margin for the protocol P is fixed and the
   external re-keying approach is applied to the initial key K to
   generate the sequence of frame keys.  The frame keys are generated in
   such a way that the leakage of a previous frame key does not have any
   impact on the following one, so the side-channel limitation L1 is
   switched off.  Thus, the resulting key lifetime limitation of the
   initial key K can be calculated on the basis of a new combinatorial
   limitation L2'.  It is proven (see [AbBell]) that the security of the
   mode of operation that uses external re-keying leads to an increase
   when compared to base mode without re-keying (thus, L2 < L2').
   Hence, as displayed in Figure 3, the resulting key lifetime
   limitation if using external re-keying can be increased up to L2'.








Smyshlyaev                    Informational                    [Page 12]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


                         <--------m------->
                   K     +----------------+
                   |     |================|
                   v     |================|
                  K^1--> |================|
                   |     |================|
                   |     |==============L1|
                   |     +----------------+
                   |     |================|
                   v     |================|
                  K^2--> |================|
                   |     |================|
                   |     |==============L1|
                   |     +----------------+
                   |     |================|
                   v     |================|
                  ...    |      . . .     |
                         |                |
                         |                |
                         |              L2|
                         +----------------+
                         |                |
                        ...              ...
                         |             L2'|
                         +----------------+

             Figure 3: Basic Principles of Message Processing
                          with External Re-keying

   Note: The key transformation process is depicted in a simplified
   form.  A specific approach (parallel and serial) is described below.

   Consider an example.  Let the message size in a protocol P be equal
   to 1 KB.  Suppose L1 = 128 MB and L2 = 1 TB.  Thus, if an external
   re-keying mechanism is not used, the initial key K must be
   renegotiated after processing 128 MB / 1 KB = 131072 messages.

   If an external re-keying mechanism is used, the key lifetime
   limitation L1 goes off.  Hence, the resulting key lifetime limitation
   L2' can be set to more than 1 TB.  Thus, if an external re-keying
   mechanism is used, more than 1 TB / 1 KB = 2^30 messages can be
   processed before the initial key K is renegotiated.  This is 8192
   times greater than the number of messages that can be processed when
   an external re-keying mechanism is not used.







Smyshlyaev                    Informational                    [Page 13]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


5.1.  Methods of Key Lifetime Control

   Suppose L is an amount of data that can be safely processed with one
   frame key.  For i in {1, 2, ... , t}, the frame key K^i (see Figures
   4 and 6) should be transformed after processing q_i messages, where
   q_i can be calculated in accordance with one of the following
   approaches:

   Explicit approach:

      q_i is such that |M^{i,1}| + ... + |M^{i,q_i}| <= L, |M^{i,1}| +
      ... + |M^{i,q_i+1}| > L.
      This approach allows use of the frame key K^i in an almost optimal
      way, but it can be applied only when messages cannot be lost or
      reordered (e.g., TLS records).

   Implicit approach:

      q_i = L / m_max, i = 1, ... , t.
      The amount of data processed with one frame key K^i is calculated
      under the assumption that every message has the maximum length
      m_max.  Hence, this amount can be considerably less than the key
      lifetime limitation L.  On the other hand, this approach can be
      applied when messages may be lost or reordered (e.g., DTLS
      records).

   Dynamic key changes:

      We can organize the key change using the Protected Point to Point
      ([P3]) solution by building a protected tunnel between the
      endpoints in which the information about frame key updating can be
      safely passed across.  This can be useful, for example, when we
      want the adversary to not detect the key change during the
      protocol evaluation.

5.2.  Parallel Constructions

   External parallel re-keying mechanisms generate frame keys K^1, K^2,
   ... directly from the initial key K independently of each other.

   The main idea behind external re-keying with a parallel construction
   is presented in Figure 4:









Smyshlyaev                    Informational                    [Page 14]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Maximum message size = m_max.
   _____________________________________________________________

                                   m_max
                             <---------------->
                   M^{1,1}   |===             |
                   M^{1,2}   |=============== |
         +->K^1-->   ...            ...
         |         M^{1,q_1} |========        |
         |
         |
         |         M^{2,1}   |================|
         |         M^{2,2}   |=====           |
   K-----|->K^2-->   ...            ...
         |         M^{2,q_2} |==========      |
         |
        ...
         |         M^{t,1}   |============    |
         |         M^{t,2}   |=============   |
         +->K^t-->   ...            ...
                   M^{t,q_t} |==========      |

   _____________________________________________________________

             Figure 4: External Parallel Re-keying Mechanisms

   The frame key K^i, i = 1, ... , t - 1 is updated after processing a
   certain number of messages (see Section 5.1).

5.2.1.  Parallel Construction Based on a KDF on a Block Cipher

   The ExtParallelC re-keying mechanism is based on the key derivation
   function on a block cipher and is used to generate t frame keys as
   follows:

      K^1 | K^2 | ... | K^t = ExtParallelC(K, t * k) = MSB_{t *
      k}(E_{K}(Vec_n(0)) |
      E_{K}(Vec_n(1)) | ... | E_{K}(Vec_n(R - 1))),

   where R = ceil(t * k/n).











Smyshlyaev                    Informational                    [Page 15]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


5.2.2.  Parallel Construction Based on a KDF on a Hash Function

   The ExtParallelH re-keying mechanism is based on the key derivation
   function HKDF-Expand, described in [RFC5869], and is used to generate
   t frame keys as follows:

      K^1 | K^2 | ... | K^t = ExtParallelH(K, t * k) = HKDF-Expand(K,
      label, t * k),

   where label is a string (may be a zero-length string) that is defined
   by a specific protocol.

5.2.3.  Tree-Based Construction

   The application of an external tree-based mechanism leads to the
   construction of the key tree with the initial key K (root key) at the
   0 level and the frame keys K^1, K^2, ... at the last level, as
   described in Figure 5.

                            K_root = K
                      ___________|___________
                     |          ...          |
                     V                       V
                    K{1,1}                K{1,W1}
               ______|______           ______|______
              |     ...     |         |     ...     |
              V             V         V             V
           K{2,1}       K{2,W2}  K{2,(W1-1)*W2+1} K{2,W1*W2}
            __|__         __|__     __|__         __|__
           | ... |       | ... |   | ... |       | ... |
           V     V       V     V   V     V       V     V
        K{3,1}  ...     ...   ... ...   ...     ...   K{3,W1*W2*W3}

         ...                                           ...
        __|__                   ...                   __|__
       | ... |                                       | ... |
       V     V                                       V     V
   K{h,1}   K{h,Wh}         K{h,(W1*...*W{h-1}-1)*Wh+1}  K{h,W1*...*Wh}
     //       \\                                  //       \\
   K^1       K^{Wh}        K^{(W1*...*W{h-1}-1)*Wh+1}     K^{W1*...*Wh}
   ____________________________________________________________________

                  Figure 5: External Tree-Based Mechanism

   The tree height h and the number of keys Wj, j in {1, ... , h}, which
   can be partitioned from the "parent" key, are defined in accordance
   with a specific protocol and key lifetime limitations for the used
   derivation functions.



Smyshlyaev                    Informational                    [Page 16]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Each j-level key K{j,w}, where j in {1, ... , h}, w in {1, ... , W1 *
   ... * Wj}, is derived from the (j-1)-level "parent" key K{j-1,
   ceil(w/Wi)} (and other appropriate input data) using the j-th level
   derivation function.  This function can be based on the block cipher
   function or on the hash function and is defined in accordance with a
   specific protocol.

   The i-th frame K^i, i in {1, 2, ... , W1*...*Wh}, can be calculated
   as follows:

      K^i = ExtKeyTree(K, i) = KDF_h(KDF_{h-1}(... KDF_1(K, ceil(i / (W2
      * ... * Wh)) ... , ceil(i / Wh)), i),

   where KDF_j is the j-th level derivation function that takes two
   arguments (the parent key value and the integer in a range from 1 to
   W1 * ... * Wj) and outputs the j-th level key value.

   The frame key K^i is updated after processing a certain number of
   messages (see Section 5.1).

   In order to create an efficient implementation, during frame key K^i
   generation, the derivation functions KDF_j, j in {1, ... , h-1}
   should be used only when ceil(i / (W{j+1} * ... * Wh)) != ceil((i -
   1) / (W{j+1} * ... * Wh)); otherwise, it is necessary to use a
   previously generated value.  This approach also makes it possible to
   take countermeasures against side-channel attacks.

   Consider an example.  Suppose h = 3, W1 = W2 = W3 = W, and KDF_1,
   KDF_2, KDF_3 are key derivation functions based on the
   KDF_GOSTR3411_2012_256 (hereafter simply KDF) function described in
   [RFC7836].  The resulting ExtKeyTree function can be defined as
   follows:

      ExtKeyTree(K, i) = KDF(KDF(KDF(K, "level1", ceil(i / W^2)),
      "level2", ceil(i / W)), "level3", i).

   where i in {1, 2, ... , W^3}.

   A structure similar to the external tree-based mechanism can be found
   in Section 6 of [NISTSP800-108].

5.3.  Serial Constructions

   External serial re-keying mechanisms generate frame keys, each of
   which depends on the secret state (K*_1, K*_2, ...) that is updated
   after the generation of each new frame key; see Figure 6.  Similar
   approaches are used in the [SIGNAL] protocol and the [TLS] updating




Smyshlyaev                    Informational                    [Page 17]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   traffic key mechanism and were proposed for use in the [U2F]
   protocol.

   External serial re-keying mechanisms have the obvious disadvantage of
   being impossible to implement in parallel, but they may be the
   preferred option if additional forward secrecy is desirable.  If all
   keys are securely deleted after usage, the compromise of a current
   secret state at some point does not lead to a compromise of all
   previous secret states and frame keys.  In terms of [TLS], compromise
   of application_traffic_secret_N does not compromise all previous
   application_traffic_secret_i, i < N.

   The main idea behind external re-keying with a serial construction is
   presented in Figure 6:

   Maximum message size = m_max.
   _____________________________________________________________
                                        m_max
                                  <---------------->
                        M^{1,1}   |===             |
                        M^{1,2}   |=============== |
   K*_1 = K --->K^1-->    ...            ...
     |                  M^{1,q_1} |========        |
     |
     |
     |                  M^{2,1}   |================|
     v                  M^{2,2}   |=====           |
   K*_2 ------->K^2-->    ...            ...
     |                  M^{2,q_2} |==========      |
     |
    ...
     |                  M^{t,1}   |============    |
     v                  M^{t,2}   |=============   |
   K*_t ------->K^t-->    ...            ...
                        M^{t,q_t} |==========      |


   _____________________________________________________________

              Figure 6: External Serial Re-keying Mechanisms

   The frame key K^i, i = 1, ... , t - 1, is updated after processing a
   certain number of messages (see Section 5.1).








Smyshlyaev                    Informational                    [Page 18]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


5.3.1.  Serial Construction Based on a KDF on a Block Cipher

   The frame key K^i is calculated using the ExtSerialC transformation
   as follows:

      K^i = ExtSerialC(K, i) =
      MSB_k(E_{K*_i}(Vec_n(0)) |E_{K*_i}(Vec_n(1)) | ... |
      E_{K*_i}(Vec_n(J - 1))),

   where J = ceil(k / n), i = 1, ... , t, K*_i is calculated as follows:

      K*_1 = K,

      K*_{j+1} = MSB_k(E_{K*_j}(Vec_n(J)) | E_{K*_j}(Vec_n(J + 1)) |
      ... |
      E_{K*_j}(Vec_n(2 * J - 1))),

   where j = 1, ... , t - 1.

5.3.2.  Serial Construction Based on a KDF on a Hash Function

   The frame key K^i is calculated using the ExtSerialH transformation
   as follows:

      K^i = ExtSerialH(K, i) = HKDF-Expand(K*_i, label1, k),

   where i = 1, ... , t; HKDF-Expand is the HMAC-based key derivation
   function, as described in [RFC5869]; and K*_i is calculated as
   follows:

      K*_1 = K,

      K*_{j+1} = HKDF-Expand(K*_j, label2, k), where j = 1, ... , t - 1,

   where label1 and label2 are different strings from V* that are
   defined by a specific protocol (see, for example, the algorithm for
   updating traffic keys in TLS 1.3 [TLS]).

5.4.  Using Additional Entropy during Re-keying

   In many cases, using additional entropy during re-keying won't
   increase security but may give a false sense of that.  Therefore, one
   can rely on additional entropy only after conducting a deep security
   analysis.  For example, good PRF constructions do not require
   additional entropy for the quality of keys, so, in most cases, there
   is no need to use additional entropy with external re-keying
   mechanisms based on secure KDFs.  However, in some situations, mixed-
   in entropy can still increase security in the case of a time-limited



Smyshlyaev                    Informational                    [Page 19]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   but complete breach of the system when an adversary can access the
   frame-key generation interface but cannot reveal the master keys
   (e.g., when the master keys are stored in a Hardware Security Module
   (HSM)).

   For example, an external parallel construction based on a KDF on a
   hash function with a mixed-in entropy can be described as follows:

      K^i = HKDF-Expand(K, label_i, k),

   where label_i is additional entropy that must be sent to the
   recipient (e.g., sent jointly with an encrypted message).  The
   entropy label_i and the corresponding key K^i must be generated
   directly before message processing.

6.  Internal Re-keying Mechanisms

   This section presents an approach to increasing the key lifetime by
   using a transformation of a data-processing key (section key) during
   each separate message processing.  Each message is processed starting
   with the same key (the first section key), and each section key is
   updated after processing N bits of the message (section).

   This section provides internal re-keying mechanisms called ACPKM
   (Advanced Cryptographic Prolongation of Key Material) and ACPKM-
   Master that do not use a master key and use a master key,
   respectively.  Such mechanisms are integrated into the base modes of
   operation and actually form new modes of operation.  Therefore, they
   are called "internal re-keying" mechanisms in this document.

   Internal re-keying mechanisms are recommended to be used in protocols
   that process large single messages (e.g., CMS messages), since the
   maximum gain in increasing the key lifetime is achieved by increasing
   the length of a message, while it provides almost no increase in the
   number of messages that can be processed with one initial key.

   Internal re-keying increases the key lifetime through the following
   approach.  Suppose protocol P uses some base mode of operation.  Let
   L1 and L2 be a side channel and combinatorial limitations,
   respectively, and for some fixed number of messages q, let m1, m2 be
   the lengths of messages that can be safely processed with a single
   initial key K according to these limitations.

   Thus, the approach without re-keying (analogous to Section 5) yields
   a final key lifetime restriction equal to L1, and only q messages of
   the length m1 can be safely processed; see Figure 7.





Smyshlyaev                    Informational                    [Page 20]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


                K
                |
                v
      ^ +----------------+------------------------------------+
      | |==============L1|                                  L2|
      | |================|                                    |
      q |================|                                    |
      | |================|                                    |
      | |================|                                    |
      v +----------------+------------------------------------+
        <-------m1------->
        <----------------------------m2----------------------->

             Figure 7: Basic Principles of Message Processing
                        without Internal Re-keying

   Suppose that the safety margin for the protocol P is fixed and the
   internal re-keying approach is applied to the base mode of operation.
   Suppose further that every message is processed with a section key,
   which is transformed after processing N bits of data, where N is a
   parameter.  If q * N does not exceed L1, then the side-channel
   limitation L1 goes off, and the resulting key lifetime limitation of
   the initial key K can be calculated on the basis of a new
   combinatorial limitation L2'.  The security of the mode of operation
   that uses internal re-keying increases when compared to the base mode
   of operation without re-keying (thus, L2 < L2').  Hence, as displayed
   in Figure 8, the resulting key lifetime limitation if using internal
   re-keying can be increased up to L2'.

     K-----> K^1-------------> K^2 -----------> . . .
             |                 |
             v                 v
   ^ +---------------+---------------+------------------+--...--+
   | |=============L1|=============L1|======          L2|    L2'|
   | |===============|===============|======            |       |
   q |===============|===============|====== . . .      |       |
   | |===============|===============|======            |       |
   | |===============|===============|======            |       |
   v +---------------+---------------+------------------+--...--+
     <-------N------->

             Figure 8: Basic Principles of Message Processing
                          with Internal Re-keying

   Note: The key transformation process is depicted in a simplified
   form.  A specific approach (ACPKM and ACPKM-Master re-keying
   mechanisms) is described below.




Smyshlyaev                    Informational                    [Page 21]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Since the performance of encryption can slightly decrease for rather
   small values of N, the maximum possible value should be selected for
   parameter N for a particular protocol in order to provide the
   necessary key lifetime for the considered security models.

   Consider an example.  Suppose L1 = 128 MB and L2 = 10 TB.  Let the
   message size in the protocol be large/unlimited (which may exhaust
   the whole key lifetime L2).  The most restrictive resulting key
   lifetime limitation is equal to 128 MB.

   Thus, there is a need to put a limit on the maximum message size
   m_max.  For example, if m_max = 32 MB, it may happen that the
   renegotiation of initial key K would be required after processing
   only four messages.

   If an internal re-keying mechanism with section size N = 1 MB is
   used, more than L1 / N = 128 MB / 1 MB = 128 messages can be
   processed before the renegotiation of initial key K (instead of four
   messages when an internal re-keying mechanism is not used).  Note
   that only one section of each message is processed with the section
   key K^i, and, consequently, the key lifetime limitation L1 goes off.
   Hence, the resulting key lifetime limitation L2' can be set to more
   than 10 TB (in cases when a single large message is processed using
   the initial key K).

6.1.  Methods of Key Lifetime Control

   Suppose L is an amount of data that can be safely processed with one
   section key and N is a section size (fixed parameter).  Suppose
   M^{i}_1 is the first section of message M^{i}, i = 1, ... , q (see
   Figures 9 and 10); the parameter q can then be calculated in
   accordance with one of the following two approaches:

   o  Explicit approach:
      q_i is such that |M^{1}_1| + ... + |M^{q}_1| <= L, |M^{1}_1| + ...
      + |M^{q+1}_1| > L
      This approach allows use of the section key K^i in an almost
      optimal way, but it can be applied only when messages cannot be
      lost or reordered (e.g., TLS records).

   o  Implicit approach:
      q = L / N.
      The amount of data processed with one section key K^i is
      calculated under the assumption that the length of every message
      is equal to or greater than section size N and thus can be
      considerably less than the key lifetime limitation L.  On the
      other hand, this approach can be applied when messages may be lost
      or reordered (e.g., DTLS records).



Smyshlyaev                    Informational                    [Page 22]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


6.2.  Constructions that Do Not Require a Master Key

   This section describes the block cipher modes that use the ACPKM
   re-keying mechanism, which does not use a master key; an initial key
   is used directly for the data encryption.

6.2.1.  ACPKM Re-keying Mechanisms

   This section defines a periodical key transformation without a master
   key, which is called the ACPKM re-keying mechanism.  This mechanism
   can be applied to one of the base encryption modes (CTR and GCM block
   cipher modes) to get an extension of this encryption mode that uses
   periodical key transformation without a master key.  This extension
   can be considered as a new encryption mode.

   An additional parameter that defines the functioning of base
   encryption modes with the ACPKM re-keying mechanism is the section
   size N.  The value of N is measured in bits and is fixed within a
   specific protocol based on the requirements of the system capacity
   and the key lifetime.  The section size N MUST be divisible by the
   block size n.

   The main idea behind internal re-keying without a master key is
   presented in Figure 9:

   Section size = const = N,
   maximum message size = m_max.
   ____________________________________________________________________

                 ACPKM       ACPKM              ACPKM
          K^1 = K ---> K^2 ---...-> K^{l_max-1} ----> K^{l_max}
              |          |                |           |
              |          |                |           |
              v          v                v           v
   M^{1} |==========|==========| ... |==========|=======:  |
   M^{2} |==========|==========| ... |===       |       :  |
     .        .          .        .       .          .  :
     :        :          :        :       :          :  :
   M^{q} |==========|==========| ... |==========|=====  :  |
                      section                           :
                    <---------->                      m_max
                       N bit
   ___________________________________________________________________
   l_max = ceil(m_max/N).

             Figure 9: Internal Re-keying without a Master Key





Smyshlyaev                    Informational                    [Page 23]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   During the processing of the input message M with the length m in
   some encryption mode that uses the ACPKM key transformation of the
   initial key K, the message is divided into l = ceil(m / N) sections
   (denoted as M = M_1 | M_2 | ... | M_l, where M_i is in V_N for i in
   {1, 2, ... , l - 1} and M_l is in V_r, r <= N).  The first section of
   each message is processed with the section key K^1 = K.  To process
   the (i + 1)-th section of each message, the section key K^{i+1} is
   calculated using the ACPKM transformation as follows:

      K^{i+1} = ACPKM(K^i) = MSB_k(E_{K^i}(D_1) | ... | E_{K^i}(D_J)),

   where J = ceil(k/n) and D_1, D_2, ... , D_J are in V_n and are
   calculated as follows:

      D_1 | D_2 | ... | D_J = MSB_{J * n}(D),

   where D is the following constant in V_{1024}:

             D = ( 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87
                 | 88 | 89 | 8a | 8b | 8c | 8d | 8e | 8f
                 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97
                 | 98 | 99 | 9a | 9b | 9c | 9d | 9e | 9f
                 | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7
                 | a8 | a9 | aa | ab | ac | ad | ae | af
                 | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7
                 | b8 | b9 | ba | bb | bc | bd | be | bf
                 | c0 | c1 | c2 | c3 | c4 | c5 | c6 | c7
                 | c8 | c9 | ca | cb | cc | cd | ce | cf
                 | d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7
                 | d8 | d9 | da | db | dc | dd | de | df
                 | e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7
                 | e8 | e9 | ea | eb | ec | ed | ee | ef
                 | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7
                 | f8 | f9 | fa | fb | fc | fd | fe | ff)

   Note: The constant D is such that D_1, ... , D_J are pairwise
   different for any allowed n and k values.

   Note: The highest bit of each octet of the constant D is equal to 1.
   This condition is important as, in conjunction with a certain mode
   message length limitation, it allows prevention of collisions of
   block cipher permutation inputs in cases with key transformation and
   message processing (for more details, see Section 4.4 of [AAOS2017]).








Smyshlyaev                    Informational                    [Page 24]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


6.2.2.  CTR-ACPKM Encryption Mode

   This section defines a CTR-ACPKM encryption mode that uses the ACPKM
   internal re-keying mechanism for the periodical key transformation.

   The CTR-ACPKM mode can be considered as the base encryption mode CTR
   (see [MODES]) extended by the ACPKM re-keying mechanism.

   The CTR-ACPKM encryption mode can be used with the following
   parameters:

   o  64 <= n <= 512.

   o  128 <= k <= 512.

   o  The number c of bits in a specific part of the block to be
      incremented is such that 32 <= c <= 3 / 4 n, where c is a multiple
      of 8.

   o  The maximum message size m_max = n * 2^{c-1}.

   The CTR-ACPKM mode encryption and decryption procedures are defined
   as follows:

   +----------------------------------------------------------------+
   |  CTR-ACPKM-Encrypt(N, K, ICN, P)                               |
   |----------------------------------------------------------------|
   |  Input:                                                        |
   |  - section size N,                                             |
   |  - initial key K,                                              |
   |  - initial counter nonce ICN in V_{n-c},                       |
   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                |
   |  Output:                                                       |
   |  - ciphertext C.                                               |
   |----------------------------------------------------------------|
   |  1. CTR_1 = ICN | 0^c                                          |
   |  2. For j = 2, 3, ... , b do                                   |
   |         CTR_{j} = Inc_c(CTR_{j-1})                             |
   |  3. K^1 = K                                                    |
   |  4. For i = 2, 3, ... , ceil(|P| / N)                          |
   |         K^i = ACPKM(K^{i-1})                                   |
   |  5. For j = 1, 2, ... , b do                                   |
   |         i = ceil(j * n / N),                                   |
   |         G_j = E_{K^i}(CTR_j)                                   |
   |  6. C = P (xor) MSB_{|P|}(G_1 | ... | G_b)                     |
   |  7. Return C                                                   |
   +----------------------------------------------------------------+




Smyshlyaev                    Informational                    [Page 25]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   +----------------------------------------------------------------+
   |  CTR-ACPKM-Decrypt(N, K, ICN, C)                               |
   |----------------------------------------------------------------|
   |  Input:                                                        |
   |  - section size N,                                             |
   |  - initial key K,                                              |
   |  - initial counter nonce ICN in V_{n-c},                       |
   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.               |
   |  Output:                                                       |
   |  - plaintext P.                                                |
   |----------------------------------------------------------------|
   |  1. P = CTR-ACPKM-Encrypt(N, K, ICN, C)                        |
   |  2. Return P                                                   |
   +----------------------------------------------------------------+

   The initial counter nonce (ICN) value for each message that is
   encrypted under the given initial key K must be chosen in a unique
   manner.

6.2.3.  GCM-ACPKM Authenticated Encryption Mode

   This section defines the GCM-ACPKM authenticated encryption mode that
   uses the ACPKM internal re-keying mechanism for the periodical key
   transformation.

   The GCM-ACPKM mode can be considered as the base authenticated
   encryption mode GCM (see [GCM]) extended by the ACPKM re-keying
   mechanism.

   The GCM-ACPKM authenticated encryption mode can be used with the
   following parameters:

   o  n in {128, 256}.

   o  128 <= k <= 512.

   o  The number c of bits in a specific part of the block to be
      incremented is such that 1 / 4 n <= c <= 1 / 2 n, c is a multiple
      of 8.

   o  Authentication tag length t.

   o  The maximum message size m_max = min{n * (2^{c-1} - 2), 2^{n/2} -
      1}.







Smyshlyaev                    Informational                    [Page 26]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   The GCM-ACPKM mode encryption and decryption procedures are defined
   as follows:

   +-------------------------------------------------------------------+
   |  GHASH(X, H)                                                      |
   |-------------------------------------------------------------------|
   |  Input:                                                           |
   |  - bit string X = X_1 | ... | X_m, X_1, ... , X_m in V_n.         |
   |  Output:                                                          |
   |  - block GHASH(X, H) in V_n.                                      |
   |-------------------------------------------------------------------|
   |  1. Y_0 = 0^n                                                     |
   |  2. For i = 1, ... , m do                                         |
   |         Y_i = (Y_{i-1} (xor) X_i) * H                             |
   |  3. Return Y_m                                                    |
   +-------------------------------------------------------------------+

   +-------------------------------------------------------------------+
   |  GCTR(N, K, ICB, X)                                               |
   |-------------------------------------------------------------------|
   |  Input:                                                           |
   |  - section size N,                                                |
   |  - initial key K,                                                 |
   |  - initial counter block ICB,                                     |
   |  - X = X_1 | ... | X_b.                                           |
   |  Output:                                                          |
   |  - Y in V_{|X|}.                                                  |
   |-------------------------------------------------------------------|
   |  1. If X in V_0, then return Y, where Y in V_0                    |
   |  2. GCTR_1 = ICB                                                  |
   |  3. For i = 2, ... , b do                                         |
   |         GCTR_i = Inc_c(GCTR_{i-1})                                |
   |  4. K^1 = K                                                       |
   |  5. For j = 2, ... , ceil(|X| / N)                                |
   |         K^j = ACPKM(K^{j-1})                                      |
   |  6. For i = 1, ... , b do                                         |
   |         j = ceil(i * n / N),                                      |
   |         G_i = E_{K_j}(GCTR_i)                                     |
   |  7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b)                        |
   |  8. Return Y                                                      |
   +-------------------------------------------------------------------+










Smyshlyaev                    Informational                    [Page 27]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   +-------------------------------------------------------------------+
   |  GCM-ACPKM-Encrypt(N, K, ICN, P, A)                               |
   |-------------------------------------------------------------------|
   |  Input:                                                           |
   |  - section size N,                                                |
   |  - initial key K,                                                 |
   |  - initial counter nonce ICN in V_{n-c},                          |
   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max,                   |
   |  - additional authenticated data A.                               |
   |  Output:                                                          |
   |  - ciphertext C,                                                  |
   |  - authentication tag T.                                          |
   |-------------------------------------------------------------------|
   |  1. H = E_{K}(0^n)                                                |
   |  2. ICB_0 = ICN | 0^{c-1} | 1                                     |
   |  3. C = GCTR(N, K, Inc_c(ICB_0), P)                               |
   |  4. u = n * ceil(|C| / n) - |C|                                   |
   |     v = n * ceil(|A| / n) - |A|                                   |
   |  5. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
   |               | Vec_{n/2}(|C|), H)                                |
   |  6. T = MSB_t(E_{K}(ICB_0) (xor) S)                               |
   |  7. Return C | T                                                  |
   +-------------------------------------------------------------------+

   +-------------------------------------------------------------------+
   |  GCM-ACPKM-Decrypt(N, K, ICN, A, C, T)                            |
   |-------------------------------------------------------------------|
   |  Input:                                                           |
   |  - section size N,                                                |
   |  - initial key K,                                                 |
   |  - initial counter block ICN,                                     |
   |  - additional authenticated data A,                               |
   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max,                  |
   |  - authentication tag T.                                          |
   |  Output:                                                          |
   |  - plaintext P or FAIL.                                           |
   |-------------------------------------------------------------------|
   |  1. H = E_{K}(0^n)                                                |
   |  2. ICB_0 = ICN | 0^{c-1} | 1                                     |
   |  3. P = GCTR(N, K, Inc_c(ICB_0), C)                               |
   |  4. u = n * ceil(|C| / n) - |C|                                   |
   |     v = n * ceil(|A| / n) - |A|                                   |
   |  5. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
   |               | Vec_{n/2}(|C|), H)                                |
   |  6. T' = MSB_t(E_{K}(ICB_0) (xor) S)                              |
   |  7. If T = T', then return P; else return FAIL                    |
   +-------------------------------------------------------------------+




Smyshlyaev                    Informational                    [Page 28]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   The * operation on (pairs of) the 2^n possible blocks corresponds to
   the multiplication operation for the binary Galois (finite) field of
   2^n elements defined by the polynomial f as follows (analogous to
   [GCM]):

   n = 128:  f = a^128 + a^7 + a^2 + a^1 + 1,

   n = 256:  f = a^256 + a^10 + a^5 + a^2 + 1.

   The initial counter nonce ICN value for each message that is
   encrypted under the given initial key K must be chosen in a unique
   manner.

   The key for computing values E_{K}(ICB_0) and H is not updated and is
   equal to the initial key K.

6.3.  Constructions that Require a Master Key

   This section describes the block cipher modes that use the ACPKM-
   Master re-keying mechanism, which use the initial key K as a master
   key, so K is never used directly for data processing but is used for
   key derivation.

6.3.1.  ACPKM-Master Key Derivation from the Master Key

   This section defines periodical key transformation with a master key,
   which is called the ACPKM-Master re-keying mechanism.  This mechanism
   can be applied to one of the base modes of operation (CTR, GCM, CBC,
   CFB, OMAC modes) for getting an extension that uses periodical key
   transformation with a master key.  This extension can be considered
   as a new mode of operation.

   Additional parameters that define the functioning of modes of
   operation that use the ACPKM-Master re-keying mechanism are the
   section size N, the change frequency T* of the master keys K*_1,
   K*_2, ... (see Figure 10), and the size d of the section key
   material.  The values of N and T* are measured in bits and are fixed
   within a specific protocol based on the requirements of the system
   capacity and the key lifetime.  The section size N MUST be divisible
   by the block size n.  The master key frequency T* MUST be divisible
   by d and by n.










Smyshlyaev                    Informational                    [Page 29]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   The main idea behind internal re-keying with a master key is
   presented in Figure 10:

   Master key frequency T*,
   section size N,
   maximum message size = m_max.
   _____________________________________________________________________

                           ACPKM                 ACPKM
                K*_1 = K----------> K*_2 ---------...-----> K*_l_max
               ___|___            ___|___                 ___|___
              |       |          |       |               |       |
              v  ...  v          v  ...  v               v  ...  v
            K[1]     K[t]     K[t+1]  K[2*t]  K[(l_max-1)t+1] K[l_max*t]
              |       |          |       |               |       |
              |       |          |       |               |       |
              v       v          v       v               v       v
   M^{1}||======|...|======||======|...|======||...||======|...|==  : ||
   M^{2}||======|...|======||======|...|======||...||======|...|====: ||
    ... ||      |   |      ||      |   |      ||   ||      |   |    : ||
   M^{q}||======|...|======||====  |...|      ||...||      |...|    : ||
          section                                                   :
         <------>                                                   :
           N bit                                                  m_max
   _____________________________________________________________________
   |K[i]| = d,
   t = T* / d,
   l_max = ceil(m_max / (N * t)).


              Figure 10: Internal Re-keying with a Master Key

   During the processing of the input message M with the length m in
   some mode of operation that uses ACPKM-Master key transformation with
   the initial key K and the master key frequency T*, the message M is
   divided into l = ceil(m / N) sections (denoted as M = M_1 | M_2 |
   ... | M_l, where M_i is in V_N for i in {1, 2, ... , l - 1} and M_l
   is in V_r, r <= N).  The j-th section of each message is processed
   with the key material K[j], j in {1, ... , l}, |K[j]| = d, which is
   calculated with the ACPKM-Master algorithm as follows:

      K[1] | ... | K[l] = ACPKM-Master(T*, K, d, l) = CTR-ACPKM-Encrypt
      (T*, K, 1^{n/2}, 0^{d*l}).

   Note: The parameters d and l MUST be such that d * l <= n *
   2^{n/2-1}.





Smyshlyaev                    Informational                    [Page 30]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


6.3.2.  CTR-ACPKM-Master Encryption Mode

   This section defines a CTR-ACPKM-Master encryption mode that uses the
   ACPKM-Master internal re-keying mechanism for the periodical key
   transformation.

   The CTR-ACPKM-Master encryption mode can be considered as the base
   encryption mode CTR (see [MODES]) extended by the ACPKM-Master
   re-keying mechanism.

   The CTR-ACPKM-Master encryption mode can be used with the following
   parameters:

   o  64 <= n <= 512.

   o  128 <= k <= 512.

   o  The number c of bits in a specific part of the block to be
      incremented is such that 32 <= c <= 3 / 4 n, c is a multiple of 8.

   o  The maximum message size m_max = min{N * (n * 2^{n/2-1} / k), n *
      2^c}.

   The key material K[j] that is used for one-section processing is
   equal to K^j, where |K^j| = k bits.


























Smyshlyaev                    Informational                    [Page 31]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   The CTR-ACPKM-Master mode encryption and decryption procedures are
   defined as follows:

   +----------------------------------------------------------------+
   |  CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, P)                    |
   |----------------------------------------------------------------|
   |  Input:                                                        |
   |  - section size N,                                             |
   |  - initial key K,                                              |
   |  - master key frequency T*,                                    |
   |  - initial counter nonce ICN in V_{n-c},                       |
   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                |
   |  Output:                                                       |
   |  - ciphertext C.                                               |
   |----------------------------------------------------------------|
   |  1. CTR_1 = ICN | 0^c                                          |
   |  2. For j = 2, 3, ... , b do                                   |
   |         CTR_{j} = Inc_c(CTR_{j-1})                             |
   |  3. l = ceil(|P| / N)                                          |
   |  4. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
   |  5. For j = 1, 2, ... , b do                                   |
   |         i = ceil(j * n / N),                                   |
   |         G_j = E_{K^i}(CTR_j)                                   |
   |  6. C = P (xor) MSB_{|P|}(G_1 | ... |G_b)                      |
   |  7. Return C                                                   |
   |----------------------------------------------------------------+

   +----------------------------------------------------------------+
   |  CTR-ACPKM-Master-Decrypt(N, K, T*, ICN, C)                    |
   |----------------------------------------------------------------|
   |  Input:                                                        |
   |  - section size N,                                             |
   |  - initial key K,                                              |
   |  - master key frequency T*,                                    |
   |  - initial counter nonce ICN in V_{n-c},                       |
   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.               |
   |  Output:                                                       |
   |  - plaintext P.                                                |
   |----------------------------------------------------------------|
   |  1. P = CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, C)             |
   |  1. Return P                                                   |
   +----------------------------------------------------------------+

   The initial counter nonce ICN value for each message that is
   encrypted under the given initial key must be chosen in a unique
   manner.





Smyshlyaev                    Informational                    [Page 32]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


6.3.3.  GCM-ACPKM-Master Authenticated Encryption Mode

   This section defines a GCM-ACPKM-Master authenticated encryption mode
   that uses the ACPKM-Master internal re-keying mechanism for the
   periodical key transformation.

   The GCM-ACPKM-Master authenticated encryption mode can be considered
   as the base authenticated encryption mode GCM (see [GCM]) extended by
   the ACPKM-Master re-keying mechanism.

   The GCM-ACPKM-Master authenticated encryption mode can be used with
   the following parameters:

   o  n in {128, 256}.

   o  128 <= k <= 512.

   o  The number c of bits in a specific part of the block to be
      incremented is such that 1 / 4 n <= c <= 1 / 2 n, c is a multiple
      of 8.

   o  authentication tag length t.

   o  the maximum message size m_max = min{N * ( n * 2^{n/2-1} / k), n *
      (2^c - 2), 2^{n/2} - 1}.

   The key material K[j] that is used for the j-th section processing is
   equal to K^j, |K^j| = k bits.

   The GCM-ACPKM-Master mode encryption and decryption procedures are
   defined as follows:

   +-------------------------------------------------------------------+
   |  GHASH(X, H)                                                      |
   |-------------------------------------------------------------------|
   |  Input:                                                           |
   |  - bit string X = X_1 | ... | X_m, X_i in V_n for i in {1, ... ,m}|
   |  Output:                                                          |
   |  - block GHASH(X, H) in V_n                                       |
   |-------------------------------------------------------------------|
   |  1. Y_0 = 0^n                                                     |
   |  2. For i = 1, ... , m do                                         |
   |         Y_i = (Y_{i-1} (xor) X_i) * H                             |
   |  3. Return Y_m                                                    |
   +-------------------------------------------------------------------+






Smyshlyaev                    Informational                    [Page 33]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   +-------------------------------------------------------------------+
   |  GCTR(N, K, T*, ICB, X)                                           |
   |-------------------------------------------------------------------|
   |  Input:                                                           |
   |  - section size N,                                                |
   |  - initial key K,                                                 |
   |  - master key frequency T*,                                       |
   |  - initial counter block ICB,                                     |
   |  - X = X_1 | ... | X_b.                                           |
   |  Output:                                                          |
   |  - Y in V_{|X|}.                                                  |
   |-------------------------------------------------------------------|
   |  1. If X in V_0, then return Y, where Y in V_0                    |
   |  2. GCTR_1 = ICB                                                  |
   |  3. For i = 2, ... , b do                                         |
   |         GCTR_i = Inc_c(GCTR_{i-1})                                |
   |  4. l = ceil(|X| / N)                                             |
   |  5. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                   |
   |  6. For j = 1, ... , b do                                         |
   |         i = ceil(j * n / N),                                      |
   |         G_j = E_{K^i}(GCTR_j)                                     |
   |  7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b)                        |
   |  8. Return Y                                                      |
   +-------------------------------------------------------------------+



























Smyshlyaev                    Informational                    [Page 34]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   +-------------------------------------------------------------------+
   |  GCM-ACPKM-Master-Encrypt(N, K, T*, ICN, P, A)                    |
   |-------------------------------------------------------------------|
   |  Input:                                                           |
   |  - section size N,                                                |
   |  - initial key K,                                                 |
   |  - master key frequency T*,                                       |
   |  - initial counter nonce ICN in V_{n-c},                          |
   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                   |
   |  - additional authenticated data A.                               |
   |  Output:                                                          |
   |  - ciphertext C,                                                  |
   |  - authentication tag T.                                          |
   |-------------------------------------------------------------------|
   |  1. K^1 = ACPKM-Master(T*, K, k, 1)                               |
   |  2. H = E_{K^1}(0^n)                                              |
   |  3. ICB_0 = ICN | 0^{c-1} | 1                                     |
   |  4. C = GCTR(N, K, T*, Inc_c(ICB_0), P)                           |
   |  5. u = n * ceil(|C| / n) - |C|                                   |
   |     v = n * ceil(|A| / n) - |A|                                   |
   |  6. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
   |               | Vec_{n/2}(|C|), H)                                |
   |  7. T = MSB_t(E_{K^1}(ICB_0) (xor) S)                             |
   |  8. Return C | T                                                  |
   +-------------------------------------------------------------------+


























Smyshlyaev                    Informational                    [Page 35]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   +-------------------------------------------------------------------+
   |  GCM-ACPKM-Master-Decrypt(N, K, T*, ICN, A, C, T)                 |
   |-------------------------------------------------------------------|
   |  Input:                                                           |
   |  - section size N,                                                |
   |  - initial key K,                                                 |
   |  - master key frequency T*,                                       |
   |  - initial counter nonce ICN in V_{n-c},                          |
   |  - additional authenticated data A.                               |
   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max,                  |
   |  - authentication tag T.                                          |
   |  Output:                                                          |
   |  - plaintext P or FAIL.                                           |
   |-------------------------------------------------------------------|
   |  1. K^1 = ACPKM-Master(T*, K, k, 1)                               |
   |  2. H = E_{K^1}(0^n)                                              |
   |  3. ICB_0 = ICN | 0^{c-1} | 1                                     |
   |  4. P = GCTR(N, K, T*, Inc_c(ICB_0), C)                           |
   |  5. u = n * ceil(|C| / n) - |C|                                   |
   |     v = n * ceil(|A| / n) - |A|                                   |
   |  6. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
   |               | Vec_{n/2}(|C|), H)                                |
   |  7. T' = MSB_t(E_{K^1}(ICB_0) (xor) S)                            |
   |  8. If T = T', then return P; else return FAIL.                   |
   +-------------------------------------------------------------------+

   The * operation on (pairs of) the 2^n possible blocks corresponds to
   the multiplication operation for the binary Galois (finite) field of
   2^n elements defined by the polynomial f as follows (by analogy with
   [GCM]):

   n = 128:  f = a^128 + a^7 + a^2 + a^1 + 1,

   n = 256:  f = a^256 + a^10 + a^5 + a^2 + 1.

   The initial counter nonce ICN value for each message that is
   encrypted under the given initial key must be chosen in a unique
   manner.













Smyshlyaev                    Informational                    [Page 36]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


6.3.4.  CBC-ACPKM-Master Encryption Mode

   This section defines a CBC-ACPKM-Master encryption mode that uses the
   ACPKM-Master internal re-keying mechanism for the periodical key
   transformation.

   The CBC-ACPKM-Master encryption mode can be considered as the base
   encryption mode CBC (see [MODES]) extended by the ACPKM-Master
   re-keying mechanism.

   The CBC-ACPKM-Master encryption mode can be used with the following
   parameters:

   o  64 <= n <= 512.

   o  128 <= k <= 512.

   o  The maximum message size m_max = N * (n * 2^{n/2-1} / k).

   In the specification of the CBC-ACPKM-Master mode, the plaintext and
   ciphertext must be a sequence of one or more complete data blocks.
   If the data string to be encrypted does not initially satisfy this
   property, then it MUST be padded to form complete data blocks.  The
   padding methods are out of the scope of this document.  An example of
   a padding method can be found in Appendix A of [MODES].

   The key material K[j] that is used for the j-th section processing is
   equal to K^j, |K^j| = k bits.

   We use D_{K} to denote the decryption function that is a permutation
   inverse to E_{K}.




















Smyshlyaev                    Informational                    [Page 37]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   The CBC-ACPKM-Master mode encryption and decryption procedures are
   defined as follows:

   +----------------------------------------------------------------+
   |  CBC-ACPKM-Master-Encrypt(N, K, T*, IV, P)                     |
   |----------------------------------------------------------------|
   |  Input:                                                        |
   |  - section size N,                                             |
   |  - initial key K,                                              |
   |  - master key frequency T*,                                    |
   |  - initialization vector IV in V_n,                            |
   |  - plaintext P = P_1 | ... | P_b, |P_b| = n, |P| <= m_max.     |
   |  Output:                                                       |
   |  - ciphertext C.                                               |
   |----------------------------------------------------------------|
   |  1. l = ceil(|P| / N)                                          |
   |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
   |  3. C_0 = IV                                                   |
   |  4. For j = 1, 2, ... , b do                                   |
   |         i = ceil(j * n / N),                                   |
   |         C_j = E_{K^i}(P_j (xor) C_{j-1})                       |
   |  5. Return C = C_1 | ... | C_b                                 |
   |----------------------------------------------------------------+

   +----------------------------------------------------------------+
   |  CBC-ACPKM-Master-Decrypt(N, K, T*, IV, C)                     |
   |----------------------------------------------------------------|
   |  Input:                                                        |
   |  - section size N,                                             |
   |  - initial key K,                                              |
   |  - master key frequency T*,                                    |
   |  - initialization vector IV in V_n,                            |
   |  - ciphertext C = C_1 | ... | C_b, |C_b| = n, |C| <= m_max.    |
   |  Output:                                                       |
   |  - plaintext P.                                                |
   |----------------------------------------------------------------|
   |  1. l = ceil(|C| / N)                                          |
   |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
   |  3. C_0 = IV                                                   |
   |  4. For j = 1, 2, ... , b do                                   |
   |         i = ceil(j * n / N)                                    |
   |         P_j = D_{K^i}(C_j) (xor) C_{j-1}                       |
   |  5. Return P = P_1 | ... | P_b                                 |
   +----------------------------------------------------------------+

   The initialization vector IV for any particular execution of the
   encryption process must be unpredictable.




Smyshlyaev                    Informational                    [Page 38]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


6.3.5.  CFB-ACPKM-Master Encryption Mode

   This section defines a CFB-ACPKM-Master encryption mode that uses the
   ACPKM-Master internal re-keying mechanism for the periodical key
   transformation.

   The CFB-ACPKM-Master encryption mode can be considered as the base
   encryption mode CFB (see [MODES]) extended by the ACPKM-Master
   re-keying mechanism.

   The CFB-ACPKM-Master encryption mode can be used with the following
   parameters:

   o  64 <= n <= 512.

   o  128 <= k <= 512.

   o  The maximum message size m_max = N * (n * 2^{n/2-1} / k).

   The key material K[j] that is used for the j-th section processing is
   equal to K^j, |K^j| = k bits.

   The CFB-ACPKM-Master mode encryption and decryption procedures are
   defined as follows:

   +-------------------------------------------------------------+
   |  CFB-ACPKM-Master-Encrypt(N, K, T*, IV, P)                  |
   |-------------------------------------------------------------|
   |  Input:                                                     |
   |  - section size N,                                          |
   |  - initial key K,                                           |
   |  - master key frequency T*,                                 |
   |  - initialization vector IV in V_n,                         |
   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.             |
   |  Output:                                                    |
   |  - ciphertext C.                                            |
   |-------------------------------------------------------------|
   |  1. l = ceil(|P| / N)                                       |
   |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)             |
   |  3. C_0 = IV                                                |
   |  4. For j = 1, 2, ... , b - 1 do                            |
   |         i = ceil(j * n / N),                                |
   |         C_j = E_{K^i}(C_{j-1}) (xor) P_j                    |
   |  5. C_b = MSB_{|P_b|}(E_{K^l}(C_{b-1})) (xor) P_b           |
   |  6. Return C = C_1 | ... | C_b                              |
   |-------------------------------------------------------------+





Smyshlyaev                    Informational                    [Page 39]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   +-------------------------------------------------------------+
   |  CFB-ACPKM-Master-Decrypt(N, K, T*, IV, C)                  |
   |-------------------------------------------------------------|
   |  Input:                                                     |
   |  - section size N,                                          |
   |  - initial key K,                                           |
   |  - master key frequency T*,                                 |
   |  - initialization vector IV in V_n,                         |
   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.            |
   |  Output:                                                    |
   |  - plaintext P.                                             |
   |-------------------------------------------------------------|
   |  1. l = ceil(|C| / N)                                       |
   |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)             |
   |  3. C_0 = IV                                                |
   |  4. For j = 1, 2, ... , b - 1 do                            |
   |         i = ceil(j * n / N),                                |
   |         P_j = E_{K^i}(C_{j-1}) (xor) C_j                    |
   |  5. P_b = MSB_{|C_b|}(E_{K^l}(C_{b-1})) (xor) C_b           |
   |  6. Return P = P_1 | ... | P_b                              |
   +-------------------------------------------------------------+

   The initialization vector IV for any particular execution of the
   encryption process must be unpredictable.

6.3.6.  OMAC-ACPKM-Master Authentication Mode

   This section defines an OMAC-ACPKM-Master message authentication code
   calculation mode that uses the ACPKM-Master internal re-keying
   mechanism for the periodical key transformation.

   The OMAC-ACPKM-Master mode can be considered as the base message
   authentication code calculation mode OMAC1, which is also known as
   CMAC (see [RFC4493]), extended by the ACPKM-Master re-keying
   mechanism.

   The OMAC-ACPKM-Master message authentication code calculation mode
   can be used with the following parameters:

   o  n in {64, 128, 256}.

   o  128 <= k <= 512.

   o  The maximum message size m_max = N * (n * 2^{n/2-1} / (k + n)).

   The key material K[j] that is used for one-section processing is
   equal to K^j | K^j_1, where |K^j| = k bits and |K^j_1| = n bits.




Smyshlyaev                    Informational                    [Page 40]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   The following is a specification of the subkey generation process of
   OMAC:

   +-------------------------------------------------------------------+
   | Generate_Subkey(K1, r)                                            |
   |-------------------------------------------------------------------|
   | Input:                                                            |
   |  - key K1.                                                        |
   |  Output:                                                          |
   |  - key SK.                                                        |
   |-------------------------------------------------------------------|
   |   1. If r = n, then return K1                                     |
   |   2. If r < n, then                                               |
   |          if MSB_1(K1) = 0                                         |
   |              return K1 << 1                                       |
   |          else                                                     |
   |              return (K1 << 1) (xor) R_n                           |
   +-------------------------------------------------------------------+

   Here, R_n takes the following values:

   o  n = 64: R_{64} = 0^{59} | 11011.

   o  n = 128: R_{128} = 0^{120} | 10000111.

   o  n = 256: R_{256} = 0^{145} | 10000100101.

























Smyshlyaev                    Informational                    [Page 41]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   The OMAC-ACPKM-Master message authentication code calculation mode is
   defined as follows:

   +-------------------------------------------------------------------+
   | OMAC-ACPKM-Master(K, N, T*, M)                                    |
   |-------------------------------------------------------------------|
   | Input:                                                            |
   |  - section size N,                                                |
   |  - initial key K,                                                 |
   |  - master key frequency T*,                                       |
   |  - plaintext M = M_1 | ... | M_b, |M| <= m_max.                   |
   |  Output:                                                          |
   |  - message authentication code T.                                 |
   |-------------------------------------------------------------------|
   | 1. C_0 = 0^n                                                      |
   | 2. l = ceil(|M| / N)                                              |
   | 3. K^1 | K^1_1 | ... | K^l | K^l_1 =                              |
                     = ACPKM-Master(T*, K, (k + n), l)                 |
   | 4. For j = 1, 2, ... , b - 1 do                                   |
   |        i = ceil(j * n / N),                                       |
   |        C_j = E_{K^i}(M_j (xor) C_{j-1})                           |
   | 5. SK = Generate_Subkey(K^l_1, |M_b|)                             |
   | 6. If |M_b| = n, then M*_b = M_b                                  |
   |                  else M*_b = M_b | 1 | 0^{n - 1 -|M_b|}           |
   | 7. T = E_{K^l}(M*_b (xor) C_{b-1} (xor) SK)                       |
   | 8. Return T                                                       |
   +-------------------------------------------------------------------+

7.  Joint Usage of External and Internal Re-keying

   Both external re-keying and internal re-keying have their own
   advantages and disadvantages, which are discussed in Section 1.  For
   instance, using external re-keying can essentially limit the message
   length, while in the case of internal re-keying, the section size,
   which can be chosen as the maximal possible for operational
   properties, limits the number of separate messages.  Therefore, the
   choice of re-keying mechanism (either external or internal) depends
   on particular protocol features.  However, some protocols may have
   features that require the advantages of both the external and
   internal re-keying mechanisms: for example, the protocol mainly
   transmits short messages, but it must additionally support processing
   of very long messages.  In such situations, it is necessary to use
   external and internal re-keying jointly, since these techniques
   negate each other's disadvantages.

   For composition of external and internal re-keying techniques, any
   mechanism described in Section 5 can be used with any mechanism
   described in Section 6.



Smyshlyaev                    Informational                    [Page 42]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   For example, consider the GCM-ACPKM mode with external serial
   re-keying based on a KDF on a hash function.  Denote the number of
   messages in each frame (in the case of the implicit approach to the
   key lifetime control) for external re-keying as a frame size.

   Let L be a key lifetime limitation.  The section size N for internal
   re-keying and the frame size q for external re-keying must be chosen
   in such a way that q * N must not exceed L.

   Suppose that t messages (ICN_i, P_i, A_i), with initial counter nonce
   ICN_i, plaintext P_i, and additional authenticated data A_i will be
   processed before renegotiation.

   For authenticated encryption of each message (ICN_i, P_i, A_i), i =
   1, ..., t, the following algorithm can be applied:

   1. j = ceil(i / q),
   2. K^j = ExtSerialH(K, j),
   3. C_i | T_i = GCM-ACPKM-Encrypt(N, K^j, ICN_i, P_i, A_i).

   Note that nonces ICN_i that are used under the same frame key must be
   unique for each message.

8.  Security Considerations

   Re-keying should be used to increase a priori security properties of
   ciphers in hostile environments (e.g., with side-channel
   adversaries).  If efficient attacks on a cipher are known, the cipher
   must not be used.  Thus, re-keying cannot be used as a patch for
   vulnerable ciphers.  Base cipher properties must be well analyzed
   because the security of re-keying mechanisms is based on the security
   of a block cipher as a pseudorandom function.

   Re-keying is not intended to solve any postquantum security issues
   for symmetric cryptography, since the reduction of security caused by
   Grover's algorithm is not connected with a size of plaintext
   transformed by a cipher -- only a negligible (sufficient for key
   uniqueness) material is needed -- and the aim of re-keying is to
   limit the size of plaintext transformed under one initial key.

   Re-keying can provide backward security only if previous key material
   is securely deleted after usage by all parties.

9.  IANA Considerations

   This document has no IANA actions.





Smyshlyaev                    Informational                    [Page 43]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


10.  References

10.1.  Normative References

   [CMS]      Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [DTLS]     Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.

   [ESP]      Kent, S., "IP Encapsulating Security Payload (ESP)",
              RFC 4303, DOI 10.17487/RFC4303, December 2005,
              <https://www.rfc-editor.org/info/rfc4303>.

   [GCM]      Dworkin, M., "Recommendation for Block Cipher Modes of
              Operation: Galois/Counter Mode (GCM) and GMAC", NIST
              Special Publication 800-38D, DOI 10.6028/NIST.SP.800-38D,
              November 2007,
              <http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
              nistspecialpublication800-38d.pdf>.

   [MODES]    Dworkin, M., "Recommendation for Block Cipher Modes of
              Operation: Methods and Techniques", NIST Special
              Publication 800-38A, DOI 10.6028/NIST.SP.800-38A, December
              2001.

   [NISTSP800-108]
              National Institute of Standards and Technology,
              "Recommendation for Key Derivation Using Pseudorandom
              Functions", NIST Special Publication 800-108, October
              2009, <http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
              nistspecialpublication800-108.pdf>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC4493]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
              AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
              2006, <https://www.rfc-editor.org/info/rfc4493>.

   [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
              Key Derivation Function (HKDF)", RFC 5869,
              DOI 10.17487/RFC5869, May 2010,
              <https://www.rfc-editor.org/info/rfc5869>.



Smyshlyaev                    Informational                    [Page 44]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   [RFC7836]  Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
              Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
              on the Cryptographic Algorithms to Accompany the Usage of
              Standards GOST R 34.10-2012 and GOST R 34.11-2012",
              RFC 7836, DOI 10.17487/RFC7836, March 2016,
              <https://www.rfc-editor.org/info/rfc7836>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [SSH]      Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
              January 2006, <https://www.rfc-editor.org/info/rfc4253>.

   [TLS]      Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

10.2.  Informative References

   [AAOS2017] Ahmetzyanova, L., Alekseev, E., Oshkin, I., and S.
              Smyshlyaev, "Increasing the Lifetime of Symmetric Keys for
              the GCM Mode by Internal Re-keying", Cryptology ePrint
              Archive, Report 2017/697, 2017,
              <https://eprint.iacr.org/2017/697.pdf>.

   [AbBell]   Abdalla, M. and M. Bellare, "Increasing the Lifetime of a
              Key: A Comparative Analysis of the Security of Re-keying
              Techniques", ASIACRYPT 2000, Lecture Notes in Computer
              Science, Volume 1976, pp. 546-559,
              DOI 10.1007/3-540-44448-3_42, October 2000.

   [AESDUKPT] American National Standards Institute, "Retail Financial
              Services Symmetric Key Management - Part 3: Derived Unique
              Key Per Transaction", ANSI X9.24-3-2017, October 2017.

   [FKK2005]  Fu, K., Kamara, S., and T. Kohno, "Key Regression:
              Enabling Efficient Key Distribution for Secure Distributed
              Storage", November 2005, <https://homes.cs.washington.edu/
              ~yoshi/papers/KR/NDSS06.pdf>.










Smyshlyaev                    Informational                    [Page 45]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   [FPS2012]  Faust, S., Pietrzak, K., and J. Schipper, "Practical
              Leakage-Resilient Symmetric Cryptography", Cryptographic
              Hardware and Embedded Systems (CHES), Lecture Notes in
              Computer Science, Volume 7428, pp. 213-232,
              DOI 10.1007/978-3-642-33027-8_13, 2012,
              <https://link.springer.com/content/
              pdf/10.1007%2F978-3-642-33027-8_13.pdf>.

   [FRESHREKEYING]
              Dziembowski, S., Faust, S., Herold, G., Journault, A.,
              Masny, D., and F. Standaert, "Towards Sound Fresh
              Re-Keying with Hard (Physical) Learning Problems",
              Cryptology ePrint Archive, Report 2016/573, June 2016,
              <https://eprint.iacr.org/2016/573>.

   [GGM]      Goldreich, O., Goldwasser, S., and S. Micali, "How to
              Construct Random Functions", Journal of the Association
              for Computing Machinery, Volume 33, No. 4, pp. 792-807,
              DOI 10.1145/6490.6503, October 1986,
              <https://dl.acm.org/citation.cfm?doid=6490.6503>.

   [KMNT2003] Kim, Y., Maino, F., Narasimha, M., and G. Tsudik, "Secure
              Group Services for Storage Area Networks",
              IEEE Communications Magazine 41, Number 8, pp. 92-99,
              DOI 10.1109/SISW.2002.1183514, August 2003,
              <https://ieeexplore.ieee.org/document/1183514>.

   [LDC]      Heys, H., "A Tutorial on Linear and Differential
              Cryptanalysis", 2001, <https://citeseerx.ist.psu.edu/
              viewdoc/citations?doi=10.1.1.2.2759>.

   [OWT]      Joye, M. and S. Yen, "One-Way Cross-Trees and Their
              Applications", Public Key Cryptography (PKC), Lecture
              Notes in Computer Science, Volume 2274,
              DOI 10.1007/3-540-45664-3_25, February 2002,
              <https://link.springer.com/content/
              pdf/10.1007%2F3-540-45664-3_25.pdf>.

   [P3]       Alexander, P., "Subject: [Cfrg] Dynamic Key Changes on
              Encrypted Sessions. - Draft I-D Attached", message to
              the CFRG mailing list, 4 November 2017,
              <https://mailarchive.ietf.org/arch/msg/cfrg/
              ecTR3Hb-DFfrPCVmY0ghyYOEcxU>.








Smyshlyaev                    Informational                    [Page 46]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   [Pietrzak2009]
              Pietrzak, K., "A Leakage-Resilient Mode of Operation",
              EUROCRYPT 2009, Lecture Notes in Computer Science, Volume
              5479, pp. 462-482, DOI 10.1007/978-3-642-01001-9_27, April
              2009, <https://iacr.org/archive/eurocrypt2009/
              54790461/54790461.pdf>.

   [SIGNAL]   Perrin, T., Ed. and M. Marlinspike, "The Double Ratchet
              Algorithm", November 2016, <https://signal.org/docs/
              specifications/doubleratchet/doubleratchet.pdf>.

   [Sweet32]  Bhargavan, K. and G. Leurent, "On the Practical
              (In-)Security of 64-bit Block Ciphers: Collision Attacks
              on HTTP over TLS and OpenVPN", Proceedings of the 2016 ACM
              SIGSAC Conference on Computer and Communications
              Security, pp. 456-467, DOI 10.1145/2976749.2978423,
              October 2016, <https://sweet32.info/SWEET32_CCS16.pdf>.

   [TAHA]     Taha, M. and P. Schaumont, "Key Updating for Leakage
              Resiliency With Application to AES Modes of Operation",
              IEEE Transactions on Information Forensics and Security,
              DOI 10.1109/TIFS.2014.2383359, December 2014,
              <http://ieeexplore.ieee.org/document/6987331/>.

   [TEMPEST]  Ramsay, C. and J. Lohuis, "TEMPEST attacks against AES.
              Covertly stealing keys for 200 euro", June 2017,
              <https://www.fox-it.com/en/wp-content/uploads/sites/11/
              Tempest_attacks_against_AES.pdf>.

   [U2F]      Chang, D., Mishra, S., Sanadhya, S., and A. Singh, "On
              Making U2F Protocol Leakage-Resilient via Re-keying",
              Cryptology ePrint Archive, Report 2017/721, August 2017,
              <https://eprint.iacr.org/2017/721.pdf>.


















Smyshlyaev                    Informational                    [Page 47]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


Appendix A.  Test Examples

A.1.  Test Examples for External Re-keying

A.1.1.  External Re-keying with a Parallel Construction

   External re-keying with a parallel construction based on AES-256
   ****************************************************************
   k = 256
   t = 128

   Initial key:
   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

   K^1:
   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86
   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1

   K^2:
   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15
   B8 02 92 32 D8 D3 8D 73 FE DC DD C6 C8 36 78 BD

   K^3:
   B6 40 24 85 A4 24 BD 35 B4 26 43 13 76 26 70 B6
   5B F3 30 3D 3B 20 EB 14 D1 3B B7 91 74 E3 DB EC

   ...

   K^126:
   2F 3F 15 1B 53 88 23 CD 7D 03 FC 3D FD B3 57 5E
   23 E4 1C 4E 46 FF 6B 33 34 12 27 84 EF 5D 82 23

   K^127:
   8E 51 31 FB 0B 64 BB D0 BC D4 C5 7B 1C 66 EF FD
   97 43 75 10 6C AF 5D 5E 41 E0 17 F4 05 63 05 ED

   K^128:
   77 4F BF B3 22 60 C5 3B A3 8E FE B1 96 46 76 41
   94 49 AF 84 2D 84 65 A7 F4 F7 2C DC A4 9D 84 F9

   External re-keying with a parallel construction based on SHA-256
   ****************************************************************
   k = 256
   t = 128

   label:
   SHA2label



Smyshlyaev                    Informational                    [Page 48]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Initial key:
   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

   K^1:
   C1 A1 4C A0 30 29 BE 43 9F 35 3C 79 1A 51 48 57
   26 7A CD 5A E8 7D E7 D1 B2 E2 C7 AF A4 29 BD 35

   K^2:
   03 68 BB 74 41 2A 98 ED C4 7B 94 CC DF 9C F4 9E
   A9 B8 A9 5F 0E DC 3C 1E 3B D2 59 4D D1 75 82 D4

   K^3:
   2F D3 68 D3 A7 8F 91 E6 3B 68 DC 2B 41 1D AC 80
   0A C3 14 1D 80 26 3E 61 C9 0D 24 45 2A BD B1 AE

   ...

   K^126:
   55 AC 2B 25 00 78 3E D4 34 2B 65 0E 75 E5 8B 76
   C8 04 E9 D3 B6 08 7D C0 70 2A 99 A4 B5 85 F1 A1

   K^127:
   77 4D 15 88 B0 40 90 E5 8C 6A D7 5D 0F CF 0A 4A
   6C 23 F1 B3 91 B1 EF DF E5 77 64 CD 09 F5 BC AF

   K^128:
   E5 81 FF FB 0C 90 88 CD E5 F4 A5 57 B6 AB D2 2E
   94 C3 42 06 41 AB C1 72 66 CC 2F 59 74 9C 86 B3

A.1.2.  External Re-keying with a Serial Construction

   External re-keying with a serial construction based on AES-256
   **************************************************************
   AES 256 examples:
   k = 256
   t = 128

   Initial key:
   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

   K*_1:
   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00






Smyshlyaev                    Informational                    [Page 49]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   K^1:
   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86

   K*_2:
   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15

   K^2:
   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86

   K*_3:
   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15

   K^3:
   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86

   ...

   K*_126:
   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15

   K^126:
   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86

   K*_127:
   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15

   K^127:
   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86

   K*_128:
   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15

   K^128:
   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86






Smyshlyaev                    Informational                    [Page 50]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   External re-keying with a serial construction based on SHA-256
   **************************************************************
   k = 256
   t = 128

   Initial key:
   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

   label1:
   SHA2label1

   label2:
   SHA2label2

   K*_1:
   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

   K^1:
   2D A8 D1 37 6C FD 52 7F F7 36 A4 E2 81 C6 0A 9B
   F3 8E 66 97 ED 70 4F B5 FB 10 33 CC EC EE D5 EC

   K*_2:
   14 65 5A D1 7C 19 86 24 9B D3 56 DF CC BE 73 6F
   52 62 4A 9D E3 CC 40 6D A9 48 DA 5C D0 68 8A 04

   K^2:
   2F EA 8D 57 2B EF B8 89 42 54 1B 8C 1B 3F 8D B1
   84 F9 56 C7 FE 01 11 99 1D FB 98 15 FE 65 85 CF

   K*_3:
   18 F0 B5 2A D2 45 E1 93 69 53 40 55 43 70 95 8D
   70 F0 20 8C DF B0 5D 67 CD 1B BF 96 37 D3 E3 EB

   K^3:
   53 C7 4E 79 AE BC D1 C8 24 04 BF F6 D7 B1 AC BF
   F9 C0 0E FB A8 B9 48 29 87 37 E1 BA E7 8F F7 92

   ...

   K*_126:
   A3 6D BF 02 AA 0B 42 4A F2 C0 46 52 68 8B C7 E6
   5E F1 62 C3 B3 2F DD EF E4 92 79 5D BB 45 0B CA

   K^126:
   6C 4B D6 22 DC 40 48 0F 29 C3 90 B8 E5 D7 A7 34
   23 4D 34 65 2C CE 4A 76 2C FE 2A 42 C8 5B FE 9A



Smyshlyaev                    Informational                    [Page 51]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   K*_127:
   84 5F 49 3D B8 13 1D 39 36 2B BE D3 74 8F 80 A1
   05 A7 07 37 BA 15 72 E0 73 49 C2 67 5D 0A 28 A1

   K^127:
   57 F0 BD 5A B8 2A F3 6B 87 33 CF F7 22 62 B4 D0
   F0 EE EF E1 50 74 E5 BA 13 C1 23 68 87 36 29 A2

   K*_128:
   52 F2 0F 56 5C 9C 56 84 AF 69 AD 45 EE B8 DA 4E
   7A A6 04 86 35 16 BA 98 E4 CB 46 D2 E8 9A C1 09

   K^128:
   9B DD 24 7D F3 25 4A 75 E0 22 68 25 68 DA 9D D5
   C1 6D 2D 2B 4F 3F 1F 2B 5E 99 82 7F 15 A1 4F A4

A.2.  Test Examples for Internal Re-keying

A.2.1.  Internal Re-keying Mechanisms that Do Not Require a Master Key

   CTR-ACPKM mode with AES-256
   ***************************
   k = 256
   n = 128
   c = 64
   N = 256

   Initial key K:
   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Plaintext P:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
   00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
   00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44

   ICN:
   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12
   23 34 45 56 67 78 89 90 12 13 14 15 16 17 18 19

   D_1:
   00000:   80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F





Smyshlyaev                    Informational                    [Page 52]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   D_2:
   00000:   90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

   Section_1

   Section key K^1:
   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Input block CTR_1:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00

   Output block G_1:
   00000:   FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0

   Input block CTR_2:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01

   Output block G_2:
   00000:   19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2

   Section_2

   Section key K^2:
   00000:   F6 80 D1 21 2F A4 3D F4 EC 3A 91 DE 2A B1 6F 1B
   00010:   36 B0 48 8A 4F C1 2E 09 98 D2 E4 A8 88 E8 4F 3D

   Input block CTR_3:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02

   Output block G_3:
   00000:   E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA

   Input block CTR_4:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03

   Output block G_4:
   00000:   BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4

   Section_3

   Section key K^3:
   00000:   8E B9 7E 43 27 1A 42 F1 CA 8E E2 5F 5C C7 C8 3B
   00010:   1A CE 9E 5E D0 6A A5 3B 57 B9 6A CF 36 5D 24 B8

   Input block CTR_5:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04




Smyshlyaev                    Informational                    [Page 53]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Output block G_5:
   00000:   68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7

   Input block CTR_6:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05

   Output block G_6:
   00000:   C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87

   Section_4

   Section key K^4:
   00000:   C5 71 6C C9 67 98 BC 2D 4A 17 87 B7 8A DF 94 AC
   00010:   E8 16 F8 0B DB BC AD 7D 60 78 12 9C 0C B4 02 F5

   Block number 7:

   Input block CTR_7:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06

   Output block G_7:
   00000:   03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D


   The result G = G_1 | G_2 | G_3 | G_4 | G_5 | G_6 | G_7:
   00000:   FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0
   00010:   19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2
   00020:   E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA
   00030:   BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4
   00040:   68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7
   00050:   C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87
   00060:   03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D

   The result ciphertext C = P (xor) MSB_{|P|}(G):
   00000:   EC 5C CB DE 8C 18 D3 B8 72 56 68 D0 A7 37 F4 58
   00010:   19 89 E7 42 32 62 9D 60 99 7D E2 4B C0 E3 9F B8
   00020:   F5 AA BA 0B E3 64 F0 53 EE F0 BC 15 C2 76 4C EA
   00030:   9E 7C C3 76 BD 87 19 C9 77 0F CA 2D E2 A3 7C B5
   00040:   5B 2B 77 1B F8 3A 05 17 BE 04 2D 82 28 FE 2A 95
   00050:   84 4E 9F 08 FD F7 B8 94 4C B7 AA B7 DE 3C 67 B4
   00060:   56 B8 43 FC 32 31 DE 46 D5 AB 14 F8 AC 09 C7 39










Smyshlyaev                    Informational                    [Page 54]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   GCM-ACPKM mode with AES-128
   ***************************
   k = 128
   n = 128
   c = 32
   N = 256

   Initial key K:
   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

   Additional data A:
   00000:   11 22 33

   Plaintext:
   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00010:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

   ICN:
   00000:   00 00 00 00 00 00 00 00 00 00 00 00

   Number of sections: 2

   Section key K^1:
   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

   Section key K^2:
   00000:   15 1A 9F B0 B6 AC C5 97 6A FB 50 31 D1 DE C8 41

   Encrypted GCTR_1 | GCTR_2 | GCTR_3:
   00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78
   00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0
   00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD

   Ciphertext C:
   00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78
   00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0
   00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD

   GHASH input:
   00000:   11 22 33 00 00 00 00 00 00 00 00 00 00 00 00 00
   00010:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78
   00020:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0
   00030:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD
   00040:   00 00 00 00 00 00 00 18 00 00 00 00 00 00 01 80

   GHASH output S:
   00000:   E8 ED E9 94 9A DD 55 30 B0 F4 4E F5 00 FC 3E 3C



Smyshlyaev                    Informational                    [Page 55]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Authentication tag  T:
   00000:   B0 0F 15 5A 60 A3 65 51 86 8B 53 A2 A4 1B 7B 66

   The result C | T:
   00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78
   00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0
   00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD
   00030:   B0 0F 15 5A 60 A3 65 51 86 8B 53 A2 A4 1B 7B 66

A.2.2.  Internal Re-keying Mechanisms with a Master Key

   CTR-ACPKM-Master mode with AES-256
   **********************************
   k = 256
   n = 128
   c for CTR-ACPKM mode = 64
   c for CTR-ACPKM-Master mode = 64
   N = 256
   T* = 512

   Initial key K:
   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Initial vector ICN:
   00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12

   Plaintext P:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
   00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
   00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44

   K^1 | K^2 | K^3 | K^4:
   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
   00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
   00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
   00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
   00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
   00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
   00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12






Smyshlyaev                    Informational                    [Page 56]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Section_1

   K^1:
   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60

   Input block CTR_1:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00

   Output block G_1:
   00000:   8C A2 B6 82 A7 50 65 3F 8E BF 08 E7 9F 99 4D 5C

   Input block CTR_2:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01

   Output block G_2:
   00000:   F6 A6 A5 BA 58 14 1E ED 23 DC 31 68 D2 35 89 A1


   Section_2

   K^2:
   00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
   00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3

   Input block CTR_3:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02

   Output block G_3:
   00000:   4A 07 5F 86 05 87 72 94 1D 8E 7D F8 32 F4 23 71

   Input block CTR_4:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03

   Output block G_4:
   00000:   23 35 66 AF 61 DD FE A7 B1 68 3F BA B0 52 4A D7


   Section_3

   K^3:
   00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
   00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94

   Input block CTR_5:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04





Smyshlyaev                    Informational                    [Page 57]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Output block G_5:
   00000:   A8 09 6D BC E8 BB 52 FC DE 6E 03 70 C1 66 95 E8

   Input block CTR_6:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05

   Output block G_6:
   00000:   C6 E3 6E 8E 5B 82 AA C4 A6 6C 14 8D B1 F6 9B EF


   Section_4

   K^4:
   00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
   00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12

   Input block CTR_7:
   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06

   Output block G_7:
   00000:   82 2B E9 07 96 37 44 95 75 36 3F A7 07 F8 40 22


   The result G = G_1 | G_2 | G_3 | G_4 | G_5 | G_6 | G_7:
   00000:   8C A2 B6 82 A7 50 65 3F 8E BF 08 E7 9F 99 4D 5C
   00010:   F6 A6 A5 BA 58 14 1E ED 23 DC 31 68 D2 35 89 A1
   00020:   4A 07 5F 86 05 87 72 94 1D 8E 7D F8 32 F4 23 71
   00030:   23 35 66 AF 61 DD FE A7 B1 68 3F BA B0 52 4A D7
   00040:   A8 09 6D BC E8 BB 52 FC DE 6E 03 70 C1 66 95 E8
   00050:   C6 E3 6E 8E 5B 82 AA C4 A6 6C 14 8D B1 F6 9B EF
   00060:   82 2B E9 07 96 37 44 95 75 36 3F A7 07 F8 40 22

   The result ciphertext C = P (xor) MSB_{|P|}(G):
   00000:   9D 80 85 C6 F2 36 12 3F 71 51 D5 2B 24 33 D4 D4
   00010:   F6 B7 87 89 1C 41 78 9A AB 45 9B D3 1E DB 76 AB
   00020:   5B 25 6C C2 50 E1 05 1C 84 24 C6 34 DC 0B 29 71
   00030:   01 06 22 FA 07 AA 76 3E 1B D3 F3 54 4F 58 4A C6
   00040:   9B 4D 38 DA 9F 33 CB 56 65 A2 ED 8F CB 66 84 CA
   00050:   82 B6 08 F9 D3 1B 00 7F 6A 82 EB 87 B1 E7 B9 DC
   00060:   D7 4D 9E 8F 0F 9D FF 59 9B C9 35 A7 16 DA 73 66











Smyshlyaev                    Informational                    [Page 58]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   GCM-ACPKM-Master mode with AES-256
   **********************************
   k = 192
   n = 128
   c for the CTR-ACPKM mode = 64
   c for the GCM-ACPKM-Master mode = 32
   T* = 384
   N = 256

   Initial key K:
   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00010:   00 00 00 00 00 00 00 00

   Additional data A:
   00000:   11 22 33

   Plaintext:
   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00010:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00030:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00040:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

   ICN:
   00000:   00 00 00 00 00 00 00 00 00 00 00 00

   Number of sections: 3

   K^1 | K^2 | K^3:
   00000:   93 BA AF FB 35 FB E7 39 C1 7C 6A C2 2E EC F1 8F
   00010:   7B 89 F0 BF 8B 18 07 05 96 48 68 9F 36 A7 65 CC
   00020:   CD 5D AC E2 0D 47 D9 18 D7 86 D0 41 A8 3B AB 99
   00030:   F5 F8 B1 06 D2 71 78 B1 B0 08 C9 99 0B 72 E2 87
   00040:   5A 2D 3C BE F1 6E 67 3C

   Encrypted GCTR_1 | ... | GCTR_5
   00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52
   00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8
   00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE
   00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14
   00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08

   Ciphertext C:
   00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52
   00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8
   00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE
   00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14
   00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08



Smyshlyaev                    Informational                    [Page 59]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   GHASH input:
   00000:   11 22 33 00 00 00 00 00 00 00 00 00 00 00 00 00
   00010:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52
   00020:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8
   00030:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE
   00040:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14
   00050:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08
   00060:   00 00 00 00 00 00 00 18 00 00 00 00 00 00 02 80

   GHASH output S:
   00000:   6E A3 4B D5 6A C5 40 B7 3E 55 D5 86 D1 CC 09 7D

   Authentication tag  T:
   00050:   CC 3A BA 11 8C E7 85 FD 77 78 94 D4 B5 20 69 F8

   The result C | T:
   00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52
   00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8
   00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE
   00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14
   00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08
   00050:   CC 3A BA 11 8C E7 85 FD 77 78 94 D4 B5 20 69 F8


   CBC-ACPKM-Master mode with AES-256
   **********************************
   k = 256
   n = 128
   c for the CTR-ACPKM mode = 64
   N = 256
   T* = 512

   Initial key K:
   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Initial vector IV:
   00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12

   Plaintext P:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
   00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
   00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44




Smyshlyaev                    Informational                    [Page 60]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   K^1 | K^2 | K^3 | K^4:
   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
   00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
   00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
   00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
   00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
   00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
   00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12

   Section_1

   K^1:
   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60

   Plaintext block P_1:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88

   Input block P_1 (xor) C_0:
   00000:   03 16 65 3C C5 CD B9 F0 5E 5C 1E 18 5E 5A 98 9A

   Output block C_1:
   00000:   59 CB 5B CA C2 69 2C 60 0D 46 03 A0 C7 40 C9 7C

   Plaintext block P_2:
   00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A

   Input block P_2 (xor) C_1:
   00000:   59 DA 79 F9 86 3C 4A 17 85 DF A9 1B 0B AE 36 76

   Output block C_2:
   00000:   80 B6 02 74 54 8B F7 C9 78 1F A1 05 8B F6 8B 42

   Section_2

   K^2:
   00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
   00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3

   Plaintext block P_3:
   00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00

   Input block P_3 (xor) C_2:
   00000:   91 94 31 30 01 ED 80 41 E1 B5 1A C9 65 09 81 42

   Output block C_3:
   00000:   8C 24 FB CF 68 15 B1 AF 65 FE 47 75 95 B4 97 59



Smyshlyaev                    Informational                    [Page 61]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Plaintext block P_4:
   00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11

   Input block P_4 (xor) C_3:
   00000:   AE 17 BF 9A 0E 62 39 36 CF 45 8B 9B 6A BE 97 48

   Output block C_4:
   00000:   19 65 A5 00 58 0D 50 23 72 1B E9 90 E1 83 30 E9

   Section_3

   K^3:
   00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
   00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94

   Plaintext block P_5:
   00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22

   Input block P_5 (xor) C_4:
   00000:   2A 21 F0 66 2F 85 C9 89 C9 D7 07 6F EB 83 21 CB

   Output block C_5:
   00000:   56 D8 34 F4 6F 0F 4D E6 20 53 A9 5C B5 F6 3C 14

   Plaintext block P_6:
   00000:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33

   Input block P_6 (xor) C_5:
   00000:   12 8D 52 83 E7 96 E7 5D EC BD 56 56 B5 E7 1E 27

   Output block C_6:
   00000:   66 68 2B 8B DD 6E B2 7E DE C7 51 D6 2F 45 A5 45

   Section_4

   K^4:
   00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
   00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12

   Plaintext block P_7:
   00000:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44

   Input block P_7 (xor) C_6:
   00000:   33 0E 5C 03 44 C4 09 B2 30 38 5B D6 3E 67 96 01

   Output block C_7:
   00000:   7F 4D 87 F9 CA E9 56 09 79 C4 FA FE 34 0B 45 34




Smyshlyaev                    Informational                    [Page 62]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Ciphertext C:
   00000:   59 CB 5B CA C2 69 2C 60 0D 46 03 A0 C7 40 C9 7C
   00010:   80 B6 02 74 54 8B F7 C9 78 1F A1 05 8B F6 8B 42
   00020:   8C 24 FB CF 68 15 B1 AF 65 FE 47 75 95 B4 97 59
   00030:   19 65 A5 00 58 0D 50 23 72 1B E9 90 E1 83 30 E9
   00040:   56 D8 34 F4 6F 0F 4D E6 20 53 A9 5C B5 F6 3C 14
   00050:   66 68 2B 8B DD 6E B2 7E DE C7 51 D6 2F 45 A5 45
   00060:   7F 4D 87 F9 CA E9 56 09 79 C4 FA FE 34 0B 45 34


   CFB-ACPKM-Master mode with AES-256
   **********************************
   k = 256
   n = 128
   c for the CTR-ACPKM mode = 64
   N = 256
   T* = 512

   Initial key K:
   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Initial vector IV:
   00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12

   Plaintext P:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
   00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
   00060:   55 66 77 88 99 AA BB CC

   K^1 | K^2 | K^3 | K^4
   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
   00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
   00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
   00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
   00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
   00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
   00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12








Smyshlyaev                    Informational                    [Page 63]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Section_1

   K^1:
   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60

   Plaintext block P_1:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88

   Encrypted block E_{K^1}(C_0):
   00000:   1C 39 9D 59 F8 5D 91 91 A9 D2 12 9F 63 15 90 03

   Output block C_1 = E_{K^1}(C_0) (xor) P_1:
   00000:   0D 1B AE 1D AD 3B E6 91 56 3C CF 53 D8 BF 09 8B

   Plaintext block P_2:
   00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A

   Encrypted block E_{K^1}(C_1):
   00000:   6B A2 C5 42 52 69 C6 0B 15 14 06 87 90 46 F6 2E

   Output block C_2 = E_{K^1}(C_1) (xor) P_2:
   00000:   6B B3 E7 71 16 3C A0 7C 9D 8D AC 3C 5C A8 09 24

   Section_2

   K^2:
   00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
   00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3

   Plaintext block P_3:
   00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00

   Encrypted block E_{K^2}(C_2):
   00000:   95 45 5F DB C3 9E 0A 13 9F CB 10 F5 BD 79 A3 88

   Output block C_3 = E_{K^2}(C_2) (xor) P_3:
   00000:   84 67 6C 9F 96 F8 7D 9B 06 61 AB 39 53 86 A9 88

   Plaintext block P_4:
   00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11

   Encrypted block E_{K^2}(C_3):
   00000:   E0 AA 32 5D 80 A4 47 95 BA 42 BF 63 F8 4A C8 B2

   Output block C_4 = E_{K^2}(C_3) (xor) P_4:
   00000:   C2 99 76 08 E6 D3 CF 0C 10 F9 73 8D 07 40 C8 A3




Smyshlyaev                    Informational                    [Page 64]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Section_3

   K^3:
   00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
   00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94

   Plaintext block P_5:
   00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22

   Encrypted block E_{K^3}(C_4):
   00000:   FE 42 8C 70 C2 51 CE 13 36 C1 BF 44 F8 49 66 89

   Output block C_5 = E_{K^3}(C_4) (xor) P_5:
   00000:   CD 06 D9 16 B5 D9 57 B9 8D 0D 51 BB F2 49 77 AB

   Plaintext block P_6:
   00000:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33

   Encrypted block E_{K^3}(C_5):
   00000:   01 24 80 87 86 18 A5 43 11 0A CC B5 0A E5 02 A3

   Output block C_6 = E_{K^3}(C_5) (xor) P_6:
   00000:   45 71 E6 F0 0E 81 0F F8 DD E4 33 BF 0A F4 20 90

   Section_4

   K^4:
   00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
   00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12

   Plaintext block P_7:
   00000:   55 66 77 88 99 AA BB CC

   Encrypted block MSB_{|P_7|}(E_{K^4}(C_6)):
   00000:   97 5C 96 37 55 1E 8C 7F

   Output block C_7 = MSB_{|P_7|}(E_{K^4}(C_6)) (xor) P_7
   00000:   C2 3A E1 BF CC B4 37 B3

   Ciphertext C:
   00000:   0D 1B AE 1D AD 3B E6 91 56 3C CF 53 D8 BF 09 8B
   00010:   6B B3 E7 71 16 3C A0 7C 9D 8D AC 3C 5C A8 09 24
   00020:   84 67 6C 9F 96 F8 7D 9B 06 61 AB 39 53 86 A9 88
   00030:   C2 99 76 08 E6 D3 CF 0C 10 F9 73 8D 07 40 C8 A3
   00040:   CD 06 D9 16 B5 D9 57 B9 8D 0D 51 BB F2 49 77 AB
   00050:   45 71 E6 F0 0E 81 0F F8 DD E4 33 BF 0A F4 20 90
   00060:   C2 3A E1 BF CC B4 37 B3




Smyshlyaev                    Informational                    [Page 65]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   OMAC-ACPKM-Master mode with AES-256
   ***********************************
   k = 256
   n = 128
   c for the CTR-ACPKM mode = 64
   N = 256
   T* = 768

   Initial key K:
   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Plaintext M:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22

   K^1 | K^1_1 | K^2 | K^2_1 | K^3 | K^3_1:
   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
   00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
   00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
   00040:   9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67
   00050:   BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48
   00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
   00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12
   00080:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07

   Section_1

   K^1:
   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60

   K^1_1:
   00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0

   Plaintext block M_1:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88

   Input block M_1 (xor) C_0:
   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88

   Output block C_1:
   00000:   0B A5 89 BF 55 C1 15 42 53 08 89 76 A0 FE 24 3E




Smyshlyaev                    Informational                    [Page 66]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   Plaintext block M_2:
   00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A

   Input block M_2 (xor) C_1:
   00000:   0B B4 AB 8C 11 94 73 35 DB 91 23 CD 6C 10 DB 34

   Output block C_2:
   00000:   1C 53 DD A3 6D DC E1 17 ED 1F 14 09 D8 6A F3 2C

   Section_2

   K^2:
   00000:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
   00010:   9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67

   K^2_1:
   00000:   BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48

   Plaintext block M_3:
   00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00

   Input block M_3 (xor) C_2:
   00000:   0D 71 EE E7 38 BA 96 9F 74 B5 AF C5 36 95 F9 2C

   Output block C_3:
   00000:   4E D4 BC A6 CE 6D 6D 16 F8 63 85 13 E0 48 59 75

   Plaintext block M_4:
   00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11

   Input block M_4 (xor) C_3:
   00000:   6C E7 F8 F3 A8 1A E5 8F 52 D8 49 FD 1F 42 59 64

   Output block C_4:
   00000:   B6 83 E3 96 FD 30 CD 46 79 C1 8B 24 03 82 1D 81

   Section_3

   K^3:
   00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
   00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12

   K^3_1:
   00000:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07

   MSB1(K1) == 0 -> K2 = K1 << 1





Smyshlyaev                    Informational                    [Page 67]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


   K1:
   00000:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07

   K2:
   00000:   F0 43 8F 8E D9 7A F2 C6 AD 59 F1 1C D2 D4 00 0E

   Plaintext M_5:
   00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22

   Using K1, padding is not required

   Input block M_5 (xor) C_4:
   00000:   FD E6 71 37 E6 05 2D 8F 94 A1 9D 55 60 E8 0C A4

   Output block C_5:
   00000:   B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8

   Message authentication code T:
   00000:   B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8
































Smyshlyaev                    Informational                    [Page 68]
^L
RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019


Acknowledgments

   We thank Mihir Bellare, Scott Fluhrer, Dorothy Cooley, Yoav Nir, Jim
   Schaad, Paul Hoffman, Dmitry Belyavsky, Yaron Sheffer, Alexey
   Melnikov, and Spencer Dawkins for their useful comments.

Contributors

   Russ Housley
   Vigil Security, LLC
   housley@vigilsec.com

   Evgeny Alekseev
   CryptoPro
   alekseev@cryptopro.ru

   Ekaterina Smyshlyaeva
   CryptoPro
   ess@cryptopro.ru

   Shay Gueron
   University of Haifa, Israel
   Intel Corporation, Israel Development Center, Israel
   shay.gueron@gmail.com

   Daniel Fox Franke
   Akamai Technologies
   dfoxfranke@gmail.com

   Lilia Ahmetzyanova
   CryptoPro
   lah@cryptopro.ru

Author's Address

   Stanislav Smyshlyaev (editor)
   CryptoPro
   18, Suschevskiy val
   Moscow  127018
   Russian Federation

   Phone: +7 (495) 995-48-20
   Email: svs@cryptopro.ru








Smyshlyaev                    Informational                    [Page 69]
^L