1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
|
Internet Engineering Task Force (IETF) A. Bashandy, Ed.
Request for Comments: 8660 Arrcus
Category: Standards Track C. Filsfils, Ed.
ISSN: 2070-1721 S. Previdi
Cisco Systems, Inc.
B. Decraene
S. Litkowski
Orange
R. Shakir
Google
December 2019
Segment Routing with the MPLS Data Plane
Abstract
Segment Routing (SR) leverages the source-routing paradigm. A node
steers a packet through a controlled set of instructions, called
segments, by prepending the packet with an SR header. In the MPLS
data plane, the SR header is instantiated through a label stack.
This document specifies the forwarding behavior to allow
instantiating SR over the MPLS data plane (SR-MPLS).
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8660.
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction
1.1. Requirements Language
2. MPLS Instantiation of Segment Routing
2.1. Multiple Forwarding Behaviors for the Same Prefix
2.2. SID Representation in the MPLS Forwarding Plane
2.3. Segment Routing Global Block and Local Block
2.4. Mapping a SID Index to an MPLS Label
2.5. Incoming Label Collision
2.5.1. Tiebreaking Rules
2.5.2. Redistribution between Routing Protocol Instances
2.6. Effect of Incoming Label Collision on Outgoing Label
Programming
2.7. PUSH, CONTINUE, and NEXT
2.7.1. PUSH
2.7.2. CONTINUE
2.7.3. NEXT
2.8. MPLS Label Downloaded to the FIB for Global and Local SIDs
2.9. Active Segment
2.10. Forwarding Behavior for Global SIDs
2.10.1. Forwarding for PUSH and CONTINUE of Global SIDs
2.10.2. Forwarding for the NEXT Operation for Global SIDs
2.11. Forwarding Behavior for Local SIDs
2.11.1. Forwarding for the PUSH Operation on Local SIDs
2.11.2. Forwarding for the CONTINUE Operation for Local SIDs
2.11.3. Outgoing Label for the NEXT Operation for Local SIDs
3. IANA Considerations
4. Manageability Considerations
5. Security Considerations
6. References
6.1. Normative References
6.2. Informative References
Appendix A. Examples
A.1. IGP Segment Examples
A.2. Incoming Label Collision Examples
A.2.1. Example 1
A.2.2. Example 2
A.2.3. Example 3
A.2.4. Example 4
A.2.5. Example 5
A.2.6. Example 6
A.2.7. Example 7
A.2.8. Example 8
A.2.9. Example 9
A.2.10. Example 10
A.2.11. Example 11
A.2.12. Example 12
A.2.13. Example 13
A.2.14. Example 14
A.3. Examples for the Effect of Incoming Label Collision on an
Outgoing Label
A.3.1. Example 1
A.3.2. Example 2
Acknowledgements
Contributors
Authors' Addresses
1. Introduction
The Segment Routing architecture [RFC8402] can be directly applied to
the MPLS architecture with no change in the MPLS forwarding plane.
This document specifies forwarding-plane behavior to allow Segment
Routing to operate on top of the MPLS data plane (SR-MPLS). This
document does not address control-plane behavior. Control-plane
behavior is specified in other documents such as [RFC8665],
[RFC8666], and [RFC8667].
The Segment Routing problem statement is described in [RFC7855].
Coexistence of SR over the MPLS forwarding plane with LDP [RFC5036]
is specified in [RFC8661].
Policy routing and traffic engineering using Segment Routing can be
found in [ROUTING-POLICY].
1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2. MPLS Instantiation of Segment Routing
MPLS instantiation of Segment Routing fits in the MPLS architecture
as defined in [RFC3031] from both a control-plane and forwarding-
plane perspective:
* From a control-plane perspective, [RFC3031] does not mandate a
single signaling protocol. Segment Routing makes use of various
control-plane protocols such as link-state IGPs [RFC8665]
[RFC8666] [RFC8667]. The flooding mechanisms of link-state IGPs
fit very well with label stacking on the ingress. A future
control-layer protocol and/or policy/configuration can be used to
specify the label stack.
* From a forwarding-plane perspective, Segment Routing does not
require any change to the forwarding plane because Segment IDs
(SIDs) are instantiated as MPLS labels, and the Segment Routing
header is instantiated as a stack of MPLS labels.
We call the "MPLS Control Plane Client (MCC)" any control-plane
entity installing forwarding entries in the MPLS data plane. Local
configuration and policies applied on a router are examples of MCCs.
In order to have a node segment reach the node, a network operator
SHOULD configure at least one node segment per routing instance,
topology, or algorithm. Otherwise, the node is not reachable within
the routing instance, within the topology, or along the routing
algorithm, which restricts its ability to be used by an SR Policy and
as a Topology Independent Loop-Free Alternate (TI-LFA).
2.1. Multiple Forwarding Behaviors for the Same Prefix
The SR architecture does not prohibit having more than one SID for
the same prefix. In fact, by allowing multiple SIDs for the same
prefix, it is possible to have different forwarding behaviors (such
as different paths, different ECMP and Unequal-Cost Multipath (UCMP)
behaviors, etc.) for the same destination.
Instantiating Segment Routing over the MPLS forwarding plane fits
seamlessly with this principle. An operator may assign multiple MPLS
labels or indices to the same prefix and assign different forwarding
behaviors to each label/SID. The MCC in the network downloads
different MPLS labels/SIDs to the FIB for different forwarding
behaviors. The MCC at the entry of an SR domain or at any point in
the domain can choose to apply a particular forwarding behavior to a
particular packet by applying the PUSH action to that packet using
the corresponding SID.
2.2. SID Representation in the MPLS Forwarding Plane
When instantiating SR over the MPLS forwarding plane, a SID is
represented by an MPLS label or an index [RFC8402].
A global SID is a label, or an index that may be mapped to an MPLS
label within the Segment Routing Global Block (SRGB), of the node
that installs a global SID in its FIB and receives the labeled
packet. Section 2.4 specifies the procedure to map a global segment
represented by an index to an MPLS label within the SRGB.
The MCC MUST ensure that any label value corresponding to any SID it
installs in the forwarding plane follows the rules below:
* The label value MUST be unique within the router on which the MCC
is running, i.e., the label MUST only be used to represent the SID
and MUST NOT be used to represent more than one SID or for any
other forwarding purpose on the router.
* The label value MUST NOT come from the range of special-purpose
labels [RFC7274].
Labels allocated in this document are considered per-platform
downstream allocated labels [RFC3031].
2.3. Segment Routing Global Block and Local Block
The concepts of SRGB and global SID are explained in [RFC8402]. In
general, the SRGB need not be a contiguous range of labels.
For the rest of this document, the SRGB is specified by the list of
MPLS label ranges [Ll(1),Lh(1)], [Ll(2),Lh(2)],..., [Ll(k),Lh(k)]
where Ll(i) =< Lh(i).
The following rules apply to the list of MPLS ranges representing the
SRGB:
* The list of ranges comprising the SRGB MUST NOT overlap.
* Every range in the list of ranges specifying the SRGB MUST NOT
cover or overlap with a reserved label value or range [RFC7274],
respectively.
* If the SRGB of a node does not conform to the structure specified
in this section or to the previous two rules, the SRGB MUST be
completely ignored by all routers in the routing domain, and the
node MUST be treated as if it does not have an SRGB.
* The list of label ranges MUST only be used to instantiate global
SIDs into the MPLS forwarding plane.
A local segment MAY be allocated from the Segment Routing Local Block
(SRLB) [RFC8402] or from any unused label as long as it does not use
a special-purpose label. The SRLB consists of the range of local
labels reserved by the node for certain local segments. In a
controller-driven network, some controllers or applications MAY use
the control plane to discover the available set of Local SIDs on a
particular router [ROUTING-POLICY]. The rules applicable to the SRGB
are also applicable to the SRLB, except the SRGB MUST only be used to
instantiate global SIDs into the MPLS forwarding plane. The
recommended, minimum, or maximum size of the SRGB and/or SRLB is a
matter of future study.
2.4. Mapping a SID Index to an MPLS Label
This subsection specifies how the MPLS label value is calculated
given the index of a SID. The value of the index is determined by an
MCC such as IS-IS [RFC8667] or OSPF [RFC8665]. This section only
specifies how to map the index to an MPLS label. The calculated MPLS
label is downloaded to the FIB, sent out with a forwarded packet, or
both.
Consider a SID represented by the index "I". Consider an SRGB as
specified in Section 2.3. The total size of the SRGB, represented by
the variable "Size", is calculated according to the formula:
size = Lh(1)- Ll(1) + 1 + Lh(2)- Ll(2) + 1 + ... + Lh(k)- Ll(k) + 1
The following rules MUST be applied by the MCC when calculating the
MPLS label value corresponding to the SID index value "I".
0 =< I < size. If index "I" does not satisfy the previous
inequality, then the label cannot be calculated.
The label value corresponding to the SID index "I" is calculated
as follows:
j = 1 , temp = 0
While temp + Lh(j)- Ll(j) < I
temp = temp + Lh(j)- Ll(j) + 1
j = j+1
label = I - temp + Ll(j)
An example for how a router calculates labels and forwards traffic
based on the procedure described in this section can be found in
Appendix A.1.
2.5. Incoming Label Collision
The MPLS Architecture [RFC3031] defines the term Forwarding
Equivalence Class (FEC) as the set of packets with similar and/or
identical characteristics that are forwarded the same way and are
bound to the same MPLS incoming (local) label. In Segment Routing
MPLS, a local label serves as the SID for a given FEC.
We define SR FEC [RFC8402] as one of the following:
* (Prefix, Routing Instance, Topology, Algorithm) [RFC8402], where a
topology identifies a set of links with metrics. For the purpose
of incoming label collision resolution, the same Topology
numerical value SHOULD be used on all routers to identify the same
set of links with metrics. For MCCs where the "Topology" and/or
"Algorithm" fields are not defined, the numerical value of zero
MUST be used for these two fields. For the purpose of incoming
label collision resolution, a routing instance is identified by a
single incoming label downloader to the FIB. Two MCCs running on
the same router are considered different routing instances if the
only way the two instances know about each other's incoming labels
is through redistribution. The numerical value used to identify a
routing instance MAY be derived from other configuration or MAY be
explicitly configured. If it is derived from other configuration,
then the same numerical value SHOULD be derived from the same
configuration as long as the configuration survives router reload.
If the derived numerical value varies for the same configuration,
then an implementation SHOULD make the numerical value used to
identify a routing instance configurable.
* (next hop, outgoing interface), where the outgoing interface is
physical or virtual.
* (number of adjacencies, list of next hops, list of outgoing
interfaces IDs in ascending numerical order). This FEC represents
parallel adjacencies [RFC8402].
* (Endpoint, Color). This FEC represents an SR Policy [RFC8402].
* (Mirror SID). The Mirror SID (see [RFC8402], Section 5.1) is the
IP address advertised by the advertising node to identify the
Mirror SID. The IP address is encoded as specified in
Section 2.5.1.
This section covers the RECOMMENDED procedure for handling the
scenario where, because of an error/misconfiguration, more than one
SR FEC as defined in this section maps to the same incoming MPLS
label. Examples illustrating the behavior specified in this section
can be found in Appendix A.2.
An incoming label collision occurs if the SIDs of the set of FECs
{FEC1, FEC2, ..., FECk} map to the same incoming SR MPLS label "L1".
Suppose an anycast prefix is advertised with a Prefix-SID by some,
but not all, of the nodes that advertise that prefix. If the Prefix-
SID sub-TLVs result in mapping that anycast prefix to the same
incoming label, then the advertisement of the Prefix-SID by some, but
not all, of the advertising nodes MUST NOT be treated as a label
collision.
An implementation MUST NOT allow the MCCs belonging to the same
router to assign the same incoming label to more than one SR FEC.
The objective of the following steps is to deterministically install
in the MPLS Incoming Label Map, also known as label FIB, a single FEC
with the incoming label "L1". By "deterministically install", we
mean if the set of FECs {FEC1, FEC2,..., FECk} map to the same
incoming SR MPLS label "L1", then the steps below assign the same FEC
to the label "L1" irrespective of the order by which the mappings of
this set of FECs to the label "L1" are received. For example, first-
come, first-served tiebreaking is not allowed. The remaining FECs
may be installed in the IP FIB without an incoming label.
The procedure in this section relies completely on the local FEC and
label database within a given router.
The collision resolution procedure is as follows:
1. Given the SIDs of the set of FECs, {FEC1, FEC2,..., FECk} map to
the same MPLS label "L1".
2. Within an MCC, apply tiebreaking rules to select one FEC only,
and assign the label to it. The losing FECs are handled as if no
labels are attached to them. The losing FECs with algorithms
other than the shortest path first [RFC8402] are not installed in
the FIB.
a. If the same set of FECs are attached to the same label "L1",
then the tiebreaking rules MUST always select the same FEC
irrespective of the order in which the FECs and the label
"L1" are received. In other words, the tiebreaking rule MUST
be deterministic.
3. If there is still collision between the FECs belonging to
different MCCs, then reapply the tiebreaking rules to the
remaining FECs to select one FEC only, and assign the label to
that FEC.
4. Install the selected FEC into the IP FIB and its incoming label
into the label FIB.
5. The remaining FECs with the default algorithm (see the Prefix-SID
algorithm specification [RFC8402]) may be installed in the FIB
natively, such as pure IP entries in case of Prefix FEC, without
any incoming labels corresponding to their SIDs. The remaining
FECs with algorithms other than the shortest path first [RFC8402]
are not installed in the FIB.
2.5.1. Tiebreaking Rules
The default tiebreaking rules are specified as follows:
1. Determine the lowest administrative distance among the competing
FECs as defined in the section below. Then filter away all the
competing FECs with a higher administrative distance.
2. If more than one competing FEC remains after step 1, select the
smallest numerical FEC value. The numerical value of the FEC is
determined according to the FEC encoding described later in this
section.
These rules deterministically select which FEC to install in the MPLS
forwarding plane for the given incoming label.
This document defines the default tiebreaking rules that SHOULD be
implemented. An implementation MAY choose to support different
tiebreaking rules and MAY use one of these instead of the default
tiebreaking rules. To maximize MPLS forwarding consistency in case
of a SID configuration error, the network operator MUST deploy,
within an IGP flooding area, routers implementing the same
tiebreaking rules.
Each FEC is assigned an administrative distance. The FEC
administrative distance is encoded as an 8-bit value. The lower the
value, the better the administrative distance.
The default FEC administrative distance order starting from the
lowest value SHOULD be:
* Explicit SID assignment to a FEC that maps to a label outside the
SRGB irrespective of the owner MCC. An explicit SID assignment is
a static assignment of a label to a FEC such that the assignment
survives a router reboot.
- An example of explicit SID allocation is static assignment of a
specific label to an Adj-SID.
- An implementation of explicit SID assignment MUST guarantee
collision freeness on the same router.
* Dynamic SID assignment:
- All FEC types, except for the SR Policy, are ordered using the
default administrative distance defined by the implementation.
- The Binding SID [RFC8402] assigned to the SR Policy always has
a higher default administrative distance than the default
administrative distance of any other FEC type.
To maximize MPLS forwarding consistency, if the same FEC is
advertised in more than one protocol, a user MUST ensure that the
administrative distance preference between protocols is the same on
all routers of the IGP flooding domain. Note that this is not really
new as this already applies to IP forwarding.
The numerical sort across FECs SHOULD be performed as follows:
* Each FEC is assigned a FEC type encoded in 8 bits. The type
codepoints for each SR FEC defined at the beginning of this
section are as follows:
120: (Prefix, Routing Instance, Topology, Algorithm)
130: (next hop, outgoing interface)
140: Parallel Adjacency [RFC8402]
150: SR Policy [RFC8402]
160: Mirror SID [RFC8402]
The numerical values above are mentioned to guide implementation.
If other numerical values are used, then the numerical values must
maintain the same greater-than ordering of the numbers mentioned
here.
* The fields of each FEC are encoded as follows:
- All fields in all FECs are encoded in big endian order.
- The Routing Instance ID is represented by 16 bits. For routing
instances that are identified by less than 16 bits, encode the
Instance ID in the least significant bits while the most
significant bits are set to zero.
- The address family is represented by 8 bits, where IPv4 is
encoded as 100, and IPv6 is encoded as 110. These numerical
values are mentioned to guide implementations. If other
numerical values are used, then the numerical value of IPv4
MUST be less than the numerical value for IPv6.
- All addresses are represented in 128 bits as follows:
o The IPv6 address is encoded natively.
o The IPv4 address is encoded in the most significant bits,
and the remaining bits are set to zero.
- All prefixes are represented by (8 + 128) bits.
o A prefix is encoded in the most significant bits, and the
remaining bits are set to zero.
o The prefix length is encoded before the prefix in an 8-bit
field.
- The Topology ID is represented by 16 bits. For routing
instances that identify topologies using less than 16 bits,
encode the topology ID in the least significant bits while the
most significant bits are set to zero.
- The Algorithm is encoded in a 16-bit field.
- The Color ID is encoded using 32 bits.
* Choose the set of FECs of the smallest FEC type codepoint.
* Out of these FECs, choose the FECs with the smallest address
family codepoint.
* Encode the remaining set of FECs as follows:
- (Prefix, Routing Instance, Topology, Algorithm) is encoded as
(Prefix Length, Prefix, routing_instance_id, Topology, SR
Algorithm).
- (next hop, outgoing interface) is encoded as (next hop,
outgoing_interface_id).
- (number of adjacencies, list of next hops in ascending
numerical order, list of outgoing interface IDs in ascending
numerical order) is used to encode a parallel adjacency
[RFC8402].
- (Endpoint, Color) is encoded as (Endpoint_address, Color_id).
- (IP address) is the encoding for a Mirror SID FEC. The IP
address is encoded as described above in this section.
* Select the FEC with the smallest numerical value.
The numerical values mentioned in this section are for guidance only.
If other numerical values are used, then the other numerical values
MUST maintain the same numerical ordering among different SR FECs.
2.5.2. Redistribution between Routing Protocol Instances
The following rule SHOULD be applied when redistributing SIDs with
prefixes between routing protocol instances:
* If the SRGB of the receiving instance is the same as the SRGB of
the origin instance, then:
- the index is redistributed with the route.
* Else,
- the index is not redistributed and if the receiving instance
decides to advertise an index with the redistributed route, it
is the duty of the receiving instance to allocate a fresh index
relative to its own SRGB. Note that in this case, the
receiving instance MUST compute the local label it assigns to
the route according to Section 2.4 and install it in FIB.
It is outside the scope of this document to define local node
behaviors that would allow the mapping of the original index into a
new index in the receiving instance via the addition of an offset or
other policy means.
2.5.2.1. Illustration
A----IS-IS----B---OSPF----C-192.0.2.1/32 (20001)
Consider the simple topology above, where:
* A and B are in the IS-IS domain with SRGB = [16000-17000]
* B and C are in the OSPF domain with SRGB = [20000-21000]
* B redistributes 192.0.2.1/32 into the IS-IS domain
In this case, A learns 192.0.2.1/32 as an IP leaf connected to B,
which is usual for IP prefix redistribution
However, according to the redistribution rule above, B decides not to
advertise any index with 192.0.2.1/32 into IS-IS because the SRGB is
not the same.
2.5.2.2. Illustration 2
Consider the example in the illustration described in
Section 2.5.2.1.
When router B redistributes the prefix 192.0.2.1/32, router B decides
to allocate and advertise the same index 1 with the prefix
192.0.2.1/32.
Within the SRGB of the IS-IS domain, index 1 corresponds to the local
label 16001. Hence, according to the redistribution rule above,
router B programs the incoming label 16001 in its FIB to match
traffic arriving from the IS-IS domain destined to the prefix
192.0.2.1/32.
2.6. Effect of Incoming Label Collision on Outgoing Label Programming
When determining what outgoing label to use, the ingress node that
pushes new segments, and hence a stack of MPLS labels, MUST use, for
a given FEC, the label that has been selected by the node receiving
the packet with that label exposed as the top label. So in case of
incoming label collision on this receiving node, the ingress node
MUST resolve this collision by using this same "Incoming Label
Collision resolution procedure" and by using the data of the
receiving node.
In the general case, the ingress node may not have the exact same
data as the receiving node, so the result may be different. This is
under the responsibility of the network operator. But in a typical
case, e.g., where a centralized node or a distributed link-state IGP
is used, all nodes would have the same database. However, to
minimize the chance of misforwarding, a FEC that loses its incoming
label to the tiebreaking rules specified in Section 2.5 MUST NOT be
installed in FIB with an outgoing Segment Routing label based on the
SID corresponding to the lost incoming label.
Examples for the behavior specified in this section can be found in
Appendix A.3.
2.7. PUSH, CONTINUE, and NEXT
PUSH, NEXT, and CONTINUE are operations applied by the forwarding
plane. The specifications of these operations can be found in
[RFC8402]. This subsection specifies how to implement each of these
operations in the MPLS forwarding plane.
2.7.1. PUSH
As described in [RFC8402], PUSH corresponds to pushing one or more
labels on top of an incoming packet then sending it out of a
particular physical interface or virtual interface, such as a UDP
tunnel [RFC7510] or the Layer 2 Tunneling Protocol version 3 (L2TPv3)
[RFC4817], towards a particular next hop. When pushing labels onto a
packet's label stack, the Time-to-Live (TTL) field [RFC3032]
[RFC3443] and the Traffic Class (TC) field [RFC3032] [RFC5462] of
each label stack entry must, of course, be set. This document does
not specify any set of rules for setting these fields; that is a
matter of local policy. Sections 2.10 and 2.11 specify additional
details about forwarding behavior.
2.7.2. CONTINUE
As described in [RFC8402], the CONTINUE operation corresponds to
swapping the incoming label with an outgoing label. The value of the
outgoing label is calculated as specified in Sections 2.10 and 2.11.
2.7.3. NEXT
As described in [RFC8402], NEXT corresponds to popping the topmost
label. The action before and/or after the popping depends on the
instruction associated with the active SID on the received packet
prior to the popping. For example, suppose the active SID in the
received packet was an Adj-SID [RFC8402]; on receiving the packet,
the node applies the NEXT operation, which corresponds to popping the
topmost label, and then sends the packet out of the physical or
virtual interface (e.g., the UDP tunnel [RFC7510] or L2TPv3 tunnel
[RFC4817]) towards the next hop corresponding to the Adj-SID.
2.7.3.1. Mirror SID
If the active SID in the received packet was a Mirror SID (see
[RFC8402], Section 5.1) allocated by the receiving router, the
receiving router applies the NEXT operation, which corresponds to
popping the topmost label, and then performs a lookup using the
contents of the packet after popping the outermost label in the
mirrored forwarding table. The method by which the lookup is made,
and/or the actions applied to the packet after the lookup in the
mirror table, depends on the contents of the packet and the mirror
table. Note that the packet exposed after popping the topmost label
may or may not be an MPLS packet. A Mirror SID can be viewed as a
generalization of the context label in [RFC5331] because a Mirror SID
does not make any assumptions about the packet underneath the top
label.
2.8. MPLS Label Downloaded to the FIB for Global and Local SIDs
The label corresponding to the global SID "Si", which is represented
by the global index "I" and downloaded to the FIB, is used to match
packets whose active segment (and hence topmost label) is "Si". The
value of this label is calculated as specified in Section 2.4.
For Local SIDs, the MCC is responsible for downloading the correct
label value to the FIB. For example, an IGP with SR extensions
[RFC8667] [RFC8665] downloads the MPLS label corresponding to an Adj-
SID [RFC8402].
2.9. Active Segment
When instantiated in the MPLS domain, the active segment on a packet
corresponds to the topmost label and is calculated according to the
procedure specified in Sections 2.10 and 2.11. When arriving at a
node, the topmost label corresponding to the active SID matches the
MPLS label downloaded to the FIB as specified in Section 2.4.
2.10. Forwarding Behavior for Global SIDs
This section specifies the forwarding behavior, including the
calculation of outgoing labels, that corresponds to a global SID when
applying the PUSH, CONTINUE, and NEXT operations in the MPLS
forwarding plane.
This document covers the calculation of the outgoing label for the
top label only. The case where the outgoing label is not the top
label and is part of a stack of labels that instantiates a routing
policy or a traffic-engineering tunnel is outside the scope of this
document and may be covered in other documents such as
[ROUTING-POLICY].
2.10.1. Forwarding for PUSH and CONTINUE of Global SIDs
Suppose an MCC on router "R0" determines that, before sending the
packet towards a neighbor "N", the PUSH or CONTINUE operation is to
be applied to an incoming packet related to the global SID "Si". SID
"Si" is represented by the global index "I" and owned by the router
Ri. Neighbor "N" may be directly connected to "R0" through either a
physical or a virtual interface (e.g., UDP tunnel [RFC7510] or L2TPv3
tunnel [RFC4817]).
The method by which the MCC on router "R0" determines that the PUSH
or CONTINUE operation must be applied using the SID "Si" is beyond
the scope of this document. An example of a method to determine the
SID "Si" for the PUSH operation is the case where IS-IS [RFC8667]
receives the Prefix-SID "Si" sub-TLV advertised with the prefix "P/m"
in TLV 135, and the prefix "P/m" is the longest matching network
prefix for the incoming IPv4 packet.
For the CONTINUE operation, an example of a method used to determine
the SID "Si" is the case where IS-IS [RFC8667] receives the Prefix-
SID "Si" sub-TLV advertised with prefix "P" in TLV 135, and the top
label of the incoming packet matches the MPLS label in the FIB
corresponding to the SID "Si" on router "R0".
The forwarding behavior for PUSH and CONTINUE corresponding to the
SID "Si" is as follows:
* If neighbor "N" does not support SR or advertises an invalid SRGB
or a SRGB that is too small for the SID "Si", then:
- If it is possible to send the packet towards neighbor "N" using
standard MPLS forwarding behavior as specified in [RFC3031] and
[RFC3032], forward the packet. The method by which a router
decides whether it is possible to send the packet to "N" or not
is beyond the scope of this document. For example, the router
"R0" can use the downstream label determined by another MCC,
such as LDP [RFC5036], to send the packet.
- Else, if there are other usable next hops, use them to forward
the incoming packet. The method by which the router "R0"
decides on the possibility of using other next hops is beyond
the scope of this document. For example, the MCC on "R0" may
chose the send an IPv4 packet without pushing any label to
another next hop.
- Otherwise, drop the packet.
* Else,
- Calculate the outgoing label as specified in Section 2.4 using
the SRGB of neighbor "N".
- Determine the outgoing label stack
o If the operation is PUSH:
+ Push the calculated label according to the MPLS label
pushing rules specified in [RFC3032].
o Else,
+ swap the incoming label with the calculated label
according to the label-swapping rules in [RFC3031].
o Send the packet towards neighbor "N".
2.10.2. Forwarding for the NEXT Operation for Global SIDs
As specified in Section 2.7.3, the NEXT operation corresponds to
popping the topmost label. The forwarding behavior is as follows:
* Pop the topmost label
* Apply the instruction associated with the incoming label that has
been popped
The action on the packet after popping the topmost label depends on
the instruction associated with the incoming label as well as the
contents of the packet right underneath the top label that was
popped. Examples of the NEXT operation are described in Appendix A.1
2.11. Forwarding Behavior for Local SIDs
This section specifies the forwarding behavior for Local SIDs when SR
is instantiated over the MPLS forwarding plane.
2.11.1. Forwarding for the PUSH Operation on Local SIDs
Suppose an MCC on router "R0" determines that the PUSH operation is
to be applied to an incoming packet using the Local SID "Si" before
sending the packet towards neighbor "N", which is directly connected
to R0 through a physical or virtual interface such as a UDP tunnel
[RFC7510] or L2TPv3 tunnel [RFC4817].
An example of such a Local SID is an Adj-SID allocated and advertised
by IS-IS [RFC8667]. The method by which the MCC on "R0" determines
that the PUSH operation is to be applied to the incoming packet is
beyond the scope of this document. An example of such a method is
the backup path used to protect against a failure using TI-LFA
[FAST-REROUTE].
As mentioned in [RFC8402], a Local SID is specified by an MPLS label.
Hence, the PUSH operation for a Local SID is identical to the label
push operation using any MPLS label [RFC3031]. The forwarding action
after pushing the MPLS label corresponding to the Local SID is also
determined by the MCC. For example, if the PUSH operation was done
to forward a packet over a backup path calculated using TI-LFA, then
the forwarding action may be sending the packet to a certain neighbor
that will in turn continue to forward the packet along the backup
path.
2.11.2. Forwarding for the CONTINUE Operation for Local SIDs
A Local SID on router "R0" corresponds to a local label. In such a
scenario, the outgoing label towards next hop "N" is determined by
the MCC running on the router "R0", and the forwarding behavior for
the CONTINUE operation is identical to the swap operation on an MPLS
label [RFC3031].
2.11.3. Outgoing Label for the NEXT Operation for Local SIDs
The NEXT operation for Local SIDs is identical to the NEXT operation
for global SIDs as specified in Section 2.10.2.
3. IANA Considerations
This document has no IANA actions.
4. Manageability Considerations
This document describes the applicability of Segment Routing over the
MPLS data plane. Segment Routing does not introduce any change in
the MPLS data plane. Manageability considerations described in
[RFC8402] apply to the MPLS data plane when used with Segment
Routing. SR Operations, Administration, and Maintenance (OAM) use
cases for the MPLS data plane are defined in [RFC8403]. SR OAM
procedures for the MPLS data plane are defined in [RFC8287].
5. Security Considerations
This document does not introduce additional security requirements and
mechanisms other than the ones described in [RFC8402].
6. References
6.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
Label Switching Architecture", RFC 3031,
DOI 10.17487/RFC3031, January 2001,
<https://www.rfc-editor.org/info/rfc3031>.
[RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
<https://www.rfc-editor.org/info/rfc3032>.
[RFC3443] Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
in Multi-Protocol Label Switching (MPLS) Networks",
RFC 3443, DOI 10.17487/RFC3443, January 2003,
<https://www.rfc-editor.org/info/rfc3443>.
[RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching
(MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
Class" Field", RFC 5462, DOI 10.17487/RFC5462, February
2009, <https://www.rfc-editor.org/info/rfc5462>.
[RFC7274] Kompella, K., Andersson, L., and A. Farrel, "Allocating
and Retiring Special-Purpose MPLS Labels", RFC 7274,
DOI 10.17487/RFC7274, June 2014,
<https://www.rfc-editor.org/info/rfc7274>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
Decraene, B., Litkowski, S., and R. Shakir, "Segment
Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
July 2018, <https://www.rfc-editor.org/info/rfc8402>.
6.2. Informative References
[FAST-REROUTE]
Litkowski, S., Bashandy, A., Filsfils, C., Decraene, B.,
Francois, P., Voyer, D., Clad, F., and P. Camarillo,
"Topology Independent Fast Reroute using Segment Routing",
Work in Progress, Internet-Draft, draft-ietf-rtgwg-
segment-routing-ti-lfa-01, 5 March 2019,
<https://tools.ietf.org/html/draft-ietf-rtgwg-segment-
routing-ti-lfa-01>.
[RFC4817] Townsley, M., Pignataro, C., Wainner, S., Seely, T., and
J. Young, "Encapsulation of MPLS over Layer 2 Tunneling
Protocol Version 3", RFC 4817, DOI 10.17487/RFC4817, March
2007, <https://www.rfc-editor.org/info/rfc4817>.
[RFC5036] Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
"LDP Specification", RFC 5036, DOI 10.17487/RFC5036,
October 2007, <https://www.rfc-editor.org/info/rfc5036>.
[RFC5331] Aggarwal, R., Rekhter, Y., and E. Rosen, "MPLS Upstream
Label Assignment and Context-Specific Label Space",
RFC 5331, DOI 10.17487/RFC5331, August 2008,
<https://www.rfc-editor.org/info/rfc5331>.
[RFC7510] Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
"Encapsulating MPLS in UDP", RFC 7510,
DOI 10.17487/RFC7510, April 2015,
<https://www.rfc-editor.org/info/rfc7510>.
[RFC7855] Previdi, S., Ed., Filsfils, C., Ed., Decraene, B.,
Litkowski, S., Horneffer, M., and R. Shakir, "Source
Packet Routing in Networking (SPRING) Problem Statement
and Requirements", RFC 7855, DOI 10.17487/RFC7855, May
2016, <https://www.rfc-editor.org/info/rfc7855>.
[RFC8287] Kumar, N., Ed., Pignataro, C., Ed., Swallow, G., Akiya,
N., Kini, S., and M. Chen, "Label Switched Path (LSP)
Ping/Traceroute for Segment Routing (SR) IGP-Prefix and
IGP-Adjacency Segment Identifiers (SIDs) with MPLS Data
Planes", RFC 8287, DOI 10.17487/RFC8287, December 2017,
<https://www.rfc-editor.org/info/rfc8287>.
[RFC8403] Geib, R., Ed., Filsfils, C., Pignataro, C., Ed., and N.
Kumar, "A Scalable and Topology-Aware MPLS Data-Plane
Monitoring System", RFC 8403, DOI 10.17487/RFC8403, July
2018, <https://www.rfc-editor.org/info/rfc8403>.
[RFC8661] Bashandy, A., Ed., Filsfils, C., Ed., Previdi, S.,
Decraene, B., and S. Litkowski, "Segment Routing MPLS
Interworking with LDP", RFC 8661, DOI 10.17487/RFC8661,
December 2019, <https://www.rfc-editor.org/info/rfC8661>.
[RFC8665] Psenak, P., Ed., Previdi, S., Ed., Filsfils, C., Gredler,
H., Shakir, R., Henderickx, W., and J. Tantsura, "OSPF
Extensions for Segment Routing", RFC 8665,
DOI 10.17487/RFC8665, December 2019,
<https://www.rfc-editor.org/info/rfc8665>.
[RFC8666] Psenak, P., Ed. and S. Previdi, Ed., "OSPFv3 Extensions
for Segment Routing", RFC 8666, DOI 10.17487/RFC8666,
December 2019, <https://www.rfc-editor.org/info/rfc8666>.
[RFC8667] Previdi, S., Ed., Ginsberg, L., Ed., Filsfils, C.,
Bashandy, A., Gredler, H., and B. Decraene, "IS-IS
Extensions for Segment Routing", RFC 8667,
DOI 10.17487/RFC8667, December 2019,
<https://www.rfc-editor.org/info/rfc8667>.
[ROUTING-POLICY]
Filsfils, C., Sivabalan, S., Voyer, D., Bogdanov, A., and
P. Mattes, "Segment Routing Policy Architecture", Work in
Progress, Internet-Draft, draft-ietf-spring-segment-
routing-policy-05, 17 November 2019,
<https://tools.ietf.org/html/draft-ietf-spring-segment-
routing-policy-05>.
Appendix A. Examples
A.1. IGP Segment Examples
Consider the network diagram of Figure 1 and the IP addresses and IGP
segment allocations of Figure 2. Assume that the network is running
IS-IS with SR extensions [RFC8667], and all links have the same
metric. The following examples can be constructed.
+--------+
/ \
R0-----R1-----R2----------R3-----R8
| \ / |
| +--R4--+ |
| |
+-----R5-----+
Figure 1: IGP Segments -- Illustration
+-----------------------------------------------------------+
| IP addresses allocated by the operator: |
| 192.0.2.1/32 as a loopback of R1 |
| 192.0.2.2/32 as a loopback of R2 |
| 192.0.2.3/32 as a loopback of R3 |
| 192.0.2.4/32 as a loopback of R4 |
| 192.0.2.5/32 as a loopback of R5 |
| 192.0.2.8/32 as a loopback of R8 |
| 198.51.100.9/32 as an anycast loopback of R4 |
| 198.51.100.9/32 as an anycast loopback of R5 |
| |
| SRGB defined by the operator as [1000,5000] |
| |
| Global IGP SID indices allocated by the operator: |
| 1 allocated to 192.0.2.1/32 |
| 2 allocated to 192.0.2.2/32 |
| 3 allocated to 192.0.2.3/32 |
| 4 allocated to 192.0.2.4/32 |
| 8 allocated to 192.0.2.8/32 |
| 1009 allocated to 198.51.100.9/32 |
| |
| Local IGP SID allocated dynamically by R2 |
| for its "north" adjacency to R3: 9001 |
| for its "east" adjacency to R3 : 9002 |
| for its "south" adjacency to R3: 9003 |
| for its only adjacency to R4 : 9004 |
| for its only adjacency to R1 : 9005 |
+-----------------------------------------------------------+
Figure 2: IGP Address and Segment Allocation -- Illustration
Suppose R1 wants to send IPv4 packet P1 to R8. In this case, R1
needs to apply the PUSH operation to the IPv4 packet.
Remember that the SID index "8" is a global IGP segment attached to
the IP prefix 192.0.2.8/32. Its semantic is global within the IGP
domain: any router forwards a packet received with active segment 8
to the next hop along the ECMP-aware shortest path to the related
prefix.
R2 is the next hop along the shortest path towards R8. By applying
the steps in Section 2.8, the outgoing label downloaded to R1's FIB
corresponding to the global SID index "8" is 1008 because the SRGB of
R2 = [1000,5000] as shown in Figure 2.
Because the packet is IPv4, R1 applies the PUSH operation using the
label value 1008 as specified in Section 2.10.1. The resulting MPLS
header will have the "S" bit [RFC3032] set because it is followed
directly by an IPv4 packet.
The packet arrives at router R2. Because top label 1008 corresponds
to the IGP SID index "8", which is the Prefix-SID attached to the
prefix 192.0.2.8/32 owned by Node R8, the instruction associated with
the SID is "forward the packet using one of the ECMP interfaces or
next hops along the shortest path(s) towards R8". Because R2 is not
the penultimate hop, R2 applies the CONTINUE operation to the packet
and sends it to R3 using one of the two links connected to R3 with
top label 1008 as specified in Section 2.10.1.
R3 receives the packet with top label 1008. Because top label 1008
corresponds to the IGP SID index "8", which is the Prefix-SID
attached to the prefix 192.0.2.8/32 owned by Node R8, the instruction
associated with the SID is "send the packet using one of the ECMP
interfaces and next hops along the shortest path towards R8".
Because R3 is the penultimate hop, we assume that R3 performs
penultimate hop popping, which corresponds to the NEXT operation; the
packet is then sent to R8. The NEXT operation results in popping the
outer label and sending the packet as a pure IPv4 packet to R8.
In conclusion, the path followed by P1 is R1-R2--R3-R8. The ECMP
awareness ensures that the traffic is load-shared between any ECMP
path; in this case, it's the two links between R2 and R3.
A.2. Incoming Label Collision Examples
This section outlines several examples to illustrate the handling of
label collision described in Section 2.5.
For the examples in this section, we assume that Node A has the
following:
* OSPF default admin distance for implementation=50
* IS-IS default admin distance for implementation=60
A.2.1. Example 1
The following example illustrates incoming label collision resolution
for the same FEC type using MCC administrative distance.
FEC1:
Node A receives an OSPF Prefix-SID Advertisement from Node B for
198.51.100.5/32 with index=5. Assuming that OSPF SRGB on Node A =
[1000,1999], the incoming label is 1005.
FEC2:
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.105/32 with index=5. Assuming that IS-IS SRGB on Node A =
[1000,1999], the incoming label is 1005.
FEC1 and FEC2 both use dynamic SID assignment. Since neither of the
FECs are of type 'SR Policy', we use the default admin distances of
50 and 60 to break the tie. So FEC1 wins.
A.2.2. Example 2
The following example Illustrates incoming label collision resolution
for different FEC types using the MCC administrative distance.
FEC1:
Node A receives an OSPF Prefix-SID Advertisement from Node B for
198.51.100.6/32 with index=6. Assuming that OSPF SRGB on Node A =
[1000,1999], the incoming label on Node A corresponding to
198.51.100.6/32 is 1006.
FEC2:
IS-IS on Node A assigns label 1006 to the globally significant Adj-
SID (i.e., when advertised, the L-Flag is clear in the Adj-SID sub-
TLV as described in [RFC8667]). Hence, the incoming label
corresponding to this Adj-SID is 1006. Assume Node A allocates this
Adj-SID dynamically, and it may differ across router reboots.
FEC1 and FEC2 both use dynamic SID assignment. Since neither of the
FECs are of type 'SR Policy', we use the default admin distances of
50 and 60 to break the tie. So FEC1 wins.
A.2.3. Example 3
The following example illustrates incoming label collision resolution
based on preferring static over dynamic SID assignment.
FEC1:
OSPF on Node A receives a Prefix-SID Advertisement from Node B for
198.51.100.7/32 with index=7. Assuming that the OSPF SRGB on Node A
= [1000,1999], the incoming label corresponding to 198.51.100.7/32 is
1007.
FEC2:
The operator on Node A configures IS-IS on Node A to assign label
1007 to the globally significant Adj-SID (i.e., when advertised, the
L-Flag is clear in the Adj-SID sub-TLV as described in [RFC8667]).
Node A assigns this Adj-SID explicitly via configuration, so the Adj-
SID survives router reboots.
FEC1 uses dynamic SID assignment, while FEC2 uses explicit SID
assignment. So FEC2 wins.
A.2.4. Example 4
The following example illustrates incoming label collision resolution
using FEC type default administrative distance.
FEC1:
OSPF on Node A receives a Prefix-SID Advertisement from Node B for
198.51.100.8/32 with index=8. Assuming that OSPF SRGB on Node A =
[1000,1999], the incoming label corresponding to 198.51.100.8/32 is
1008.
FEC2:
Suppose the SR Policy Advertisement from the controller to Node A for
the policy identified by (Endpoint = 192.0.2.208, color = 100) that
consists of SID-List=<S1, S2> assigns the globally significant
Binding-SID label 1008.
From the point of view of Node A, FEC1 and FEC2 both use dynamic SID
assignment. Based on the default administrative distance outlined in
Section 2.5.1, the Binding SID has a higher administrative distance
than the Prefix-SID; hence, FEC1 wins.
A.2.5. Example 5
The following example illustrates incoming label collision resolution
based on FEC type preference.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.110/32 with index=10. Assuming that the IS-IS SRGB on Node
A = [1000,1999], the incoming label corresponding to 203.0.113.110/32
is 1010.
FEC2:
IS-IS on Node A assigns label 1010 to the globally significant Adj-
SID (i.e., when advertised, the L-Flag is clear in the Adj-SID sub-
TLV as described in [RFC8667]).
Node A allocates this Adj-SID dynamically, and it may differ across
router reboots. Hence, both FEC1 and FEC2 both use dynamic SID
assignment.
Since both FECs are from the same MCC, they have the same default
admin distance. So we compare the FEC type codepoints. FEC1 has FEC
type codepoint=120, while FEC2 has FEC type codepoint=130.
Therefore, FEC1 wins.
A.2.6. Example 6
The following example illustrates incoming label collision resolution
based on address family preference.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.111/32 with index=11. Assuming that the IS-IS SRGB on Node
A = [1000,1999], the incoming label on Node A for 203.0.113.111/32 is
1011.
FEC2:
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
2001:DB8:1000::11/128 with index=11. Assuming that the IS-IS SRGB on
Node A = [1000,1999], the incoming label on Node A for
2001:DB8:1000::11/128 is 1011.
FEC1 and FEC2 both use dynamic SID assignment. Since both FECs are
from the same MCC, they have the same default admin distance. So we
compare the FEC type codepoints. Both FECs have FEC type
codepoint=120. So we compare the address family. Since IPv4 is
preferred over IPv6, FEC1 wins.
A.2.7. Example 7
The following example illustrates incoming label collision resolution
based on prefix length.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.112/32 with index=12. Assuming that IS-IS SRGB on Node A =
[1000,1999], the incoming label for 203.0.113.112/32 on Node A is
1012.
FEC2:
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.128/30 with index=12. Assuming that the IS-IS SRGB on Node
A = [1000,1999], the incoming label for 203.0.113.128/30 on Node A is
1012.
FEC1 and FEC2 both use dynamic SID assignment. Since both FECs are
from the same MCC, they have the same default admin distance. So we
compare the FEC type codepoints. Both FECs have FEC type
codepoint=120. So we compare the address family. Both are a part of
the IPv4 address family, so we compare the prefix length. FEC1 has
prefix length=32, and FEC2 has prefix length=30, so FEC2 wins.
A.2.8. Example 8
The following example illustrates incoming label collision resolution
based on the numerical value of the FECs.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.113/32 with index=13. Assuming that IS-IS SRGB on Node A =
[1000,1999], the incoming label for 203.0.113.113/32 on Node A is
1013.
FEC2:
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.213/32 with index=13. Assuming that IS-IS SRGB on Node A =
[1000,1999], the incoming label for 203.0.113.213/32 on Node A is
1013.
FEC1 and FEC2 both use dynamic SID assignment. Since both FECs are
from the same MCC, they have the same default admin distance. So we
compare the FEC type codepoints. Both FECs have FEC type
codepoint=120. So we compare the address family. Both are a part of
the IPv4 address family, so we compare the prefix length. Prefix
lengths are the same, so we compare the prefix. FEC1 has the lower
prefix, so FEC1 wins.
A.2.9. Example 9
The following example illustrates incoming label collision resolution
based on the Routing Instance ID.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.114/32 with index=14. Assume that this IS-IS instance on
Node A has Routing Instance ID = 1000 and SRGB = [1000,1999]. Hence,
the incoming label for 203.0.113.114/32 on Node A is 1014.
FEC2:
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.114/32 with index=14. Assume that this is another instance
of IS-IS on Node A but Routing Instance ID = 2000 is different and
SRGB = [1000,1999] is the same. Hence, the incoming label for
203.0.113.114/32 on Node A is 1014.
These two FECs match all the way through the prefix length and
prefix. So the Routing Instance ID breaks the tie, and FEC1 wins.
A.2.10. Example 10
The following example illustrates incoming label collision resolution
based on the topology ID.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.115/32 with index=15. Assume that this IS-IS instance on
Node A has Routing Instance ID = 1000. Assume that the prefix
advertisement of 203.0.113.115/32 was received in the IS-IS Multi-
topology advertisement with ID = 50. If the IS-IS SRGB for this
routing instance on Node A = [1000,1999], then the incoming label of
203.0.113.115/32 for topology 50 on Node A is 1015.
FEC2:
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.115/32 with index=15. Assume that it has the same Routing
Instance ID = 1000, but 203.0.113.115/32 was advertised with IS-IS
Multi-topology ID = 40, which is different. If the IS-IS SRGB on
Node A = [1000,1999], then the incoming label of 203.0.113.115/32 for
topology 40 on Node A is also 1015.
Since these two FECs match all the way through the prefix length,
prefix, and Routing Instance ID, we compare the IS-IS Multi-topology
ID, so FEC2 wins.
A.2.11. Example 11
The following example illustrates incoming label collision for
resolution based on the algorithm ID.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.116/32 with index=16. Assume that IS-IS on Node A has
Routing Instance ID = 1000. Assume that Node B advertised
203.0.113.116/32 with IS-IS Multi-topology ID = 50 and SR algorithm =
0. Assume that the IS-IS SRGB on Node A = [1000,1999]. Hence, the
incoming label corresponding to this advertisement of
203.0.113.116/32 is 1016.
FEC2:
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.116/32 with index=16. Assume that it is the same IS-IS
instance on Node A with Routing Instance ID = 1000. Also assume that
Node C advertised 203.0.113.116/32 with IS-IS Multi-topology ID = 50
but with SR algorithm = 22. Since it is the same routing instance,
the SRGB on Node A = [1000,1999]. Hence, the incoming label
corresponding to this advertisement of 203.0.113.116/32 by Node C is
also 1016.
Since these two FECs match all the way through in terms of the prefix
length, prefix, Routing Instance ID, and Multi-topology ID, we
compare the SR algorithm IDs, so FEC1 wins.
A.2.12. Example 12
The following example illustrates incoming label collision resolution
based on the FEC numerical value, independent of how the SID is
assigned to the colliding FECs.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.117/32 with index=17. Assume that the IS-IS SRGB on Node A
= [1000,1999]; thus, the incoming label is 1017.
FEC2:
Suppose there is an IS-IS Mapping Server Advertisement (SID / Label
Binding TLV) from Node D that has range = 100 and prefix =
203.0.113.1/32. Suppose this Mapping Server Advertisement generates
100 mappings, one of which maps 203.0.113.17/32 to index=17.
Assuming that it is the same IS-IS instance, the SRGB = [1000,1999]
and hence the incoming label for 1017.
Even though FEC1 comes from a normal Prefix-SID Advertisement and
FEC2 is generated from a Mapping Server Advertisement, it is not used
as a tiebreaking parameter. Both FECs use dynamic SID assignment,
are from the same MCC, and have the same FEC type codepoint=120.
Their prefix lengths are the same as well. FEC2 wins based on its
lower numerical prefix value, since 203.0.113.17 is less than
203.0.113.117.
A.2.13. Example 13
The following example illustrates incoming label collision resolution
based on address family preference.
FEC1:
SR Policy Advertisement from the controller to Node A. Endpoint
address=2001:DB8:3000::100, color=100, SID-List=<S1, S2>, and the
Binding-SID label=1020.
FEC2:
SR Policy Advertisement from controller to Node A. Endpoint
address=192.0.2.60, color=100, SID-List=<S3, S4>, and the Binding-SID
label=1020.
The FEC tiebreakers match, and they have the same FEC type
codepoint=140. Thus, FEC2 wins based on the IPv4 address family
being preferred over IPv6.
A.2.14. Example 14
The following example illustrates incoming label resolution based on
the numerical value of the policy endpoint.
FEC1:
SR Policy Advertisement from the controller to Node A. Endpoint
address=192.0.2.70, color=100, SID-List=<S1, S2>, and Binding-SID
label=1021.
FEC2:
SR Policy Advertisement from the controller to Node A. Endpoint
address=192.0.2.71, color=100, SID-List=<S3, S4>, and Binding-SID
label=1021.
The FEC tiebreakers match, and they have the same address family.
Thus, FEC1 wins by having the lower numerical endpoint address value.
A.3. Examples for the Effect of Incoming Label Collision on an Outgoing
Label
This section presents examples to illustrate the effect of incoming
label collision on the selection of the outgoing label as described
in Section 2.6.
A.3.1. Example 1
The following example illustrates the effect of incoming label
resolution on the outgoing label.
FEC1:
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.122/32 with index=22. Assuming that the IS-IS SRGB on Node
A = [1000,1999], the corresponding incoming label is 1022.
FEC2:
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.222/32 with index=22. Assuming that the IS-IS SRGB on Node
A = [1000,1999], the corresponding incoming label is 1022.
FEC1 wins based on the lowest numerical prefix value. This means
that Node A installs a transit MPLS forwarding entry to swap incoming
label 1022 with outgoing label N and to use outgoing interface I. N
is determined by the index associated with FEC1 (index=22) and the
SRGB advertised by the next-hop node on the shortest path to reach
203.0.113.122/32.
Node A will generally also install an imposition MPLS forwarding
entry corresponding to FEC1 for incoming prefix=203.0.113.122/32
pushing outgoing label N, and using outgoing interface I.
The rule in Section 2.6 means Node A MUST NOT install an ingress MPLS
forwarding entry corresponding to FEC2 (the losing FEC, which would
be for prefix 203.0.113.222/32).
A.3.2. Example 2
The following example illustrates the effect of incoming label
collision resolution on outgoing label programming on Node A.
FEC1:
SR Policy Advertisement from the controller to Node A. Endpoint
address=192.0.2.80, color=100, SID-List=<S1, S2>, and Binding-SID
label=1023.
FEC2:
SR Policy Advertisement from controller to Node A. Endpoint
address=192.0.2.81, color=100, SID-List=<S3, S4>, and Binding-SID
label=1023.
FEC1 wins by having the lower numerical endpoint address value. This
means that Node A installs a transit MPLS forwarding entry to swap
incoming label=1023 with outgoing labels, and the outgoing interface
is determined by the SID-List for FEC1.
In this example, we assume that Node A receives two BGP/VPN routes:
* R1 with VPN label=V1, BGP next hop = 192.0.2.80, and color=100
* R2 with VPN label=V2, BGP next hop = 192.0.2.81, and color=100
We also assume that Node A has a BGP policy that matches color=100
and allows its usage as Service Level Agreement (SLA) steering
information. In this case, Node A will install a VPN route with
label stack = <S1,S2,V1> (corresponding to FEC1).
The rule described in Section 2.6 means that Node A MUST NOT install
a VPN route with label stack = <S3,S4,V1> (corresponding to FEC2.)
Acknowledgements
The authors would like to thank Les Ginsberg, Chris Bowers, Himanshu
Shah, Adrian Farrel, Alexander Vainshtein, Przemyslaw Krol, Darren
Dukes, Zafar Ali, and Martin Vigoureux for their valuable comments on
this document.
Contributors
The following contributors have substantially helped the definition
and editing of the content of this document:
Martin Horneffer
Deutsche Telekom
Email: Martin.Horneffer@telekom.de
Wim Henderickx
Nokia
Email: wim.henderickx@nokia.com
Jeff Tantsura
Email: jefftant@gmail.com
Edward Crabbe
Email: edward.crabbe@gmail.com
Igor Milojevic
Email: milojevicigor@gmail.com
Saku Ytti
Email: saku@ytti.fi
Authors' Addresses
Ahmed Bashandy (editor)
Arrcus
Email: abashandy.ietf@gmail.com
Clarence Filsfils (editor)
Cisco Systems, Inc.
Brussels
Belgium
Email: cfilsfil@cisco.com
Stefano Previdi
Cisco Systems, Inc.
Italy
Email: stefano@previdi.net
Bruno Decraene
Orange
France
Email: bruno.decraene@orange.com
Stephane Litkowski
Orange
France
Email: slitkows.ietf@gmail.com
Rob Shakir
Google
United States of America
Email: robjs@google.com
|