1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
|
Internet Engineering Task Force (IETF) P. Kampanakis
Request for Comments: 8702 Cisco Systems
Updates: 3370 Q. Dang
Category: Standards Track NIST
ISSN: 2070-1721 January 2020
Use of the SHAKE One-Way Hash Functions in the Cryptographic Message
Syntax (CMS)
Abstract
This document updates the "Cryptographic Message Syntax (CMS)
Algorithms" (RFC 3370) and describes the conventions for using the
SHAKE family of hash functions in the Cryptographic Message Syntax as
one-way hash functions with the RSA Probabilistic Signature Scheme
(RSASSA-PSS) and Elliptic Curve Digital Signature Algorithm (ECDSA).
The conventions for the associated signer public keys in CMS are also
described.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8702.
Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction
1.1. Terminology
2. Identifiers
3. Use in CMS
3.1. Message Digests
3.2. Signatures
3.2.1. RSASSA-PSS Signatures
3.2.2. ECDSA Signatures
3.3. Public Keys
3.4. Message Authentication Codes
4. IANA Considerations
5. Security Considerations
6. References
6.1. Normative References
6.2. Informative References
Appendix A. ASN.1 Module
Acknowledgements
Authors' Addresses
1. Introduction
"Cryptographic Message Syntax (CMS)" [RFC5652] describes syntax used
to digitally sign, digest, authenticate, or encrypt arbitrary message
contents. "Cryptographic Message Syntax (CMS) Algorithms" [RFC3370]
defines the use of common cryptographic algorithms with CMS. This
specification updates RFC 3370 and describes the use of the SHAKE128
and SHAKE256 specified in [SHA3] as new hash functions in CMS. In
addition, it describes the use of these functions with the RSA
Probabilistic Signature Scheme (RSASSA-PSS) signature algorithm
[RFC8017] and the Elliptic Curve Digital Signature Algorithm (ECDSA)
[X9.62] with the CMS signed-data content type.
In the SHA-3 family, two extendable-output functions (SHAKEs),
SHAKE128 and SHAKE256, are defined. Four other hash function
instances (SHA3-224, SHA3-256, SHA3-384, and SHA3-512) are also
defined but are out of scope for this document. A SHAKE is a
variable-length hash function defined as SHAKE(M, d) where the output
is a d-bit-long digest of message M. The corresponding collision and
second-preimage-resistance strengths for SHAKE128 are min(d/2,128)
and min(d,128) bits, respectively (see Appendix A.1 of [SHA3]). And
the corresponding collision and second-preimage-resistance strengths
for SHAKE256 are min(d/2,256) and min(d,256) bits, respectively. In
this specification, we use d=256 (for SHAKE128) and d=512 (for
SHAKE256).
A SHAKE can be used in CMS as the message digest function (to hash
the message to be signed) in RSASSA-PSS and ECDSA, as the message
authentication code, and as the mask generation function (MGF) in
RSASSA-PSS. This specification describes the identifiers for SHAKEs
to be used in CMS and their meanings.
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2. Identifiers
This section identifies eight new object identifiers (OIDs) for using
SHAKE128 and SHAKE256 in CMS.
Two object identifiers for SHAKE128 and SHAKE256 hash functions are
defined in [shake-nist-oids], and we include them here for
convenience.
id-shake128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistAlgorithm(4) 2 11 }
id-shake256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistAlgorithm(4) 2 12 }
In this specification, when using the id-shake128 or id-shake256
algorithm identifiers, the parameters MUST be absent. That is, the
identifier SHALL be a SEQUENCE of one component, the OID.
[RFC8692] defines two identifiers for RSASSA-PSS signatures using
SHAKEs, which we include here for convenience.
id-RSASSA-PSS-SHAKE128 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6) 30 }
id-RSASSA-PSS-SHAKE256 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6) 31 }
The same RSASSA-PSS algorithm identifiers can be used for identifying
public keys and signatures.
[RFC8692] also defines two algorithm identifiers of ECDSA signatures
using SHAKEs, which we include here for convenience.
id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6) 32 }
id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6) 33 }
The parameters for the four RSASSA-PSS and ECDSA identifiers MUST be
absent. That is, each identifier SHALL be a SEQUENCE of one
component, the OID.
In [shake-nist-oids], the National Institute of Standards and
Technology (NIST) defines two object identifiers for Keccak message
authentication codes (KMACs) using SHAKE128 and SHAKE256, and we
include them here for convenience.
id-KmacWithSHAKE128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistAlgorithm(4) 2 19 }
id-KmacWithSHAKE256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistAlgorithm(4) 2 20 }
The parameters for id-KmacWithSHAKE128 and id-KmacWithSHAKE256 are
OPTIONAL.
Sections 3.1, 3.2.1, 3.2.2, and 3.4 specify the required output
length for each use of SHAKE128 or SHAKE256 in message digests,
RSASSA-PSS, ECDSA, and KMAC.
3. Use in CMS
3.1. Message Digests
The id-shake128 and id-shake256 OIDs (see Section 2) can be used as
the digest algorithm identifiers located in the SignedData,
SignerInfo, DigestedData, and the AuthenticatedData digestAlgorithm
fields in CMS [RFC5652]. The OID encoding MUST omit the parameters
field and the output length of SHAKE128 or SHAKE256 as the message
digest MUST be 32 or 64 bytes, respectively.
The digest values are located in the DigestedData field and the
Message Digest authenticated attribute included in the
signedAttributes of the SignedData signerInfos. In addition, digest
values are input to signature algorithms. The digest algorithm MUST
be the same as the message hash algorithms used in signatures.
3.2. Signatures
In CMS, signature algorithm identifiers are located in the SignerInfo
signatureAlgorithm field of signed-data content type and
countersignature attribute. Signature values are located in the
SignerInfo signature field of signed-data content type and
countersignature attribute.
Conforming implementations that process RSASSA-PSS and ECDSA with
SHAKE signatures when processing CMS data MUST recognize the
corresponding OIDs specified in Section 2.
When using RSASSA-PSS or ECDSA with SHAKEs, the RSA modulus or ECDSA
curve order SHOULD be chosen in line with the SHAKE output length.
Refer to Section 5 for more details.
3.2.1. RSASSA-PSS Signatures
The RSASSA-PSS algorithm is defined in [RFC8017]. When id-RSASSA-
PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256 (specified in Section 2) is
used, the encoding MUST omit the parameters field. That is, the
AlgorithmIdentifier SHALL be a SEQUENCE of one component: id-RSASSA-
PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256. [RFC4055] defines RSASSA-
PSS-params that are used to define the algorithms and inputs to the
algorithm. This specification does not use parameters because the
hash, mask generation algorithm, trailer, and salt are embedded in
the OID definition.
The hash algorithm used to hash a message being signed and the hash
algorithm as the mask generation function used in RSASSA-PSS MUST be
the same: both SHAKE128 or both SHAKE256. The output length of the
hash algorithm that hashes the message SHALL be 32 (for SHAKE128) or
64 bytes (for SHAKE256).
The mask generation function takes an octet string of variable length
and a desired output length as input, and outputs an octet string of
the desired length. In RSASSA-PSS with SHAKEs, the SHAKEs MUST be
used natively as the MGF, instead of the MGF1 algorithm that uses the
hash function in multiple iterations, as specified in Appendix B.2.1
of [RFC8017]. In other words, the MGF is defined as the SHAKE128 or
SHAKE256 with input being the mgfSeed for id-RSASSA-PSS-SHAKE128 and
id-RSASSA-PSS-SHAKE256, respectively. The mgfSeed is an octet string
used as the seed to generate the mask [RFC8017]. As explained in
Step 9 of Section 9.1.1 of [RFC8017], the output length of the MGF is
emLen - hLen - 1 bytes. emLen is the maximum message length
ceil((n-1)/8), where n is the RSA modulus in bits. hLen is 32 and 64
bytes for id-RSASSA-PSS-SHAKE128 and id-RSASSA-PSS-SHAKE256,
respectively. Thus, when SHAKE is used as the MGF, the SHAKE output
length maskLen is (8*emLen - 264) or (8*emLen - 520) bits,
respectively. For example, when RSA modulus n is 2048, the output
length of SHAKE128 or SHAKE256 as the MGF will be 1784 or 1528 bits
when id-RSASSA-PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256 is used,
respectively.
The RSASSA-PSS saltLength MUST be 32 bytes for id-RSASSA-PSS-SHAKE128
or 64 bytes for id-RSASSA-PSS-SHAKE256. Finally, the trailerField
MUST be 1, which represents the trailer field with hexadecimal value
0xBC [RFC8017].
3.2.2. ECDSA Signatures
The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
[X9.62]. When the id-ecdsa-with-shake128 or id-ecdsa-with-shake256
(specified in Section 2) algorithm identifier appears, the respective
SHAKE function is used as the hash. The encoding MUST omit the
parameters field. That is, the AlgorithmIdentifier SHALL be a
SEQUENCE of one component, the OID id-ecdsa-with-shake128 or id-
ecdsa-with-shake256.
For simplicity and compliance with the ECDSA standard specification
[X9.62], the output length of the hash function must be explicitly
determined. The output length for SHAKE128 or SHAKE256 used in ECDSA
MUST be 32 or 64 bytes, respectively.
Conforming Certification Authority (CA) implementations that generate
ECDSA with SHAKE signatures in certificates or Certificate Revocation
Lists (CRLs) SHOULD generate such signatures with a deterministically
generated, nonrandom k in accordance with all the requirements
specified in [RFC6979]. They MAY also generate such signatures in
accordance with all other recommendations in [X9.62] or [SEC1] if
they have a stated policy that requires conformance to those
standards. Those standards have not specified SHAKE128 and SHAKE256
as hash algorithm options. However, SHAKE128 and SHAKE256 with
output length being 32 and 64 octets, respectively, can be used
instead of 256 and 512-bit output hash algorithms, such as SHA256 and
SHA512.
3.3. Public Keys
In CMS, the signer's public key algorithm identifiers are located in
the OriginatorPublicKey's algorithm attribute. The conventions and
encoding for RSASSA-PSS and ECDSA public keys algorithm identifiers
are as specified in Section 2.3 of [RFC3279], Section 3.1 of
[RFC4055], and Section 2.1 of [RFC5480].
Traditionally, the rsaEncryption object identifier is used to
identify RSA public keys. The rsaEncryption object identifier
continues to identify the public key when the RSA private key owner
does not wish to limit the use of the public key exclusively to
RSASSA-PSS with SHAKEs. When the RSA private key owner wishes to
limit the use of the public key exclusively to RSASSA-PSS, the
AlgorithmIdentifier for RSASSA-PSS defined in Section 2 SHOULD be
used as the algorithm attribute in the OriginatorPublicKey sequence.
Conforming client implementations that process RSASSA-PSS with SHAKE
public keys in CMS message MUST recognize the corresponding OIDs in
Section 2.
Conforming implementations MUST specify and process the algorithms
explicitly by using the OIDs specified in Section 2 when encoding
ECDSA with SHAKE public keys in CMS messages.
The identifier parameters, as explained in Section 2, MUST be absent.
3.4. Message Authentication Codes
Keccak message authentication code (KMAC) is specified in
[SP800-185]. In CMS, KMAC algorithm identifiers are located in the
AuthenticatedData macAlgorithm field. The KMAC values are located in
the AuthenticatedData mac field.
When the id-KmacWithSHAKE128 or id-KmacWithSHAKE256 OID is used as
the MAC algorithm identifier, the parameters field is optional
(absent or present). If absent, the SHAKE256 output length used in
KMAC is 32 or 64 bytes, respectively, and the customization string is
an empty string by default.
Conforming implementations that process KMACs with the SHAKEs when
processing CMS data MUST recognize these identifiers.
When calculating the KMAC output, the variable N is 0xD2B282C2, S is
an empty string, and L (the integer representing the requested output
length in bits) is 256 or 512 for KmacWithSHAKE128 or
KmacWithSHAKE256, respectively, in this specification.
4. IANA Considerations
One object identifier for the ASN.1 module in Appendix A was updated
in the "Structure of Management Information (SMI) Security for S/MIME
Module Identifier (1.2.840.113549.1.9.16.0)" registry:
+---------+----------------------+------------+
| Decimal | Description | References |
+=========+======================+============+
| 70 | CMSAlgsForSHAKE-2019 | RFC 8702 |
+---------+----------------------+------------+
Table 1
5. Security Considerations
This document updates [RFC3370]. The security considerations section
of that document applies to this specification as well.
NIST has defined appropriate use of the hash functions in terms of
the algorithm strengths and expected time frames for secure use in
Special Publications (SPs) [SP800-78-4] and [SP800-107]. These
documents can be used as guides to choose appropriate key sizes for
various security scenarios.
SHAKE128 with an output length of 32 bytes offers 128 bits of
collision and preimage resistance. Thus, SHAKE128 OIDs in this
specification are RECOMMENDED with a 2048- (112-bit security) or
3072-bit (128-bit security) RSA modulus or curves with a group order
of 256 bits (128-bit security). SHAKE256 with a 64-byte output
length offers 256 bits of collision and preimage resistance. Thus,
the SHAKE256 OIDs in this specification are RECOMMENDED with 4096-bit
RSA modulus or higher or curves with group order of at least 512
bits, such as NIST curve P-521 (256-bit security). Note that we
recommended a 4096-bit RSA because we would need a 15360-bit modulus
for 256 bits of security, which is impractical for today's
technology.
When more than two parties share the same message-authentication key,
data origin authentication is not provided. Any party that knows the
message-authentication key can compute a valid MAC; therefore, the
content could originate from any one of the parties.
6. References
6.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3370] Housley, R., "Cryptographic Message Syntax (CMS)
Algorithms", RFC 3370, DOI 10.17487/RFC3370, August 2002,
<https://www.rfc-editor.org/info/rfc3370>.
[RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
Algorithms and Identifiers for RSA Cryptography for use in
the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile", RFC 4055,
DOI 10.17487/RFC4055, June 2005,
<https://www.rfc-editor.org/info/rfc4055>.
[RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
"Elliptic Curve Cryptography Subject Public Key
Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
<https://www.rfc-editor.org/info/rfc5480>.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,
<https://www.rfc-editor.org/info/rfc5652>.
[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
"PKCS #1: RSA Cryptography Specifications Version 2.2",
RFC 8017, DOI 10.17487/RFC8017, November 2016,
<https://www.rfc-editor.org/info/rfc8017>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[SHA3] National Institute of Standards and Technology (NIST),
"SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions", FIPS PUB 202,
DOI 10.6028/NIST.FIPS.202, August 2015,
<https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.202.pdf>.
[SP800-185]
National Institute of Standards and Technology (NIST),
"SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and
ParallelHash", NIST Special Publication 800-185,
DOI 10.6028/NIST.SP.800-185, December 2016,
<http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-185.pdf>.
6.2. Informative References
[CMS-SHA3] Housley, R., "Use of the SHA3 One-way Hash Functions in
the Cryptographic Message Syntax (CMS)", Work in Progress,
Internet-Draft, draft-housley-lamps-cms-sha3-hash-00, 27
March 2017, <https://tools.ietf.org/html/draft-housley-
lamps-cms-sha3-hash-00>.
[RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April
2002, <https://www.rfc-editor.org/info/rfc3279>.
[RFC5753] Turner, S. and D. Brown, "Use of Elliptic Curve
Cryptography (ECC) Algorithms in Cryptographic Message
Syntax (CMS)", RFC 5753, DOI 10.17487/RFC5753, January
2010, <https://www.rfc-editor.org/info/rfc5753>.
[RFC5911] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,
DOI 10.17487/RFC5911, June 2010,
<https://www.rfc-editor.org/info/rfc5911>.
[RFC6268] Schaad, J. and S. Turner, "Additional New ASN.1 Modules
for the Cryptographic Message Syntax (CMS) and the Public
Key Infrastructure Using X.509 (PKIX)", RFC 6268,
DOI 10.17487/RFC6268, July 2011,
<https://www.rfc-editor.org/info/rfc6268>.
[RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
2013, <https://www.rfc-editor.org/info/rfc6979>.
[RFC8692] Kampanakis, P. and Q. Dang, "Internet X.509 Public Key
Infrastructure: Additional Algorithm Identifiers for
RSASSA-PSS and ECDSA Using SHAKEs", RFC 8692,
DOI 10.17487/RFC8692, December 2019,
<https://www.rfc-editor.org/info/rfc8692>.
[SEC1] Standards for Efficient Cryptography Group, "SEC 1:
Elliptic Curve Cryptography", May 2009,
<http://www.secg.org/sec1-v2.pdf>.
[shake-nist-oids]
National Institute of Standards and Technology (NIST),
"Computer Security Objects Register", October 2019,
<https://csrc.nist.gov/Projects/Computer-Security-Objects-
Register/Algorithm-Registration>.
[SP800-107]
National Institute of Standards and Technology (NIST),
"Recommendation for Applications Using Approved Hash
Algorithms", Draft NIST Special Publication 800-107
Revised, August 2012,
<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-107r1.pdf>.
[SP800-78-4]
National Institute of Standards and Technology (NIST),
"Cryptographic Algorithms and Key Sizes for Personal
Identity Verification", NIST Special Publication 800-78-4,
DOI 10.6028/NIST.SP.800-78-4, May 2015,
<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-78-4.pdf>.
[X9.62] American National Standard for Financial Services (ANSI),
"Public Key Cryptography for the Financial Services
Industry: the Elliptic Curve Digital Signature Algorithm
(ECDSA)", ANSI X9.62, November 2005.
Appendix A. ASN.1 Module
This appendix includes the ASN.1 modules for SHAKEs in CMS. This
module includes some ASN.1 from other standards for reference.
CMSAlgsForSHAKE-2019 { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0)
id-mod-cms-shakes-2019(70) }
DEFINITIONS EXPLICIT TAGS ::=
BEGIN
-- EXPORTS ALL;
IMPORTS
DIGEST-ALGORITHM, MAC-ALGORITHM, SMIME-CAPS
FROM AlgorithmInformation-2009
{ iso(1) identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) id-mod(0)
id-mod-algorithmInformation-02(58) }
RSAPublicKey, rsaEncryption, id-ecPublicKey
FROM PKIXAlgs-2009 { iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-algorithms2008-02(56) }
sa-rsassapssWithSHAKE128, sa-rsassapssWithSHAKE256,
sa-ecdsaWithSHAKE128, sa-ecdsaWithSHAKE256
FROM PKIXAlgsForSHAKE-2019 {
iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-shakes-2019(94) } ;
-- Message digest Algorithms (mda-)
-- used in SignedData, SignerInfo, DigestedData,
-- and the AuthenticatedData digestAlgorithm
-- fields in CMS
--
-- This expands MessageAuthAlgs from [RFC5652] and
-- MessageDigestAlgs in [RFC5753]
--
-- MessageDigestAlgs DIGEST-ALGORITHM ::= {
-- mda-shake128 |
-- mda-shake256,
-- ...
-- }
--
-- One-Way Hash Functions
-- SHAKE128
mda-shake128 DIGEST-ALGORITHM ::= {
IDENTIFIER id-shake128 -- with output length 32 bytes.
}
id-shake128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
us(840) organization(1) gov(101)
csor(3) nistAlgorithm(4)
hashAlgs(2) 11 }
-- SHAKE256
mda-shake256 DIGEST-ALGORITHM ::= {
IDENTIFIER id-shake256 -- with output length 64 bytes.
}
id-shake256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
us(840) organization(1) gov(101)
csor(3) nistAlgorithm(4)
hashAlgs(2) 12 }
--
-- Public key algorithm identifiers located in the
-- OriginatorPublicKey's algorithm attribute in CMS.
-- And Signature identifiers used in SignerInfo
-- signatureAlgorithm field of signed-data content
-- type and countersignature attribute in CMS.
--
-- From RFC 5280, for reference:
-- rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }
-- When the rsaEncryption algorithm identifier is used
-- for a public key, the AlgorithmIdentifier parameters
-- field MUST contain NULL.
--
id-RSASSA-PSS-SHAKE128 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6) 30 }
id-RSASSA-PSS-SHAKE256 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6) 31 }
-- When the id-RSASSA-PSS-* algorithm identifiers are used
-- for a public key or signature in CMS, the AlgorithmIdentifier
-- parameters field MUST be absent. The message digest algorithm
-- used in RSASSA-PSS MUST be SHAKE128 or SHAKE256 with a 32- or
-- 64-byte output length, respectively. The mask generation
-- function MUST be SHAKE128 or SHAKE256 with an output length
-- of (8*ceil((n-1)/8) - 264) or (8*ceil((n-1)/8) - 520) bits,
-- respectively, where n is the RSA modulus in bits.
-- The RSASSA-PSS saltLength MUST be 32 or 64 bytes, respectively.
-- The trailerField MUST be 1, which represents the trailer
-- field with hexadecimal value 0xBC. Regardless of
-- id-RSASSA-PSS-* or rsaEncryption being used as the
-- AlgorithmIdentifier of the OriginatorPublicKey, the RSA
-- public key MUST be encoded using the RSAPublicKey type.
-- From RFC 4055, for reference:
-- RSAPublicKey ::= SEQUENCE {
-- modulus INTEGER, -- -- n
-- publicExponent INTEGER } -- -- e
id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6) 32 }
id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6) 33 }
-- When the id-ecdsa-with-shake* algorithm identifiers are
-- used in CMS, the AlgorithmIdentifier parameters field
-- MUST be absent and the signature algorithm should be
-- deterministic ECDSA [RFC6979]. The message digest MUST
-- be SHAKE128 or SHAKE256 with a 32- or 64-byte output
-- length, respectively. In both cases, the ECDSA public key,
-- MUST be encoded using the id-ecPublicKey type.
-- From RFC 5480, for reference:
-- id-ecPublicKey OBJECT IDENTIFIER ::= {
-- iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
-- The id-ecPublicKey parameters must be absent or present
-- and are defined as:
-- ECParameters ::= CHOICE {
-- namedCurve OBJECT IDENTIFIER
-- -- -- implicitCurve NULL
-- -- -- specifiedCurve SpecifiedECDomain
-- }
-- This expands SignatureAlgs from [RFC5912]
--
-- SignatureAlgs SIGNATURE-ALGORITHM ::= {
-- sa-rsassapssWithSHAKE128 |
-- sa-rsassapssWithSHAKE256 |
-- sa-ecdsaWithSHAKE128 |
-- sa-ecdsaWithSHAKE256,
-- ...
-- }
-- This expands MessageAuthAlgs from [RFC5652] and [RFC6268]
--
-- Message Authentication (maca-) Algorithms
-- used in AuthenticatedData macAlgorithm in CMS
--
MessageAuthAlgs MAC-ALGORITHM ::= {
maca-KMACwithSHAKE128 |
maca-KMACwithSHAKE256,
...
}
-- This expands SMimeCaps from [RFC5911]
--
SMimeCaps SMIME-CAPS ::= {
-- sa-rsassapssWithSHAKE128.&smimeCaps |
-- sa-rsassapssWithSHAKE256.&smimeCaps |
-- sa-ecdsaWithSHAKE128.&smimeCaps |
-- sa-ecdsaWithSHAKE256.&smimeCaps,
maca-KMACwithSHAKE128.&smimeCaps |
maca-KMACwithSHAKE256.&smimeCaps,
...
}
--
-- KMAC with SHAKE128
maca-KMACwithSHAKE128 MAC-ALGORITHM ::= {
IDENTIFIER id-KMACWithSHAKE128
PARAMS TYPE KMACwithSHAKE128-params ARE optional
-- If KMACwithSHAKE128-params parameters are absent,
-- the SHAKE128 output length used in KMAC is 256 bits
-- and the customization string is an empty string.
IS-KEYED-MAC TRUE
SMIME-CAPS {IDENTIFIED BY id-KMACWithSHAKE128}
}
id-KMACWithSHAKE128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(1)
gov(101) csor(3) nistAlgorithm(4)
hashAlgs(2) 19 }
KMACwithSHAKE128-params ::= SEQUENCE {
kMACOutputLength INTEGER DEFAULT 256, -- Output length in bits
customizationString OCTET STRING DEFAULT ''H
}
-- KMAC with SHAKE256
maca-KMACwithSHAKE256 MAC-ALGORITHM ::= {
IDENTIFIER id-KMACWithSHAKE256
PARAMS TYPE KMACwithSHAKE256-params ARE optional
-- If KMACwithSHAKE256-params parameters are absent,
-- the SHAKE256 output length used in KMAC is 512 bits
-- and the customization string is an empty string.
IS-KEYED-MAC TRUE
SMIME-CAPS {IDENTIFIED BY id-KMACWithSHAKE256}
}
id-KMACWithSHAKE256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(1)
gov(101) csor(3) nistAlgorithm(4)
hashAlgs(2) 20 }
KMACwithSHAKE256-params ::= SEQUENCE {
kMACOutputLength INTEGER DEFAULT 512, -- Output length in bits
customizationString OCTET STRING DEFAULT ''H
}
END
Acknowledgements
This document is based on Russ Housley's document [CMS-SHA3]. It
replaces SHA3 hash functions by SHAKE128 and SHAKE256, as the LAMPS
WG agreed.
The authors would like to thank Russ Housley for his guidance and
very valuable contributions with the ASN.1 module. Valuable feedback
was also provided by Eric Rescorla.
Authors' Addresses
Panos Kampanakis
Cisco Systems
Email: pkampana@cisco.com
Quynh Dang
NIST
100 Bureau Drive
Gaithersburg, MD 20899
United States of America
Email: quynh.Dang@nist.gov
|