1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
|
Independent Submission S. Smyshlyaev, Ed.
Request for Comments: 9058 CryptoPro
Category: Informational V. Nozdrunov
ISSN: 2070-1721 V. Shishkin
TC 26
E. Griboedova
CryptoPro
June 2021
Multilinear Galois Mode (MGM)
Abstract
Multilinear Galois Mode (MGM) is an Authenticated Encryption with
Associated Data (AEAD) block cipher mode based on the Encrypt-then-
MAC (EtM) principle. MGM is defined for use with 64-bit and 128-bit
block ciphers.
MGM has been standardized in Russia. It is used as an AEAD mode for
the GOST block cipher algorithms in many protocols, e.g., TLS 1.3 and
IPsec. This document provides a reference for MGM to enable review
of the mechanisms in use and to make MGM available for use with any
block cipher.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not candidates for any level of Internet Standard;
see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9058.
Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
1. Introduction
2. Conventions Used in This Document
3. Basic Terms and Definitions
4. Specification
4.1. MGM Encryption and Tag Generation Procedure
4.2. MGM Decryption and Tag Verification Check Procedure
5. Rationale
6. Security Considerations
7. IANA Considerations
8. References
8.1. Normative References
8.2. Informative References
Appendix A. Test Vectors
A.1. Test Vectors for the Kuznyechik Block Cipher
A.1.1. Example 1
A.1.2. Example 2
A.2. Test Vectors for the Magma Block Cipher
A.2.1. Example 1
A.2.2. Example 2
Contributors
Authors' Addresses
1. Introduction
Multilinear Galois Mode (MGM) is an Authenticated Encryption with
Associated Data (AEAD) block cipher mode based on EtM principle. MGM
is defined for use with 64-bit and 128-bit block ciphers. The MGM
design principles can easily be applied to other block sizes.
MGM has been standardized in Russia [AUTH-ENC-BLOCK-CIPHER]. It is
used as an AEAD mode for the GOST block cipher algorithms in many
protocols, e.g., TLS 1.3 and IPsec. This document provides a
reference for MGM to enable review of the mechanisms in use and to
make MGM available for use with any block cipher.
This document does not have IETF consensus and does not imply IETF
support for MGM.
2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Basic Terms and Definitions
This document uses the following terms and definitions for the sets
and operations on the elements of these sets:
V* The set of all bit strings of a finite length (hereinafter
referred to as strings), including the empty string;
substrings and string components are enumerated from right
to left starting from zero.
V_s The set of all bit strings of length s, where s is a non-
negative integer. For s = 0, the V_0 consists of a single
empty string.
|X| The bit length of the bit string X (if X is an empty
string, then |X| = 0).
X || Y Concatenation of strings X and Y both belonging to V*,
i.e., a string from V_{|X|+|Y|}, where the left substring
from V_{|X|} is equal to X, and the right substring from
V_{|Y|} is equal to Y.
a^s The string in V_s that consists of s 'a' bits.
(xor) Exclusive-or of two bit strings of the same length.
Z_{2^s} Ring of residues modulo 2^s.
MSB_i V_s -> V_i
The transformation that maps the string X = (x_{s-1}, ... ,
x_0) in V_s into the string MSB_i(X) = (x_{s-1}, ... ,
x_{s-i}) in V_i, i <= s (most significant bits).
Int_s V_s -> Z_{2^s}
The transformation that maps the string X = (x_{s-1}, ... ,
x_0) in V_s, s > 0, into the integer Int_s(X) = 2^{s-1} *
x_{s-1} + ... + 2 * x_1 + x_0 (the interpretation of the
bit string as an integer).
Vec_s Z_{2^s} -> V_s
The transformation inverse to the mapping Int_s (the
interpretation of an integer as a bit string).
E_K V_n -> V_n
The block cipher permutation under the key K in V_k.
k The bit length of the block cipher key.
n The block size of the block cipher (in bits).
len V_s -> V_{n/2}
The transformation that maps a string X in V_s, 0 <= s <=
2^{n/2} - 1, into the string len(X) = Vec_{n/2}(|X|) in
V_{n/2}, where n is the block size of the used block
cipher.
[+] The addition operation in Z_{2^{n/2}}, where n is the block
size of the used block cipher.
(x) The transformation that maps two strings, X = (x_{n-1}, ...
, x_0) in V_n and Y = (y_{n-1}, ... , y_0), in V_n into the
string Z = X (x) Y = (z_{n-1}, ... , z_0) in V_n; the
string Z corresponds to the polynomial Z(w) = z_{n-1} *
w^{n-1} + ... + z_1 * w + z_0, which is the result of
multiplying the polynomials X(w) = x_{n-1} * w^{n-1} + ...
+ x_1 * w + x_0 and Y(w) = y_{n-1} * w^{n-1} + ... + y_1 *
w + y_0 in the field GF(2^n), where n is the block size of
the used block cipher; if n = 64, then the field polynomial
is equal to f(w) = w^64 + w^4 + w^3 + w + 1; if n = 128,
then the field polynomial is equal to f(w) = w^128 + w^7 +
w^2 + w + 1.
incr_l V_n -> V_n
The transformation that maps an n-byte string A = L || R
into the n-byte string incr_l(A) = Vec_{n/2}(Int_{n/2}(L)
[+] 1) || R, where L and R are n/2-byte strings.
incr_r V_n -> V_n
The transformation that maps an n-byte string A = L || R
into the n-byte string incr_r(A) = L ||
Vec_{n/2}(Int_{n/2}(R) [+] 1), where L and R are n/2-byte
strings.
4. Specification
An additional parameter that defines the functioning of MGM is the
bit length S of the authentication tag, 32 <= S <= n. The value of S
MUST be fixed for a particular protocol. The choice of the value S
involves a trade-off between message expansion and the forgery
probability.
4.1. MGM Encryption and Tag Generation Procedure
The MGM encryption and tag generation procedure takes the following
parameters as inputs:
1. Encryption key K in V_k.
2. Initial counter nonce ICN in V_{n-1}.
3. Associated authenticated data A, 0 <= |A| < 2^{n/2}. If |A| > 0,
then A = A_1 || ... || A*_h, A_j in V_n, for j = 1, ... , h - 1,
A*_h in V_t, 1 <= t <= n. If |A| = 0, then by definition A*_h is
empty, and the h and t parameters are set as follows: h = 0, t =
n. The associated data is authenticated but is not encrypted.
4. Plaintext P, 0 <= |P| < 2^{n/2}. If |P| > 0, then P = P_1 ||
... || P*_q, P_i in V_n, for i = 1, ... , q - 1, P*_q in V_u, 1
<= u <= n. If |P| = 0, then by definition P*_q is empty, and the
q and u parameters are set as follows: q = 0, u = n.
The MGM encryption and tag generation procedure outputs the following
parameters:
1. Initial counter nonce ICN.
2. Associated authenticated data A.
3. Ciphertext C in V_{|P|}.
4. Authentication tag T in V_S.
The MGM encryption and tag generation procedure consists of the
following steps:
+----------------------------------------------------------------+
| MGM-Encrypt(K, ICN, A, P) |
|----------------------------------------------------------------|
| 1. Encryption step: |
| - if |P| = 0 then |
| - C*_q = P*_q |
| - C = P |
| - else |
| - Y_1 = E_K(0^1 || ICN), |
| - For i = 2, 3, ... , q do |
| Y_i = incr_r(Y_{i-1}), |
| - For i = 1, 2, ... , q - 1 do |
| C_i = P_i (xor) E_K(Y_i), |
| - C*_q = P*_q (xor) MSB_u(E_K(Y_q)), |
| - C = C_1 || ... || C*_q. |
| |
| 2. Padding step: |
| - A_h = A*_h || 0^{n-t}, |
| - C_q = C*_q || 0^{n-u}. |
| |
| 3. Authentication tag T generation step: |
| - Z_1 = E_K(1^1 || ICN), |
| - sum = 0^n, |
| - For i = 1, 2, ..., h do |
| H_i = E_K(Z_i), |
| sum = sum (xor) ( H_i (x) A_i ), |
| Z_{i+1} = incr_l(Z_i), |
| - For j = 1, 2, ..., q do |
| H_{h+j} = E_K(Z_{h+j}), |
| sum = sum (xor) ( H_{h+j} (x) C_j ), |
| Z_{h+j+1} = incr_l(Z_{h+j}), |
| - H_{h+q+1} = E_K(Z_{h+q+1}), |
| - T = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) |
| ( len(A) || len(C) ) ))). |
| |
| 4. Return (ICN, A, C, T). |
+----------------------------------------------------------------+
The ICN value for each message that is encrypted under the given key
K must be chosen in a unique manner.
Users who do not wish to encrypt plaintext can provide a string P of
zero length. Users who do not wish to authenticate associated data
can provide a string A of zero length. The length of the associated
data A and of the plaintext P MUST be such that 0 < |A| + |P| <
2^{n/2}.
4.2. MGM Decryption and Tag Verification Check Procedure
The MGM decryption and tag verification procedure takes the following
parameters as inputs:
1. Encryption key K in V_k.
2. Initial counter nonce ICN in V_{n-1}.
3. Associated authenticated data A, 0 <= |A| < 2^{n/2}. If |A| > 0,
then A = A_1 || ... || A*_h, A_j in V_n, for j = 1, ... , h - 1,
A*_h in V_t, 1 <= t <= n. If |A| = 0, then by definition A*_h is
empty, and the h and t parameters are set as follows: h = 0, t =
n. The associated data is authenticated but is not encrypted.
4. Ciphertext C, 0 <= |C| < 2^{n/2}. If |C| > 0, then C = C_1 ||
... || C*_q, C_i in V_n, for i = 1, ... , q - 1, C*_q in V_u, 1
<= u <= n. If |C| = 0, then by definition C*_q is empty, and the
q and u parameters are set as follows: q = 0, u = n.
5. Authentication tag T in V_S.
The MGM decryption and tag verification procedure outputs FAIL or the
following parameters:
1. Associated authenticated data A.
2. Plaintext P in V_{|C|}.
The MGM decryption and tag verification procedure consists of the
following steps:
+----------------------------------------------------------------+
| MGM-Decrypt(K, ICN, A, C, T) |
|----------------------------------------------------------------|
| 1. Padding step: |
| - A_h = A*_h || 0^{n-t}, |
| - C_q = C*_q || 0^{n-u}. |
| |
| 2. Authentication tag T verification step: |
| - Z_1 = E_K(1^1 || ICN), |
| - sum = 0^n, |
| - For i = 1, 2, ..., h do |
| H_i = E_K(Z_i), |
| sum = sum (xor) ( H_i (x) A_i ), |
| Z_{i+1} = incr_l(Z_i), |
| - For j = 1, 2, ..., q do |
| H_{h+j} = E_K(Z_{h+j}), |
| sum = sum (xor) ( H_{h+j} (x) C_j ), |
| Z_{h+j+1} = incr_l(Z_{h+j}), |
| - H_{h+q+1} = E_K(Z_{h+q+1}), |
| - T' = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) |
| ( len(A) || len(C) ) ))), |
| - If T' != T then return FAIL. |
| |
| 3. Decryption step: |
| - if |C| = 0 then |
| - P = C |
| - else |
| - Y_1 = E_K(0^1 || ICN), |
| - For i = 2, 3, ... , q do |
| Y_i = incr_r(Y_{i-1}), |
| - For i = 1, 2, ... , q - 1 do |
| P_i = C_i (xor) E_K(Y_i), |
| - P*_q = C*_q (xor) MSB_u(E_K(Y_q)), |
| - P = P_1 || ... || P*_q. |
| |
| 4. Return (A, P). |
+----------------------------------------------------------------+
The length of the associated data A and of the ciphertext C MUST be
such that 0 < |A| + |C| < 2^{n/2}.
5. Rationale
MGM was originally proposed in [PDMODE].
From the operational point of view, MGM is designed to be
parallelizable, inverse free, and online and is also designed to
provide availability of precomputations.
Parallelizability of MGM is achieved due to its counter-type
structure and the usage of the multilinear function for
authentication. Indeed, both encryption blocks E_K(Y_i) and
authentication blocks H_i are produced in the counter mode manner,
and the multilinear function determined by H_i is parallelizable in
itself. Additionally, the counter-type structure of the mode
provides the inverse-free property.
The online property means the possibility of processing messages even
if it is not completely received (so its length is unknown). To
provide this property, MGM uses blocks E_K(Y_i) and H_i, which are
produced based on two independent source blocks Y_i and Z_i.
Availability of precomputations for MGM means the possibility of
calculating H_i and E_K(Y_i) even before data is retrieved. It holds
again due to the usage of counters for calculating them.
6. Security Considerations
The security properties of MGM are based on the following:
Different functions generating the counter values:
The functions incr_r and incr_l are chosen to minimize
intersection (if it happens) of counter values Y_i and Z_i.
Encryption of the multilinear function output:
It allows attacks based on padding and linear properties to be
resisted (see [FERG05] for details).
Multilinear function for authentication:
It allows the small subgroup attacks to be resisted [SAAR12].
Encryption of the nonces (0^1 || ICN) and (1^1 || ICN):
The use of this encryption minimizes the number of plaintext/
ciphertext pairs of blocks known to an adversary. It prevents
attacks that need a substantial amount of such material (e.g.,
linear and differential cryptanalysis and side-channel attacks).
It is crucial to the security of MGM to use unique ICN values. Using
the same ICN values for two different messages encrypted with the
same key eliminates the security properties of this mode.
It is crucial for the security of MGM not to process empty plaintext
and empty associated data at the same time. Otherwise, a tag becomes
independent from a nonce value, leading to vulnerability to forgery
attacks.
Security analysis for MGM with E_K being a random permutation was
performed in [SEC-MGM]. More precisely, the bounds for
confidentiality advantage (CA) and integrity advantage (IA) (for
details, see [AEAD-LIMITS]) were obtained. According to these
results, for an adversary making at most q encryption queries with
the total length of plaintexts and associated data of at most s
blocks, and allowed to output a forgery with the summary length of
ciphertext and associated data of at most l blocks:
CA <= ( 3( s + 4q )^2 )/ 2^n,
IA <= ( 3( s + 4q + l + 3 )^2 )/ 2^n + 2/2^S,
where n is the block size and S is the authentication tag size.
These bounds can be used as guidelines on how to calculate
confidentiality and integrity limits (for details, also see
[AEAD-LIMITS]).
7. IANA Considerations
This document has no IANA actions.
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC7801] Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
"Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
<https://www.rfc-editor.org/info/rfc7801>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8891] Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015:
Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891,
September 2020, <https://www.rfc-editor.org/info/rfc8891>.
8.2. Informative References
[AEAD-LIMITS]
Günther, F., Thomson, M., and C. A. Wood, "Usage Limits on
AEAD Algorithms", Work in Progress, Internet-Draft, draft-
irtf-cfrg-aead-limits-02, 22 February 2021,
<https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
aead-limits-02>.
[AUTH-ENC-BLOCK-CIPHER]
Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security.
Authenticated encryption block cipher operation modes", R
1323565.1.026-2019, 2019.
[FERG05] Ferguson, N., "Authentication weaknesses in GCM", May
2005.
[GOST3412-2015]
Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security.
Block ciphers", GOST R 34.12-2015, 2015.
[PDMODE] Nozdrunov, V., "Parallel and double block cipher mode of
operation (PD-mode) for authenticated encryption", CTCrypt
2017 proceedings, pp. 36-45, June 2017.
[SAAR12] Saarinen, M-J., "Cycling Attacks on GCM, GHASH and Other
Polynomial MACs and Hashes", FSE 2012 proceedings, pp.
216-225, DOI 10.1007/978-3-642-34047-5_13, 2012,
<https://doi.org/10.1007/978-3-642-34047-5_13>.
[SEC-MGM] Akhmetzyanova, L., Alekseev, E., Karpunin, G., and V.
Nozdrunov, "Security of Multilinear Galois Mode (MGM)",
IACR Cryptology ePrint Archive 2019, pp. 123, 2019.
Appendix A. Test Vectors
A.1. Test Vectors for the Kuznyechik Block Cipher
Test vectors for the Kuznyechik block cipher (n = 128, k = 256) are
defined in [GOST3412-2015] (the English version can be found in
[RFC7801]).
A.1.1. Example 1
Encryption key K:
00000: 88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
00010: FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
ICN:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Associated authenticated data A:
00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01
00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03
00020: EA 05 05 05 05 05 05 05 05
Plaintext P:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
00010: 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
00020: 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
00030: 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
00040: AA BB CC
1. Encryption step:
0^1 || ICN:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Y_1:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CD
E_K(Y_1):
00000: B8 57 48 C5 12 F3 19 90 AA 56 7E F1 53 35 DB 74
Y_2:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CE
E_K(Y_2):
00000: 80 64 F0 12 6F AC 9B 2C 5B 6E AC 21 61 2F 94 33
Y_3:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CF
E_K(Y_3):
00000: 58 58 82 1D 40 C0 CD 0D 0A C1 E6 C2 47 09 8F 1C
Y_4:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D0
E_K(Y_4):
00000: E4 3F 50 81 B5 8F 0B 49 01 2F 8E E8 6A CD 6D FA
Y_5:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D1
E_K(Y_5):
00000: 86 CE 9E 2A 0A 12 25 E3 33 56 91 B2 0D 5A 33 48
C:
00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC
00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39
00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C
00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB
00040: 2C 75 52
2. Padding step:
A_1 || ... || A_h:
00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01
00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03
00020: EA 05 05 05 05 05 05 05 05 00 00 00 00 00 00 00
C_1 || ... || C_q:
00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC
00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39
00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C
00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB
00040: 2C 75 52 00 00 00 00 00 00 00 00 00 00 00 00 00
3. Authentication tag T generation step:
1^1 || ICN:
00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Z_1:
00000: 7F C2 45 A8 58 6E 66 02 A7 BB DB 27 86 BD C6 6F
H_1:
00000: 8D B1 87 D6 53 83 0E A4 BC 44 64 76 95 2C 30 0B
current sum:
00000: 4C F4 27 F4 AD B7 5C F4 C0 DA 39 D5 AB 48 CF 38
Z_2:
00000: 7F C2 45 A8 58 6E 66 03 A7 BB DB 27 86 BD C6 6F
H_2:
00000: 7A 24 F7 26 30 E3 76 37 21 C8 F3 CD B1 DA 0E 31
current sum:
00000: 94 95 44 0E F6 24 A1 DD C6 F5 D9 77 28 50 C5 73
Z_3:
00000: 7F C2 45 A8 58 6E 66 04 A7 BB DB 27 86 BD C6 6F
H_3:
00000: 44 11 96 21 17 D2 06 35 C5 25 E0 A2 4D B4 B9 0A
current sum:
00000: A4 9A 8C D8 A6 F2 74 23 DB 79 E4 4A B3 06 D9 42
Z_4:
00000: 7F C2 45 A8 58 6E 66 05 A7 BB DB 27 86 BD C6 6F
H_4:
00000: D8 C9 62 3C 4D BF E8 14 CE 7C 1C 0C EA A9 59 DB
current sum:
00000: 09 FE 3F 6A 83 3C 21 B3 90 27 D0 20 6A 84 E1 5A
Z_5:
00000: 7F C2 45 A8 58 6E 66 06 A7 BB DB 27 86 BD C6 6F
H_5:
00000: A5 E1 F1 95 33 3E 14 82 96 99 31 BF BE 6D FD 43
current sum:
00000: B5 DA 26 BB 00 EB A8 04 35 D7 97 6B C6 B5 46 4D
Z_6:
00000: 7F C2 45 A8 58 6E 66 07 A7 BB DB 27 86 BD C6 6F
H_6:
00000: B4 CA 80 8C AC CF B3 F9 17 24 E4 8A 2C 7E E9 D2
current sum:
00000: DD 1C 0E EE F7 83 C8 EB 2A 33 F3 58 D7 23 0E E5
Z_7:
00000: 7F C2 45 A8 58 6E 66 08 A7 BB DB 27 86 BD C6 6F
H_7:
00000: 72 90 8F C0 74 E4 69 E8 90 1B D1 88 EA 91 C3 31
current sum:
00000: 89 6C E1 08 32 EB EA F9 06 9F 3F 73 76 59 4D 40
Z_8:
00000: 7F C2 45 A8 58 6E 66 09 A7 BB DB 27 86 BD C6 6F
H_8:
00000: 23 CA 27 15 B0 2C 68 31 3B FD AC B3 9E 4D 0F B8
current sum:
00000: 99 1A F5 C9 D0 80 F7 63 87 FE 64 9E 7C 93 C6 42
Z_9:
00000: 7F C2 45 A8 58 6E 66 0A A7 BB DB 27 86 BD C6 6F
H_9:
00000: BC BC E6 C4 1A A3 55 A4 14 88 62 BF 64 BD 83 0D
len(A) || len(C):
00000: 00 00 00 00 00 00 01 48 00 00 00 00 00 00 02 18
sum (xor) ( H_9 (x) ( len(A) || len(C) ) ):
00000: C0 C7 22 DB 5E 0B D6 DB 25 76 73 83 3D 56 71 28
Tag T:
00000: CF 5D 65 6F 40 C3 4F 5C 46 E8 BB 0E 29 FC DB 4C
A.1.2. Example 2
Encryption key K:
00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE
00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88
ICN:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Associated authenticated data A:
00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
Plaintext P:
00000:
1. Encryption step:
C:
00000:
2. Padding step:
A_1 || ... || A_h:
00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
C_1 || ... || C_q:
00000:
3. Authentication tag T generation step:
1^1 || ICN:
00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Z_1:
00000: 79 32 72 68 96 C4 3E 3F BF D6 50 89 EB F1 E5 B6
H_1:
00000: 99 3A 80 66 CC C0 A4 0F AC 4A 14 F7 A2 F6 6D 9B
current sum:
00000: 0A C1 1E 2C 1C D6 07 D8 2F E3 55 54 B4 01 02 81
Z_2:
00000: 79 32 72 68 96 C4 3E 40 BF D6 50 89 EB F1 E5 B6
H_2:
00000: 0C 38 A7 1E E7 93 BF 76 89 81 BF CD 7C DA 78 C8
len(A) || len(C):
00000: 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00 00
sum (xor) ( H_2 (x) ( len(A) || len(C) ) ):
00000: CA 1E F8 92 71 EA 60 C4 53 9E 40 EB 26 C2 80 5D
Tag T:
00000: 79 01 E9 EA 20 85 CD 24 7E D2 49 69 5F 9F 8A 85
A.2. Test Vectors for the Magma Block Cipher
Test vectors for the Magma block cipher (n = 64, k = 256) are defined
in [GOST3412-2015] (the English version can be found in [RFC8891]).
A.2.1. Example 1
Encryption key K:
00000: FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00
00010: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
ICN:
00000: 12 DE F0 6B 3C 13 0A 59
Associated authenticated data A:
00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02
00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04
00020: 05 05 05 05 05 05 05 05 EA
Plaintext P:
00000: FF EE DD CC BB AA 99 88 11 22 33 44 55 66 77 00
00010: 88 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77
00020: 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88
00030: AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88 99
00040: AA BB CC
1. Encryption step:
0^1 || ICN:
00000: 12 DE F0 6B 3C 13 0A 59
Y_1:
00000: 56 23 89 01 62 DE 31 BF
E_K(Y_1):
00000: 38 7B DB A0 E4 34 39 B3
Y_2:
00000: 56 23 89 01 62 DE 31 C0
E_K(Y_2):
00000: 94 33 00 06 10 F7 F2 AE
Y_3:
00000: 56 23 89 01 62 DE 31 C1
E_K(Y_3):
00000: 97 B7 AA 6D 73 C5 87 57
Y_4:
00000: 56 23 89 01 62 DE 31 C2
E_K(Y_4):
00000: 94 15 52 8B FF C9 E8 0A
Y_5:
00000: 56 23 89 01 62 DE 31 C3
E_K(Y_5):
00000: 03 F7 68 BF F1 82 D6 70
Y_6:
00000: 56 23 89 01 62 DE 31 C4
E_K(Y_6):
00000: FD 05 F8 4E 9B 09 D2 FE
Y_7:
00000: 56 23 89 01 62 DE 31 C5
E_K(Y_7):
00000: DA 4D 90 8A 95 B1 75 C4
Y_8:
00000: 56 23 89 01 62 DE 31 C6
E_K(Y_8):
00000: 65 99 73 96 DA C2 4B D7
Y_9:
00000: 56 23 89 01 62 DE 31 C7
E_K(Y_9):
00000: A9 00 50 4A 14 8D EE 26
C:
00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE
00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D
00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76
00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E
00040: 03 BB 9C
2. Padding step:
A_1 || ... || A_h:
00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02
00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04
00020: 05 05 05 05 05 05 05 05 EA 00 00 00 00 00 00 00
C_1 || ... || C_q:
00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE
00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D
00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76
00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E
00040: 03 BB 9C 00 00 00 00 00
3. Authentication tag T generation step:
1^1 || ICN:
00000: 92 DE F0 6B 3C 13 0A 59
Z_1:
00000: 2B 07 3F 04 94 F3 72 A0
H_1:
00000: 70 8A 78 19 1C DD 22 AA
current sum:
00000: D6 BB 5B EA 81 93 12 62
Z_2:
00000: 2B 07 3F 05 94 F3 72 A0
H_2:
00000: 6F 02 CC 46 4B 2F A0 A3
current sum:
00000: DD 1C 82 4E 91 78 49 A5
Z_3:
00000: 2B 07 3F 06 94 F3 72 A0
H_3:
00000: 9F 81 F2 26 FD 19 6F 05
current sum:
00000: 05 89 22 17 F6 5A DA C7
Z_4:
00000: 2B 07 3F 07 94 F3 72 A0
H_4:
00000: B9 C2 AC 9B E5 B5 DF F9
current sum:
00000: D1 DB 9B 7F C4 9E 7C 97
Z_5:
00000: 2B 07 3F 08 94 F3 72 A0
H_5:
00000: 74 B5 EC 96 55 1B F8 88
current sum:
00000: 56 45 F6 B5 18 5C B7 1A
Z_6:
00000: 2B 07 3F 09 94 F3 72 A0
H_6:
00000: 7E B0 21 A4 03 5B 04 C3
current sum:
00000: 3F C2 C2 E6 FB EE D0 4D
Z_7:
00000: 2B 07 3F 0A 94 F3 72 A0
H_7:
00000: C2 A9 C3 A8 70 4D 9B B0
current sum:
00000: 15 47 1F B5 CD 8E 6C 02
Z_8:
00000: 2B 07 3F 0B 94 F3 72 A0
H_8:
00000: F5 D5 05 A8 7B 83 83 B5
current sum:
00000: 12 56 78 96 1D 40 E0 93
Z_9:
00000: 2B 07 3F 0C 94 F3 72 A0
H_9:
00000: F7 95 E7 5F DE B8 93 3C
current sum:
00000: 6E F4 0A B0 C1 5F 20 48
Z_10:
00000: 2B 07 3F 0D 94 F3 72 A0
H_10:
00000: 65 A1 A3 E6 80 F0 81 45
current sum:
00000: A4 64 A7 08 FF 45 14 22
Z_11:
00000: 2B 07 3F 0E 94 F3 72 A0
H_11:
00000: 1C 74 A5 76 4C B0 D5 95
current sum:
00000: 60 94 4E 05 D0 85 75 14
Z_12:
00000: 2B 07 3F 0F 94 F3 72 A0
H_12:
00000: DC 84 47 A5 14 E7 83 E7
current sum:
00000: EE 98 B9 B5 0F F7 83 E8
Z_13:
00000: 2B 07 3F 10 94 F3 72 A0
H_13:
00000: A7 E3 AF E0 04 EE 16 E3
current sum:
00000: C0 39 0F A2 28 AF 6D CB
Z_14:
00000: 2B 07 3F 11 94 F3 72 A0
H_14:
00000: A5 AA BB 0B 79 80 D0 71
current sum:
00000: 73 E0 6E 07 EF 37 CD CC
Z_15:
00000: 2B 07 3F 12 94 F3 72 A0
H_15:
00000: 6E 10 4C C9 33 52 5C 5D
current sum:
00000: 2F 40 69 0A EB 53 F5 39
Z_16:
00000: 2B 07 3F 13 94 F3 72 A0
H_16:
00000: 83 11 B6 02 4A A9 66 C1
len(A) || len(C):
00000: 00 00 01 48 00 00 02 18
sum (xor) ( H_16 (x) ( len(A) || len(C) ) ):
00000: 73 CE F4 4B AE 6B DB 61
Tag T:
00000: A7 92 80 69 AA 10 FD 10
A.2.2. Example 2
Encryption key K:
00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE
00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88
ICN:
00000: 00 77 66 55 44 33 22 11
Associated authenticated data A:
00000:
Plaintext P:
00000: 22 33 44 55 66 77 00 FF
1. Encryption step:
0^1 || ICN:
00000: 00 77 66 55 44 33 22 11
Y_1:
00000: 5B 2A 7E 60 4F 9F BB 95
E_K(Y_1):
00000: 48 A6 A5 17 0D 52 9D B1
C:
00000: 6A 95 E1 42 6B 25 9D 4E
2. Padding step:
A_1 || ... || A_h:
00000:
C_1 || ... || C_q:
00000: 6A 95 E1 42 6B 25 9D 4E
3. Authentication tag T generation step:
1^1 || ICN:
00000: 80 77 66 55 44 33 22 11
Z_1:
00000: 59 73 54 78 7E 52 E6 EB
H_1:
00000: EC E3 F9 DA 11 8C 7D 95
current sum:
00000: 25 D0 E4 20 7B 6B F6 3D
Z_2:
00000: 59 73 54 79 7E 52 E6 EB
H_2:
00000: 31 0C 0D AC C9 D0 4D 93
len(A) || len(C):
00000: 00 00 00 00 00 00 00 40
sum (xor) ( H_2 (x) ( len(A) || len(C) ) ):
00000: 66 D3 8F 12 0F 78 92 49
Tag T:
00000: 33 4E E2 70 45 0B EC 9E
Contributors
Evgeny Alekseev
CryptoPro
Email: alekseev@cryptopro.ru
Alexandra Babueva
CryptoPro
Email: babueva@cryptopro.ru
Lilia Akhmetzyanova
CryptoPro
Email: lah@cryptopro.ru
Grigory Marshalko
TC 26
Email: marshalko_gb@tc26.ru
Vladimir Rudskoy
TC 26
Email: rudskoy_vi@tc26.ru
Alexey Nesterenko
National Research University Higher School of Economics
Email: anesterenko@hse.ru
Lidia Nikiforova
CryptoPro
Email: nikiforova@cryptopro.ru
Authors' Addresses
Stanislav Smyshlyaev (editor)
CryptoPro
Phone: +7 (495) 995-48-20
Email: svs@cryptopro.ru
Vladislav Nozdrunov
TC 26
Email: nozdrunov_vi@tc26.ru
Vasily Shishkin
TC 26
Email: shishkin_va@tc26.ru
Ekaterina Griboedova
CryptoPro
Email: griboedovaekaterina@gmail.com
|