summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc9083.txt
blob: 44551183685a31ad0dd7f1260e3917d3b60613de (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
Internet Engineering Task Force (IETF)                     S. Hollenbeck
Request for Comments: 9083                                 Verisign Labs
STD: 95                                                        A. Newton
Obsoletes: 7483                                                      AWS
Category: Standards Track                                      June 2021
ISSN: 2070-1721


    JSON Responses for the Registration Data Access Protocol (RDAP)

Abstract

   This document describes JSON data structures representing
   registration information maintained by Regional Internet Registries
   (RIRs) and Domain Name Registries (DNRs).  These data structures are
   used to form Registration Data Access Protocol (RDAP) query
   responses.  This document obsoletes RFC 7483.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc9083.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction
     1.1.  Terminology and Definitions
     1.2.  Data Model
   2.  Use of JSON
     2.1.  Naming
   3.  Common Data Types
   4.  Common Data Structures
     4.1.  RDAP Conformance
     4.2.  Links
     4.3.  Notices and Remarks
     4.4.  Language Identifier
     4.5.  Events
     4.6.  Status
     4.7.  Port 43 WHOIS Server
     4.8.  Public IDs
     4.9.  Object Class Name
     4.10. An Example
   5.  Object Classes
     5.1.  The Entity Object Class
     5.2.  The Nameserver Object Class
     5.3.  The Domain Object Class
     5.4.  The IP Network Object Class
     5.5.  The Autonomous System Number Object Class
   6.  Error Response Body
   7.  Responding to Help Queries
   8.  Responding To Searches
   9.  Indicating Truncated Responses
   10. IANA Considerations
     10.1.  RDAP JSON Media Type Registration
     10.2.  JSON Values Registry
       10.2.1.  Notice and Remark Types
       10.2.2.  Status
       10.2.3.  Event Actions
       10.2.4.  Roles
       10.2.5.  Variant Relations
   11. Security Considerations
   12. Internationalization Considerations
     12.1.  Character Encoding
     12.2.  URIs and IRIs
     12.3.  Language Tags
     12.4.  Internationalized Domain Names
   13. Privacy Considerations
   14. References
     14.1.  Normative References
     14.2.  Informative References
   Appendix A.  Suggested Data Modeling with the Entity Object Class
     A.1.  Registrants and Contacts
     A.2.  Registrars
   Appendix B.  Modeling Events
   Appendix C.  Structured vs. Unstructured Addresses
   Appendix D.  Secure DNS
   Appendix E.  Motivations for Using JSON
   Appendix F.  Changes from RFC 7483
   Acknowledgments
   Authors' Addresses

1.  Introduction

   This document describes responses in the JSON [RFC8259] format for
   the queries as defined by the Registration Data Access Protocol Query
   Format [RFC9082].  A communication protocol for exchanging queries
   and responses is described in [RFC7480].  This document obsoletes RFC
   7483.

1.1.  Terminology and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The following list describes terminology and definitions used
   throughout this document:

   DNR:  Domain Name Registry or Domain Name Registrar

   LDH:  letters, digits, hyphen

   member:  data found within an object as defined by JSON [RFC8259]

   object:  a data structure as defined by JSON [RFC8259]

   object class:  the definition of members that may be found in JSON
    objects described in this document

   object instance:  an instantiation or specific instance of an object
    class

   RDAP:  Registration Data Access Protocol

   RIR:  Regional Internet Registry

1.2.  Data Model

   The data model for JSON responses is specified in five sections:

   1.  simple data types conveyed in JSON primitive types (strings,
       numbers, booleans, and null)

   2.  data structures specified as JSON arrays or objects that are used
       repeatedly when building up larger objects

   3.  object classes representing structured data corresponding to a
       lookup of a single object

   4.  arrays of objects representing structured data corresponding to a
       search for multiple objects

   5.  the response to an error

   The object classes represent responses for two major categories of
   data: responses returned by RIRs for registration data related to IP
   addresses, reverse DNS names, and Autonomous System numbers and
   responses returned by DNRs for registration data related to forward
   DNS names.  The following object classes are returned by both RIRs
   and DNRs:

   1.  domains

   2.  nameservers

   3.  entities

   The information served by both RIRs and DNRs for these object classes
   overlap extensively and are given in this document as a unified model
   for both classes of service.

   In addition to the object classes listed above, RIRs also serve the
   following object classes:

   1.  IP networks

   2.  Autonomous System numbers

   Object classes defined in this document represent a minimal set of
   what a compliant client/server needs to understand to function
   correctly; however, some deployments may want to include additional
   object classes to suit individual needs.  Anticipating this need for
   extension, Section 2.1 of this document defines a mechanism for
   extending the JSON objects that are described in this document.

   Positive responses take two forms.  A response to a lookup of a
   single object in the registration system yields a JSON object, which
   is the subject of the lookup.  A response to a search for multiple
   objects yields a JSON object that contains an array of JSON objects
   that are the subject of the search.  In each type of response, other
   data structures are present within the topmost JSON object.

2.  Use of JSON

2.1.  Naming

   Clients of these JSON responses SHOULD ignore unrecognized JSON
   members in responses.  Servers can insert members into the JSON
   responses, which are not specified in this document, but that does
   not constitute an error in the response.  Servers that insert such
   unspecified members into JSON responses SHOULD have member names
   prefixed with a short identifier followed by an underscore followed
   by a meaningful name.  It has been observed that these short
   identifiers aid software implementers with identifying the
   specification of the JSON member, and failure to use one could cause
   an implementer to assume the server is erroneously using a name from
   this specification.  This allowance does not apply to jCard [RFC7095]
   objects.  The full JSON name (the prefix plus the underscore plus the
   meaningful name) SHOULD adhere to the character and name limitations
   of the prefix registry described in [RFC7480].  Failure to use these
   limitations could result in slower adoption as these limitations have
   been observed to aid some client programming models.

   Consider the following JSON response with JSON members, all of which
   are specified in this document.

   {
     "handle" : "ABC123",
     "remarks" :
     [
       {
         "description" :
         [
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ]
   }

                                  Figure 1

   If The Registry of the Moon desires to express information not found
   in this specification, it might select "lunarNIC" as its identifying
   prefix and insert, as an example, the member named
   "lunarNIC_beforeOneSmallStep" to signify registrations occurring
   before the first moon landing and the member named
   "lunarNIC_harshMistressNotes" that contains other descriptive text.

   Consider the following JSON response with JSON names, some of which
   should be ignored by clients without knowledge of their meaning.

   {
     "handle" : "ABC123",
     "lunarNIC_beforeOneSmallStep" : "TRUE THAT!",
     "remarks" :
     [
       {
         "description" :
         [
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ],
     "lunarNIC_harshMistressNotes" :
     [
       "In space,",
       "nobody can hear you scream."
     ]
   }

                                  Figure 2

   Insertion of unrecognized members ignored by clients may also be used
   for future revisions to this specification.

   Clients processing JSON responses need to be prepared for members
   representing registration data specified in this document to be
   absent from a response.  In other words, servers are free to omit
   unrequired/optional JSON members containing registration data based
   on their own policies.

   Finally, all JSON names specified in this document are case
   sensitive.  Both servers and clients MUST transmit and process them
   using the specified character case.

3.  Common Data Types

   JSON [RFC8259] defines the data types of a number, character string,
   boolean, array, object, and null.  This section describes the
   semantics and/or syntax reference for common, JSON character strings
   used in this document.

   handle:           DNRs and RIRs have registry-unique identifiers that
                     may be used to specifically reference an object
                     instance.  The semantics of this data type as found
                     in this document are to be a registry-unique
                     reference to the closest enclosing object where the
                     value is found.  The data type names "registryId",
                     "roid", "nic-handle", "registrationNo", etc., are
                     terms often synonymous with this data type.  In
                     this document, the term "handle" is used.  The term
                     exposed to users by clients is a presentation issue
                     beyond the scope of this document.  This value is a
                     simple character string.

   IPv4 addresses:   The representation of IPv4 addresses in this
                     document uses the dotted-decimal notation.  An
                     example of this textual representation is
                     "192.0.2.0".

   IPv6 addresses:   The representation of IPv6 addresses in this
                     document follow the forms outlined in [RFC5952].
                     An example of this textual representation is
                     "2001:db8::1:0:0:1".

   country codes:    Where the identity of a geopolitical nation or
                     country is needed, these identities are represented
                     with the alpha-2 or two-character country code
                     designation as defined in [ISO.3166.2020].  The
                     alpha-2 representation is used because it is freely
                     available, whereas the alpha-3 and numeric-3
                     standards are not.

   LDH names:        Textual representations of DNS names where the
                     labels of the domain are all "letters, digits,
                     hyphen" labels as described by [RFC5890].  Trailing
                     periods are optional.

   Unicode names:    Textual representations of DNS names where one or
                     more of the labels are U-labels as described by
                     [RFC5890].  Trailing periods are optional.

   dates and times:  The syntax for values denoting dates and times is
                     defined in [RFC3339].

   URIs:             The syntax for values denoting a Uniform Resource
                     Identifier (URI) is defined by [RFC3986].

   Contact information is defined using jCards as described in
   [RFC7095].  The "fn" member is required and MUST NOT be null
   according to [RFC6350].  An empty "fn" member MAY be used when the
   contact name does not exist or is redacted.

4.  Common Data Structures

   This section defines common data structures used in responses and
   object classes.

4.1.  RDAP Conformance

   The data structure named "rdapConformance" is an array of strings,
   each providing a hint as to the specifications used in the
   construction of the response.  This data structure MUST appear in the
   topmost JSON object of a response and MUST NOT appear anywhere else.
   A response to a "help" request will include identifiers for all of
   the specifications supported by the server.  A response to any other
   request will include only identifiers for the specifications used in
   the construction of the response.  The set of returned identifiers
   MAY vary depending on the authorization level of the client.

   An example rdapConformance data structure:

   "rdapConformance" :
   [
     "rdap_level_0"
   ]

                                  Figure 3

   The string literal "rdap_level_0" signifies conformance with this
   specification.  When custom JSON values are inserted into responses,
   conformance to those custom specifications MUST be indicated by
   including a unique string literal value registered in the IANA RDAP
   Extensions registry specified in [RFC7480].  For example, if the
   fictional Registry of the Moon wants to signify that their JSON
   responses are conformant with their registered extensions, the string
   used might be "lunarNIC_level_0".  These registered values aid the
   identification of specifications for software implementers, and
   failure to use them could result in slower adoption of extensions.

   Example rdapConformance structure with custom extensions noted:

   "rdapConformance" :
   [
     "rdap_level_0",
     "lunarNIC_level_0"
   ]

                                  Figure 4

4.2.  Links

   The "links" array is found in data structures to signify links to
   other resources on the Internet.  The relationship of these links is
   defined by the IANA registry described by [RFC8288].

   The following is an example of the link structure:

       {
         "value" : "https://example.com/context_uri",
         "rel" : "self",
         "href" : "https://example.com/target_uri",
         "hreflang" : [ "en", "ch" ],
         "title" : "title",
         "media" : "screen",
         "type" : "application/json"
       }

                                  Figure 5

   The JSON name/values of "rel", "href", "hreflang", "title", "media",
   and "type" correspond to values found in Section 3 of [RFC8288].  The
   "value" JSON value is the context URI as described by [RFC8288].  The
   "value", "rel", and "href" JSON values MUST be specified.  All other
   JSON values are OPTIONAL.  A "related" link relation MUST NOT include
   an "href" URI that is the same as the "self" link relation "href" URI
   to reduce the risk of infinite client processing loops.
   Internationalized Domain Names (IDNs) returned in URIs SHOULD be
   consistently returned in LDH name format to allow clients to process
   these IDNs according to their capabilities.

   This is an example of the "links" array as it might be found in an
   object class:

       "links" :
       [
           {
             "value" : "https://example.com/ip/2001:db8::123",
             "rel" : "self",
             "href" : "https://example.com/ip/2001:db8::123",
             "type" : "application/rdap+json"
           },
           {
             "value" : "https://example.com/ip/2001:db8::123",
             "rel" : "up",
             "href" : "https://example.com/ip/2001:db8::/48",
             "type" : "application/rdap+json"
           }

       ]

                                  Figure 6

4.3.  Notices and Remarks

   The "notices" and "remarks" data structures take the same form.  The
   notices structure denotes information about the service providing
   RDAP information and/or information about the entire response,
   whereas the remarks structure denotes information about the object
   class that contains it (see Section 5 regarding object classes).

   Both are arrays of objects.  Each object contains a "title" string
   representing the title of the object, a "type" string denoting a
   registered type of remark or notice (see Section 10.2.1), an array of
   strings named "description" for the purposes of conveying any
   descriptive text, and a "links" array as described in Section 4.2.
   The "description" array MUST be included.  All other JSON values are
   OPTIONAL.

   An example of the notices data structure:

   "notices" :
   [
     {
       "title" : "Terms of Use",
       "description" :
       [
         "Service subject to The Registry of the Moon's TOS.",
         "Copyright (c) 2020 LunarNIC"
       ],
       "links" :
       [
         {
           "value" : "https://example.net/entity/XXXX",
           "rel" : "alternate",
           "type" : "text/html",
           "href" : "https://www.example.com/terms_of_use.html"
         }
       ]
     }
   ]

                                  Figure 7

   It is the job of the clients to determine line breaks, spacing, and
   display issues for sentences within the character strings of the
   "description" array.  Each string in the "description" array contains
   a single complete division of human-readable text indicating to
   clients where there are semantic breaks.

   An example of the remarks data structure:

   "remarks" :
   [
     {
       "description" :
       [
         "She sells sea shells down by the sea shore.",
         "Originally written by Terry Sullivan."
       ]
     }
   ]

                                  Figure 8

   Note that objects in the "remarks" array may also have a "links"
   array.

   While the "title" and "description" fields are intended primarily for
   human consumption, the "type" string contains a well-known value to
   be registered with IANA (see Section 10.2.1) for programmatic use.

   An example of the remarks data structure:

   "remarks" :
   [
     {
       "type" : "object truncated due to authorization",
       "description" :
       [
         "Some registration data may not have been given.",
         "Use proper authorization credentials to see all of it."
       ]
     }
   ]

                                  Figure 9

   While the "remarks" array will appear in many object classes in a
   response, the "notices" array appears only in the topmost object of a
   response.

4.4.  Language Identifier

   This data structure consists solely of a name/value pair, where the
   name is "lang" and the value is a string containing a language
   identifier as described in [RFC5646].

   "lang" : "mn-Cyrl-MN"

                                 Figure 10

   The "lang" attribute as defined in this section MAY appear anywhere
   in an object class or data structure, except for in jCard objects.
   vCard supports similar functionality by way of the LANGUAGE property
   parameter (see Section 5.1 of RFC 6350 [RFC6350]).

4.5.  Events

   This data structure represents events that have occurred on an
   instance of an object class (see Section 5 regarding object classes).

   This is an example of an "events" array.

   "events" :
   [
     {
       "eventAction" : "registration",
       "eventActor" : "SOMEID-LUNARNIC",
       "eventDate" : "1990-12-31T23:59:59Z"
     },
     {
       "eventAction" : "last changed",
       "eventActor" : "OTHERID-LUNARNIC",
       "eventDate" : "1991-12-31T23:59:59Z"
     }
   ]

                                 Figure 11

   The "events" array consists of objects, each with the following
   members:

   *  "eventAction" -- a REQUIRED string denoting the reason for the
      event

   *  "eventActor" -- an OPTIONAL identifier denoting the actor
      responsible for the event

   *  "eventDate" -- a REQUIRED string containing the time and date the
      event occurred

   *  "links" -- OPTIONAL; see Section 4.2

   Events can be future dated.  One use case for future dating of events
   is to denote when an object expires from a registry.

   The "links" array in this data structure is provided for references
   to the event actor.  In order to reference an RDAP entity, a "rel" of
   "related" and a "type" of "application/rdap+json" is used in the link
   reference.

   See Section 10.2.3 for a list of values for the "eventAction" string.
   See Appendix B regarding the various ways events can be modeled.

4.6.  Status

   This data structure, named "status", is an array of strings
   indicating the state of a registered object (see Section 10.2.2 for a
   list of values).

4.7.  Port 43 WHOIS Server

   This data structure, a member named "port43", is a simple character
   string containing the fully qualified host name or IP address of the
   WHOIS [RFC3912] server where the containing object instance may be
   found.  Note that this is not a URI, as there is no WHOIS URI scheme.

4.8.  Public IDs

   This data structure maps a public identifier to an object class.  It
   is named "publicIds" and is an array of objects, with each object
   containing the following REQUIRED members:

   *  type -- a string denoting the type of public identifier

   *  identifier -- a string denoting a public identifier of the type
      related to "type"

   The following is an example of a publicIds structure.

   "publicIds":
   [
     {
       "type":"IANA Registrar ID",
       "identifier":"1"
     }
   ]

                                 Figure 12

4.9.  Object Class Name

   This data structure, a member named "objectClassName", gives the
   object class name of a particular object as a string.  This
   identifies the type of object being processed.  An objectClassName is
   REQUIRED in all RDAP response objects so that the type of the object
   can be interpreted.

4.10.  An Example

   This is an example response with both rdapConformance and notices
   embedded:

   {
     "rdapConformance" :
     [
       "rdap_level_0"
     ],
     "notices" :
     [
       {
         "title" : "Content Removed",
         "description" :
         [
           "Without full authorization, content has been removed.",
           "Sorry, dude!"
         ],
         "links" :
         [
           {
             "value" : "https://example.net/ip/192.0.2.0/24",
             "rel" : "alternate",
             "type" : "text/html",
             "href" : "https://www.example.com/redaction_policy.html"
           }
         ]
       }
     ],
     "lang" : "en",
     "objectClassName" : "ip network",
     "startAddress" : "192.0.2.0",
     "endAddress" : "192.0.2.255",
     "handle" : "XXXX-RIR",
     "ipVersion" : "v4",
     "name": "NET-RTR-1",
     "parentHandle" : "YYYY-RIR",
     "remarks" :
     [

       {
         "description" :
         [
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ]
   }

                                 Figure 13

5.  Object Classes

   Object classes represent structures appropriate for a response from
   the queries specified in [RFC9082].

   Each object class contains a "links" array as specified in
   Section 4.2.  For every object class instance in a response, whether
   the object class instance is directly representing the response to a
   query or is embedded in other object class instances or is an item in
   a search result set, servers SHOULD provide a link representing a URI
   for that object class instance using the "self" relationship as
   described in the IANA registry specified by [RFC8288].  As explained
   in Section 5.2, this may be not always be possible for nameserver
   data.  Clients MUST be able to process object instances without a
   self link.  When present, clients can use the self link for caching
   data.  Servers MAY provide more than one self link for any given
   object instance.  Failure to provide any self link by a server may
   result in clients being unable to cache object class instances.

   Clients using self links for caching SHOULD NOT cache any object
   class instances where the authority of the self link is different
   than the authority of the server returning the data.  Failing to do
   so might result in cache poisoning.

   Self links MUST contain a "type" element containing the "application/
   rdap+json" media type when referencing RDAP object instances as
   defined by this document.

   This is an example of the "links" array with a self link to an object
   class:

       "links" :
       [
           {
             "value" : "https://example.com/ip/2001:db8::123",
             "rel" : "self",
             "href" : "https://example.com/ip/2001:db8::123",
             "type" : "application/rdap+json"
           }
       ]

                                 Figure 14

5.1.  The Entity Object Class

   The entity object class appears throughout this document and is an
   appropriate response for the /entity/XXXX query defined in
   "Registration Data Access Protocol (RDAP) Query Format" [RFC9082].
   This object class represents the information of organizations,
   corporations, governments, non-profits, clubs, individual persons,
   and informal groups of people.  All of these representations are so
   similar that it is best to represent them in JSON [RFC8259] with one
   construct, the entity object class, to aid in the reuse of code by
   implementers.

   The entity object class uses jCard [RFC7095] to represent contact
   information, such as postal addresses, email addresses, phone numbers
   and names of organizations and individuals.  Many of the types of
   information that can be represented with jCard have little or no use
   in RDAP, such as birthdays, anniversaries, and gender.

   The entity object is served by both RIRs and DNRs.  The following is
   an example of an entity that might be served by an RIR.

   {
     "objectClassName" : "entity",
     "handle":"XXXX",
     "vcardArray":[
       "vcard",
       [
         ["version", {}, "text", "4.0"],
         ["fn", {}, "text", "Joe User"],
         ["n", {}, "text",
           ["User", "Joe", "", "", ["ing. jr", "M.Sc."]]
         ],
         ["kind", {}, "text", "individual"],
         ["lang", {
           "pref":"1"
         }, "language-tag", "fr"],
         ["lang", {
           "pref":"2"
         }, "language-tag", "en"],
         ["org", {
           "type":"work"
         }, "text", "Example"],
         ["title", {}, "text", "Research Scientist"],
         ["role", {}, "text", "Project Lead"],
         ["adr",
           { "type":"work" },
           "text",
           [
             "",
             "Suite 1234",
             "4321 Rue Somewhere",
             "Quebec",
             "QC",
             "G1V 2M2",
             "Canada"
           ]
         ],
         ["adr",
           {
             "type":"home",
             "label":"123 Maple Ave\nSuite 90001\nVancouver\nBC\n1239\n"
           },
           "text",
           [
             "", "", "", "", "", "", ""
           ]
         ],
         ["tel",
           {
             "type":["work", "voice"],
             "pref":"1"
           },
           "uri",
           "tel:+1-555-555-1234;ext=102"
         ],
         ["tel",
           { "type":["work", "cell", "voice", "video", "text"] },
           "uri",
           "tel:+1-555-555-4321"
         ],
         ["email",
           { "type":"work" },
           "text",
           "joe.user@example.com"
         ],
         ["geo", {
           "type":"work"
         }, "uri", "geo:46.772673,-71.282945"],
         ["key",
           { "type":"work" },
           "uri",
           "https://www.example.com/joe.user/joe.asc"
         ],
         ["tz", {},
           "utc-offset", "-05:00"],
         ["url", { "type":"home" },
           "uri", "https://example.org"]
       ]
     ],
     "roles":[ "registrar" ],
     "publicIds":[
       {
         "type":"IANA Registrar ID",
         "identifier":"1"
       }
     ],
     "remarks":[
       {
         "description":[
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ],
     "links":[
       {
         "value":"https://example.com/entity/XXXX",
         "rel":"self",
         "href":"https://example.com/entity/XXXX",
         "type" : "application/rdap+json"
       }
     ],
     "events":[
       {
         "eventAction":"registration",
         "eventDate":"1990-12-31T23:59:59Z"
       }
     ],
     "asEventActor":[

       {
         "eventAction":"last changed",
         "eventDate":"1991-12-31T23:59:59Z"
       }
     ]
   }

                                 Figure 15

   The entity object class can contain the following members:

   *  objectClassName -- the string "entity"

   *  handle -- a string representing a registry-unique identifier of
      the entity

   *  vcardArray -- a jCard with the entity's contact information

   *  roles -- an array of strings, each signifying the relationship an
      object would have with its closest containing object (see
      Section 10.2.4 for a list of values)

   *  publicIds -- see Section 4.8

   *  entities -- an array of entity objects as defined by this section

   *  remarks -- see Section 4.3

   *  links -- see Section 4.2

   *  events -- see Section 4.5

   *  asEventActor -- this data structure takes the same form as the
      events data structure (see Section 4.5), but each object in the
      array MUST NOT have an "eventActor" member.  These objects denote
      that the entity is an event actor for the given events.  See
      Appendix B regarding the various ways events can be modeled.

   *  status -- see Section 4.6

   *  port43 -- see Section 4.7

   *  networks -- an array of IP network objects as defined in
      Section 5.4

   *  autnums -- an array of autnum objects as defined in Section 5.5

   Entities may also have other entities embedded with them in an array.
   This can be used to model an organization with specific individuals
   fulfilling designated roles of responsibility.

   The following is an elided example of an entity with embedded
   entities.

   {
     "objectClassName" : "entity",
     "handle" : "ANENTITY",
     "roles" : [ "registrar" ],
     ...
     "entities" :
     [
       {
         "objectClassName" : "entity",
         "handle": "ANEMBEDDEDENTITY",
         "roles" : [ "technical" ],
         ...
       },
       ...
     ],
     ...
   }

                                 Figure 16

   The following is an example of an entity that might be served by a
   DNR.

   {
     "objectClassName" : "entity",
     "handle":"XXXX",
     "vcardArray":[
       "vcard",
       [
         ["version", {}, "text", "4.0"],
         ["fn", {}, "text", "Joe User"],
         ["kind", {}, "text", "individual"],
         ["lang", {
           "pref":"1"
         }, "language-tag", "fr"],
         ["lang", {
           "pref":"2"
         }, "language-tag", "en"],
         ["org", {
           "type":"work"
         }, "text", "Example"],
         ["title", {}, "text", "Research Scientist"],
         ["role", {}, "text", "Project Lead"],
         ["adr",
           { "type":"work" },
           "text",
           [
             "",
             "Suite 1234",
             "4321 Rue Somewhere",
             "Quebec",
             "QC",
             "G1V 2M2",
             "Canada"
           ]
         ],
         ["tel",
           { "type":["work", "voice"], "pref":"1" },
           "uri", "tel:+1-555-555-1234;ext=102"
         ],
         ["email",
           { "type":"work" },
           "text", "joe.user@example.com"
         ]
       ]
     ],
     "status":[ "validated", "locked" ],
     "remarks":[
       {
         "description":[
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ],
     "links":[
       {
         "value":"https://example.com/entity/XXXX",
         "rel":"self",
         "href":"https://example.com/entity/XXXX",
         "type":"application/rdap+json"
       }
     ],
     "port43":"whois.example.net",
     "events":[
       {
         "eventAction":"registration",
         "eventDate":"1990-12-31T23:59:59Z"
       },
       {
         "eventAction":"last changed",
         "eventDate":"1991-12-31T23:59:59Z",
         "eventActor":"joe@example.com"
       }
     ]
   }

                                 Figure 17

   See Appendix A for use of the entity object class to model various
   types of entities found in both RIRs and DNRs.  See Appendix C
   regarding structured vs.  unstructured postal addresses in entities.

5.2.  The Nameserver Object Class

   The nameserver object class represents information regarding DNS
   nameservers used in both forward and reverse DNS.  RIRs and some DNRs
   register or expose nameserver information as an attribute of a domain
   name, while other DNRs model nameservers as "first class objects".
   Please note that some of the examples in this section include lines
   that have been wrapped for reading clarity.

   The nameserver object class accommodates both models and degrees of
   variation in between.

   The following is an example of a nameserver object.

     {
       "objectClassName" : "nameserver",
       "handle" : "XXXX",
       "ldhName" : "ns1.xn--fo-5ja.example",
       "unicodeName" : "ns.fóo.example",
       "status" : [ "active" ],
       "ipAddresses" :
       {
         "v4": [ "192.0.2.1", "192.0.2.2" ],
         "v6": [ "2001:db8::123" ]
       },
       "remarks" :
       [
         {
           "description" :
           [
             "She sells sea shells down by the sea shore.",
             "Originally written by Terry Sullivan."
           ]
         }
       ],
       "links" :
       [
         {
           "value" : "https://example.net/nameserver/
                      ns1.xn--fo-5ja.example",
           "rel" : "self",
           "href" : "https://example.net/nameserver/
                     ns1.xn--fo-5ja.example",
           "type" : "application/rdap+json"
         }
       ],
       "port43" : "whois.example.net",
       "events" :
       [
         {
           "eventAction" : "registration",
           "eventDate" : "1990-12-31T23:59:59Z"
         },
         {
           "eventAction" : "last changed",
           "eventDate" : "1991-12-31T23:59:59Z",
           "eventActor" : "joe@example.com"
         }
       ]
     }

                                 Figure 18

   Figure 18 is an example of a nameserver object with all appropriate
   values given.  Registries using a first-class nameserver data model
   would embed this in domain objects as well as allowing references to
   it with the "/nameserver" query type (all depending on the registry
   operators policy).  Other registries may pare back the information as
   needed.  Figure 19 is an example of a nameserver object as would be
   found in RIRs and some DNRs, while Figure 20 is an example of a
   nameserver object as would be found in other DNRs.

   The following is an example of the simplest nameserver object:

     {
       "objectClassName" : "nameserver",
       "ldhName" : "ns1.example.com"
     }

                                 Figure 19

   The following is an example of a simple nameserver object that might
   be commonly used by DNRs:

     {
       "objectClassName" : "nameserver",
       "ldhName" : "ns1.example.com",
       "ipAddresses" : { "v6" : [ "2001:db8::123", "2001:db8::124" ] }
     }

                                 Figure 20

   As nameservers can be modeled by some registries to be first-class
   objects, they may also have an array of entities (Section 5.1)
   embedded to signify parties responsible for the maintenance,
   registrations, etc., of the nameservers.

   The following is an elided example of a nameserver with embedded
   entities.

   {
     "objectClassName" : "nameserver",
     "handle" : "XXXX",
     "ldhName" : "ns.xn--fo-5ja.example",
     ...
     "entities" :
     [
       ...
     ],
     ...
   }

                                 Figure 21

   The nameserver object class can contain the following members:

   *  objectClassName -- the string "nameserver"

   *  handle -- a string representing a registry-unique identifier of
      the nameserver

   *  ldhName -- a string containing the LDH name of the nameserver (see
      Section 3)

   *  unicodeName -- a string containing a DNS Unicode name of the
      nameserver (see Section 3)

   *  ipAddresses -- an object containing the following members:

      -  v6 -- an array of strings containing IPv6 addresses of the
         nameserver

      -  v4 -- an array of strings containing IPv4 addresses of the
         nameserver

   *  entities -- an array of entity objects as defined by Section 5.1

   *  status -- see Section 4.6

   *  remarks -- see Section 4.3

   *  links -- see Section 4.2

   *  port43 -- see Section 4.7

   *  events -- see Section 4.5

5.3.  The Domain Object Class

   The domain object class represents a DNS name and point of
   delegation.  For RIRs, these delegation points are in the reverse DNS
   tree, whereas for DNRs, these delegation points are in the forward
   DNS tree.

   In both cases, the high-level structure of the domain object class
   consists of information about the domain registration, nameserver
   information related to the domain name, and entities related to the
   domain name (e.g., registrant information, contacts, etc.).

   The following is an elided example of the domain object showing the
   high-level structure:

   {
     "objectClassName" : "domain",
     "handle" : "XXX",
     "ldhName" : "blah.example.com",
     ...
     "nameservers" :
     [
       ...
     ],
     ...
     "entities" :
     [
       ...
     ]
   }

                                 Figure 22

   The domain object class can contain the following members:


   *  objectClassName -- the string "domain"

   *  handle -- a string representing a registry-unique identifier of
      the domain object instance

   *  ldhName -- a string describing a domain name in LDH form as
      described in Section 3

   *  unicodeName -- a string containing a domain name with U-labels as
      described in Section 3

   *  variants -- an array of objects, each containing the following
      values:

      -  relation -- an array of strings, with each string denoting the
         relationship between the variants and the containing domain
         object (see Section 10.2.5 for a list of suggested variant
         relations).

      -  idnTable -- the character string literal that represents the
         Internationalized Domain Name (IDN) table that has been
         registered in the IANA Repository of IDN Practices
         [IANA_IDNTABLES].

      -  variantNames -- an array of objects, with each object
         containing an "ldhName" member and a "unicodeName" member (see
         Section 3).

   *  nameservers -- an array of nameserver objects as defined by
      Section 5.2

   *  secureDNS -- an object with the following members:

      -  zoneSigned -- boolean true if the zone has been signed, false
         otherwise.

      -  delegationSigned -- boolean true if there are DS records in the
         parent, false otherwise.

      -  maxSigLife -- an integer representing the signature lifetime in
         seconds to be used when creating the RRSIG DS record in the
         parent zone [RFC5910].

      -  dsData -- an array of objects, each with the following members:

         o  keyTag -- an integer as specified by the key tag field of a
            DNS DS record as specified by [RFC4034] in presentation
            format

         o  algorithm -- an integer as specified by the algorithm field
            of a DNS DS record as described by RFC 4034 in presentation
            format

         o  digest -- a string as specified by the digest field of a DNS
            DS record as specified by RFC 4034 in presentation format

         o  digestType -- an integer as specified by the digest type
            field of a DNS DS record as specified by RFC 4034 in
            presentation format

         o  events -- see Section 4.5

         o  links -- see Section 4.2

      -  keyData -- an array of objects, each with the following
         members:

         o  flags -- an integer representing the flags field value in
            the DNSKEY record [RFC4034] in presentation format

         o  protocol -- an integer representation of the protocol field
            value of the DNSKEY record [RFC4034] in presentation format

         o  publicKey -- a string representation of the public key in
            the DNSKEY record [RFC4034] in presentation format

         o  algorithm -- an integer as specified by the algorithm field
            of a DNSKEY record as specified by [RFC4034] in presentation
            format

         o  events -- see Section 4.5

         o  links -- see Section 4.2

            See Appendix D for background information on these objects.

   *  entities -- an array of entity objects as defined by Section 5.1

   *  status -- see Section 4.6

   *  publicIds -- see Section 4.8

   *  remarks -- see Section 4.3

   *  links -- see Section 4.2

   *  port43 -- see Section 4.7

   *  events -- see Section 4.5

   *  network -- represents the IP network for which a reverse DNS
      domain is referenced; see Section 5.4

   The following is an example of a JSON domain object representing a
   reverse DNS delegation point that might be served by an RIR (note
   that the dsData digest value has been modified to fit on one line).

   {
     "objectClassName" : "domain",
     "handle" : "XXXX",
     "ldhName" : "0.2.192.in-addr.arpa",
     "nameservers" :
     [
       {
         "objectClassName" : "nameserver",
         "ldhName" : "ns1.rir.example"
       },
       {
         "objectClassName" : "nameserver",
         "ldhName" : "ns2.rir.example"
       }
     ],
     "secureDNS":
     {
       "delegationSigned": true,
       "dsData":
       [
         {
           "keyTag": 25345,
           "algorithm": 8,
           "digestType": 2,
           "digest": "2788970E18EA14...C890C85B8205B94"
         }
       ]
     },
     "remarks" :
     [
       {
         "description" :
         [
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ],
     "links" :
     [
       {
         "value": "https://example.net/domain/0.2.192.in-addr.arpa",
         "rel" : "self",
         "href" : "https://example.net/domain/0.2.192.in-addr.arpa",
         "type" : "application/rdap+json"

       }
     ],
     "events" :
     [
       {
         "eventAction" : "registration",
         "eventDate" : "1990-12-31T23:59:59Z"
       },
       {
         "eventAction" : "last changed",
         "eventDate" : "1991-12-31T23:59:59Z",
         "eventActor" : "joe@example.com"
       }
     ],
     "entities" :
     [
       {
         "objectClassName" : "entity",
         "handle" : "XXXX",
         "vcardArray":[
           "vcard",
           [
             ["version", {}, "text", "4.0"],
             ["fn", {}, "text", "Joe User"],
             ["kind", {}, "text", "individual"],
             ["lang", {
               "pref":"1"
             }, "language-tag", "fr"],
             ["lang", {
               "pref":"2"
             }, "language-tag", "en"],
             ["org", {
               "type":"work"
             }, "text", "Example"],
             ["title", {}, "text", "Research Scientist"],
             ["role", {}, "text", "Project Lead"],
             ["adr",
               { "type":"work" },
               "text",
               [
                 "",
                 "Suite 1234",
                 "4321 Rue Somewhere",
                 "Quebec",
                 "QC",
                 "G1V 2M2",
                 "Canada"
               ]

             ],
             ["tel",
               { "type":["work", "voice"], "pref":"1" },
               "uri", "tel:+1-555-555-1234;ext=102"
             ],
             ["email",
               { "type":"work" },
               "text", "joe.user@example.com"
             ]
           ]
         ],
         "roles" : [ "registrant" ],
         "remarks" :
         [
           {
             "description" :
             [
               "She sells sea shells down by the sea shore.",
               "Originally written by Terry Sullivan."
             ]
           }
         ],
         "links" :
         [
           {
             "value": "https://example.net/entity/XXXX",
             "rel" : "self",
             "href" : "https://example.net/entity/XXXX",
             "type" : "application/rdap+json"
           }
         ],
         "events" :
         [
           {
             "eventAction" : "registration",
             "eventDate" : "1990-12-31T23:59:59Z"
           },
           {
             "eventAction" : "last changed",
             "eventDate" : "1991-12-31T23:59:59Z",
             "eventActor" : "joe@example.com"
           }
         ]
       }
     ],
     "network" :
     {
       "objectClassName" : "ip network",
       "handle" : "XXXX-RIR",
       "startAddress" : "192.0.2.0",
       "endAddress" : "192.0.2.255",
       "ipVersion" : "v4",
       "name": "NET-RTR-1",
       "type" : "DIRECT ALLOCATION",
       "country" : "AU",
       "parentHandle" : "YYYY-RIR",
       "status" : [ "active" ]
     }
   }

                                 Figure 23

   The following is an example of a JSON domain object representing a
   forward DNS delegation point that might be served by a DNR.  Note
   that the secureDNS keyData publicKey value has been modified to fit
   on a single line.

   {
     "objectClassName" : "domain",
     "handle" : "XXXX",
     "ldhName" : "xn--fo-5ja.example",
     "unicodeName" : "fóo.example",
     "variants" :
     [
       {
         "relation" : [ "registered", "conjoined" ],
         "variantNames" :
         [
           {
             "ldhName" : "xn--fo-cka.example",
             "unicodeName" : "fõo.example"
           },
           {
             "ldhName" : "xn--fo-fka.example",
             "unicodeName" : "föo.example"
           }
         ]
       },
       {
         "relation" : [ "unregistered", "registration restricted" ],
         "idnTable": ".EXAMPLE Swedish",
         "variantNames" :
         [
           {
             "ldhName": "xn--fo-8ja.example",
             "unicodeName" : "fôo.example"
           }
         ]

       }
     ],
     "status" : [ "locked", "transfer prohibited" ],
     "publicIds":[
       {
         "type":"ENS_Auth ID",
         "identifier":"1234567890"
       }
     ],
     "nameservers" :
     [
       {
         "objectClassName" : "nameserver",
         "handle" : "XXXX",
         "ldhName" : "ns1.example.com",
         "status" : [ "active" ],
         "ipAddresses" :
         {
           "v6": [ "2001:db8::123", "2001:db8::124" ],
           "v4": [ "192.0.2.1", "192.0.2.2" ]
         },
         "remarks" :
         [
           {
             "description" :
             [
               "She sells sea shells down by the sea shore.",
               "Originally written by Terry Sullivan."
             ]
           }
         ],
         "links" :
         [
           {
             "value" : "https://example.net/nameserver/ns1.example.com",
             "rel" : "self",
             "href" : "https://example.net/nameserver/ns1.example.com",
             "type" : "application/rdap+json"
           }
         ],
         "events" :
         [
           {
             "eventAction" : "registration",
             "eventDate" : "1990-12-31T23:59:59Z"
           },
           {
             "eventAction" : "last changed",
             "eventDate" : "1991-12-31T23:59:59Z"
           }
         ]
       },
       {
         "objectClassName" : "nameserver",
         "handle" : "XXXX",
         "ldhName" : "ns2.example.com",
         "status" : [ "active" ],
         "ipAddresses" :
         {
           "v6" : [ "2001:db8::125", "2001:db8::126" ],
           "v4" : [ "192.0.2.3", "192.0.2.4" ]
         },
         "remarks" :
         [
           {
             "description" :
             [
               "She sells sea shells down by the sea shore.",
               "Originally written by Terry Sullivan."
             ]
           }
         ],
         "links" :
         [
           {
             "value" : "https://example.net/nameserver/ns2.example.com",
             "rel" : "self",
             "href" : "https://example.net/nameserver/ns2.example.com",
             "type" : "application/rdap+json"
           }
         ],
         "events" :
         [
           {
             "eventAction" : "registration",
             "eventDate" : "1990-12-31T23:59:59Z"
           },
           {
             "eventAction" : "last changed",
             "eventDate" : "1991-12-31T23:59:59Z"
           }
         ]
       }
     ],
     "secureDNS":
     {

        "zoneSigned": true,
        "delegationSigned": true,
        "maxSigLife": 604800,
        "keyData":
        [
          {
            "flags": 257,
            "protocol": 3,
            "algorithm": 8,
            "publicKey": "AwEAAa6eDzronzjEDbT...Jg1M5N rBSPkuXpdFE=",
            "events":
            [
              {
                "eventAction": "last changed",
                "eventDate": "2012-07-23T05:15:47Z"
              }
            ]
          }
        ]
     },
     "remarks" :
     [
       {
         "description" :
         [
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ],
     "links" :
     [
       {
         "value": "https://example.net/domain/xn--fo-5ja.example",
         "rel" : "self",
         "href" : "https://example.net/domain/xn--fo-5ja.example",
         "type" : "application/rdap+json"
       }
     ],
     "port43" : "whois.example.net",
     "events" :
     [
       {
         "eventAction" : "registration",
         "eventDate" : "1990-12-31T23:59:59Z"
       },
       {
         "eventAction" : "last changed",
         "eventDate" : "1991-12-31T23:59:59Z",
         "eventActor" : "joe@example.com"
       },
       {
         "eventAction" : "transfer",
         "eventDate" : "1991-12-31T23:59:59Z",
         "eventActor" : "joe@example.com"
       },
       {
         "eventAction" : "expiration",
         "eventDate" : "2016-12-31T23:59:59Z",
         "eventActor" : "joe@example.com"
       }
     ],
     "entities" :
     [
       {
         "objectClassName" : "entity",
         "handle" : "XXXX",
         "vcardArray":[
           "vcard",
           [
             ["version", {}, "text", "4.0"],
             ["fn", {}, "text", "Joe User"],
             ["kind", {}, "text", "individual"],
             ["lang", {
               "pref":"1"
             }, "language-tag", "fr"],
             ["lang", {
               "pref":"2"
             }, "language-tag", "en"],
             ["org", {
               "type":"work"
             }, "text", "Example"],
             ["title", {}, "text", "Research Scientist"],
             ["role", {}, "text", "Project Lead"],
             ["adr",
               { "type":"work" },
               "text",
               [
                 "",
                 "Suite 1234",
                 "4321 Rue Somewhere",
                 "Quebec",
                 "QC",
                 "G1V 2M2",
                 "Canada"
               ]

             ],
             ["tel",
               { "type":["work", "voice"], "pref":"1" },
               "uri", "tel:+1-555-555-1234;ext=102"
             ],
             ["email",
               { "type":"work" },
               "text", "joe.user@example.com"
             ]
           ]
         ],
         "status" : [ "validated", "locked" ],
         "roles" : [ "registrant" ],
         "remarks" :
         [
           {
             "description" :
             [
               "She sells sea shells down by the sea shore.",
               "Originally written by Terry Sullivan."
             ]
           }
         ],
         "links" :
         [
           {
             "value" : "https://example.net/entity/XXXX",
             "rel" : "self",
             "href" : "https://example.net/entity/XXXX",
             "type" : "application/rdap+json"
           }
         ],
         "events" :
         [
           {
             "eventAction" : "registration",
             "eventDate" : "1990-12-31T23:59:59Z"
           },
           {
             "eventAction" : "last changed",
             "eventDate" : "1991-12-31T23:59:59Z"
           }
         ]
       }
     ]
   }

                                 Figure 24

5.4.  The IP Network Object Class

   The IP network object class models IP network registrations found in
   RIRs and is the expected response for the "/ip" query as defined by
   [RFC9082].  There is no equivalent object class for DNRs.  The high-
   level structure of the IP network object class consists of
   information about the network registration and entities related to
   the IP network (e.g., registrant information, contacts, etc.).

   The following is an elided example of the IP network object type
   showing the high-level structure:

   {
     "objectClassName" : "ip network",
     "handle" : "XXX",
     ...
     "entities" :
     [
       ...
     ]
   }

                                 Figure 25

   The following is an example of the JSON object for the network
   registration information.

   {
     "objectClassName" : "ip network",
     "handle" : "XXXX-RIR",
     "startAddress" : "2001:db8::",
     "endAddress" : "2001:db8:0:ffff:ffff:ffff:ffff:ffff",
     "ipVersion" : "v6",
     "name": "NET-RTR-1",
     "type" : "DIRECT ALLOCATION",
     "country" : "AU",
     "parentHandle" : "YYYY-RIR",
     "status" : [ "active" ],
     "remarks" :
     [
       {
         "description" :
         [
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ],
     "links" :
     [
       {
         "value" : "https://example.net/ip/2001:db8::/48",
         "rel" : "self",
         "href" : "https://example.net/ip/2001:db8::/48",
         "type" : "application/rdap+json"
       },
       {
         "value" : "https://example.net/ip/2001:db8::/48",
         "rel" : "up",
         "href" : "https://example.net/ip/2001:db8::/32",
         "type" : "application/rdap+json"
       }
     ],
     "events" :
     [
       {
         "eventAction" : "registration",
         "eventDate" : "1990-12-31T23:59:59Z"
       },
       {
         "eventAction" : "last changed",
         "eventDate" : "1991-12-31T23:59:59Z"
       }
     ],
     "entities" :
     [
       {
         "objectClassName" : "entity",
         "handle" : "XXXX",
         "vcardArray":[
           "vcard",
           [
             ["version", {}, "text", "4.0"],
             ["fn", {}, "text", "Joe User"],
             ["kind", {}, "text", "individual"],
             ["lang", {
               "pref":"1"
             }, "language-tag", "fr"],
             ["lang", {
               "pref":"2"
             }, "language-tag", "en"],
             ["org", {
               "type":"work"
             }, "text", "Example"],
             ["title", {}, "text", "Research Scientist"],
             ["role", {}, "text", "Project Lead"],
             ["adr",
               { "type":"work" },
               "text",
               [
                 "",
                 "Suite 1234",
                 "4321 Rue Somewhere",
                 "Quebec",
                 "QC",
                 "G1V 2M2",
                 "Canada"
               ]
             ],
             ["tel",
               { "type":["work", "voice"], "pref":"1" },
               "uri", "tel:+1-555-555-1234;ext=102"
             ],
             ["email",
               { "type":"work" },
               "text", "joe.user@example.com"
             ]
           ]
         ],
         "roles" : [ "registrant" ],
         "remarks" :
         [
           {
             "description" :
             [
               "She sells sea shells down by the sea shore.",
               "Originally written by Terry Sullivan."
             ]
           }
         ],
         "links" :
         [
           {
             "value" : "https://example.net/entity/xxxx",
             "rel" : "self",
             "href" : "https://example.net/entity/xxxx",
             "type" : "application/rdap+json"
           }
         ],
         "events" :
         [
           {
             "eventAction" : "registration",
             "eventDate" : "1990-12-31T23:59:59Z"

           },
           {
             "eventAction" : "last changed",
             "eventDate" : "1991-12-31T23:59:59Z"
           }
         ]
       }
     ]
   }

                                 Figure 26

   The IP network object class can contain the following members:

   *  objectClassName -- the string "ip network"

   *  handle -- a string representing the RIR-unique identifier of the
      network registration

   *  startAddress -- a string representing the starting IP address of
      the network, either IPv4 or IPv6

   *  endAddress -- a string representing the ending IP address of the
      network, either IPv4 or IPv6

   *  ipVersion -- a string signifying the IP protocol version of the
      network: "v4" signifies an IPv4 network, and "v6" signifies an
      IPv6 network

   *  name -- a string representing an identifier assigned to the
      network registration by the registration holder

   *  type -- a string containing an RIR-specific classification of the
      network per that RIR's registration model

   *  country -- a string containing the two-character country code of
      the network

   *  parentHandle -- a string containing an RIR-unique identifier of
      the parent network of this network registration

   *  status -- an array of strings indicating the state of the IP
      network as defined by Section 4.6

   *  entities -- an array of entity objects as defined by Section 5.1

   *  remarks -- see Section 4.3

   *  links -- see Section 4.2

   *  port43 -- see Section 4.7

   *  events -- see Section 4.5

5.5.  The Autonomous System Number Object Class

   The Autonomous System number (autnum) object class models Autonomous
   System number registrations found in RIRs and represents the expected
   response to an "/autnum" query as defined by [RFC9082].  There is no
   equivalent object class for DNRs.  The high-level structure of the
   autnum object class consists of information about the Autonomous
   System number registration and entities related to the autnum
   registration (e.g., registrant information, contacts, etc.) and is
   similar to the IP network object class.

   The following is an example of a JSON object representing an autnum.

   {
     "objectClassName" : "autnum",
     "handle" : "XXXX-RIR",
     "startAutnum" : 65536,
     "endAutnum" : 65541,
     "name": "AS-RTR-1",
     "type" : "DIRECT ALLOCATION",
     "status" : [ "active" ],
     "country": "AU",
     "remarks" :
     [
       {
         "description" :
         [
           "She sells sea shells down by the sea shore.",
           "Originally written by Terry Sullivan."
         ]
       }
     ],
     "links" :
     [
       {
         "value" : "https://example.net/autnum/65537",
         "rel" : "self",
         "href" : "https://example.net/autnum/65537",
         "type" : "application/rdap+json"
       }
     ],
     "events" :

     [
       {
         "eventAction" : "registration",
         "eventDate" : "1990-12-31T23:59:59Z"
       },
       {
         "eventAction" : "last changed",
         "eventDate" : "1991-12-31T23:59:59Z"
       }
     ],
     "entities" :
     [
       {
         "objectClassName" : "entity",
         "handle" : "XXXX",
         "vcardArray":[
           "vcard",
           [
             ["version", {}, "text", "4.0"],
             ["fn", {}, "text", "Joe User"],
             ["kind", {}, "text", "individual"],
             ["lang", {
               "pref":"1"
             }, "language-tag", "fr"],
             ["lang", {
               "pref":"2"
             }, "language-tag", "en"],
             ["org", {
               "type":"work"
             }, "text", "Example"],
             ["title", {}, "text", "Research Scientist"],
             ["role", {}, "text", "Project Lead"],
             ["adr",
               { "type":"work" },
               "text",
               [
                 "",
                 "Suite 1234",
                 "4321 Rue Somewhere",
                 "Quebec",
                 "QC",
                 "G1V 2M2",
                 "Canada"
               ]
             ],
             ["tel",
               { "type":["work", "voice"], "pref":"1" },
               "uri", "tel:+1-555-555-1234;ext=102"
             ],
             ["email",
               { "type":"work" },
               "text", "joe.user@example.com"
             ]
           ]
         ],
         "roles" : [ "registrant" ],
         "remarks" :
         [
           {
             "description" :
             [
               "She sells sea shells down by the sea shore.",
               "Originally written by Terry Sullivan."
             ]
           }
         ],
         "links" :
         [
           {
             "value" : "https://example.net/entity/XXXX",
             "rel" : "self",
             "href" : "https://example.net/entity/XXXX",
             "type" : "application/rdap+json"
           }
         ],
         "events" :
         [
           {
             "eventAction" : "registration",
             "eventDate" : "1990-12-31T23:59:59Z"
           },
           {
             "eventAction" : "last changed",
             "eventDate" : "1991-12-31T23:59:59Z"
           }
         ]
       }
     ]
   }

                                 Figure 27

   The Autonomous System number object class can contain the following
   members:

   *  objectClassName -- the string "autnum"

   *  handle -- a string representing the RIR-unique identifier of the
      autnum registration

   *  startAutnum -- an unsigned 32-bit integer representing the
      starting number [RFC5396] in the block of Autonomous System
      numbers

   *  endAutnum -- an unsigned 32-bit integer representing the ending
      number [RFC5396] in the block of Autonomous System numbers

   *  name -- a string representing an identifier assigned to the autnum
      registration by the registration holder

   *  type -- a string containing an RIR-specific classification of the
      autnum per that RIR's registration model

   *  status -- an array of strings indicating the state of the autnum
      as defined by Section 4.6

   *  country -- a string containing the two-character country code of
      the autnum

   *  entities -- an array of entity objects as defined by Section 5.1

   *  remarks -- see Section 4.3

   *  links -- see Section 4.2

   *  port43 -- see Section 4.7

   *  events -- see Section 4.5

6.  Error Response Body

   Some non-answer responses MAY return entity bodies with information
   that could be more descriptive.

   The basic structure of that response is an object class containing a
   REQUIRED error code number (corresponding to the HTTP response code)
   followed by an OPTIONAL string named "title" and an OPTIONAL array of
   strings named "description".

   This is an example of the common response body.

   {
     "errorCode": 418,
     "title": "Your Beverage Choice is Not Available",
     "description":
     [
       "I know coffee has more ummppphhh.",
       "Sorry, dude!"
     ]
   }

                                 Figure 28

   This is an example of the common response body with an
   rdapConformance and notices data structures:

   {
     "rdapConformance" :
     [
       "rdap_level_0"
     ],
     "notices" :
     [
       {
         "title" : "Beverage Policy",
         "description" :
         [
           "Beverages with caffeine for keeping horses awake."
         ],
         "links" :
         [
           {
             "value" : "https://example.net/ip/192.0.2.0/24",
             "rel" : "alternate",
             "type" : "text/html",
             "href" : "https://www.example.com/redaction_policy.html"
           }
         ]
       }
     ],
     "lang" : "en",
     "errorCode": 418,
     "title": "Your beverage choice is not available",
     "description":
     [
       "I know coffee has more ummppphhh.",
       "Sorry, dude!"
     ]
   }

                                 Figure 29

7.  Responding to Help Queries

   The appropriate response to /help queries as defined by [RFC9082] is
   to use the notices structure as defined in Section 4.3.

   This is an example of a response to a /help query including the
   rdapConformance data structure.

   {
     "rdapConformance" :
     [
       "rdap_level_0"
     ],
     "notices" :
     [
       {
         "title" : "Authentication Policy",
         "description" :
         [
           "Access to sensitive data for users with proper credentials."
         ],
         "links" :
         [
           {
             "value" : "https://example.net/help",
             "rel" : "alternate",
             "type" : "text/html",
             "href" : "https://www.example.com/auth_policy.html"
           }
         ]
       }
     ]
   }

                                 Figure 30

8.  Responding To Searches

   [RFC9082] specifies three types of searches: domains, nameservers,
   and entities.  Responses to these searches take the form of an array
   of object instances where each instance is an appropriate object
   class for the search (i.e., a search for /domains yields an array of
   domain object instances).  These arrays are contained within the
   response object.

   The names of the arrays are as follows:

   *  for /domains searches, the array is "domainSearchResults"

   *  for /nameservers searches, the array is "nameserverSearchResults"

   *  for /entities searches, the array is "entitySearchResults"

   The following is an elided example of a response to a /domains
   search.

   {
     "rdapConformance" :
     [
       "rdap_level_0"
     ],
     ...
     "domainSearchResults" :
     [
       {
         "objectClassName" : "domain",
         "handle" : "1-XXXX",
         "ldhName" : "1.example.com",
         ...
       },
       {
         "objectClassName" : "domain",
         "handle" : "2-XXXX",
         "ldhName" : "2.example.com",
         ...
       }
     ]
   }

                                 Figure 31

9.  Indicating Truncated Responses

   In cases where the data of a response needs to be limited or parts of
   the data need to be omitted, the response is considered "truncated".
   A truncated response is still valid JSON, but some of the results in
   a search set or some of the data in an object are not provided by the
   server.  A server may indicate this by including a typed notice in
   the response object.

   The following is an elided example of a search response that has been
   truncated.

   {
     "rdapConformance" :
     [
       "rdap_level_0"
     ],
     "notices" :
     [
       {
         "title" : "Search Policy",
         "type" : "result set truncated due to authorization",
         "description" :
         [
           "Search results are limited to 25 per day per querying IP."
         ],
         "links" :
         [
           {
             "value" : "https://example.net/help",
             "rel" : "alternate",
             "type" : "text/html",
             "href" : "https://www.example.com/search_policy.html"
           }
         ]
       }
     ],
     "domainSearchResults" :
     [
       ...
     ]
   }

                                 Figure 32

   A similar technique can be used with a typed remark where a single
   object has been returned and data in that object has been truncated.
   Such an example might be an entity object with only a partial set of
   the IP networks associated with it.

   The following is an elided example of an entity truncated data.

   {
     "objectClassName" : "entity",
     "handle" : "ANENTITY",
     "roles" : [ "registrant" ],
     ...
     "entities" :
     [
       {
         "objectClassName" : "entity",
         "handle": "ANEMBEDDEDENTITY",
         "roles" : [ "technical" ],
         ...
       },
       ...
     ],
     "networks" :
     [
       ...
     ],
     ...
     "remarks" :
     [
       {
         "title" : "Data Policy",
         "type" : "object truncated due to unexplainable reason",
         "description" :
         [
           "Some of the data in this object has been removed."
         ],
         "links" :
         [
           {
             "value" : "https://example.net/help",
             "rel" : "alternate",
             "type" : "text/html",
             "href" : "https://www.example.com/data_policy.html"
           }
         ]
       }
     ]
   }

                                 Figure 33

10.  IANA Considerations

   IANA has updated the description of the "transfer" event action as
   described in Section 10.2.3.

10.1.  RDAP JSON Media Type Registration

   IANA has updated the media type registration as described below.

   This specification registers the "application/rdap+json" media type.

   Type name:  application

   Subtype name:  rdap+json

   Required parameters:  n/a

   Encoding considerations:  See Section 3.1 of [RFC6839].

   Security considerations:  The media represented by this identifier
      does not have security considerations beyond that found in
      Section 12 of [RFC8259].

   Interoperability considerations:  There are no known interoperability
      problems regarding this media format.

   Published specification:  RFC 9083

   Applications that use this media type:  Implementations of the
      Registration Data Access Protocol (RDAP).

   Additional information:  This media type is a product of the IETF
      REGEXT Working Group.  The REGEXT charter, information on the
      REGEXT mailing list, and other documents produced by the REGEXT
      Working Group can be found at https://datatracker.ietf.org/wg/
      regext/.

   Person & email address to contact for further information:
      IESG <iesg@ietf.org>

   Intended usage:  COMMON

   Restrictions on usage:  none

   Author:  Andy Newton

   Change controller:  IETF

   Provisional Registration:  No

10.2.  JSON Values Registry

   IANA has created a category in the protocol registries labeled
   "Registration Data Access Protocol (RDAP)", and within that category,
   IANA has established a URL-referenceable, stand-alone registry
   labeled "RDAP JSON Values".  This new registry is for use in the
   notices and remarks (Section 4.3), status (Section 4.6), role
   (Section 5.1), event action (Section 4.5), and domain variant
   relation (Section 5.3) fields specified in RDAP.

   Each entry in the registry contains the following fields:

   1.  Value -- the string value being registered.

   2.  Type -- the type of value being registered.  It should be one of
       the following:

       *  "notice or remark type" -- denotes a type of notice or remark.

       *  "status" -- denotes a value for the "status" object member as
          defined by Section 4.6.

       *  "role" -- denotes a value for the "role" array as defined in
          Section 5.1.

       *  "event action" -- denotes a value for an event action as
          defined in Section 4.5.

       *  "domain variant relation" -- denotes a relationship between a
          domain and a domain variant as defined in Section 5.3.

   3.  Description -- a one- or two-sentence description regarding the
       meaning of the value, how it might be used, and/or how it should
       be interpreted by clients.

   4.  Registrant Name -- the name of the person registering the value.

   5.  Registrant Contact Information -- an email address, postal
       address, or some other information to be used to contact the
       registrant.

   This registry is operated under the "Expert Review" policy defined in
   [RFC8126].

   Review of registrations into this registry by the designated
   expert(s) should be narrowly judged on the following criteria:

   1.  Values in need of being placed into multiple types must be
       assigned a separate registration for each type.

   2.  Values must be strings.  They should be multiple words separated
       by single space characters.  Every character should be
       lowercased.  If possible, every word should be given in English
       and each character should be US-ASCII.

   3.  Registrations should not duplicate the meaning of any existing
       registration.  That is, if a request for a registration is
       significantly similar in nature to an existing registration, the
       request should be denied.  For example, the terms "maintainer"
       and "registrant" are significantly similar in nature as they both
       denote a holder of a domain name or Internet number resource.  In
       cases where it may be reasonably argued that machine
       interpretation of two similar values may alter the operation of
       client software, designated experts should not judge the values
       to be of significant similarity.

   4.  Registrations should be relevant to the common usages of RDAP.
       Designated experts may rely upon the serving of the value by a
       DNR or RIR to make this determination.

   The following sections provide initial registrations into this
   registry.

10.2.1.  Notice and Remark Types

   The following values have been registered in the "RDAP JSON Values"
   registry:

   Value:  result set truncated due to authorization
   Type:  notice and remark type
   Description:  The list of results does not contain all results due to
      lack of authorization.  This may indicate to some clients that
      proper authorization will yield a longer result set.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  result set truncated due to excessive load
   Type:  notice and remark type
   Description:  The list of results does not contain all results due to
      an excessively heavy load on the server.  This may indicate to
      some clients that requerying at a later time will yield a longer
      result set.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  result set truncated due to unexplainable reasons
   Type:  notice and remark type
   Description:  The list of results does not contain all results for an
      unexplainable reason.  This may indicate to some clients that
      requerying for any reason will not yield a longer result set.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  object truncated due to authorization
   Type:  notice and remark type
   Description:  The object does not contain all data due to lack of
      authorization.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  object truncated due to excessive load
   Type:  notice and remark type
   Description:  The object does not contain all data due to an
      excessively heavy load on the server.  This may indicate to some
      clients that requerying at a later time will yield all data of the
      object.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  object truncated due to unexplainable reasons
   Type:  notice and remark type
   Description:  The object does not contain all data for an
      unexplainable reason.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

10.2.2.  Status

   The following values have been registered in the "RDAP JSON Values"
   registry:

   Value:  validated
   Type:  status
   Description:  Signifies that the data of the object instance has been
      found to be accurate.  This type of status is usually found on
      entity object instances to note the validity of identifying
      contact information.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  renew prohibited
   Type:  status
   Description:  Renewal or reregistration of the object instance is
      forbidden.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  update prohibited
   Type:  status
   Description:  Updates to the object instance are forbidden.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  transfer prohibited
   Type:  status
   Description:  Transfers of the registration from one registrar to
      another are forbidden.  This type of status normally applies to
      DNR domain names.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  delete prohibited
   Type:  status
   Description:  Deletion of the registration of the object instance is
      forbidden.  This type of status normally applies to DNR domain
      names.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  proxy
   Type:  status
   Description:  The registration of the object instance has been
      performed by a third party.  This is most commonly applied to
      entities.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  private
   Type:  status
   Description:  The information of the object instance is not
      designated for public consumption.  This is most commonly applied
      to entities.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  removed
   Type:  status
   Description:  Some of the information of the object instance has not
      been made available and has been removed.  This is most commonly
      applied to entities.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  obscured
   Type:  status
   Description:  Some of the information of the object instance has been
      altered for the purposes of not readily revealing the actual
      information of the object instance.  This is most commonly applied
      to entities.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  associated
   Type:  status
   Description:  The object instance is associated with other object
      instances in the registry.  This is most commonly used to signify
      that a nameserver is associated with a domain or that an entity is
      associated with a network resource or domain.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  active
   Type:  status
   Description:  The object instance is in use.  For domain names, it
      signifies that the domain name is published in DNS.  For network
      and autnum registrations, it signifies that they are allocated or
      assigned for use in operational networks.  This maps to the "OK"
      status of the Extensible Provisioning Protocol (EPP) [RFC5730].
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  inactive
   Type:  status
   Description:  The object instance is not in use.  See "active".
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  locked
   Type:  status
   Description:  Changes to the object instance cannot be made,
      including the association of other object instances.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  pending create
   Type:  status
   Description:  A request has been received for the creation of the
      object instance, but this action is not yet complete.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  pending renew
   Type:  status
   Description:  A request has been received for the renewal of the
      object instance, but this action is not yet complete.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  pending transfer
   Type:  status
   Description:  A request has been received for the transfer of the
      object instance, but this action is not yet complete.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  pending update
   Type:  status
   Description:  A request has been received for the update or
      modification of the object instance, but this action is not yet
      complete.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  pending delete
   Type:  status
   Description:  A request has been received for the deletion or removal
      of the object instance, but this action is not yet complete.  For
      domains, this might mean that the name is no longer published in
      DNS but has not yet been purged from the registry database.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

10.2.3.  Event Actions

   The following values have been registered in the "RDAP JSON Values"
   registry:

   Value:  registration
   Type:  event action
   Description:  The object instance was initially registered.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  reregistration
   Type:  event action
   Description:  The object instance was registered subsequently to
      initial registration.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  last changed
   Type:  event action
   Description:  An action noting when the information in the object
      instance was last changed.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  expiration
   Type:  event action
   Description:  The object instance has been removed or will be removed
      at a predetermined date and time from the registry.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  deletion
   Type:  event action
   Description:  The object instance was removed from the registry at a
      point in time that was not predetermined.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  reinstantiation
   Type:  event action
   Description:  The object instance was reregistered after having been
      removed from the registry.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  transfer
   Type:  event action
   Description:  The object instance was transferred from one registrar
      to another.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  locked
   Type:  event action
   Description:  The object instance was locked (see the "locked"
      status).
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  unlocked
   Type:  event action
   Description:  The object instance was unlocked (see the "locked"
      status).
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

10.2.4.  Roles

   The following values have been registered in the "RDAP JSON Values"
   registry:

   Value:  registrant
   Type:  role
   Description:  The entity object instance is the registrant of the
      registration.  In some registries, this is known as a maintainer.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  technical
   Type:  role
   Description:  The entity object instance is a technical contact for
      the registration.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  administrative
   Type:  role
   Description:  The entity object instance is an administrative contact
      for the registration.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  abuse
   Type:  role
   Description:  The entity object instance handles network abuse issues
      on behalf of the registrant of the registration.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  billing
   Type:  role
   Description:  The entity object instance handles payment and billing
      issues on behalf of the registrant of the registration.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  registrar
   Type:  role
   Description:  The entity object instance represents the authority
      responsible for the registration in the registry.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  reseller
   Type:  role
   Description:  The entity object instance represents a third party
      through which the registration was conducted (i.e., not the
      registry or registrar).
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  sponsor
   Type:  role
   Description:  The entity object instance represents a domain policy
      sponsor, such as an ICANN-approved sponsor.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  proxy
   Type:  role
   Description:  The entity object instance represents a proxy for
      another entity object, such as a registrant.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  notifications
   Type:  role
   Description:  An entity object instance designated to receive
      notifications about association object instances.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  noc
   Type:  role
   Description:  The entity object instance handles communications
      related to a network operations center (NOC).
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

10.2.5.  Variant Relations

   The following values have been registered in the "RDAP JSON Values"
   registry:

   Value:  registered
   Type:  domain variant relation
   Description:  The variant names are registered in the registry.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  unregistered
   Type:  domain variant relation
   Description:  The variant names are not found in the registry.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  registration restricted
   Type:  domain variant relation
   Description:  Registration of the variant names is restricted to
      certain parties or within certain rules.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  open registration
   Type:  domain variant relation
   Description:  Registration of the variant names is available to
      generally qualified registrants.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

   Value:  conjoined
   Type:  domain variant relation
   Description:  Registration of the variant names occurs automatically
      with the registration of the containing domain registration.
   Registrant Name:  IESG
   Registrant Contact Information:  iesg@ietf.org

11.  Security Considerations

   This specification models information serialized in JSON format.  As
   JSON is a subset of JavaScript, implementations are advised to follow
   the security considerations outlined in Section 12 of [RFC8259] to
   prevent code injection.

   Though not specific to JSON, RDAP implementers should be aware of the
   security considerations specified in [RFC7480] and the security
   requirements and considerations in [RFC7481].

   RDAP responses allow for retrieval of DNSSEC (key) related
   information, but the RRSIG DS from the parent zone is not conveyed
   alongside it.  This means that the DNSSEC keys retrieved by RDAP are
   disconnected from their containing PKI, and as such are not generally
   expected to be trusted without additional information.  In
   particular, the HTTPS channel protecting the RDAP connection is not
   expected to be authorized to certify the validity of the DNSSEC keys.

   Clients caching data, especially clients using RDAP-specific caches
   (instead of HTTP-layer caches), should have safeguards to prevent
   cache poisoning.  See Section 5 for advice on using the self links
   for caching.

   Finally, service operators should be aware of the privacy mechanisms
   noted in Section 13.

12.  Internationalization Considerations

12.1.  Character Encoding

   The default text encoding for JSON responses in RDAP is UTF-8
   [RFC3629], and all servers and clients MUST support UTF-8.

12.2.  URIs and IRIs

   [RFC7480] defines the use of URIs and IRIs in RDAP.

12.3.  Language Tags

   Section 4.4 defines the use of language tags in the JSON responses
   defined in this document.

12.4.  Internationalized Domain Names

   IDNs are denoted in this specification by the separation of DNS names
   in LDH form and Unicode form (see Section 3).  Representation of IDNs
   in registries is described by the "variants" object in Section 5.3
   and the suggested values listed in Section 10.2.5.

13.  Privacy Considerations

   This specification suggests status values to denote contact and
   registrant information that has been marked as private and/or has
   been removed or obscured.  See Section 10.2.2 for the complete list
   of status values.  A few of the status values indicate that there are
   privacy concerns associated with the object instance.  The following
   status codes SHOULD be used to describe data elements of a response
   when appropriate:

   *  private -- The object is not be shared in query responses, unless
      the user is authorized to view this information.

   *  removed -- Data elements within the object have been collected but
      have been omitted from the response.  This option can be used to
      prevent unauthorized access to associated object instances without
      the need to mark them as private.

   *  obscured -- Data elements within the object have been collected,
      but the response value has been altered so that values are not
      easily discernible.  A value changed from "1212" to "XXXX" is an
      example of obscured data.  This option may reveal privacy
      sensitive information and should only be used when data
      sensitivity does not require a more protective option like
      "private" or "removed".

   See Appendix A.1 for an example of applying those values to contacts
   and registrants.

14.  References

14.1.  Normative References

   [ISO.3166.2020]
              International Organization for Standardization, "Codes for
              the representation of names of countries and their
              subdivisions", Fourth edition, ISO Standard 3166, August
              2020.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3339]  Klyne, G. and C. Newman, "Date and Time on the Internet:
              Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
              <https://www.rfc-editor.org/info/rfc3339>.

   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
              10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
              2003, <https://www.rfc-editor.org/info/rfc3629>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.

   [RFC4034]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "Resource Records for the DNS Security Extensions",
              RFC 4034, DOI 10.17487/RFC4034, March 2005,
              <https://www.rfc-editor.org/info/rfc4034>.

   [RFC5396]  Huston, G. and G. Michaelson, "Textual Representation of
              Autonomous System (AS) Numbers", RFC 5396,
              DOI 10.17487/RFC5396, December 2008,
              <https://www.rfc-editor.org/info/rfc5396>.

   [RFC5646]  Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
              Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
              September 2009, <https://www.rfc-editor.org/info/rfc5646>.

   [RFC5890]  Klensin, J., "Internationalized Domain Names for
              Applications (IDNA): Definitions and Document Framework",
              RFC 5890, DOI 10.17487/RFC5890, August 2010,
              <https://www.rfc-editor.org/info/rfc5890>.

   [RFC5952]  Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
              Address Text Representation", RFC 5952,
              DOI 10.17487/RFC5952, August 2010,
              <https://www.rfc-editor.org/info/rfc5952>.

   [RFC7095]  Kewisch, P., "jCard: The JSON Format for vCard", RFC 7095,
              DOI 10.17487/RFC7095, January 2014,
              <https://www.rfc-editor.org/info/rfc7095>.

   [RFC7480]  Newton, A., Ellacott, B., and N. Kong, "HTTP Usage in the
              Registration Data Access Protocol (RDAP)", STD 95,
              RFC 7480, DOI 10.17487/RFC7480, March 2015,
              <https://www.rfc-editor.org/info/rfc7480>.

   [RFC7481]  Hollenbeck, S. and N. Kong, "Security Services for the
              Registration Data Access Protocol (RDAP)", STD 95,
              RFC 7481, DOI 10.17487/RFC7481, March 2015,
              <https://www.rfc-editor.org/info/rfc7481>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.

   [RFC8288]  Nottingham, M., "Web Linking", RFC 8288,
              DOI 10.17487/RFC8288, October 2017,
              <https://www.rfc-editor.org/info/rfc8288>.

   [RFC9082]  Hollenbeck, S. and A. Newton, "Registration Data Access
              Protocol (RDAP) Query Format", STD 95, RFC 9082,
              DOI 10.17487/RFC9082, June 2021,
              <https://www.rfc-editor.org/info/rfc9082>.

14.2.  Informative References

   [IANA_IDNTABLES]
              IANA, "Repository of IDN Practices",
              <https://www.iana.org/domains/idn-tables>.

   [JSON_ascendancy]
              MacVittie, L., "The Stealthy Ascendancy of JSON", April
              2011, <https://devcentral.f5.com/s/articles/the-stealthy-
              ascendancy-of-json>.

   [JSON_performance_study]
              Nurseitov, N., Paulson, M., Reynolds, R., and C. Izurieta,
              "Comparison of JSON and XML Data Interchange Formats: A
              Case Study", 2009,
              <https://www.cs.montana.edu/izurieta/pubs/caine2009.pdf>.

   [RFC3912]  Daigle, L., "WHOIS Protocol Specification", RFC 3912,
              DOI 10.17487/RFC3912, September 2004,
              <https://www.rfc-editor.org/info/rfc3912>.

   [RFC5730]  Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
              STD 69, RFC 5730, DOI 10.17487/RFC5730, August 2009,
              <https://www.rfc-editor.org/info/rfc5730>.

   [RFC5910]  Gould, J. and S. Hollenbeck, "Domain Name System (DNS)
              Security Extensions Mapping for the Extensible
              Provisioning Protocol (EPP)", RFC 5910,
              DOI 10.17487/RFC5910, May 2010,
              <https://www.rfc-editor.org/info/rfc5910>.

   [RFC6350]  Perreault, S., "vCard Format Specification", RFC 6350,
              DOI 10.17487/RFC6350, August 2011,
              <https://www.rfc-editor.org/info/rfc6350>.

   [RFC6839]  Hansen, T. and A. Melnikov, "Additional Media Type
              Structured Syntax Suffixes", RFC 6839,
              DOI 10.17487/RFC6839, January 2013,
              <https://www.rfc-editor.org/info/rfc6839>.

Appendix A.  Suggested Data Modeling with the Entity Object Class

A.1.  Registrants and Contacts

   This document does not provide specific object classes for
   registrants and contacts.  Instead, the entity object class may be
   used to represent a registrant or contact.  When the entity object is
   embedded inside a containing object such as a domain name or IP
   network, the "roles" string array can be used to signify the
   relationship.  It is recommended that the values from Section 10.2.4
   be used.

   The following is an example of an elided containing object with an
   embedded entity that is both a registrant and administrative contact:

   {
     ...
     "entities" :
     [
       {
         "objectClassName" : "entity",
         "handle" : "XXXX",
         "vcardArray":[
           "vcard",
           [
             ["version", {}, "text", "4.0"],
             ["fn", {}, "text", "Joe User"],
             ["kind", {}, "text", "individual"],
             ["lang", {
               "pref":"1"
             }, "language-tag", "fr"],
             ["lang", {
               "pref":"2"
             }, "language-tag", "en"],
             ["org", {
               "type":"work"
             }, "text", "Example"],
             ["title", {}, "text", "Research Scientist"],
             ["role", {}, "text", "Project Lead"],
             ["adr",
               { "type":"work" },
               "text",
               [
                 "",
                 "Suite 1234",
                 "4321 Rue Somewhere",
                 "Quebec",
                 "QC",
                 "G1V 2M2",
                 "Canada"
               ]
             ],
             ["tel",
               { "type":["work", "voice"], "pref":"1" },
               "uri", "tel:+1-555-555-1234;ext=102"
             ],
             ["email",
               { "type":"work" },
               "text", "joe.user@example.com"
             ]
           ]
         ],
         "roles" : [ "registrant", "administrative" ],
         "remarks" :
         [
           {
             "description" :
             [
               "She sells sea shells down by the sea shore.",
               "Originally written by Terry Sullivan."
             ]
           }
         ],
         "events" :
         [
           {
             "eventAction" : "registration",
             "eventDate" : "1990-12-31T23:59:59Z"
           },
           {
             "eventAction" : "last changed",
             "eventDate" : "1991-12-31T23:59:59Z"
           }
         ]
       }
     ]
   }

                                 Figure 34

   In many use cases, it is necessary to hide or obscure the information
   of a registrant or contact due to policy or other operational
   matters.  Registries can denote these situations with "status" values
   (see Section 10.2.2).

   The following is an elided example of a registrant with information
   changed to reflect that of a third party.

   {
     ...
     "entities" :
     [
       {
         "objectClassName" : "entity",
         "handle" : "XXXX",
         ...
         "roles" : [ "registrant", "administrative" ],
         "status" : [ "proxy", "private", "obscured" ]
       }
     ]
   }

                                 Figure 35

A.2.  Registrars

   This document does not provide a specific object class for
   registrars, but like registrants and contacts (see Appendix A.1), the
   "roles" string array maybe used.  Additionally, many registrars have
   publicly assigned identifiers.  The publicIds structure (Section 4.8)
   represents that information.

   The following is an example of an elided containing object with an
   embedded entity that is a registrar:

   {
     ...
     "entities":[
       {
         "objectClassName" : "entity",
         "handle":"XXXX",
         "vcardArray":[
           "vcard",
           [
             ["version", {}, "text", "4.0"],
             ["fn", {}, "text", "Joe's Fish, Chips, and Domains"],
             ["kind", {}, "text", "org"],
             ["lang", {
               "pref":"1"
             }, "language-tag", "fr"],
             ["lang", {
               "pref":"2"
             }, "language-tag", "en"],
             ["org", {
               "type":"work"
             }, "text", "Example"],
             ["adr",
               { "type":"work" },
               "text",
               [
                 "",
                 "Suite 1234",
                 "4321 Rue Somewhere",
                 "Quebec",
                 "QC",
                 "G1V 2M2",
                 "Canada"
               ]
             ],
             ["tel",
               {
                 "type":["work", "voice"],
                 "pref":"1"
               },
               "uri", "tel:+1-555-555-1234;ext=102"
             ],
             ["email",
               { "type":"work" },
               "text", "joes_fish_chips_and_domains@example.com"
             ]
           ]
         ],
         "roles":[ "registrar" ],
         "publicIds":[
           {
             "type":"IANA Registrar ID",
             "identifier":"1"
           }
         ],
         "remarks":[
           {
             "description":[
               "She sells sea shells down by the sea shore.",
               "Originally written by Terry Sullivan."
             ]
           }
         ],
         "links":[
           {
             "value":"https://example.net/entity/XXXX",
             "rel":"alternate",
             "type":"text/html",
             "href":"https://www.example.com"
           }
         ]
       }
     ]
   }

                                 Figure 36

Appendix B.  Modeling Events

   Events represent actions that have taken place against a registered
   object at a certain date and time.  Events have three properties: the
   action, the actor, and the date and time of the event (which is
   sometimes in the future).  In some cases, the identity of the actor
   is not captured.

   Events can be modeled in three ways:

   1.  events with no designated actor

   2.  events where the actor is only designated by an identifier

   3.  events where the actor can be modeled as an entity

   For the first use case, the events data structure (Section 4.5) is
   used without the "eventActor" object member.

   This is an example of an "events" array without the "eventActor".

   "events" :
   [
     {
       "eventAction" : "registration",
       "eventDate" : "1990-12-31T23:59:59Z"
     }
   ]

                                 Figure 37

   For the second use case, the events data structure (Section 4.5) is
   used with the "eventActor" object member.

   This is an example of an "events" array with the "eventActor".

   "events" :
   [
     {
       "eventAction" : "registration",
       "eventActor" : "XYZ-NIC",
       "eventDate" : "1990-12-31T23:59:59Z"
     }
   ]

                                 Figure 38

   For the third use case, the "asEventActor" array is used when an
   entity (Section 5.1) is embedded into another object class.  The
   "asEventActor" array follows the same structure as the "events" array
   but does not have "eventActor" attributes.

   The following is an elided example of a domain object with an entity
   as an event actor.

   {
     "objectClassName" : "domain",
     "handle" : "XXXX",
     "ldhName" : "foo.example",
     "status" : [ "locked", "transfer prohibited" ],
     ...
     "entities" :
     [
       {
         "handle" : "XXXX",
         ...
         "asEventActor" :
         [
           {
             "eventAction" : "last changed",
             "eventDate" : "1990-12-31T23:59:59Z"
           }
         ]
       }
     ]
   }

                                 Figure 39

Appendix C.  Structured vs. Unstructured Addresses

   The entity (Section 5.1) object class uses jCard [RFC7095] to
   represent contact information, including postal addresses. jCard has
   the ability to represent multiple language preferences, multiple
   email address and phone numbers, and multiple postal addresses in
   both a structured and unstructured format.  This section describes
   the use of jCard for representing structured and unstructured
   addresses.

   The following is an example of a jCard.

   {
     "vcardArray":[
       "vcard",
       [
         ["version", {}, "text", "4.0"],
         ["fn", {}, "text", "Joe User"],
         ["n", {}, "text",
           ["User", "Joe", "", "", ["ing. jr", "M.Sc."]]
         ],
         ["kind", {}, "text", "individual"],
         ["lang", {
           "pref":"1"
         }, "language-tag", "fr"],
         ["lang", {
           "pref":"2"
         }, "language-tag", "en"],
         ["org", {
           "type":"work"
         }, "text", "Example"],
         ["title", {}, "text", "Research Scientist"],
         ["role", {}, "text", "Project Lead"],
         ["adr",
           { "type":"work" },
           "text",
           [
             "",
             "Suite 1234",
             "4321 Rue Somewhere",
             "Quebec",
             "QC",
             "G1V 2M2",
             "Canada"
           ]
         ],
         ["adr",
           {

             "type":"home",
             "label":"123 Maple Ave\nSuite 90001\nVancouver\nBC\n1239\n"
           },
           "text",
           [
             "", "", "", "", "", "", ""
           ]
         ],
         ["tel",
           { "type":["work", "voice"], "pref":"1" },
           "uri", "tel:+1-555-555-1234;ext=102"
         ],
         ["tel",
           {
             "type":["work", "cell", "voice", "video", "text"]
           },
           "uri",
           "tel:+1-555-555-1234"
         ],
         ["email",
           { "type":"work" },
           "text", "joe.user@example.com"
         ],
         ["geo", {
           "type":"work"
         }, "uri", "geo:46.772673,-71.282945"],
         ["key",
           { "type":"work" },
           "uri", "https://www.example.com/joe.user/joe.asc"
         ],
         ["tz", {},
           "utc-offset", "-05:00"],
         ["url", { "type":"home" },
           "uri", "https://example.org"]
       ]
     ]
   }

                                 Figure 40

   The arrays in Figure 40 with the first member of "adr" represent
   postal addresses.  In the first example, the postal address is given
   as an array of strings and constitutes a structured address.  For
   components of the structured address that are not applicable, an
   empty string is given.  Each member of that array aligns with the
   positions of a vCard as given in [RFC6350].  In this example, the
   following data corresponds to the following positional meanings:

   1.  post office box -- not applicable; empty string

   2.  extended address (e.g., apartment or suite number) -- Suite 1234

   3.  street address -- 4321 Rue Somewhere

   4.  locality (e.g., city) -- Quebec

   5.  region (e.g., state or province) -- QC

   6.  postal code -- G1V 2M2

   7.  country name (full name) -- Canada

   The second example is an unstructured address.  It uses the "label"
   attribute, which is a string containing a newline (\n) character to
   separate address components in an unordered, unspecified manner.
   Note that in this example, the structured address array is still
   given but that each string is an empty string.

Appendix D.  Secure DNS

   Section 5.3 defines the "secureDNS" member to represent secure DNS
   information about domain names.

   DNSSEC provides data integrity for DNS through the digital signing of
   resource records.  To enable DNSSEC, the zone is signed by one or
   more private keys and the signatures are stored as RRSIG records.  To
   complete the chain of trust in the DNS zone hierarchy, a digest of
   each DNSKEY record (which contains the public key) must be loaded
   into the parent zone, stored as DS records, and signed by the
   parent's private key (RRSIG DS record), as indicated in "Resource
   Records for the DNS Security Extensions" [RFC4034].  Creating the DS
   records in the parent zone can be done by the registration authority
   "Domain Name System (DNS) Security Extensions Mapping for the
   Extensible Provisioning Protocol (EPP)" [RFC5910].

   Only DS-related information is provided by RDAP, since other
   information is not generally stored in the registration database.
   Other DNSSEC-related information can be retrieved with other DNS
   tools such as dig.

   The domain object class (Section 5.3) can represent this information
   using either the "dsData" or "keyData" object arrays.  Client
   implementers should be aware that some registries do not collect or
   do not publish all of the secure DNS meta-information.

Appendix E.  Motivations for Using JSON

   This section addresses a common question regarding the use of JSON
   over other data formats, most notably XML.

   It is often pointed out that many DNRs and one RIR support the EPP
   [RFC5730] standard, which is an XML serialized protocol.  The logic
   is that since EPP is a common protocol in the industry, it follows
   that XML would be a more natural choice.  While EPP does influence
   this specification quite a bit, EPP serves a different purpose, which
   is the provisioning of Internet resources between registries and
   accredited registrars and serving a much narrower audience than that
   envisioned for RDAP.

   By contrast, RDAP has a broader audience and is designed for public
   consumption of data.  Experience from RIRs with first generation
   RESTful web services for WHOIS indicate that a large percentage of
   clients operate within browsers and other platforms where full-blown
   XML stacks are not readily available and where JSON is a better fit.

   Additionally, while EPP is used in much of the DNR community it is
   not a universal constant in that industry.  And finally, EPP's use of
   XML predates the specification of JSON.  If EPP had been defined
   today, it may very well have used JSON instead of XML.

   Beyond the specific DNR and RIR communities, the trend in the broader
   Internet industry is also switching to JSON over XML, especially in
   the area of RESTful web services (see [JSON_ascendancy]).  Studies
   have also found that JSON is generally less bulky and consequently
   faster to parse (see [JSON_performance_study]).

Appendix F.  Changes from RFC 7483

   *  Addressed known errata.

   *  Updated references to 7482 to RFC 9082.  Adjusted case of "xxxx"
      used in examples where "XXXX" was previously used, and removed an
      "X" from "XXXXX".  Changed IPv6 address example using "C00" to
      "c00".  Added "a string representing" to the definitions of
      startAddress and endAddress.  Removed "entity" from "Autonomous
      System Number Entity Object Class".  Added "an unsigned 32-bit
      integer" to the definition of startAutnum and endAutnum.  Added "a
      string representing" to the definition of name in the IP network
      and ASN object classes.  Clarified rdapConformance identifier
      registration expectations in Section 4.1.  Changed
      "lunarNic_level_0" to "lunarNIC_level_0".

   *  Clarified that the "value", "rel" and "href" JSON values MUST be
      specified in the "links" array.

   *  Clarified that the "description" array is required in the Notices
      and Remarks data structures and other values are OPTIONAL.

   *  Noted that all members of the "events" and "Public IDs" arrays are
      REQUIRED.

   *  Fix "self" link values in examples.  Changed "http" to "https"
      link values in examples.  Noted that Figure 18 is an example of a
      nameserver object with all "appropriate" values given.  In
      Appendix C, quoted the word "label" in "label attribute".  Added
      reference to "status" definition in the descriptions for IP
      networks and autnums.  Fixed a 404 for the informative reference
      to "The Stealthy Ascendancy of JSON".  Added "boolean" to the
      definition of zoneSigned.

   *  Clarified REQUIRED and OPTIONAL members of the "events" array.

   *  Changed "SHOULD not" to "SHOULD NOT" in Section 5.

   *  Updated normative references (RFC 5226 to RFC 8126, RFC 5988 to
      RFC 8288, RFC 7159 to RFC 8259).  Changed examples using "ns1.xn--
      fo-5ja.example" to split URLs to avoid long lines.

   *  Added acknowledgments.

   *  Changed "The "lang" attribute may appear anywhere in an object
      class or data structure except for in jCard objects" to "The
      "lang" attribute as defined in this section MAY appear anywhere in
      an object class or data structure, except for in jCard objects.
      jCard supports similar functionality by way of the LANGUAGE
      property parameter (see Section 5.1 of RFC 6350 [RFC6350]".

   *  Changed "simple data types conveyed in JSON strings" to "simple
      data types conveyed in JSON primitive types (strings, numbers,
      booleans, and null)".  Changed "In other words, servers are free
      to not include JSON members containing registration data based on
      their own policies" to "In other words, servers are free to omit
      unrequired/optional JSON members containing registration data
      based on their own policies".

   *  Changed "This data structure appears only in the topmost JSON
      object of a response" to "This data structure MUST appear in the
      topmost JSON object of a response".

   *  Changed "Some non-answer responses may return entity bodies with
      information that could be more descriptive" to "Some non-answer
      responses MAY return entity bodies with information that could be
      more descriptive".

   *  Changed "The basic structure of that response is an object class
      containing an error code number (corresponding to the HTTP
      response code) followed by a string named "title" and an array of
      strings named "description"" to "The basic structure of that
      response is an object class containing a REQUIRED error code
      number (corresponding to the HTTP response code) followed by an
      OPTIONAL string named "title" and an OPTIONAL array of strings
      named "description"".

   *  Changed the "Autonomous System Number Object Class" section title
      to "The Autonomous System Number Object Class" for consistency
      with other section titles.  Removed trailing periods in the
      "Terminology and Definitions" section for consistency.  Changed
      instances of "lunarNic" to "lunarNIC" for consistency.  Removed an
      extraneous trailing period after the eventDate description.
      Changed a "." to ";" in the description of the "network" member of
      the domain object class.  Changed "The high-level structure of the
      autnum object class consists of information about the network
      registration" to "The high-level structure of the autnum object
      class consists of information about the Autonomous System number
      registration".  Changed "registry unique" to "registry-unique".

   *  Changed "registrant" to "registrar" in the description of the
      "transfer" event action to address erratum 6158.  Added IANA
      instructions to correct the description of the value in the
      registry.

   *  Added text to Section 4.2 to note that "self" and "related" "href"
      URIs MUST NOT be the same.

   *  Added text to Section 4.2 to describe return of IDNs in LDH name
      format.

   *  Added text to note that the "fn" member of a contact object MAY be
      empty in Section 3.

   *  Added text to clarify rdapConformance requirements in Section 4.1.

   *  Added "obsoletes 7483" to the headers, Abstract, and Introduction.
      Updated BCP 14 boilerplate.  Updated IANA Considerations to note
      that this RFC (a product of the REGEXT Working Group) replaces RFC
      7483.  Changed "simple string" to "simple character string" in
      Sections 3 and 4.7.  Clarified requirement for the "fn" member in
      Section 3.  Modified the requirement for rdapConformance placement
      in Section 4.1.  Changed "jCard" to "vCard" LANGUAGE property
      reference in Section 4.4.  Changed "no use" to "little or no use"
      in Section 5.1.  Added example line wrap note in Section 5.2.
      Modified the definition of "idnTable" in Section 5.3.  Modified
      the dsData and keyData examples in Section 5.3.  Changed
      "2001:c00::/23" to "2001:db8::/32" in Section 5.4.  Expanded the
      definition of "type" in Sections 5.4 and 5.5.  Modified example
      autnums in Section 5.5.  Added text to the Security Considerations
      section to note that DNSSEC information returned in a response
      cannot be trusted directly.

Acknowledgments

   This document is derived from original work on RIR responses in JSON
   by Byron J. Ellacott, Arturo L. Servin, Kaveh Ranjbar, and Andrew L. 
   Newton.  Additionally, this document incorporates work on DNR
   responses in JSON by Ning Kong, Linlin Zhou, Jiagui Xie, and Sean
   Shen.

   The components of the DNR object classes are derived from a
   categorization of WHOIS response formats created by Ning Kong, Linlin
   Zhou, Guangqing Deng, Steve Sheng, Francisco Arias, Ray Bellis, and
   Frederico Neves.

   Tom Harrison, Murray Kucherawy, Ed Lewis, Audric Schiltknecht, Naoki
   Kambe, Maarten Bosteels, Mario Loffredo, and Jasdip Singh contributed
   significant review comments and provided clarifying text.  James
   Mitchell provided text regarding the processing of unknown JSON
   attributes and identified issues leading to the remodeling of events.
   Ernie Dainow and Francisco Obispo provided concrete suggestions that
   led to a better variant model for domain names.

   Ernie Dainow provided the background information on the secure DNS
   attributes and objects for domains, informative text on DNSSEC, and
   many other attributes that appear throughout the object classes of
   this document.

   The switch to and incorporation of jCard was performed by Simon
   Perreault.

   Olaf Kolkman and Murray Kucherawy chaired the IETF's WEIRDS Working
   Group from which this document was originally created.  James Galvin
   and Antoin Verschuren chaired the REGEXT Working Group that worked on
   this document.

Authors' Addresses

   Scott Hollenbeck
   Verisign Labs
   12061 Bluemont Way
   Reston, VA 20190
   United States of America

   Email: shollenbeck@verisign.com
   URI:   https://www.verisignlabs.com/


   Andy Newton
   Amazon Web Services, Inc.
   13200 Woodland Park Road
   Herndon, VA 20171
   United States of America

   Email: andy@hxr.us