1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
|
Internet Engineering Task Force (IETF) S. Barguil
Request for Comments: 9182 O. Gonzalez de Dios, Ed.
Category: Standards Track Telefonica
ISSN: 2070-1721 M. Boucadair, Ed.
Orange
L. Munoz
Vodafone
A. Aguado
Nokia
February 2022
A YANG Network Data Model for Layer 3 VPNs
Abstract
As a complement to the Layer 3 Virtual Private Network Service Model
(L3SM), which is used for communication between customers and service
providers, this document defines an L3VPN Network Model (L3NM) that
can be used for the provisioning of Layer 3 Virtual Private Network
(L3VPN) services within a service provider network. The model
provides a network-centric view of L3VPN services.
The L3NM is meant to be used by a network controller to derive the
configuration information that will be sent to relevant network
devices. The model can also facilitate communication between a
service orchestrator and a network controller/orchestrator.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9182.
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
2. Terminology
3. Acronyms and Abbreviations
4. L3NM Reference Architecture
5. Relationship to Other YANG Data Models
6. Sample Uses of the L3NM Data Model
6.1. Enterprise Layer 3 VPN Services
6.2. Multi-Domain Resource Management
6.3. Management of Multicast Services
7. Description of the L3NM YANG Module
7.1. Overall Structure of the Module
7.2. VPN Profiles
7.3. VPN Services
7.4. VPN Instance Profiles
7.5. VPN Nodes
7.6. VPN Network Accesses
7.6.1. Connection
7.6.2. IP Connection
7.6.3. CE-PE Routing Protocols
7.6.3.1. Static Routing
7.6.3.2. BGP
7.6.3.3. OSPF
7.6.3.4. IS-IS
7.6.3.5. RIP
7.6.3.6. VRRP
7.6.4. OAM
7.6.5. Security
7.6.6. Services
7.6.6.1. Overview
7.6.6.2. QoS
7.7. Multicast
8. L3NM YANG Module
9. Security Considerations
10. IANA Considerations
11. References
11.1. Normative References
11.2. Informative References
Appendix A. L3VPN Examples
A.1. 4G VPN Provisioning Example
A.2. Loopback Interface
A.3. Overriding VPN Instance Profile Parameters
A.4. Multicast VPN Provisioning Example
Acknowledgements
Contributors
Authors' Addresses
1. Introduction
[RFC8299] defines a YANG Layer 3 Virtual Private Network Service
Model (L3SM) that can be used for communication between customers and
service providers. Such a model focuses on describing the customer
view of the Virtual Private Network (VPN) services and provides an
abstracted view of the customer's requested services. That approach
limits the usage of the L3SM to the role of a customer service model
(as per [RFC8309]).
This document defines a YANG module called the "L3VPN Network Model"
(L3NM). The L3NM is aimed at providing a network-centric view of
Layer 3 (L3) VPN services. This data model can be used to facilitate
communication between the service orchestrator and the network
controller/orchestrator by allowing more network-centric information
to be included. It enables such additional capabilities as resource
management, or it serves as a multi-domain orchestration interface
where logical resources (such as route targets or route
distinguishers) must be coordinated.
This document uses the common VPN YANG module defined in [RFC9181].
This document does not obsolete [RFC8299]. These two modules are
used for similar objectives but with different scopes and views.
The L3NM YANG module was initially built with a "prune and extend"
approach, taking as a starting point the YANG module described in
[RFC8299]. Nevertheless, the L3NM is not defined as an augment to
the L3SM, because a specific structure is required to meet network-
oriented L3 needs.
Some information captured in the L3SM can be passed by the
orchestrator in the L3NM (e.g., customer) or be used to feed some
L3NM attributes (e.g., actual forwarding policies). Also, some
information captured in the L3SM may be maintained locally within the
orchestrator, which is in charge of maintaining the correlation
between a customer view and its network instantiation. Likewise,
some information captured and exposed using the L3NM can feed the
service layer (e.g., capabilities) to drive VPN service order
handling and thus the L3SM.
Section 5.1 of [RFC8969] illustrates how the L3NM can be used within
the network management automation architecture.
The L3NM does not attempt to address all deployment cases, especially
those where L3VPN connectivity is supported through the coordination
of different VPNs in different underlying networks. More complex
deployment scenarios involving the coordination of different VPN
instances and different technologies to provide end-to-end VPN
connectivity are addressed by complementary YANG modules, e.g.,
[YANG-Composed-VPN].
The L3NM focuses on Layer 3 VPNs based on BGP Provider Edges (PEs) as
described in [RFC4026], [RFC4110], and [RFC4364]; and Multicast VPNs
as described in [RFC6037] and [RFC6513].
The YANG data model in this document conforms to the Network
Management Datastore Architecture (NMDA) defined in [RFC8342].
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
This document assumes that the reader is familiar with the contents
of [RFC6241], [RFC7950], [RFC8299], [RFC8309], and [RFC8453] and uses
the terminology defined in those documents.
This document uses the term "network model" as defined in Section 2.1
of [RFC8969].
The meanings of the symbols in the tree diagrams are defined in
[RFC8340].
This document makes use of the following terms:
Layer 3 VPN Service Model (L3SM): A YANG data model that describes
the service requirements of an L3VPN that interconnects a set of
sites from the point of view of the customer. The customer
service model does not provide details on the service provider
network. The L3VPN customer service model is defined in
[RFC8299].
Layer 3 VPN Network Model (L3NM): A YANG data model that describes a
VPN service in the service provider network. It contains
information on the service provider network and might include
allocated resources. It can be used by network controllers to
manage and control the VPN service configuration in the service
provider network. The corresponding YANG module can be used by a
service orchestrator to request a VPN service to a network
controller.
Service orchestrator: A functional entity that interacts with the
customer of an L3VPN. The service orchestrator interacts with the
customer using the L3SM. The service orchestrator is responsible
for the Customer Edge to Provider Edge (CE-PE) attachment
circuits, the PE selection, and requesting the VPN service to the
network controller.
Network orchestrator: A functional entity that is hierarchically
intermediate between a service orchestrator and network
controllers. A network orchestrator can manage one or several
network controllers.
Network controller: A functional entity responsible for the control
and management of the service provider network.
VPN node: An abstraction that represents a set of policies applied
on a PE and belonging to a single VPN service. A VPN service
involves one or more VPN nodes. As it is an abstraction, the
network controller will decide how to implement a VPN node. For
example, in a BGP-based VPN, a VPN node could typically be mapped
to a Virtual Routing and Forwarding (VRF) instance.
VPN network access: An abstraction that represents the network
interfaces that are associated with a given VPN node. Traffic
coming from the VPN network access belongs to the VPN. The
attachment circuits (bearers) between CEs and PEs are terminated
in the VPN network access. A reference to the bearer is
maintained to allow keeping the link between the L3SM and L3NM
when both models are used in a given deployment.
VPN site: A VPN customer's location that is connected to the service
provider network via a CE-PE link, which can access at least one
VPN [RFC4176].
VPN service provider: A service provider that offers VPN-related
services [RFC4176].
Service provider network: A network that is able to provide VPN-
related services.
This document is aimed at modeling BGP PE-based VPNs in a service
provider network, so the terms defined in [RFC4026] and [RFC4176] are
used in this document as well.
3. Acronyms and Abbreviations
The following acronyms and abbreviations are used in this document:
ACL Access Control List
AS Autonomous System
ASM Any-Source Multicast
ASN AS Number
BFD Bidirectional Forwarding Detection
BGP Border Gateway Protocol
BSR Bootstrap Router
CE Customer Edge
CsC Carriers' Carriers
IGMP Internet Group Management Protocol
L3NM L3VPN Network Model
L3SM L3VPN Service Model
L3VPN Layer 3 Virtual Private Network
MLD Multicast Listener Discovery
MSDP Multicast Source Discovery Protocol
MVPN Multicast VPN
NAT Network Address Translation
OAM Operations, Administration, and Maintenance
OSPF Open Shortest Path First
PE Provider Edge
PIM Protocol Independent Multicast
QoS Quality of Service
RD Route Distinguisher
RP Rendezvous Point
RT Route Target
SA Security Association
SSM Source-Specific Multicast
VPN Virtual Private Network
VRF Virtual Routing and Forwarding
4. L3NM Reference Architecture
Figure 1 depicts the reference architecture for the L3NM. The figure
is an expansion of the architecture presented in Section 5 of
[RFC8299]; it decomposes the box marked "orchestration" in that
section into three separate functional components: service
orchestration, network orchestration, and domain orchestration.
Although some deployments may choose to construct a monolithic
orchestration component (covering both service and network matters),
this document advocates for a clear separation between service and
network orchestration components for the sake of better flexibility.
Such a design adheres to the L3VPN reference architecture defined in
Section 1.3 of [RFC4176]. This separation relies upon a dedicated
communication interface between these components and appropriate YANG
modules that reflect network-related information. Such information
is hidden from customers.
The intelligence for translating customer-facing information into
network-centric information (and vice versa) is implementation
specific.
The terminology from [RFC8309] is used here to show the distinction
between the customer service model, the service delivery model, the
network configuration model, and the device configuration model. In
that context, the "domain orchestration" and "config manager" roles
may be performed by "controllers".
+---------------+
| Customer |
+-------+-------+
Customer Service Model |
(e.g., 'l3vpn-svc') |
+-------+-------+
| Service |
| Orchestration |
+-------+-------+
Service Delivery Model |
'l3vpn-ntw' |
+-------+-------+
| Network |
| Orchestration |
+-------+-------+
Network Configuration Model |
+-----------+-----------+
| |
+--------+------+ +--------+------+
| Domain | | Domain |
| Orchestration | | Orchestration |
+---+-----------+ +--------+------+
Device | | |
Configuration | | |
Model | | |
+----+----+ | |
| Config | | |
| Manager | | |
+----+----+ | |
| | |
| NETCONF/CLI..................
| | |
+------------------------------------------------+
Network
NETCONF: Network Configuration Protocol
CLI: Command-Line Interface
Figure 1: L3NM Reference Architecture
The customer may use a variety of means to request a service that may
trigger the instantiation of an L3NM. The customer may use the L3SM
or more abstract models to request a service that relies upon an
L3VPN service. For example, the customer may supply an IP
Connectivity Provisioning Profile (CPP) that characterizes the
requested service [RFC7297], an enhanced VPN (VPN+) service
[Enhanced-VPN-Framework], or an IETF network slice service
[Network-Slices-Framework].
Note also that both the L3SM and the L3NM may be used in the context
of the Abstraction and Control of TE Networks (ACTN) framework
[RFC8453]. Figure 2 shows the Customer Network Controller (CNC), the
Multi-Domain Service Coordinator (MDSC), the Provisioning Network
Controller (PNC) components, and the interfaces where the L3SM and
L3NM are used.
+----------------------------------+
| Customer |
| +-----------------------------+ |
| | CNC | |
| +-----------------------------+ |
+----+-----------------------+-----+
| |
| L3SM | L3SM
| |
+---------+---------+ +---------+---------+
| MDSC | | MDSC |
| +---------------+ | | (parent) |
| | Service | | +---------+---------+
| | Orchestration | | |
| +-------+-------+ | | L3NM
| | | |
| | L3NM | +---------+---------+
| | | | MDSC |
| +-------+-------+ | | (child) |
| | Network | | +---------+---------+
| | Orchestration | | |
| +---------------+ | |
+---------+---------+ |
| |
| Network Configuration |
| |
+------------+-------+ +---------+------------+
| Domain | | Domain |
| Controller | | Controller |
| +---------+ | | +---------+ |
| | PNC | | | | PNC | |
| +---------+ | | +---------+ |
+------------+-------+ +---------+------------+
| |
| Device Configuration |
| |
+----+---+ +----+---+
| Device | | Device |
+--------+ +--------+
Figure 2: L3SM and L3NM in the Context of the ACTN
5. Relationship to Other YANG Data Models
The "ietf-vpn-common" module [RFC9181] includes a set of identities,
types, and groupings that are meant to be reused by VPN-related YANG
modules independently of the layer (e.g., Layer 2, Layer 3) and the
type of the module (e.g., network model, service model), including
future revisions of existing models (e.g., [RFC8299] or [RFC8466]).
The L3NM reuses these common types and groupings.
In order to avoid data duplication and to ease passing data between
layers when required (service layer to network layer and vice versa),
early versions of the L3NM reused many of the data nodes that are
defined in [RFC8299]. Nevertheless, that approach was abandoned in
favor of the "ietf-vpn-common" module because that initial design was
interpreted as if the deployment of the L3NM depends on the L3SM,
while this is not the case. For example, a service provider may
decide to use the L3NM to build its L3VPN services without exposing
the L3SM.
As discussed in Section 4, the L3NM is meant to manage L3VPN services
within a service provider network. The module provides a network
view of the service. Such a view is only visible within the service
provider and is not exposed outside (to customers, for example). The
items below discuss how the L3NM interfaces with other YANG modules:
L3SM: The L3NM is not a customer service model.
The internal view of the service (i.e., the L3NM) may be mapped to
an external view that is visible to customers: the L3VPN Service
Model (L3SM) [RFC8299].
The L3NM can be fed with inputs that are requested by customers.
Such requests typically rely upon an L3SM template. Concretely,
some parts of the L3SM module can be directly mapped to the L3NM,
while other parts are generated as a function of the requested
service and local guidelines. Some other parts are local to the
service provider and do not map directly to the L3SM.
Note that using the L3NM within a service provider does not
assume, nor does it preclude, exposing the VPN service via the
L3SM. This is deployment specific. Nevertheless, the design of
the L3NM tries to align as much as possible with the features
supported by the L3SM to ease the grafting of both the L3NM and
the L3SM for the sake of highly automated VPN service provisioning
and delivery.
Network Topology Modules: An L3VPN involves nodes that are part of a
topology managed by the service provider network. The topology
can be represented using the network topology YANG module defined
in [RFC8345] or its extension, such as a network YANG module for
Service Attachment Points (SAPs) [YANG-SAPs].
Device Modules: The L3NM is not a device model.
Once a global VPN service is captured by means of the L3NM, the
actual activation and provisioning of the VPN service will involve
a variety of device modules to tweak the required functions for
the delivery of the service. These functions are supported by the
VPN nodes and can be managed using device YANG modules. A non-
comprehensive list of such device YANG modules is provided below:
* Routing management [RFC8349].
* BGP [BGP-YANG].
* PIM [PIM-YANG].
* NAT management [RFC8512].
* QoS management [QoS-YANG].
* ACLs [RFC8519].
How the L3NM is used to derive device-specific actions is
implementation specific.
6. Sample Uses of the L3NM Data Model
This section provides a non-exhaustive list of examples that
illustrate contexts where the L3NM can be used.
6.1. Enterprise Layer 3 VPN Services
Enterprise L3VPNs are one of the most demanded services for carriers;
therefore, L3NM can be useful for automating the provisioning and
maintenance of these VPNs. Templates and batch processes can be
built, and as a result many parameters are needed for the creation
from scratch of a VPN that can be abstracted to the upper Software-
Defined Networking (SDN) layer [RFC7149] [RFC7426], but some manual
intervention will still be required.
A common function that is supported by VPNs is the addition or
removal of VPN nodes. Workflows can use the L3NM in these scenarios
to add or prune nodes from the network data model as required.
6.2. Multi-Domain Resource Management
The implementation of L3VPN services that span administratively
separated domains (i.e., that are under the administration of
different management systems or controllers) requires some network
resources to be synchronized between systems. Particularly,
resources must be adequately managed in each domain to avoid broken
configurations.
For example, route targets (RTs) shall be synchronized between PEs.
When all PEs are controlled by the same management system, RT
allocation can be performed by that management system. In cases
where the service spans multiple management systems, the task of
allocating RTs has to be aligned across the domains; therefore, the
network model must provide a way to specify RTs. In addition, route
distinguishers (RDs) must also be synchronized to avoid collisions of
RD allocations between separate management systems. An incorrect
allocation might lead to the same RD and IP prefixes being exported
by different PEs.
6.3. Management of Multicast Services
Multicast services over L3VPNs can be implemented using dual PIM
MVPNs (also known as the draft-rosen model) [RFC6037] or MVPNs based
on Multiprotocol BGP (MP-BGP) [RFC6513] [RFC6514]. Both methods are
supported and equally effective, but the main difference is that MP-
BGP-based MVPNs do not require multicast configuration on the service
provider network. MP-BGP MVPNs employ the intra-AS BGP control plane
and PIM Sparse Mode [RFC7761] as the data plane. The PIM state
information is maintained between PEs using the same architecture
that is used for unicast VPNs.
On the other hand, [RFC6037] has limitations, such as reduced options
for transport, control plane scalability, availability, operational
inconsistency, and the need to maintain state in the backbone.
Because of these limitations, MP-BGP MVPNs provide the architectural
model that has been taken as the base for implementing multicast
services in L3VPNs. In this scenario, BGP is used to autodiscover
MVPN PE members and the customer PIM signaling is sent across the
provider's core through MP-BGP. The multicast traffic is transported
on MPLS Point-to-Multipoint (P2MP) Label Switched Paths (LSPs).
7. Description of the L3NM YANG Module
The L3NM ("ietf-l3vpn-ntw") is defined to manage L3VPNs in a service
provider network. In particular, the "ietf-l3vpn-ntw" module can be
used to create, modify, and retrieve L3VPN services of a network.
The full tree diagram of the module can be generated using the
"pyang" tool [PYANG]. That tree is not included here because it is
too long (Section 3.3 of [RFC8340]). Instead, subtrees are provided
for the reader's convenience.
7.1. Overall Structure of the Module
The "ietf-l3vpn-ntw" module uses two main containers: 'vpn-profiles'
and 'vpn-services' (see Figure 3).
The 'vpn-profiles' container is used by the provider to maintain a
set of common VPN profiles that apply to one or several VPN services
(Section 7.2).
The 'vpn-services' container maintains the set of VPN services
managed within the service provider network. The 'vpn-service' is
the data structure that abstracts a VPN service (Section 7.3).
module: ietf-l3vpn-ntw
+--rw l3vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
Figure 3: Overall L3NM Tree Structure
Some of the data nodes are keyed by the address family. For the sake
of data representation compactness, it is RECOMMENDED to use the
dual-stack address family for data nodes that have the same value for
both IPv4 and IPv6. If, for some reason, a data node is present for
both dual-stack and IPv4 (or IPv6), the value that is indicated under
dual-stack takes precedence over the value that is indicated under
IPv4 (or IPv6).
7.2. VPN Profiles
The 'vpn-profiles' container (Figure 4) allows the VPN service
provider to define and maintain a set of VPN profiles [RFC9181] that
apply to one or several VPN services.
+--rw l3vpn-ntw
+--rw vpn-profiles
| +--rw valid-provider-identifiers
| +--rw external-connectivity-identifier* [id]
| | {external-connectivity}?
| | +--rw id string
| +--rw encryption-profile-identifier* [id]
| | +--rw id string
| +--rw qos-profile-identifier* [id]
| | +--rw id string
| +--rw bfd-profile-identifier* [id]
| | +--rw id string
| +--rw forwarding-profile-identifier* [id]
| | +--rw id string
| +--rw routing-profile-identifier* [id]
| +--rw id string
+--rw vpn-services
...
Figure 4: VPN Profiles Subtree Structure
This document does not make any assumption about the exact definition
of these profiles. The exact definition of the profiles is local to
each VPN service provider. The model only includes an identifier for
these profiles in order to facilitate identifying and binding local
policies when building a VPN service. As shown in Figure 4, the
following identifiers can be included:
'external-connectivity-identifier': This identifier refers to a
profile that defines the external connectivity provided to a VPN
service (or a subset of VPN sites). External connectivity may be
access to the Internet or restricted connectivity, such as access
to a public/private cloud.
'encryption-profile-identifier': An encryption profile refers to a
set of policies related to the encryption schemes and setup that
can be applied when building and offering a VPN service.
'qos-profile-identifier': A Quality of Service (QoS) profile refers
to a set of policies, such as classification, marking, and actions
(e.g., [RFC3644]).
'bfd-profile-identifier': A Bidirectional Forwarding Detection (BFD)
profile refers to a set of BFD policies [RFC5880] that can be
invoked when building a VPN service.
'forwarding-profile-identifier': A forwarding profile refers to the
policies that apply to the forwarding of packets conveyed within a
VPN. Such policies may consist, for example, of applying Access
Control Lists (ACLs).
'routing-profile-identifier': A routing profile refers to a set of
routing policies that will be invoked (e.g., BGP policies) when
delivering the VPN service.
7.3. VPN Services
The 'vpn-service' is the data structure that abstracts a VPN service
in the service provider network. Each 'vpn-service' is uniquely
identified by an identifier: 'vpn-id'. Such a 'vpn-id' is only
meaningful locally (e.g., the network controller). The subtree of
the 'vpn-services' is shown in Figure 5.
+--rw l3vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
+--rw vpn-id vpn-common:vpn-id
+--rw vpn-name? string
+--rw vpn-description? string
+--rw customer-name? string
+--rw parent-service-id? vpn-common:vpn-id
+--rw vpn-type? identityref
+--rw vpn-service-topology? identityref
+--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw vpn-instance-profiles
| ...
+--rw underlay-transport
| +-- (type)?
| +--:(abstract)
| | +--rw transport-instance-id? string
| | +--rw instance-type? identityref
| +--:(protocol)
| +--rw protocol* identityref
+--rw external-connectivity
| {vpn-common:external-connectivity}?
| +--rw (profile)?
| +--:(profile)
| +--rw profile-name? leafref
+--rw vpn-nodes
...
Figure 5: VPN Services Subtree Structure
The descriptions of the VPN service data nodes that are depicted in
Figure 5 are as follows:
'vpn-id': An identifier that is used to uniquely identify the L3VPN
service within the L3NM scope.
'vpn-name': Associates a name with the service in order to
facilitate the identification of the service.
'vpn-description': Includes a textual description of the service.
The internal structure of a VPN description is local to each VPN
service provider.
'customer-name': Indicates the name of the customer who ordered the
service.
'parent-service-id': Refers to an identifier of the parent service
(e.g., L3SM, IETF network slice, VPN+) that triggered the creation
of the VPN service. This identifier is used to easily correlate
the (network) service as built in the network with a service
order. A controller can use that correlation to enrich or
populate some fields (e.g., description fields) as a function of
local deployments.
'vpn-type': Indicates the VPN type. The values are taken from
[RFC9181]. For the L3NM, this is typically set to "BGP/MPLS
L3VPN", but other values may be defined to support specific Layer
3 VPN capabilities (e.g., [RFC9136]).
'vpn-service-topology': Indicates the network topology for the
service: 'hub-spoke', 'any-to-any', or 'custom'. The network
implementation of this attribute is defined by the correct usage
of import and export targets (Section 4.3.5 of [RFC4364]).
'status': Used to track the service status of a given VPN service.
Both operational status and administrative status are maintained
together with a timestamp. For example, a service can be created
but not put into effect.
Administrative status and operational status can be used as a
trigger to detect service anomalies. For example, a service that
is declared active at the service layer but is still inactive at
the network layer may be an indication that network provision
actions are needed to align the observed service status with the
expected service status.
'vpn-instance-profiles': Defines reusable parameters for the same
'vpn-service'.
More details are provided in Section 7.4.
'underlay-transport': Describes the preference for the transport
technology to carry the traffic of the VPN service. This
preference is especially useful in networks with multiple domains
and Network-to-Network Interface (NNI) types. The underlay
transport can be expressed as an abstract transport instance
(e.g., an identifier of a VPN+ instance, a virtual network
identifier, or a network slice name) or as an ordered list of the
actual protocols to be enabled in the network.
A rich set of protocol identifiers that can be used to refer to an
underlay transport are defined in [RFC9181].
'external-connectivity': Indicates whether/how external connectivity
is provided to the VPN service. For example, a service provider
may provide external connectivity to a VPN customer (e.g., to a
public cloud). Such a service may involve tweaking both filtering
and NAT rules (e.g., binding a Virtual Routing and Forwarding
(VRF) interface with a NAT instance as discussed in Section 2.10
of [RFC8512]). These value-added features may be bound to all, or
a subset of, network accesses. Some of these value-added features
may be implemented in a PE or in nodes other than PEs (e.g., a P
node or even a dedicated node that hosts the NAT function).
Only a pointer to a local profile that defines the external-
connectivity feature is supported in this document.
'vpn-node': An abstraction that represents a set of policies applied
to a network node and belonging to a single 'vpn-service'. A VPN
service is typically built by adding instances of 'vpn-node' to
the 'vpn-nodes' container.
A 'vpn-node' contains 'vpn-network-accesses', which are the
interfaces attached to the VPN by which the customer traffic is
received. Therefore, the customer sites are connected to the
'vpn-network-accesses'.
Note that because this is a network data model, information about
customers' sites is not required in the model. Rather, such
information is relevant in the L3SM. Whether that information is
included in the L3NM, e.g., to populate the various 'description'
data nodes, is implementation specific.
More details are provided in Section 7.5.
7.4. VPN Instance Profiles
VPN instance profiles are meant to factorize data nodes that are used
at many levels of the model. Generic VPN instance profiles are
defined at the VPN service level and then called at the VPN node and
VPN network access levels. Each VPN instance profile is identified
by 'profile-id'. This identifier is then referenced for one or
multiple VPN nodes (Section 7.5) so that the controller can identify
generic resources (e.g., RTs and RDs) to be configured for a given
VRF instance.
The subtree of the 'vpn-instance-profiles' is shown in Figure 6.
+--rw l3vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
+--rw vpn-id vpn-common:vpn-id
...
+--rw vpn-instance-profiles
| +--rw vpn-instance-profile* [profile-id]
| +--rw profile-id string
| +--rw role? identityref
| +--rw local-as? inet:as-number
| | {vpn-common:rtg-bgp}?
| +--rw (rd-choice)?
| | +--:(directly-assigned)
| | | +--rw rd?
| | | rt-types:route-distinguisher
| | +--:(directly-assigned-suffix)
| | | +--rw rd-suffix? uint16
| | +--:(auto-assigned)
| | | +--rw rd-auto
| | | +--rw (auto-mode)?
| | | | +--:(from-pool)
| | | | | +--rw rd-pool-name? string
| | | | +--:(full-auto)
| | | | +--rw auto? empty
| | | +--ro auto-assigned-rd?
| | | rt-types:route-distinguisher
| | +--:(auto-assigned-suffix)
| | | +--rw rd-auto-suffix
| | | +--rw (auto-mode)?
| | | | +--:(from-pool)
| | | | | +--rw rd-pool-name? string
| | | | +--:(full-auto)
| | | | +--rw auto? empty
| | | +--ro auto-assigned-rd-suffix? uint16
| | +--:(no-rd)
| | +--rw no-rd? empty
| +--rw address-family* [address-family]
| | +--rw address-family identityref
| | +--rw vpn-targets
| | | +--rw vpn-target* [id]
| | | | +--rw id uint8
| | | | +--rw route-targets* [route-target]
| | | | | +--rw route-target
| | | | | rt-types:route-target
| | | | +--rw route-target-type
| | | | rt-types:route-target-type
| | | +--rw vpn-policies
| | | +--rw import-policy? string
| | | +--rw export-policy? string
| | +--rw maximum-routes* [protocol]
| | +--rw protocol identityref
| | +--rw maximum-routes? uint32
| +--rw multicast {vpn-common:multicast}?
| ...
Figure 6: Subtree Structure of VPN Instance Profiles
The descriptions of the listed data nodes are as follows:
'profile-id': Used to uniquely identify a VPN instance profile.
'role': Indicates the role of the VPN instance profile in the VPN.
Role values are defined in [RFC9181] (e.g., 'any-to-any-role',
'spoke-role', 'hub-role').
'local-as': Indicates the Autonomous System Number (ASN) that is
configured for the VPN node.
'rd': As defined in [RFC9181], the following RD assignment modes are
supported: direct assignment, full automatic assignment, automatic
assignment from a given pool, and no assignment. For illustration
purposes, the following modes can be used in the deployment cases:
'directly-assigned': The VPN service provider (service
orchestrator) assigns RDs explicitly. This case will fit with
a brownfield scenario where some existing services need to be
updated by the VPN service provider.
'full-auto': The network controller auto-assigns RDs. This can
apply for the deployment of new services.
'no-rd': The VPN service provider (service orchestrator)
explicitly wants no RD to be assigned. This case can be used
for CE testing within the network or for troubleshooting
proposes.
Also, the module accommodates deployments where only the Assigned
Number subfield of RDs (Section 4.2 of [RFC4364]) is assigned from
a pool while the Administrator subfield is set to, for example,
the Router ID that is assigned to a VPN node. The module supports
these modes for managing the Assigned Number subfield: explicit
assignment, auto-assignment from a pool, and full auto-assignment.
'address-family': Includes a set of data nodes per address family:
'address-family': Identifies the address family. It can be set
to 'ipv4', 'ipv6', or 'dual-stack'.
'vpn-targets': Specifies RT import/export rules for the VPN
service (Section 4.3 of [RFC4364]).
'maximum-routes': Indicates the maximum number of prefixes that
the VPN node can accept for a given routing protocol. If
'protocol' is set to 'any', this means that the maximum value
applies to each active routing protocol.
'multicast': Enables multicast traffic in the VPN service. Refer to
Section 7.7.
7.5. VPN Nodes
The 'vpn-node' is an abstraction that represents a set of common
policies applied on a given network node (typically, a PE) and
belonging to one L3VPN service. The 'vpn-node' includes a parameter
to indicate the network node on which it is applied. In the case
that the 'ne-id' points to a specific PE, the 'vpn-node' will likely
be mapped to a VRF instance in the node. However, the model also
allows pointing to an abstract node. In this case, the network
controller will decide how to split the 'vpn-node' into VRF
instances.
The VPN node subtree structure is shown in Figure 7.
+--rw l3vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
+--rw vpn-node-id vpn-common:vpn-id
+--rw description? string
+--rw ne-id? string
+--rw local-as? inet:as-number
| {vpn-common:rtg-bgp}?
+--rw router-id? rt-types:router-id
+--rw active-vpn-instance-profiles
| +--rw vpn-instance-profile* [profile-id]
| +--rw profile-id leafref
| +--rw router-id* [address-family]
| | +--rw address-family identityref
| | +--rw router-id? inet:ip-address
| +--rw local-as? inet:as-number
| | {vpn-common:rtg-bgp}?
| +--rw (rd-choice)?
| | ....
| +--rw address-family* [address-family]
| | +--rw address-family identityref
| | | ...
| | +--rw vpn-targets
| | | ...
| | +--rw maximum-routes* [protocol]
| | ...
| +--rw multicast {vpn-common:multicast}?
| ...
+--rw msdp {msdp}?
| +--rw peer? inet:ipv4-address
| +--rw local-address? inet:ipv4-address
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw groups
| +--rw group* [group-id]
| +--rw group-id string
+--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw vpn-network-accesses
...
Figure 7: VPN Node Subtree Structure
The descriptions of the 'vpn-node' data nodes (Figure 7) are as
follows:
'vpn-node-id': An identifier that uniquely identifies a node that
enables a VPN network access.
'description': Provides a textual description of the VPN node.
'ne-id': Includes a unique identifier of the network element where
the VPN node is deployed.
'local-as': Indicates the ASN that is configured for the VPN node.
'router-id': Indicates a 32-bit number that is used to uniquely
identify a router within an AS.
'active-vpn-instance-profiles': Lists the set of active VPN instance
profiles for this VPN node. Concretely, one or more VPN instance
profiles that are defined at the VPN service level can be enabled
at the VPN node level; each of these profiles is uniquely
identified by means of 'profile-id'. The structure of 'active-
vpn-instance-profiles' is the same as the structure discussed in
Section 7.4, except that the structure of 'active-vpn-instance-
profiles' includes 'router-id' but does not include the 'role'
leaf. The value of 'router-id' indicated under 'active-vpn-
instance-profiles' takes precedence over the 'router-id' under the
'vpn-node' for the indicated address family. For example, Router
IDs can be configured per address family. This capability can be
used, for example, to configure an IPv6 address as a Router ID
when such a capability is supported by involved routers.
Values defined in 'active-vpn-instance-profiles' override the
values defined at the VPN service level. An example is shown in
Appendix A.3.
'msdp': For redundancy purposes, the Multicast Source Discovery
Protocol (MSDP) [RFC3618] may be enabled and used to share state
information about sources between multiple Rendezvous Points
(RPs). The purpose of MSDP in this context is to enhance the
robustness of the multicast service. MSDP may be configured on
non-RP routers; this is useful in a domain that does not support
multicast sources but does support multicast transit.
'groups': Lists the groups to which a VPN node belongs [RFC9181].
For example, the 'group-id' is used to associate redundancy or
protection constraints with VPN nodes.
'status': Tracks the status of a node involved in a VPN service.
Both operational status and administrative status are maintained.
A mismatch between the administrative status vs. the operational
status can be used as a trigger to detect anomalies.
'vpn-network-accesses': Represents the point to which sites are
connected.
Note that unlike the L3SM, the L3NM does not need to model the
customer site -- only the points that receive traffic from the
site (i.e., the PE side of Provider Edge to Customer Edge (PE-CE)
connections). Hence, the VPN network access contains the
connectivity information between the provider's network and the
customer premises. The VPN profiles ('vpn-profiles') have a set
of routing policies that can be applied during the service
creation.
See Section 7.6 for more details.
7.6. VPN Network Accesses
The 'vpn-network-access' includes a set of data nodes that describe
the access information for the traffic that belongs to a particular
L3VPN (Figure 8).
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
+--rw id vpn-common:vpn-id
+--rw interface-id? string
+--rw description? string
+--rw vpn-network-access-type? identityref
+--rw vpn-instance-profile? leafref
+--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw connection
| ...
+--rw ip-connection
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 8: VPN Network Access Subtree Structure
A 'vpn-network-access' (Figure 8) includes the following data nodes:
'id': An identifier of the VPN network access.
'interface-id': Indicates the physical or logical interface on which
the VPN network access is bound.
'description': Includes a textual description of the VPN network
access.
'vpn-network-access-type': Used to select the type of network
interface to be deployed in the devices. The available defined
values are as follows:
'point-to-point': Represents a direct connection between the
endpoints. The controller must keep the association between a
logical or physical interface on the device with the 'id' of
the 'vpn-network-access'.
'multipoint': Represents a multipoint connection between the
customer site and the PEs. The controller must keep the
association between a logical or physical interface on the
device with the 'id' of the 'vpn-network-access'.
'irb': Represents a connection coming from an L2VPN service. An
identifier of such a service ('l2vpn-id') may be included in
the 'connection' container, as depicted in Figure 9
(Section 7.6.1). The controller must keep the relationship
between the logical tunnels or bridges on the devices with the
'id' of the 'vpn-network-access'.
'loopback': Represents the creation of a logical interface on a
device. An example that illustrates how a loopback interface
can be used in the L3NM is provided in Appendix A.2.
'vpn-instance-profile': Provides a pointer to an active VPN instance
profile at the VPN node level. Referencing an active VPN instance
profile implies that all associated data nodes will be inherited
by the VPN network access. However, some inherited data nodes
(e.g., multicast) can be overridden at the VPN network access
level. In such a case, adjusted values take precedence over
inherited values.
'status': Indicates both operational status and administrative
status of a VPN network access.
'connection': Represents and groups the set of Layer 2 connectivity
from where the traffic of the L3VPN in a particular VPN network
access is coming. See Section 7.6.1.
'ip-connection': Contains Layer 3 connectivity information on a VPN
network access (e.g., IP addressing). See Section 7.6.2.
'routing-protocols': Includes the CE-PE routing configuration
information. See Section 7.6.3.
'oam': Specifies the Operations, Administration, and Maintenance
(OAM) mechanisms used for a VPN network access. See
Section 7.6.4.
'security': Specifies the authentication and the encryption to be
applied for a given VPN network access. See Section 7.6.5.
'service': Specifies the service parameters (e.g., QoS, multicast)
to apply for a given VPN network access. See Section 7.6.6.
7.6.1. Connection
The 'connection' container represents the Layer 2 connectivity to the
L3VPN for a particular VPN network access. As shown in the tree
depicted in Figure 9, the 'connection' container defines protocols
and parameters to enable such connectivity at Layer 2.
The traffic can enter the VPN with or without encapsulation (e.g.,
VLAN, QinQ). The 'encapsulation' container specifies the Layer 2
encapsulation to use (if any) and allows the configuration of the
relevant tags.
The interface that is attached to the L3VPN is identified by the
'interface-id' at the 'vpn-network-access' level. From a network
model perspective, it is expected that the 'interface-id' is
sufficient to identify the interface. However, specific Layer 2 sub-
interfaces may be required to be configured in some implementations/
deployments. Such a Layer-2-specific interface can be included in
'l2-termination-point'.
If a Layer 2 tunnel is needed to terminate the service in the CE-PE
connection, the 'l2-tunnel-service' container is used to specify the
required parameters to set such a tunneling service (e.g., a Virtual
Private LAN Service (VPLS) or a Virtual eXtensible Local Area Network
(VXLAN)). An identity called 'l2-tunnel-type' is defined for Layer 2
tunnel selection. The container can also identify the pseudowire
(Section 6.1 of [RFC8077]).
As discussed in Section 7.6, 'l2vpn-id' is used to identify the L2VPN
service that is associated with an Integrated Routing and Bridging
(IRB) interface.
To accommodate implementations that require internal bridging, a
local bridge reference can be specified in 'local-bridge-reference'.
Such a reference may be a local bridge domain.
A site, as per [RFC4176], represents a VPN customer's location that
is connected to the service provider network via a CE-PE link, which
can access at least one VPN. The connection from the site to the
service provider network is the bearer. Every site is associated
with a list of bearers. A bearer is the Layer 2 connection with the
site. In the L3NM, it is assumed that the bearer has been allocated
by the service provider at the service orchestration stage. The
bearer is associated with a network element and a port. Hence, a
bearer is just a 'bearer-reference' to allow the association between
a service request (e.g., the L3SM) and the L3NM.
The L3NM can be used to create a Link Aggregation Group (LAG)
interface for a given L3VPN service ('lag-interface') [IEEE802.1AX].
Such a LAG interface can be referenced under 'interface-id'
(Section 7.6).
...
+--rw connection
| +--rw encapsulation
| | +--rw type? identityref
| | +--rw dot1q
| | | +--rw tag-type? identityref
| | | +--rw cvlan-id? uint16
| | +--rw priority-tagged
| | | +--rw tag-type? identityref
| | +--rw qinq
| | +--rw tag-type? identityref
| | +--rw svlan-id uint16
| | +--rw cvlan-id uint16
| +--rw (l2-service)?
| | +--:(l2-tunnel-service)
| | | +--rw l2-tunnel-service
| | | +--rw type? identityref
| | | +--rw pseudowire
| | | | +--rw vcid? uint32
| | | | +--rw far-end? union
| | | +--rw vpls
| | | | +--rw vcid? uint32
| | | | +--rw far-end* union
| | | +--rw vxlan
| | | +--rw vni-id uint32
| | | +--rw peer-mode? identityref
| | | +--rw peer-ip-address* inet:ip-address
| | +--:(l2vpn)
| | +--rw l2vpn-id? vpn-common:vpn-id
| +--rw l2-termination-point? string
| +--rw local-bridge-reference? string
| +--rw bearer-reference? string
| | {vpn-common:bearer-reference}?
| +--rw lag-interface {vpn-common:lag-interface}?
| +--rw lag-interface-id? string
| +--rw member-link-list
| +--rw member-link* [name]
| +--rw name string
...
Figure 9: Connection Subtree Structure
7.6.2. IP Connection
This container is used to group Layer 3 connectivity information,
particularly the IP addressing information, of a VPN network access.
The allocated address represents the PE interface address
configuration. Note that a distinct Layer 3 interface other than the
interface indicated under the 'connection' container may be needed to
terminate the Layer 3 service. The identifier of such an interface
is included in 'l3-termination-point'. For example, this data node
can be used to carry the identifier of a bridge domain interface.
As shown in Figure 10, the 'ip-connection' container can include
IPv4, IPv6, or both if dual-stack is enabled.
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | ...
| +--rw ipv6 {vpn-common:ipv6}?
| ...
...
Figure 10: IP Connection Subtree Structure
For both IPv4 and IPv6, the IP connection supports three IP address
assignment modes for customer addresses: provider DHCP, DHCP relay,
and static addressing. Note that for the IPv6 case, Stateless
Address Autoconfiguration (SLAAC) [RFC4862] can be used. For both
IPv4 and IPv6, 'address-allocation-type' is used to indicate the IP
address allocation mode to activate for a given VPN network access.
When 'address-allocation-type' is set to 'provider-dhcp', DHCP
assignments can be made locally or by an external DHCP server. Such
behavior is controlled by setting 'dhcp-service-type'.
Figure 11 shows the structure of the dynamic IPv4 address assignment
(i.e., by means of DHCP).
...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw local-address? inet:ipv4-address
| | +--rw prefix-length? uint8
| | +--rw address-allocation-type? identityref
| | +--rw (allocation-type)?
| | +--:(provider-dhcp)
| | | +--rw dhcp-service-type? enumeration
| | | +--rw (service-type)?
| | | +--:(relay)
| | | | +--rw server-ip-address*
| | | | inet:ipv4-address
| | | +--:(server)
| | | +--rw (address-assign)?
| | | +--:(number)
| | | | +--rw number-of-dynamic-address?
| | | | uint16
| | | +--:(explicit)
| | | +--rw customer-addresses
| | | +--rw address-pool* [pool-id]
| | | +--rw pool-id string
| | | +--rw start-address
| | | | inet:ipv4-address
| | | +--rw end-address?
| | | inet:ipv4-address
| | +--:(dhcp-relay)
| | | +--rw customer-dhcp-servers
| | | +--rw server-ip-address* inet:ipv4-address
| | +--:(static-addresses)
| | ...
...
Figure 11: IP Connection Subtree Structure (IPv4)
Figure 12 shows the structure of the dynamic IPv6 address assignment
(i.e., DHCPv6 and/or SLAAC). Note that if 'address-allocation-type'
is set to 'slaac', the Prefix Information option of Router
Advertisements that will be issued for SLAAC purposes will carry the
IPv6 prefix that is determined by 'local-address' and 'prefix-
length'. For example, if 'local-address' is set to '2001:db8:0:1::1'
and 'prefix-length' is set to '64', the IPv6 prefix that will be used
is '2001:db8:0:1::/64'.
...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | ...
| +--rw ipv6 {vpn-common:ipv6}?
| +--rw local-address? inet:ipv6-address
| +--rw prefix-length? uint8
| +--rw address-allocation-type? identityref
| +--rw (allocation-type)?
| +--:(provider-dhcp)
| | +--rw provider-dhcp
| | +--rw dhcp-service-type?
| | | enumeration
| | +--rw (service-type)?
| | +--:(relay)
| | | +--rw server-ip-address*
| | | inet:ipv6-address
| | +--:(server)
| | +--rw (address-assign)?
| | +--:(number)
| | | +--rw number-of-dynamic-address?
| | | uint16
| | +--:(explicit)
| | +--rw customer-addresses
| | +--rw address-pool* [pool-id]
| | +--rw pool-id string
| | +--rw start-address
| | | inet:ipv6-address
| | +--rw end-address?
| | inet:ipv6-address
| +--:(dhcp-relay)
| | +--rw customer-dhcp-servers
| | +--rw server-ip-address*
| | inet:ipv6-address
| +--:(static-addresses)
| ...
Figure 12: IP Connection Subtree Structure (IPv6)
In the case of static addressing (Figure 13), the model supports the
assignment of several IP addresses in the same 'vpn-network-access'.
To identify which of the addresses is the primary address of a
connection, the 'primary-address' reference MUST be set with the
corresponding 'address-id'.
...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw address-allocation-type? identityref
| | +--rw (allocation-type)?
| | ...
| | +--:(static-addresses)
| | +--rw primary-address? -> ../address/address-id
| | +--rw address* [address-id]
| | +--rw address-id string
| | +--rw customer-address? inet:ipv4-address
| +--rw ipv6 {vpn-common:ipv6}?
| +--rw address-allocation-type? identityref
| +--rw (allocation-type)?
| ...
| +--:(static-addresses)
| +--rw primary-address? -> ../address/address-id
| +--rw address* [address-id]
| +--rw address-id string
| +--rw customer-address? inet:ipv6-address
...
Figure 13: IP Connection Subtree Structure (Static Mode)
7.6.3. CE-PE Routing Protocols
A VPN service provider can configure one or more routing protocols
associated with a particular 'vpn-network-access'. Such routing
protocols are enabled between the PE and the CE. Each instance is
uniquely identified to accommodate scenarios where multiple instances
of the same routing protocol have to be configured on the same link.
The subtree of the 'routing-protocols' is shown in Figure 14.
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profiles* [id]
| | +--rw id leafref
| | +--rw type? identityref
| +--rw static
| | ...
| +--rw bgp
| | ...
| +--rw ospf
| | ...
| +--rw isis
| | ...
| +--rw rip
| | ...
| +--rw vrrp
| ...
+--rw security
...
Figure 14: Routing Subtree Structure
Multiple routing instances can be defined, each uniquely identified
by an 'id'. The type of routing instance is indicated in 'type'.
The values of these attributes are those defined in [RFC9181] (the
'routing-protocol-type' identity).
Configuring multiple instances of the same routing protocol does not
automatically imply that, from a device configuration perspective,
there will be parallel instances (e.g., multiple processes) running
on the PE-CE link. It is up to each implementation (typically,
network orchestration, as shown in Figure 1) to decide on the
appropriate configuration as a function of underlying capabilities
and service provider operational guidelines. As an example, when
multiple BGP peers need to be implemented, multiple instances of BGP
must be configured as part of this model. However, from a device
configuration point of view, this could be implemented as:
* Multiple BGP processes with a single neighbor running in each
process.
* A single BGP process with multiple neighbors running.
* A combination thereof.
Routing configuration does not include low-level policies. Such
policies are handled at the device configuration level. Local
policies of a service provider (e.g., filtering) are implemented as
part of the device configuration; these are not captured in the L3NM,
but the model allows local profiles to be associated with routing
instances ('routing-profiles'). Note that these routing profiles can
be scoped to capture parameters that are globally applied to all
L3VPN services within a service provider network, while customized
L3VPN parameters are captured by means of the L3NM. The provisioning
of an L3VPN service will thus rely upon the instantiation of these
global routing profiles and the customized L3NM.
7.6.3.1. Static Routing
The L3NM supports the configuration of one or more IPv4/IPv6 static
routes. Since the same structure is used for both IPv4 and IPv6,
using one single container to group both static entries independently
of their address family was considered at one time, but that design
was abandoned to ease the mapping, using the structure provided in
[RFC8299].
The static routing subtree structure is shown in Figure 15.
...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw static
| | +--rw cascaded-lan-prefixes
| | +--rw ipv4-lan-prefixes*
| | | [lan next-hop]
| | | {vpn-common:ipv4}?
| | | +--rw lan inet:ipv4-prefix
| | | +--rw lan-tag? string
| | | +--rw next-hop union
| | | +--rw bfd-enable? boolean
| | | +--rw metric? uint32
| | | +--rw preference? uint32
| | | +--rw status
| | | +--rw admin-status
| | | | +--rw status? identityref
| | | | +--rw last-change? yang:date-and-time
| | | +--ro oper-status
| | | +--ro status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--rw ipv6-lan-prefixes*
| | [lan next-hop]
| | {vpn-common:ipv6}?
| | +--rw lan inet:ipv6-prefix
| | +--rw lan-tag? string
| | +--rw next-hop union
| | +--rw bfd-enable? boolean
| | +--rw metric? uint32
| | +--rw preference? uint32
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...
Figure 15: Static Routing Subtree Structure
As depicted in Figure 15, the following data nodes can be defined for
a given IP prefix:
'lan-tag': Indicates a local tag (e.g., "myfavorite-lan") that is
used to enforce local policies.
'next-hop': Indicates the next hop to be used for the static route.
It can be identified by an IP address, a predefined next-hop type
(e.g., 'discard' or 'local-link'), etc.
'bfd-enable': Indicates whether BFD is enabled or disabled for this
static route entry.
'metric': Indicates the metric associated with the static route
entry. This metric is used when the route is exported into an
IGP.
'preference': Indicates the preference associated with the static
route entry. This preference is used to select a preferred route
among routes to the same destination prefix.
'status': Used to convey the status of a static route entry. This
data node can also be used to control the (de)activation of
individual static route entries.
7.6.3.2. BGP
The L3NM allows the configuration of a BGP neighbor, including a set
of parameters that are pertinent to be tweaked at the network level
for service customization purposes. The 'bgp' container does not aim
to include every BGP parameter; a comprehensive set of parameters
belongs more to the BGP device model.
The BGP routing subtree structure is shown in Figure 16.
...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw bgp
| | +--rw description? string
| | +--rw local-as? inet:as-number
| | +--rw peer-as inet:as-number
| | +--rw address-family? identityref
| | +--rw local-address? union
| | +--rw neighbor* inet:ip-address
| | +--rw multihop? uint8
| | +--rw as-override? boolean
| | +--rw allow-own-as? uint8
| | +--rw prepend-global-as? boolean
| | +--rw send-default-route? boolean
| | +--rw site-of-origin? rt-types:route-origin
| | +--rw ipv6-site-of-origin? rt-types:ipv6-route-origin
| | +--rw redistribute-connected* [address-family]
| | | +--rw address-family identityref
| | | +--rw enable? boolean
| | +--rw bgp-max-prefix
| | | +--rw max-prefix? uint32
| | | +--rw warning-threshold? decimal64
| | | +--rw violate-action? enumeration
| | | +--rw restart-timer? uint32
| | +--rw bgp-timers
| | | +--rw keepalive? uint16
| | | +--rw hold-time? uint16
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain? key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain? key-chain:key-chain-ref
| | | +--:(explicit)
| | | | +--rw key-id? uint32
| | | | +--rw key? string
| | | | +--rw crypto-algorithm? identityref
| | | +--:(ipsec)
| | | +--rw sa? string
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...
Figure 16: BGP Routing Subtree Structure
The following data nodes are captured in Figure 16. It is up to the
implementation (e.g., network orchestrator) to derive the
corresponding BGP device configuration:
'description': Includes a description of the BGP session.
'local-as': Indicates a local AS Number (ASN), if a distinct ASN is
required other than the ASN configured at the VPN node level.
'peer-as': Conveys the customer's ASN.
'address-family': Indicates the address family of the peer. It can
be set to 'ipv4', 'ipv6', or 'dual-stack'.
This address family will be used together with the 'vpn-type' to
derive the appropriate Address Family Identifiers (AFIs) /
Subsequent Address Family Identifiers (SAFIs) that will be part of
the derived device configurations (e.g., unicast IPv4 MPLS L3VPN
(AFI,SAFI = 1,128) as defined in Section 4.3.4 of [RFC4364]).
'local-address': Specifies an address or a reference to an interface
to use when establishing the BGP transport session.
'neighbor': Can indicate two neighbors (each for a given address
family) or one neighbor (if the 'address-family' attribute is set
to 'dual-stack'). A list of IP address(es) of the BGP neighbor(s)
can then be conveyed in this data node.
'multihop': Indicates the number of allowed IP hops between a PE and
its BGP peer.
'as-override': If set, this parameter indicates whether ASN override
is enabled, i.e., replacing the ASN of the customer specified in
the AS_PATH BGP attribute with the ASN identified in the 'local-
as' attribute.
'allow-own-as': Used in some topologies (e.g., hub-and-spoke) to
allow the provider's ASN to be included in the AS_PATH BGP
attribute received from a CE. Loops are prevented by setting
'allow-own-as' to a maximum number of the provider's ASN
occurrences. By default, this parameter is set to '0' (that is,
reject any AS_PATH attribute that includes the provider's ASN).
'prepend-global-as': When distinct ASNs are configured at the VPN
node and network access levels, this parameter controls whether
the ASN provided at the VPN node level is prepended to the AS_PATH
attribute.
'send-default-route': Controls whether default routes can be
advertised to the peer.
'site-of-origin': Meant to uniquely identify the set of routes
learned from a site via a particular CE-PE connection. It is used
to prevent routing loops (Section 7 of [RFC4364]). The Site of
Origin attribute is encoded as a Route Origin Extended Community.
'ipv6-site-of-origin': Carries an IPv6 Address Specific BGP Extended
Community that is used to indicate the Site of Origin for VRF
information [RFC5701]. It is used to prevent routing loops.
'redistribute-connected': Controls whether the PE-CE link is
advertised to other PEs.
'bgp-max-prefix': Controls the behavior when a prefix maximum is
reached.
'max-prefix': Indicates the maximum number of BGP prefixes
allowed in the BGP session. If the limit is reached, the
action indicated in 'violate-action' will be followed.
'warning-threshold': A warning notification is triggered when
this limit is reached.
'violate-action': Indicates which action to execute when the
maximum number of BGP prefixes is reached. Examples of such
actions include sending a warning message, discarding extra
paths from the peer, or restarting the session.
'restart-timer': Indicates, in seconds, the time interval after
which the BGP session will be reestablished.
'bgp-timers': Two timers can be captured in this container: (1)
'hold-time', which is the time interval that will be used for the
Hold Timer (Section 4.2 of [RFC4271]) when establishing a BGP
session and (2) 'keepalive', which is the time interval for the
KeepaliveTimer between a PE and a BGP peer (Section 4.4 of
[RFC4271]). Both timers are expressed in seconds.
'authentication': The module adheres to the recommendations in
Section 13.2 of [RFC4364], as it allows enabling the TCP
Authentication Option (TCP-AO) [RFC5925] and accommodates the
installed base that makes use of MD5. In addition, the module
includes a provision for using IPsec.
This version of the L3NM assumes that parameters specific to the
TCP-AO are preconfigured as part of the key chain that is
referenced in the L3NM. No assumption is made about how such a
key chain is preconfigured. However, the structure of the key
chain should cover data nodes beyond those in [RFC8177], mainly
SendID and RecvID (Section 3.1 of [RFC5925]).
'status': Indicates the status of the BGP routing instance.
7.6.3.3. OSPF
OSPF can be configured to run as a routing protocol on the 'vpn-
network-access'.
The OSPF routing subtree structure is shown in Figure 17.
...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw ospf
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw sham-links {vpn-common:rtg-ospf-sham-link}?
| | | +--rw sham-link* [target-site]
| | | +--rw target-site string
| | | +--rw metric? uint16
| | +--rw max-lsa? uint32
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | | +--rw key-id? uint32
| | | | +--rw key? string
| | | | +--rw crypto-algorithm?
| | | | identityref
| | | +--:(ipsec)
| | | +--rw sa? string
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...
Figure 17: OSPF Routing Subtree Structure
The following data nodes are captured in Figure 17:
'address-family': Indicates whether IPv4, IPv6, or both address
families are to be activated.
When the IPv4 or dual-stack address family is requested, it is up
to the implementation (e.g., network orchestrator) to decide
whether OSPFv2 [RFC4577] or OSPFv3 [RFC6565] is used to announce
IPv4 routes. Such a decision will typically be reflected in the
device configurations that will be derived to implement the L3VPN.
'area-id': Indicates the OSPF Area ID.
'metric': Associates a metric with OSPF routes.
'sham-links': Used to create OSPF sham links between two VPN network
accesses sharing the same area and having a backdoor link
(Section 4.2.7 of [RFC4577] and Section 5 of [RFC6565]).
'max-lsa': Sets the maximum number of Link State Advertisements
(LSAs) that the OSPF instance will accept.
'authentication': Controls the authentication schemes to be enabled
for the OSPF instance. The following options are supported: IPsec
for OSPFv3 authentication [RFC4552], and the Authentication
Trailer for OSPFv2 [RFC5709] [RFC7474] and OSPFv3 [RFC7166].
'status': Indicates the status of the OSPF routing instance.
7.6.3.4. IS-IS
The model allows the user to configure IS-IS [ISO10589] [RFC1195]
[RFC5308] to run on the 'vpn-network-access' interface. See
Figure 18.
...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw isis
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw level? identityref
| | +--rw metric? uint16
| | +--rw mode? enumeration
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...
Figure 18: IS-IS Routing Subtree Structure
The following IS-IS data nodes are supported:
'address-family': Indicates whether IPv4, IPv6, or both address
families are to be activated.
'area-address': Indicates the IS-IS area address.
'level': Indicates the IS-IS level: Level 1, Level 2, or both.
'metric': Associates a metric with IS-IS routes.
'mode': Indicates the IS-IS interface mode type. It can be set to
'active' (that is, send or receive IS-IS protocol control packets)
or 'passive' (that is, suppress the sending of IS-IS updates
through the interface).
'authentication': Controls the authentication schemes to be enabled
for the IS-IS instance. Both the specification of a key chain
[RFC8177] and the direct specification of key and authentication
algorithms are supported.
'status': Indicates the status of the IS-IS routing instance.
7.6.3.5. RIP
The model allows the user to configure RIP to run on the 'vpn-
network-access' interface. See Figure 19.
...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw rip
| | +--rw address-family? identityref
| | +--rw timers
| | | +--rw update-interval? uint16
| | | +--rw invalid-interval? uint16
| | | +--rw holddown-interval? uint16
| | | +--rw flush-interval? uint16
| | +--rw default-metric? uint8
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...
Figure 19: RIP Subtree Structure
As shown in Figure 19, the following RIP data nodes are supported:
'address-family': Indicates whether IPv4, IPv6, or both address
families are to be activated. This parameter is used to determine
whether RIPv2 [RFC2453], RIP Next Generation (RIPng), or both are
to be enabled [RFC2080].
'timers': Indicates the following timers:
'update-interval': The interval at which RIP updates are sent.
'invalid-interval': The interval before a RIP route is declared
invalid.
'holddown-interval': The interval before better RIP routes are
released.
'flush-interval': The interval before a route is removed from the
routing table.
These timers are expressed in seconds.
'default-metric': Sets the default RIP metric.
'authentication': Controls the authentication schemes to be enabled
for the RIP instance.
'status': Indicates the status of the RIP routing instance.
7.6.3.6. VRRP
The model allows enabling the Virtual Router Redundancy Protocol
(VRRP) on the 'vpn-network-access' interface. See Figure 20.
...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw vrrp
| +--rw address-family* identityref
| +--rw vrrp-group? uint8
| +--rw backup-peer? inet:ip-address
| +--rw virtual-ip-address* inet:ip-address
| +--rw priority? uint8
| +--rw ping-reply? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
...
Figure 20: VRRP Subtree Structure
The following data nodes are supported:
'address-family': Indicates whether IPv4, IPv6, or both address
families are to be activated. Note that VRRP version 3 [RFC5798]
supports both IPv4 and IPv6.
'vrrp-group': Used to identify the VRRP group.
'backup-peer': Carries the IP address of the peer.
'virtual-ip-address': Includes virtual IP addresses for a single
VRRP group.
'priority': Assigns the VRRP election priority for the backup
virtual router.
'ping-reply': Controls whether the VRRP speaker should reply to ping
requests.
'status': Indicates the status of the VRRP instance.
Note that no authentication data node is included for VRRP, as there
isn't any type of VRRP authentication at this time (see Section 9 of
[RFC5798]).
7.6.4. OAM
This container (Figure 21) defines the Operations, Administration,
and Maintenance (OAM) mechanisms used for a VPN network access. In
the current version of the L3NM, only BFD is supported.
...
+--rw oam
| +--rw bfd {vpn-common:bfd}?
| +--rw session-type? identityref
| +--rw desired-min-tx-interval? uint32
| +--rw required-min-rx-interval? uint32
| +--rw local-multiplier? uint8
| +--rw holdtime? uint32
| +--rw profile? leafref
| +--rw authentication!
| | +--rw key-chain? key-chain:key-chain-ref
| | +--rw meticulous? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
...
Figure 21: IP Connection Subtree Structure (OAM)
The following OAM data nodes can be specified:
'session-type': Indicates which BFD flavor is used to set up the
session (e.g., classic BFD [RFC5880], Seamless BFD [RFC7880]). By
default, it is assumed that the BFD session will follow the
behavior specified in [RFC5880].
'desired-min-tx-interval': The minimum interval, in microseconds,
that a PE would like to use when transmitting BFD Control packets,
less any jitter applied.
'required-min-rx-interval': The minimum interval, in microseconds,
between received BFD Control packets that a PE is capable of
supporting, less any jitter applied by the sender.
'local-multiplier': The negotiated transmit interval, multiplied by
this value, provides the detection time for the peer.
'holdtime': Used to indicate the expected BFD holddown time, in
milliseconds. This value may be inherited from the service
request (see Section 6.3.2.2.2 of [RFC8299]).
'profile': Refers to a BFD profile (Section 7.2). Such a profile
can be set by the provider or inherited from the service request
(see Section 6.3.2.2.2 of [RFC8299]).
'authentication': Includes the required information to enable the
BFD authentication modes discussed in Section 6.7 of [RFC5880].
In particular, 'meticulous' controls the activation of meticulous
mode as discussed in Sections 6.7.3 and 6.7.4 of [RFC5880].
'status': Indicates the status of BFD.
7.6.5. Security
The 'security' container specifies the authentication and the
encryption to be applied to traffic for a given VPN network access.
As depicted in the subtree shown in Figure 22, the L3NM can be used
to directly control the encryption to be applied (e.g., Layer 2 or
Layer 3 encryption) or invoke a local encryption profile.
...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw security
| +--rw encryption {vpn-common:encryption}?
| | +--rw enabled? boolean
| | +--rw layer? enumeration
| +--rw encryption-profile
| +--rw (profile)?
| +--:(provider-profile)
| | +--rw profile-name? leafref
| +--:(customer-profile)
| +--rw customer-key-chain?
| key-chain:key-chain-ref
+--rw service
...
Figure 22: Security Subtree Structure
7.6.6. Services
7.6.6.1. Overview
The 'service' container specifies the service parameters to apply for
a given VPN network access (Figure 23).
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw service
+--rw pe-to-ce-bandwidth? uint64 {vpn-common:inbound-bw}?
+--rw ce-to-pe-bandwidth? uint64 {vpn-common:outbound-bw}?
+--rw mtu? uint32
+--rw qos {vpn-common:qos}?
| ...
+--rw carriers-carrier
| {vpn-common:carriers-carrier}?
| +--rw signaling-type? enumeration
+--rw ntp
| +--rw broadcast? enumeration
| +--rw auth-profile
| | +--rw profile-id? string
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw multicast {vpn-common:multicast}?
...
Figure 23: Services Subtree Structure
The following data nodes are defined:
'pe-to-ce-bandwidth': Indicates, in bits per second (bps), the
inbound bandwidth of the connection (i.e., the download bandwidth
from the service provider to the site).
'ce-to-pe-bandwidth': Indicates, in bps, the outbound bandwidth of
the connection (i.e., the upload bandwidth from the site to the
service provider).
'mtu': Indicates the MTU at the service level.
'qos': Used to define a set of QoS policies to apply on a given
connection (refer to Section 7.6.6.2 for more details).
'carriers-carrier': Groups a set of parameters that are used when
Carriers' Carriers (CsC) is enabled, such as using BGP for
signaling purposes [RFC8277].
'ntp': Time synchronization may be needed in some VPNs, such as
infrastructure and management VPNs. This container is used to
enable the NTP service [RFC5905].
'multicast': Specifies the multicast mode and other data nodes, such
as the address family. Refer to Section 7.7.
7.6.6.2. QoS
The 'qos' container is used to define a set of QoS policies to apply
on a given connection (Figure 24). A QoS policy may be a
classification or an action policy. For example, a QoS action can be
defined to rate-limit inbound/outbound traffic of a given class of
service.
...
+--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | +--:(ipv4)
| | | | | | ...
| | | | | +--:(ipv6)
| | | | | ...
| | | | +--rw (l4)?
| | | | +--:(tcp)
| | | | | ...
| | | | +--:(udp)
| | | | ...
| | | +--:(match-application)
| | | +--rw match-application?
| | | identityref
| | +--rw target-class-id? string
| +--rw qos-action
| | +--rw rule* [id]
| | +--rw id string
| | +--rw target-class-id? string
| | +--rw inbound-rate-limit? decimal64
| | +--rw outbound-rate-limit? decimal64
| +--rw qos-profile
| +--rw qos-profile* [profile]
| +--rw profile leafref
| +--rw direction? identityref
...
Figure 24: Overall QoS Subtree Structure
QoS classification can be based on many criteria, such as the
following:
Layer 3: As shown in Figure 25, classification can be based on any
IP header field or a combination thereof. Both IPv4 and IPv6 are
supported.
+--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | +--:(ipv4)
| | | | | | +--rw ipv4
| | | | | | +--rw dscp? inet:dscp
| | | | | | +--rw ecn? uint8
| | | | | | +--rw length? uint16
| | | | | | +--rw ttl? uint8
| | | | | | +--rw protocol? uint8
| | | | | | +--rw ihl? uint8
| | | | | | +--rw flags? bits
| | | | | | +--rw offset? uint16
| | | | | | +--rw identification? uint16
| | | | | | +--rw (destination-network)?
| | | | | | | +--:(destination-ipv4-network)
| | | | | | | +--rw destination-ipv4-network?
| | | | | | | inet:ipv4-prefix
| | | | | | +--rw (source-network)?
| | | | | | +--:(source-ipv4-network)
| | | | | | +--rw source-ipv4-network?
| | | | | | inet:ipv4-prefix
| | | | | +--:(ipv6)
| | | | | +--rw ipv6
| | | | | +--rw dscp? inet:dscp
| | | | | +--rw ecn? uint8
| | | | | +--rw length? uint16
| | | | | +--rw ttl? uint8
| | | | | +--rw protocol? uint8
| | | | | +--rw (destination-network)?
| | | | | | +--:(destination-ipv6-network)
| | | | | | +--rw destination-ipv6-network?
| | | | | | inet:ipv6-prefix
| | | | | +--rw (source-network)?
| | | | | | +--:(source-ipv6-network)
| | | | | | +--rw source-ipv6-network?
| | | | | | inet:ipv6-prefix
| | | | | +--rw flow-label?
| | | | | inet:ipv6-flow-label
...
Figure 25: QoS Subtree Structure (L3)
Layer 4: As discussed in [RFC9181], any Layer 4 protocol can be
indicated in the 'protocol' data node under 'l3' (Figure 25), but
only TCP- and UDP-specific match criteria are elaborated in this
version, as these protocols are widely used in the context of VPN
services. Augmentations can be considered in the future to add
other Layer-4-specific data nodes, if needed.
TCP- or UDP-related match criteria can be specified in the L3NM,
as shown in Figure 26.
As discussed in [RFC9181], some transport protocols use existing
protocols (e.g., TCP or UDP) as the substrate. The match criteria
for such protocols may rely upon the 'protocol' setting under
'l3', TCP/UDP match criteria as shown in Figure 26, part of the
TCP/UDP payload, or a combination thereof. This version of the
module does not support such advanced match criteria. Future
revisions of the VPN common module or augmentations to the L3NM
may consider adding match criteria based on the transport protocol
payload (e.g., by means of a bitmask match).
+--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | ...
| | | | +--rw (l4)?
| | | | +--:(tcp)
| | | | | +--rw tcp
| | | | | +--rw sequence-number? uint32
| | | | | +--rw acknowledgement-number? uint32
| | | | | +--rw data-offset? uint8
| | | | | +--rw reserved? uint8
| | | | | +--rw flags? bits
| | | | | +--rw window-size? uint16
| | | | | +--rw urgent-pointer? uint16
| | | | | +--rw options? binary
| | | | | +--rw (source-port)?
| | | | | | +--:(source-port-range-or-operator)
| | | | | | +--rw source-port-range-or-operator
| | | | | | +--rw (port-range-or-operator)?
| | | | | | +--:(range)
| | | | | | | +--rw lower-port
| | | | | | | | inet:port-number
| | | | | | | +--rw upper-port
| | | | | | | inet:port-number
| | | | | | +--:(operator)
| | | | | | +--rw operator? operator
| | | | | | +--rw port
| | | | | | inet:port-number
| | | | | +--rw (destination-port)?
| | | | | +--:(destination-port-range-or-operator)
| | | | | +--rw destination-port-range-or-operator
| | | | | +--rw (port-range-or-operator)?
| | | | | +--:(range)
| | | | | | +--rw lower-port
| | | | | | | inet:port-number
| | | | | | +--rw upper-port
| | | | | | inet:port-number
| | | | | +--:(operator)
| | | | | +--rw operator? operator
| | | | | +--rw port
| | | | | inet:port-number
| | | | +--:(udp)
| | | | +--rw udp
| | | | +--rw length? uint16
| | | | +--rw (source-port)?
| | | | | +--:(source-port-range-or-operator)
| | | | | +--rw source-port-range-or-operator
| | | | | +--rw (port-range-or-operator)?
| | | | | +--:(range)
| | | | | | +--rw lower-port
| | | | | | | inet:port-number
| | | | | | +--rw upper-port
| | | | | | inet:port-number
| | | | | +--:(operator)
| | | | | +--rw operator? operator
| | | | | +--rw port
| | | | | inet:port-number
| | | | +--rw (destination-port)?
| | | | +--:(destination-port-range-or-operator)
| | | | +--rw destination-port-range-or-operator
| | | | +--rw (port-range-or-operator)?
| | | | +--:(range)
| | | | | +--rw lower-port
| | | | | | inet:port-number
| | | | | +--rw upper-port
| | | | | inet:port-number
| | | | +--:(operator)
| | | | +--rw operator? operator
| | | | +--rw port
| | | | inet:port-number
...
Figure 26: QoS Subtree Structure (L4)
Application match: Relies upon application-specific classification
(Figure 24).
7.7. Multicast
Multicast may be enabled for a particular VPN at the VPN node and VPN
network access levels (see Figure 27). Some data nodes (e.g., max-
groups (Figure 28)) can be controlled at various levels: VPN service,
VPN node level, or VPN network access.
...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-instance-profiles
| +--rw vpn-instance-profile* [profile-id]
| ....
| +--rw multicast {vpn-common:multicast}?
| ...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw active-vpn-instance-profiles
| +--rw vpn-instance-profile* [profile-id]
| ...
| +--rw multicast {vpn-common:multicast}?
| ...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw service
...
+--rw multicast {vpn-common:multicast}?
...
Figure 27: Overall Multicast Subtree Structure
Multicast-related data nodes at the VPN instance profile level have
the structure shown in Figure 28.
...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-instance-profiles
| +--rw vpn-instance-profile* [profile-id]
| ....
| +--rw multicast {vpn-common:multicast}?
| +--rw tree-flavor? identityref
| +--rw rp
| | +--rw rp-group-mappings
| | | +--rw rp-group-mapping* [id]
| | | +--rw id uint16
| | | +--rw provider-managed
| | | | +--rw enabled? boolean
| | | | +--rw rp-redundancy? boolean
| | | | +--rw optimal-traffic-delivery? boolean
| | | | +--rw anycast
| | | | +--rw local-address? inet:ip-address
| | | | +--rw rp-set-address* inet:ip-address
| | | +--rw rp-address inet:ip-address
| | | +--rw groups
| | | +--rw group* [id]
| | | +--rw id uint16
| | | +--rw (group-format)
| | | +--:(group-prefix)
| | | | +--rw group-address?
| | | | inet:ip-prefix
| | | +--:(startend)
| | | +--rw group-start?
| | | | inet:ip-address
| | | +--rw group-end?
| | | | inet:ip-address
| | +--rw rp-discovery
| | +--rw rp-discovery-type? identityref
| | +--rw bsr-candidates
| | +--rw bsr-candidate-address*
| | | inet:ip-address
| +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?
| | +--rw static-group* [group-addr]
| | | +--rw group-addr
| | | | rt-types:ipv4-multicast-group-address
| | | +--rw source-addr?
| | | rt-types:ipv4-multicast-source-address
| | +--rw max-groups? uint32
| | +--rw max-entries? uint32
| | +--rw version? identityref
| +--rw mld {vpn-common:mld and vpn-common:ipv6}?
| | +--rw static-group* [group-addr]
| | | +--rw group-addr
| | | | rt-types:ipv6-multicast-group-address
| | | +--rw source-addr?
| | | rt-types:ipv6-multicast-source-address
| | +--rw max-groups? uint32
| | +--rw max-entries? uint32
| | +--rw version? identityref
| +--rw pim {vpn-common:pim}?
| +--rw hello-interval?
| | rt-types:timer-value-seconds16
| +--rw dr-priority? uint32
...
Figure 28: Multicast Subtree Structure (VPN Instance Profile Level)
The model supports a single type of tree per VPN access ('tree-
flavor'): Any-Source Multicast (ASM), Source-Specific Multicast
(SSM), or bidirectional.
When ASM is used, the model supports the configuration of Rendezvous
Points (RPs). RP discovery may be 'static', 'bsr-rp', or 'auto-rp'.
When set to 'static', RP-to-multicast-group mappings MUST be
configured as part of the 'rp-group-mappings' container. The RP MAY
be a provider node or a customer node. When the RP is a customer
node, the RP address must be configured using the 'rp-address' leaf.
The model supports RP redundancy through the 'rp-redundancy' leaf.
How the redundancy is achieved is out of scope.
When a particular VPN using ASM requires traffic delivery that is
more optimal (e.g., requested per the guidance in [RFC8299]),
'optimal-traffic-delivery' can be set. When set to 'true', the
implementation must use any mechanism to provide traffic delivery
that is more optimal for the customer. For example, anycast is one
of the mechanisms for enhancing RP redundancy, providing resilience
against failures, and recovering from failures quickly.
When configuring multicast-related parameters at the VPN node level
(Figure 29), the same structure as the structure depicted in
Figure 30 is used. When defined at the VPN node level, Internet
Group Management Protocol (IGMP) parameters [RFC1112] [RFC2236]
[RFC3376], Multicast Listener Discovery (MLD) parameters [RFC2710]
[RFC3810], and Protocol Independent Multicast (PIM) parameters
[RFC7761] are applicable to all VPN network accesses of that VPN node
unless corresponding nodes are overridden at the VPN network access
level.
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw active-vpn-instance-profiles
| +--rw vpn-instance-profile* [profile-id]
| ...
| +--rw multicast {vpn-common:multicast}?
| +--rw tree-flavor* identityref
| +--rw rp
| | ...
| +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?
| | ...
| +--rw mld {vpn-common:mld and vpn-common:ipv6}?
| | ...
| +--rw pim {vpn-common:pim}?
| ...
Figure 29: Multicast Subtree Structure (VPN Node Level)
Multicast-related data nodes at the VPN network access level are
shown in Figure 30. The values configured at the VPN network access
level override the values configured for the corresponding data nodes
at other levels.
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw service
...
+--rw multicast {vpn-common:multicast}?
+--rw access-type? enumeration
+--rw address-family? identityref
+--rw protocol-type? enumeration
+--rw remote-source? boolean
+--rw igmp {vpn-common:igmp}?
| +--rw static-group* [group-addr]
| | +--rw group-addr
| | rt-types:ipv4-multicast-group-address
| | +--rw source-addr?
| | rt-types:ipv4-multicast-source-address
| +--rw max-groups? uint32
| +--rw max-entries? uint32
| +--rw max-group-sources? uint32
| +--rw version? identityref
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw mld {vpn-common:mld}?
| +--rw static-group* [group-addr]
| | +--rw group-addr
| | rt-types:ipv6-multicast-group-address
| | +--rw source-addr?
| | rt-types:ipv6-multicast-source-address
| +--rw max-groups? uint32
| +--rw max-entries? uint32
| +--rw max-group-sources? uint32
| +--rw version? identityref
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw pim {vpn-common:pim}?
+--rw hello-interval? rt-types:timer-value-seconds16
+--rw dr-priority? uint32
+--rw status
+--rw admin-status
| +--rw status? identityref
| +--rw last-change? yang:date-and-time
+--ro oper-status
+--ro status? identityref
+--ro last-change? yang:date-and-time
Figure 30: Multicast Subtree Structure (VPN Network Access Level)
8. L3NM YANG Module
This module uses types defined in [RFC6991], [RFC8343], and
[RFC9181]. It also uses groupings defined in [RFC8519], [RFC8177],
and [RFC8294].
<CODE BEGINS> file "ietf-l3vpn-ntw@2022-02-14.yang"
module ietf-l3vpn-ntw {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw";
prefix l3nm;
import ietf-vpn-common {
prefix vpn-common;
reference
"RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3
VPNs";
}
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types, Section 4";
}
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types, Section 3";
}
import ietf-key-chain {
prefix key-chain;
reference
"RFC 8177: YANG Data Model for Key Chains";
}
import ietf-routing-types {
prefix rt-types;
reference
"RFC 8294: Common YANG Data Types for the Routing Area";
}
import ietf-interfaces {
prefix if;
reference
"RFC 8343: A YANG Data Model for Interface Management";
}
organization
"IETF OPSAWG (Operations and Management Area Working Group)";
contact
"WG Web: <https://datatracker.ietf.org/wg/opsawg/>
WG List: <mailto:opsawg@ietf.org>
Author: Samier Barguil
<mailto:samier.barguilgiraldo.ext@telefonica.com>
Editor: Oscar Gonzalez de Dios
<mailto:oscar.gonzalezdedios@telefonica.com>
Editor: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>
Author: Luis Angel Munoz
<mailto:luis-angel.munoz@vodafone.com>
Author: Alejandro Aguado
<mailto:alejandro.aguado_martin@nokia.com>";
description
"This YANG module defines a generic network-oriented model
for the configuration of Layer 3 Virtual Private Networks.
Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9182; see the
RFC itself for full legal notices.";
revision 2022-02-14 {
description
"Initial revision.";
reference
"RFC 9182: A YANG Network Data Model for Layer 3 VPNs";
}
/* Features */
feature msdp {
description
"This feature indicates that Multicast Source Discovery
Protocol (MSDP) capabilities are supported by the VPN.";
reference
"RFC 3618: Multicast Source Discovery Protocol (MSDP)";
}
/* Identities */
identity address-allocation-type {
description
"Base identity for address allocation type in the
Provider Edge to Customer Edge (PE-CE) link.";
}
identity provider-dhcp {
base address-allocation-type;
description
"The provider's network provides a DHCP service to the
customer.";
}
identity provider-dhcp-relay {
base address-allocation-type;
description
"The provider's network provides a DHCP relay service to the
customer.";
}
identity provider-dhcp-slaac {
if-feature "vpn-common:ipv6";
base address-allocation-type;
description
"The provider's network provides a DHCP service to the
customer as well as IPv6 Stateless Address
Autoconfiguration (SLAAC).";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
identity static-address {
base address-allocation-type;
description
"The provider's network provides static IP addressing to the
customer.";
}
identity slaac {
if-feature "vpn-common:ipv6";
base address-allocation-type;
description
"The provider's network uses IPv6 SLAAC to provide
addressing to the customer.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
identity local-defined-next-hop {
description
"Base identity of local defined next hops.";
}
identity discard {
base local-defined-next-hop;
description
"Indicates an action to discard traffic for the
corresponding destination.
For example, this can be used to black-hole traffic.";
}
identity local-link {
base local-defined-next-hop;
description
"Treat traffic towards addresses within the specified
next-hop prefix as though they are connected to a local
link.";
}
identity l2-tunnel-type {
description
"Base identity for Layer 2 tunnel selection under the VPN
network access.";
}
identity pseudowire {
base l2-tunnel-type;
description
"Pseudowire tunnel termination in the VPN network access.";
}
identity vpls {
base l2-tunnel-type;
description
"Virtual Private LAN Service (VPLS) tunnel termination in
the VPN network access.";
}
identity vxlan {
base l2-tunnel-type;
description
"Virtual eXtensible Local Area Network (VXLAN) tunnel
termination in the VPN network access.";
}
/* Typedefs */
typedef predefined-next-hop {
type identityref {
base local-defined-next-hop;
}
description
"Predefined next-hop designation for locally generated
routes.";
}
typedef area-address {
type string {
pattern '[0-9A-Fa-f]{2}(\.[0-9A-Fa-f]{4}){0,6}';
}
description
"This type defines the area address format.";
}
/* Groupings */
grouping vpn-instance-profile {
description
"Grouping for data nodes that may be factorized
among many levels of the model. The grouping can
be used to define generic profiles at the VPN service
level and then referenced at the VPN node and VPN
network access levels.";
leaf local-as {
if-feature "vpn-common:rtg-bgp";
type inet:as-number;
description
"Provider's Autonomous System (AS) number. Used if the
customer requests BGP routing.";
}
uses vpn-common:route-distinguisher;
list address-family {
key "address-family";
description
"Set of parameters per address family.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates the address family (IPv4 and/or IPv6).";
}
container vpn-targets {
description
"Set of route targets to match for import and export
routes to/from VRF.";
uses vpn-common:vpn-route-targets;
}
list maximum-routes {
key "protocol";
description
"Defines the maximum number of routes for VRF.";
leaf protocol {
type identityref {
base vpn-common:routing-protocol-type;
}
description
"Indicates the routing protocol. A value of 'any'
can be used to identify a limit that will apply for
each active routing protocol.";
}
leaf maximum-routes {
type uint32;
description
"Indicates the maximum number of prefixes that VRF can
accept for this address family and protocol.";
}
}
}
container multicast {
if-feature "vpn-common:multicast";
description
"Global multicast parameters.";
leaf tree-flavor {
type identityref {
base vpn-common:multicast-tree-type;
}
description
"Type of the multicast tree to be used.";
}
container rp {
description
"Rendezvous Point (RP) parameters.";
container rp-group-mappings {
description
"RP-to-group mapping parameters.";
list rp-group-mapping {
key "id";
description
"List of RP-to-group mappings.";
leaf id {
type uint16;
description
"Unique identifier for the mapping.";
}
container provider-managed {
description
"Parameters for a provider-managed RP.";
leaf enabled {
type boolean;
default "false";
description
"Set to 'true' if the RP must be a
provider-managed node. Set to 'false' if it is
a customer-managed node.";
}
leaf rp-redundancy {
type boolean;
default "false";
description
"If set to 'true', it indicates that a
redundancy mechanism for the RP is required.";
}
leaf optimal-traffic-delivery {
type boolean;
default "false";
description
"If set to 'true', the service provider (SP)
must ensure that the traffic uses an optimal
path. An SP may use Anycast RP or
RP-tree-to-SPT ('SPT' is 'shortest path tree')
switchover architectures.";
}
container anycast {
when "../rp-redundancy = 'true' and
../optimal-traffic-delivery = 'true'" {
description
"Only applicable if both RP redundancy and
delivery through an optimal path are
activated.";
}
description
"PIM Anycast-RP parameters.";
leaf local-address {
type inet:ip-address;
description
"IP local address for the PIM RP. Usually
corresponds to the Router ID or the
primary address.";
}
leaf-list rp-set-address {
type inet:ip-address;
description
"Specifies the IP address of other RP routers
that share the same RP IP address.";
}
}
}
leaf rp-address {
when "../provider-managed/enabled = 'false'" {
description
"Relevant when the RP is not managed by the
provider.";
}
type inet:ip-address;
mandatory true;
description
"Defines the address of the RP.
Used if the RP is managed by the customer.";
}
container groups {
description
"Multicast groups associated with the RP.";
list group {
key "id";
description
"List of multicast groups.";
leaf id {
type uint16;
description
"Identifier for the group.";
}
choice group-format {
mandatory true;
description
"Choice for multicast group format.";
case group-prefix {
leaf group-address {
type inet:ip-prefix;
description
"A single multicast group prefix.";
}
}
case startend {
leaf group-start {
type inet:ip-address;
description
"The first multicast group address in
the multicast group address range.";
}
leaf group-end {
type inet:ip-address;
description
"The last multicast group address in
the multicast group address range.";
}
}
}
}
}
}
}
container rp-discovery {
description
"RP discovery parameters.";
leaf rp-discovery-type {
type identityref {
base vpn-common:multicast-rp-discovery-type;
}
default "vpn-common:static-rp";
description
"Type of RP discovery used.";
}
container bsr-candidates {
when "derived-from-or-self(../rp-discovery-type, "
+ "'vpn-common:bsr-rp')" {
description
"Only applicable if the discovery type
is 'bsr-rp'.";
}
description
"Container for the customer Bootstrap Router (BSR)
candidate's addresses.";
leaf-list bsr-candidate-address {
type inet:ip-address;
description
"Specifies the address of the candidate BSR.";
}
}
}
}
container igmp {
if-feature "vpn-common:igmp and vpn-common:ipv4";
description
"Includes IGMP-related parameters.";
list static-group {
key "group-addr";
description
"Multicast static source/group associated with the
IGMP session.";
leaf group-addr {
type rt-types:ipv4-multicast-group-address;
description
"Multicast group IPv4 address.";
}
leaf source-addr {
type rt-types:ipv4-multicast-source-address;
description
"Multicast source IPv4 address.";
}
}
leaf max-groups {
type uint32;
description
"Indicates the maximum number of groups.";
}
leaf max-entries {
type uint32;
description
"Indicates the maximum number of IGMP entries.";
}
leaf version {
type identityref {
base vpn-common:igmp-version;
}
default "vpn-common:igmpv2";
description
"Indicates the IGMP version.";
reference
"RFC 1112: Host Extensions for IP Multicasting
RFC 2236: Internet Group Management Protocol,
Version 2
RFC 3376: Internet Group Management Protocol,
Version 3";
}
}
container mld {
if-feature "vpn-common:mld and vpn-common:ipv6";
description
"Includes MLD-related parameters.";
list static-group {
key "group-addr";
description
"Multicast static source/group associated with the
MLD session.";
leaf group-addr {
type rt-types:ipv6-multicast-group-address;
description
"Multicast group IPv6 address.";
}
leaf source-addr {
type rt-types:ipv6-multicast-source-address;
description
"Multicast source IPv6 address.";
}
}
leaf max-groups {
type uint32;
description
"Indicates the maximum number of groups.";
}
leaf max-entries {
type uint32;
description
"Indicates the maximum number of MLD entries.";
}
leaf version {
type identityref {
base vpn-common:mld-version;
}
default "vpn-common:mldv2";
description
"Indicates the MLD protocol version.";
reference
"RFC 2710: Multicast Listener Discovery (MLD) for IPv6
RFC 3810: Multicast Listener Discovery Version 2
(MLDv2) for IPv6";
}
}
container pim {
if-feature "vpn-common:pim";
description
"Only applies when the protocol type is 'pim'.";
leaf hello-interval {
type rt-types:timer-value-seconds16;
default "30";
description
"Interval between PIM Hello messages. If set to
'infinity' or 'not-set', no periodic Hello messages
are sent.";
reference
"RFC 7761: Protocol Independent Multicast - Sparse
Mode (PIM-SM): Protocol Specification
(Revised), Section 4.11
RFC 8294: Common YANG Data Types for the Routing
Area";
}
leaf dr-priority {
type uint32;
default "1";
description
"Indicates the preference associated with the
Designated Router (DR) election process. A larger
value has a higher priority over a smaller value.";
reference
"RFC 7761: Protocol Independent Multicast - Sparse
Mode (PIM-SM): Protocol Specification
(Revised), Section 4.3.2";
}
}
}
}
/* Main Blocks */
/* Main l3vpn-ntw */
container l3vpn-ntw {
description
"Main container for management of Layer 3 Virtual Private
Network (L3VPN) services.";
container vpn-profiles {
description
"Contains a set of valid VPN profiles to reference
in the VPN service.";
uses vpn-common:vpn-profile-cfg;
}
container vpn-services {
description
"Container for the VPN services.";
list vpn-service {
key "vpn-id";
description
"List of VPN services.";
uses vpn-common:vpn-description;
leaf parent-service-id {
type vpn-common:vpn-id;
description
"Pointer to the parent service, if any.
A parent service can be an L3SM, a slice request,
a VPN+ service, etc.";
}
leaf vpn-type {
type identityref {
base vpn-common:service-type;
}
description
"Indicates the service type.";
}
leaf vpn-service-topology {
type identityref {
base vpn-common:vpn-topology;
}
default "vpn-common:any-to-any";
description
"VPN service topology.";
}
uses vpn-common:service-status;
container vpn-instance-profiles {
description
"Container for a list of VPN instance profiles.";
list vpn-instance-profile {
key "profile-id";
description
"List of VPN instance profiles.";
leaf profile-id {
type string;
description
"VPN instance profile identifier.";
}
leaf role {
type identityref {
base vpn-common:role;
}
default "vpn-common:any-to-any-role";
description
"Role of the VPN node in the VPN.";
}
uses vpn-instance-profile;
}
}
container underlay-transport {
description
"Container for the underlay transport.";
uses vpn-common:underlay-transport;
}
container external-connectivity {
if-feature "vpn-common:external-connectivity";
description
"Container for external connectivity.";
choice profile {
description
"Choice for the external connectivity profile.";
case profile {
leaf profile-name {
type leafref {
path "/l3vpn-ntw/vpn-profiles"
+ "/valid-provider-identifiers"
+ "/external-connectivity-identifier/id";
}
description
"Name of the service provider's profile to be
applied at the VPN service level.";
}
}
}
}
container vpn-nodes {
description
"Container for VPN nodes.";
list vpn-node {
key "vpn-node-id";
description
"Includes a list of VPN nodes.";
leaf vpn-node-id {
type vpn-common:vpn-id;
description
"An identifier of the VPN node.";
}
leaf description {
type string;
description
"Textual description of the VPN node.";
}
leaf ne-id {
type string;
description
"Unique identifier of the network element where
the VPN node is deployed.";
}
leaf local-as {
if-feature "vpn-common:rtg-bgp";
type inet:as-number;
description
"Provider's AS number. Used if the customer
requests BGP routing.";
}
leaf router-id {
type rt-types:router-id;
description
"A 32-bit number in the dotted-quad format that is
used to uniquely identify a node within an AS.
This identifier is used for both IPv4 and IPv6.";
}
container active-vpn-instance-profiles {
description
"Container for active VPN instance profiles.";
list vpn-instance-profile {
key "profile-id";
description
"Includes a list of active VPN instance
profiles.";
leaf profile-id {
type leafref {
path "/l3vpn-ntw/vpn-services/vpn-service"
+ "/vpn-instance-profiles"
+ "/vpn-instance-profile/profile-id";
}
description
"Node's active VPN instance profile.";
}
list router-id {
key "address-family";
description
"Router ID per address family.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates the address family for which the
Router ID applies.";
}
leaf router-id {
type inet:ip-address;
description
"The 'router-id' information can be an IPv4
or IPv6 address. This can be used,
for example, to configure an IPv6 address
as a Router ID when such a capability is
supported by underlay routers. In such a
case, the configured value overrides the
generic value defined at the VPN node
level.";
}
}
uses vpn-instance-profile;
}
}
container msdp {
if-feature "msdp";
description
"Includes MSDP-related parameters.";
leaf peer {
type inet:ipv4-address;
description
"Indicates the IPv4 address of the MSDP peer.";
}
leaf local-address {
type inet:ipv4-address;
description
"Indicates the IPv4 address of the local end.
This local address must be configured on
the node.";
}
uses vpn-common:service-status;
}
uses vpn-common:vpn-components-group;
uses vpn-common:service-status;
container vpn-network-accesses {
description
"List of network accesses.";
list vpn-network-access {
key "id";
description
"List of network accesses.";
leaf id {
type vpn-common:vpn-id;
description
"Identifier for the network access.";
}
leaf interface-id {
type string;
description
"Identifier for the physical or logical
interface.
The identification of the sub-interface
is provided at the connection level and/or
the IP connection level.";
}
leaf description {
type string;
description
"Textual description of the network access.";
}
leaf vpn-network-access-type {
type identityref {
base vpn-common:site-network-access-type;
}
default "vpn-common:point-to-point";
description
"Describes the type of connection, e.g.,
point to point.";
}
leaf vpn-instance-profile {
type leafref {
path "/l3vpn-ntw/vpn-services/vpn-service"
+ "/vpn-nodes/vpn-node"
+ "/active-vpn-instance-profiles"
+ "/vpn-instance-profile/profile-id";
}
description
"An identifier of an active VPN instance
profile.";
}
uses vpn-common:service-status;
container connection {
description
"Defines Layer 2 protocols and parameters that
are required to enable connectivity between
the PE and the CE.";
container encapsulation {
description
"Container for Layer 2 encapsulation.";
leaf type {
type identityref {
base vpn-common:encapsulation-type;
}
default "vpn-common:priority-tagged";
description
"Encapsulation type. By default, the type
of the tagged interface is
'priority-tagged'.";
}
container dot1q {
when "derived-from-or-self(../type, "
+ "'vpn-common:dot1q')" {
description
"Only applies when the type of the
tagged interface is 'dot1q'.";
}
description
"Tagged interface.";
leaf tag-type {
type identityref {
base vpn-common:tag-type;
}
default "vpn-common:c-vlan";
description
"Tag type. By default, the tag type is
'c-vlan'.";
}
leaf cvlan-id {
type uint16 {
range "1..4094";
}
description
"VLAN identifier.";
}
}
container priority-tagged {
when "derived-from-or-self(../type, "
+ "'vpn-common:priority-tagged')" {
description
"Only applies when the type of
the tagged interface is
'priority-tagged'.";
}
description
"Priority tagged.";
leaf tag-type {
type identityref {
base vpn-common:tag-type;
}
default "vpn-common:c-vlan";
description
"Tag type. By default, the tag type is
'c-vlan'.";
}
}
container qinq {
when "derived-from-or-self(../type, "
+ "'vpn-common:qinq')" {
description
"Only applies when the type of the
tagged interface is 'qinq'.";
}
description
"Includes QinQ parameters.";
leaf tag-type {
type identityref {
base vpn-common:tag-type;
}
default "vpn-common:s-c-vlan";
description
"Tag type.";
}
leaf svlan-id {
type uint16;
mandatory true;
description
"Service VLAN (S-VLAN) identifier.";
}
leaf cvlan-id {
type uint16;
mandatory true;
description
"Customer VLAN (C-VLAN) identifier.";
}
}
}
choice l2-service {
description
"The Layer 2 connectivity service can be
provided by indicating a pointer to an
L2VPN or by specifying a Layer 2 tunnel
service.";
container l2-tunnel-service {
description
"Defines a Layer 2 tunnel termination.
It is only applicable when a tunnel is
required. The supported values are
'pseudowire', 'vpls', and 'vxlan'. Other
values may be defined, if needed.";
leaf type {
type identityref {
base l2-tunnel-type;
}
description
"Selects the tunnel termination option
for each VPN network access.";
}
container pseudowire {
when "derived-from-or-self(../type, "
+ "'pseudowire')" {
description
"Only applies when the Layer 2 service
type is 'pseudowire'.";
}
description
"Includes pseudowire termination
parameters.";
leaf vcid {
type uint32;
description
"Indicates a pseudowire (PW) or
virtual circuit (VC) identifier.";
}
leaf far-end {
type union {
type uint32;
type inet:ip-address;
}
description
"Neighbor reference.";
reference
"RFC 8077: Pseudowire Setup and
Maintenance Using the Label
Distribution Protocol
(LDP), Section 6.1";
}
}
container vpls {
when "derived-from-or-self(../type, "
+ "'vpls')" {
description
"Only applies when the Layer 2 service
type is 'vpls'.";
}
description
"VPLS termination parameters.";
leaf vcid {
type uint32;
description
"VC identifier.";
}
leaf-list far-end {
type union {
type uint32;
type inet:ip-address;
}
description
"Neighbor reference.";
}
}
container vxlan {
when "derived-from-or-self(../type, "
+ "'vxlan')" {
description
"Only applies when the Layer 2 service
type is 'vxlan'.";
}
description
"VXLAN termination parameters.";
leaf vni-id {
type uint32;
mandatory true;
description
"VXLAN Network Identifier (VNI).";
}
leaf peer-mode {
type identityref {
base vpn-common:vxlan-peer-mode;
}
default "vpn-common:static-mode";
description
"Specifies the VXLAN access mode. By
default, the peer mode is set to
'static-mode'.";
}
leaf-list peer-ip-address {
type inet:ip-address;
description
"List of a peer's IP addresses.";
}
}
}
case l2vpn {
leaf l2vpn-id {
type vpn-common:vpn-id;
description
"Indicates the L2VPN service associated
with an Integrated Routing and Bridging
(IRB) interface.";
}
}
}
leaf l2-termination-point {
type string;
description
"Specifies a reference to a local Layer 2
termination point, such as a Layer 2
sub-interface.";
}
leaf local-bridge-reference {
type string;
description
"Specifies a local bridge reference to
accommodate, for example, implementations
that require internal bridging.
A reference may be a local bridge domain.";
}
leaf bearer-reference {
if-feature "vpn-common:bearer-reference";
type string;
description
"This is an internal reference for the
service provider to identify the bearer
associated with this VPN.";
}
container lag-interface {
if-feature "vpn-common:lag-interface";
description
"Container for configuration of Link
Aggregation Group (LAG) interface
attributes.";
leaf lag-interface-id {
type string;
description
"LAG interface identifier.";
}
container member-link-list {
description
"Container for the member link list.";
list member-link {
key "name";
description
"Member link.";
leaf name {
type string;
description
"Member link name.";
}
}
}
}
}
container ip-connection {
description
"Defines IP connection parameters.";
leaf l3-termination-point {
type string;
description
"Specifies a reference to a local Layer 3
termination point, such as a bridge domain
interface.";
}
container ipv4 {
if-feature "vpn-common:ipv4";
description
"IPv4-specific parameters.";
leaf local-address {
type inet:ipv4-address;
description
"The IP address used at the provider's
interface.";
}
leaf prefix-length {
type uint8 {
range "0..32";
}
description
"Subnet prefix length expressed in bits.
It is applied to both local and customer
addresses.";
}
leaf address-allocation-type {
type identityref {
base address-allocation-type;
}
must "not(derived-from-or-self(current(), "
+ "'slaac') or "
+ "derived-from-or-self(current(), "
+ "'provider-dhcp-slaac'))" {
error-message "SLAAC is only applicable "
+ "to IPv6.";
}
description
"Defines how addresses are allocated to
the peer site.
If there is no value for the address
allocation type, then IPv4 addressing
is not enabled.";
}
choice allocation-type {
description
"Choice of the IPv4 address allocation.";
case provider-dhcp {
description
"Parameters related to DHCP-allocated
addresses. IP addresses are allocated
by DHCP, which is provided by the
operator.";
leaf dhcp-service-type {
type enumeration {
enum server {
description
"Local DHCP server.";
}
enum relay {
description
"Local DHCP relay. DHCP requests
are relayed to a provider's
server.";
}
}
description
"Indicates the type of DHCP service to
be enabled on this access.";
}
choice service-type {
description
"Choice based on the DHCP service
type.";
case relay {
description
"Container for a list of the
provider's DHCP servers (i.e.,
'dhcp-service-type' is set to
'relay').";
leaf-list server-ip-address {
type inet:ipv4-address;
description
"IPv4 addresses of the provider's
DHCP server, for use by the local
DHCP relay.";
}
}
case server {
description
"A choice for how addresses are
assigned when a local DHCP server
is enabled.";
choice address-assign {
default "number";
description
"A choice for how IPv4 addresses
are assigned.";
case number {
leaf number-of-dynamic-address {
type uint16;
default "1";
description
"Specifies the number of IP
addresses to be assigned to
the customer on this
access.";
}
}
case explicit {
container customer-addresses {
description
"Container for customer
addresses to be allocated
using DHCP.";
list address-pool {
key "pool-id";
description
"Describes IP addresses to
be allocated by DHCP.
When only 'start-address'
is present, it represents a
single address.
When both 'start-address'
and 'end-address' are
specified, it implies a
range inclusive of both
addresses.";
leaf pool-id {
type string;
description
"A pool identifier for the
address range from
'start-address' to
'end-address'.";
}
leaf start-address {
type inet:ipv4-address;
mandatory true;
description
"Indicates the first
address in the pool.";
}
leaf end-address {
type inet:ipv4-address;
description
"Indicates the last
address in the pool.";
}
}
}
}
}
}
}
}
case dhcp-relay {
description
"The DHCP relay is provided by the
operator.";
container customer-dhcp-servers {
description
"Container for a list of the
customer's DHCP servers.";
leaf-list server-ip-address {
type inet:ipv4-address;
description
"IPv4 addresses of the customer's
DHCP server.";
}
}
}
case static-addresses {
description
"Lists the IPv4 addresses that are
used.";
leaf primary-address {
type leafref {
path "../address/address-id";
}
description
"Primary address of the connection.";
}
list address {
key "address-id";
description
"Lists the IPv4 addresses that are
used.";
leaf address-id {
type string;
description
"An identifier of the static IPv4
address.";
}
leaf customer-address {
type inet:ipv4-address;
description
"IPv4 address of the customer
side.";
}
}
}
}
}
container ipv6 {
if-feature "vpn-common:ipv6";
description
"IPv6-specific parameters.";
leaf local-address {
type inet:ipv6-address;
description
"IPv6 address of the provider side.";
}
leaf prefix-length {
type uint8 {
range "0..128";
}
description
"Subnet prefix length expressed in bits.
It is applied to both local and customer
addresses.";
}
leaf address-allocation-type {
type identityref {
base address-allocation-type;
}
description
"Defines how addresses are allocated.
If there is no value for the address
allocation type, then IPv6 addressing is
disabled.";
}
choice allocation-type {
description
"A choice based on the IPv6 allocation
type.";
container provider-dhcp {
when "derived-from-or-self(../address-allo"
+ "cation-type, 'provider-dhcp') or "
+ "derived-from-or-self(../address-allo"
+ "cation-type, 'provider-dhcp-slaac')" {
description
"Only applies when addresses are
allocated by DHCPv6 as provided by
the operator.";
}
description
"Parameters related to DHCP-allocated
addresses.";
leaf dhcp-service-type {
type enumeration {
enum server {
description
"Local DHCPv6 server.";
}
enum relay {
description
"DHCPv6 relay.";
}
}
description
"Indicates the type of the DHCPv6
service to be enabled on this
access.";
}
choice service-type {
description
"Choice based on the DHCPv6 service
type.";
case relay {
leaf-list server-ip-address {
type inet:ipv6-address;
description
"IPv6 addresses of the provider's
DHCPv6 server.";
}
}
case server {
choice address-assign {
default "number";
description
"Choice for how IPv6 prefixes are
assigned by the DHCPv6 server.";
case number {
leaf number-of-dynamic-address {
type uint16;
default "1";
description
"Describes the number of IPv6
prefixes that are allocated
to the customer on this
access.";
}
}
case explicit {
container customer-addresses {
description
"Container for customer IPv6
addresses allocated by
DHCPv6.";
list address-pool {
key "pool-id";
description
"Describes IPv6 addresses
allocated by DHCPv6.
When only 'start-address'
is present, it represents a
single address.
When both 'start-address'
and 'end-address' are
specified, it implies a
range inclusive of both
addresses.";
leaf pool-id {
type string;
description
"A pool identifier for the
address range from
'start-address' to
'end-address'.";
}
leaf start-address {
type inet:ipv6-address;
mandatory true;
description
"Indicates the first
address.";
}
leaf end-address {
type inet:ipv6-address;
description
"Indicates the last
address.";
}
}
}
}
}
}
}
}
case dhcp-relay {
description
"DHCPv6 relay provided by the
operator.";
container customer-dhcp-servers {
description
"Container for a list of the
customer's DHCP servers.";
leaf-list server-ip-address {
type inet:ipv6-address;
description
"Contains the IP addresses of the
customer's DHCPv6 server.";
}
}
}
case static-addresses {
description
"IPv6-specific parameters for static
allocation.";
leaf primary-address {
type leafref {
path "../address/address-id";
}
description
"Principal address of the
connection.";
}
list address {
key "address-id";
description
"Describes IPv6 addresses that are
used.";
leaf address-id {
type string;
description
"An identifier of an IPv6 address.";
}
leaf customer-address {
type inet:ipv6-address;
description
"An IPv6 address of the customer
side.";
}
}
}
}
}
}
container routing-protocols {
description
"Defines routing protocols.";
list routing-protocol {
key "id";
description
"List of routing protocols used on the
CE-PE link. This list can be augmented.";
leaf id {
type string;
description
"Unique identifier for the routing
protocol.";
}
leaf type {
type identityref {
base vpn-common:routing-protocol-type;
}
description
"Type of routing protocol.";
}
list routing-profiles {
key "id";
description
"Routing profiles.";
leaf id {
type leafref {
path "/l3vpn-ntw/vpn-profiles"
+ "/valid-provider-identifiers"
+ "/routing-profile-identifier/id";
}
description
"Routing profile to be used.";
}
leaf type {
type identityref {
base vpn-common:ie-type;
}
description
"Import, export, or both.";
}
}
container static {
when "derived-from-or-self(../type, "
+ "'vpn-common:static-routing')" {
description
"Only applies when the protocol is a
static routing protocol.";
}
description
"Configuration specific to static
routing.";
container cascaded-lan-prefixes {
description
"LAN prefixes from the customer.";
list ipv4-lan-prefixes {
if-feature "vpn-common:ipv4";
key "lan next-hop";
description
"List of LAN prefixes for the site.";
leaf lan {
type inet:ipv4-prefix;
description
"LAN prefixes.";
}
leaf lan-tag {
type string;
description
"Internal tag to be used in VPN
policies.";
}
leaf next-hop {
type union {
type inet:ip-address;
type predefined-next-hop;
}
description
"The next hop that is to be used
for the static route. This may be
specified as an IP address or a
predefined next-hop type (e.g.,
'discard' or 'local-link').";
}
leaf bfd-enable {
if-feature "vpn-common:bfd";
type boolean;
description
"Enables Bidirectional Forwarding
Detection (BFD).";
}
leaf metric {
type uint32;
description
"Indicates the metric associated
with the static route.";
}
leaf preference {
type uint32;
description
"Indicates the preference associated
with the static route.";
}
uses vpn-common:service-status;
}
list ipv6-lan-prefixes {
if-feature "vpn-common:ipv6";
key "lan next-hop";
description
"List of LAN prefixes for the site.";
leaf lan {
type inet:ipv6-prefix;
description
"LAN prefixes.";
}
leaf lan-tag {
type string;
description
"Internal tag to be used in VPN
policies.";
}
leaf next-hop {
type union {
type inet:ip-address;
type predefined-next-hop;
}
description
"The next hop that is to be used for
the static route. This may be
specified as an IP address or a
predefined next-hop type (e.g.,
'discard' or 'local-link').";
}
leaf bfd-enable {
if-feature "vpn-common:bfd";
type boolean;
description
"Enables BFD.";
}
leaf metric {
type uint32;
description
"Indicates the metric associated
with the static route.";
}
leaf preference {
type uint32;
description
"Indicates the preference associated
with the static route.";
}
uses vpn-common:service-status;
}
}
}
container bgp {
when "derived-from-or-self(../type, "
+ "'vpn-common:bgp-routing')" {
description
"Only applies when the protocol is
BGP.";
}
description
"Configuration specific to BGP.";
leaf description {
type string;
description
"Includes a description of the BGP
session.
This description is meant to be used
for diagnostic purposes. The semantic
of the description is local to an
implementation.";
}
leaf local-as {
type inet:as-number;
description
"Indicates a local AS Number (ASN), if
an ASN distinct from the ASN configured
at the VPN node level is needed.";
}
leaf peer-as {
type inet:as-number;
mandatory true;
description
"Indicates the customer's ASN when
the customer requests BGP routing.";
}
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"This node contains the address families
to be activated. 'dual-stack' means
that both IPv4 and IPv6 will be
activated.";
}
leaf local-address {
type union {
type inet:ip-address;
type if:interface-ref;
}
description
"Sets the local IP address to use for
the BGP transport session. This may be
expressed as either an IP address or a
reference to an interface.";
}
leaf-list neighbor {
type inet:ip-address;
description
"IP address(es) of the BGP neighbor.
IPv4 and IPv6 neighbors may be
indicated if two sessions will be used
for IPv4 and IPv6.";
}
leaf multihop {
type uint8;
description
"Describes the number of IP hops allowed
between a given BGP neighbor and
the PE.";
}
leaf as-override {
type boolean;
default "false";
description
"Defines whether ASN override is
enabled, i.e., replacing the ASN of
the customer specified in the AS_PATH
attribute with the local ASN.";
}
leaf allow-own-as {
type uint8;
default "0";
description
"If set, specifies the maximum number of
occurrences of the provider's ASN that
are permitted within the AS_PATH
before it is rejected.";
}
leaf prepend-global-as {
type boolean;
default "false";
description
"In some situations, the ASN that is
provided at the VPN node level may be
distinct from the ASN configured at the
VPN network access level. When such
ASNs are provided, they are both
prepended to the BGP route updates
for this access. To disable that
behavior, 'prepend-global-as'
must be set to 'false'. In such a
case, the ASN that is provided at
the VPN node level is not prepended
to the BGP route updates for
this access.";
}
leaf send-default-route {
type boolean;
default "false";
description
"Defines whether default routes can be
advertised to a peer. If set, the
default routes are advertised to a
peer.";
}
leaf site-of-origin {
when "../address-family = 'vpn-common:ipv4' "
+ "or 'vpn-common:dual-stack'" {
description
"Only applies if IPv4 is activated.";
}
type rt-types:route-origin;
description
"The Site of Origin attribute is encoded
as a Route Origin Extended Community.
It is meant to uniquely identify the
set of routes learned from a site via a
particular CE-PE connection and is used
to prevent routing loops.";
reference
"RFC 4364: BGP/MPLS IP Virtual Private
Networks (VPNs), Section 7";
}
leaf ipv6-site-of-origin {
when "../address-family = 'vpn-common:ipv6' "
+ "or 'vpn-common:dual-stack'" {
description
"Only applies if IPv6 is activated.";
}
type rt-types:ipv6-route-origin;
description
"The IPv6 Site of Origin attribute is
encoded as an IPv6 Route Origin
Extended Community. It is meant to
uniquely identify the set of routes
learned from a site via VRF
information.";
reference
"RFC 5701: IPv6 Address Specific BGP
Extended Community
Attribute";
}
list redistribute-connected {
key "address-family";
description
"Indicates, per address family, the
policy to follow for connected
routes.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates the address family.";
}
leaf enable {
type boolean;
description
"Enables the redistribution of
connected routes.";
}
}
container bgp-max-prefix {
description
"Controls the behavior when a prefix
maximum is reached.";
leaf max-prefix {
type uint32;
default "5000";
description
"Indicates the maximum number of BGP
prefixes allowed in the BGP session.
It allows control of how many
prefixes can be received from a
neighbor.
If the limit is exceeded, the action
indicated in 'violate-action' will be
followed.";
reference
"RFC 4271: A Border Gateway Protocol 4
(BGP-4), Section 8.2.2";
}
leaf warning-threshold {
type decimal64 {
fraction-digits 5;
range "0..100";
}
units "percent";
default "75";
description
"When this value is reached, a warning
notification will be triggered.";
}
leaf violate-action {
type enumeration {
enum warning {
description
"Only a warning message is sent to
the peer when the limit is
exceeded.";
}
enum discard-extra-paths {
description
"Discards extra paths when the
limit is exceeded.";
}
enum restart {
description
"The BGP session restarts after
the indicated time interval.";
}
}
description
"If the BGP neighbor 'max-prefix'
limit is reached, the action
indicated in 'violate-action'
will be followed.";
}
leaf restart-timer {
type uint32;
units "seconds";
description
"Time interval after which the BGP
session will be reestablished.";
}
}
container bgp-timers {
description
"Includes two BGP timers that can be
customized when building a VPN service
with BGP used as the CE-PE routing
protocol.";
leaf keepalive {
type uint16 {
range "0..21845";
}
units "seconds";
default "30";
description
"This timer indicates the KEEPALIVE
messages' frequency between a PE
and a BGP peer.
If set to '0', it indicates that
KEEPALIVE messages are disabled.
It is suggested that the maximum
time between KEEPALIVE messages be
one-third of the Hold Time
interval.";
reference
"RFC 4271: A Border Gateway Protocol 4
(BGP-4), Section 4.4";
}
leaf hold-time {
type uint16 {
range "0 | 3..65535";
}
units "seconds";
default "90";
description
"Indicates the maximum number of
seconds that may elapse between the
receipt of successive KEEPALIVE
and/or UPDATE messages from the peer.
The Hold Time must be either zero or
at least three seconds.";
reference
"RFC 4271: A Border Gateway Protocol 4
(BGP-4), Section 4.2";
}
}
container authentication {
description
"Container for BGP authentication
parameters between a PE and a CE.";
leaf enable {
type boolean;
default "false";
description
"Enables or disables authentication.";
}
container keying-material {
when "../enable = 'true'";
description
"Container for describing how a BGP
routing session is to be secured
between a PE and a CE.";
choice option {
description
"Choice of authentication options.";
case ao {
description
"Uses the TCP Authentication
Option (TCP-AO).";
reference
"RFC 5925: The TCP Authentication
Option";
leaf enable-ao {
type boolean;
description
"Enables the TCP-AO.";
}
leaf ao-keychain {
type key-chain:key-chain-ref;
description
"Reference to the TCP-AO key
chain.";
reference
"RFC 8177: YANG Data Model for
Key Chains";
}
}
case md5 {
description
"Uses MD5 to secure the session.";
reference
"RFC 4364: BGP/MPLS IP Virtual
Private Networks
(VPNs), Section 13.2";
leaf md5-keychain {
type key-chain:key-chain-ref;
description
"Reference to the MD5 key
chain.";
reference
"RFC 8177: YANG Data Model for
Key Chains";
}
}
case explicit {
leaf key-id {
type uint32;
description
"Key identifier.";
}
leaf key {
type string;
description
"BGP authentication key.
This model only supports the
subset of keys that are
representable as ASCII
strings.";
}
leaf crypto-algorithm {
type identityref {
base key-chain:crypto-algorithm;
}
description
"Indicates the cryptographic
algorithm associated with the
key.";
}
}
case ipsec {
description
"Specifies a reference to an
Internet Key Exchange Protocol
(IKE) Security Association
(SA).";
leaf sa {
type string;
description
"Indicates the
administrator-assigned name
of the SA.";
}
}
}
}
}
uses vpn-common:service-status;
}
container ospf {
when "derived-from-or-self(../type, "
+ "'vpn-common:ospf-routing')" {
description
"Only applies when the protocol is
OSPF.";
}
description
"Configuration specific to OSPF.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or
both are to be activated.";
}
leaf area-id {
type yang:dotted-quad;
mandatory true;
description
"Area ID.";
reference
"RFC 4577: OSPF as the Provider/Customer
Edge Protocol for BGP/MPLS IP
Virtual Private Networks
(VPNs), Section 4.2.3
RFC 6565: OSPFv3 as a Provider Edge to
Customer Edge (PE-CE) Routing
Protocol, Section 4.2";
}
leaf metric {
type uint16;
default "1";
description
"Metric of the PE-CE link. It is used
in the routing state calculation and
path selection.";
}
container sham-links {
if-feature "vpn-common:rtg-ospf-sham-link";
description
"List of sham links.";
reference
"RFC 4577: OSPF as the Provider/Customer
Edge Protocol for BGP/MPLS IP
Virtual Private Networks
(VPNs), Section 4.2.7
RFC 6565: OSPFv3 as a Provider Edge to
Customer Edge (PE-CE) Routing
Protocol, Section 5";
list sham-link {
key "target-site";
description
"Creates a sham link with another
site.";
leaf target-site {
type string;
description
"Target site for the sham link
connection. The site is referred
to by its identifier.";
}
leaf metric {
type uint16;
default "1";
description
"Metric of the sham link. It is
used in the routing state
calculation and path selection.
The default value is set to '1'.";
reference
"RFC 4577: OSPF as the
Provider/Customer Edge
Protocol for BGP/MPLS IP
Virtual Private Networks
(VPNs), Section 4.2.7.3
RFC 6565: OSPFv3 as a Provider Edge
to Customer Edge (PE-CE)
Routing Protocol,
Section 5.2";
}
}
}
leaf max-lsa {
type uint32 {
range "1..4294967294";
}
description
"Maximum number of allowed Link State
Advertisements (LSAs) that the OSPF
instance will accept.";
}
container authentication {
description
"Authentication configuration.";
leaf enable {
type boolean;
default "false";
description
"Enables or disables authentication.";
}
container keying-material {
when "../enable = 'true'";
description
"Container for describing how an OSPF
session is to be secured between a CE
and a PE.";
choice option {
description
"Options for OSPF authentication.";
case auth-key-chain {
leaf key-chain {
type key-chain:key-chain-ref;
description
"Name of the key chain.";
}
}
case auth-key-explicit {
leaf key-id {
type uint32;
description
"Key identifier.";
}
leaf key {
type string;
description
"OSPF authentication key.
This model only supports the
subset of keys that are
representable as ASCII
strings.";
}
leaf crypto-algorithm {
type identityref {
base key-chain:crypto-algorithm;
}
description
"Indicates the cryptographic
algorithm associated with the
key.";
}
}
case ipsec {
leaf sa {
type string;
description
"Indicates the
administrator-assigned name
of the SA.";
reference
"RFC 4552: Authentication/
Confidentiality for
OSPFv3";
}
}
}
}
}
uses vpn-common:service-status;
}
container isis {
when "derived-from-or-self(../type, "
+ "'vpn-common:isis-routing')" {
description
"Only applies when the protocol is
IS-IS.";
}
description
"Configuration specific to IS-IS.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both
are to be activated.";
}
leaf area-address {
type area-address;
mandatory true;
description
"Area address.";
}
leaf level {
type identityref {
base vpn-common:isis-level;
}
description
"Can be 'level-1', 'level-2', or
'level-1-2'.";
reference
"RFC 9181: A Common YANG Data Model for
Layer 2 and Layer 3 VPNs";
}
leaf metric {
type uint16;
default "1";
description
"Metric of the PE-CE link. It is used
in the routing state calculation and
path selection.";
}
leaf mode {
type enumeration {
enum active {
description
"The interface sends or receives
IS-IS protocol control packets.";
}
enum passive {
description
"Suppresses the sending of IS-IS
updates through the specified
interface.";
}
}
default "active";
description
"IS-IS interface mode type.";
}
container authentication {
description
"Authentication configuration.";
leaf enable {
type boolean;
default "false";
description
"Enables or disables authentication.";
}
container keying-material {
when "../enable = 'true'";
description
"Container for describing how an IS-IS
session is to be secured between a CE
and a PE.";
choice option {
description
"Options for IS-IS authentication.";
case auth-key-chain {
leaf key-chain {
type key-chain:key-chain-ref;
description
"Name of the key chain.";
}
}
case auth-key-explicit {
leaf key-id {
type uint32;
description
"Key identifier.";
}
leaf key {
type string;
description
"IS-IS authentication key.
This model only supports the
subset of keys that are
representable as ASCII
strings.";
}
leaf crypto-algorithm {
type identityref {
base key-chain:crypto-algorithm;
}
description
"Indicates the cryptographic
algorithm associated with the
key.";
}
}
}
}
}
uses vpn-common:service-status;
}
container rip {
when "derived-from-or-self(../type, "
+ "'vpn-common:rip-routing')" {
description
"Only applies when the protocol is RIP.
For IPv4, the model assumes that RIP
version 2 is used.";
}
description
"Configuration specific to RIP routing.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both
address families are to be activated.";
}
container timers {
description
"Indicates the RIP timers.";
reference
"RFC 2453: RIP Version 2";
leaf update-interval {
type uint16 {
range "1..32767";
}
units "seconds";
default "30";
description
"Indicates the RIP update time, i.e.,
the amount of time for which RIP
updates are sent.";
}
leaf invalid-interval {
type uint16 {
range "1..32767";
}
units "seconds";
default "180";
description
"The interval before a route is
declared invalid after no updates are
received. This value is at least
three times the value for the
'update-interval' argument.";
}
leaf holddown-interval {
type uint16 {
range "1..32767";
}
units "seconds";
default "180";
description
"Specifies the interval before better
routes are released.";
}
leaf flush-interval {
type uint16 {
range "1..32767";
}
units "seconds";
default "240";
description
"Indicates the RIP flush timer, i.e.,
the amount of time that must elapse
before a route is removed from the
routing table.";
}
}
leaf default-metric {
type uint8 {
range "0..16";
}
default "1";
description
"Sets the default metric.";
}
container authentication {
description
"Authentication configuration.";
leaf enable {
type boolean;
default "false";
description
"Enables or disables authentication.";
}
container keying-material {
when "../enable = 'true'";
description
"Container for describing how a RIP
session is to be secured between a CE
and a PE.";
choice option {
description
"Specifies the authentication
scheme.";
case auth-key-chain {
leaf key-chain {
type key-chain:key-chain-ref;
description
"Name of the key chain.";
}
}
case auth-key-explicit {
leaf key {
type string;
description
"RIP authentication key.
This model only supports the
subset of keys that are
representable as ASCII
strings.";
}
leaf crypto-algorithm {
type identityref {
base key-chain:crypto-algorithm;
}
description
"Indicates the cryptographic
algorithm associated with the
key.";
}
}
}
}
}
uses vpn-common:service-status;
}
container vrrp {
when "derived-from-or-self(../type, "
+ "'vpn-common:vrrp-routing')" {
description
"Only applies when the protocol is the
Virtual Router Redundancy Protocol
(VRRP).";
}
description
"Configuration specific to VRRP.";
reference
"RFC 5798: Virtual Router Redundancy
Protocol (VRRP) Version 3 for
IPv4 and IPv6";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both
address families are to be enabled.";
}
leaf vrrp-group {
type uint8 {
range "1..255";
}
description
"Includes the VRRP group identifier.";
}
leaf backup-peer {
type inet:ip-address;
description
"Indicates the IP address of the peer.";
}
leaf-list virtual-ip-address {
type inet:ip-address;
description
"Virtual IP addresses for a single VRRP
group.";
reference
"RFC 5798: Virtual Router Redundancy
Protocol (VRRP) Version 3 for
IPv4 and IPv6,
Sections 1.2 and 1.3";
}
leaf priority {
type uint8 {
range "1..254";
}
default "100";
description
"Sets the local priority of the VRRP
speaker.";
}
leaf ping-reply {
type boolean;
default "false";
description
"Controls whether the VRRP speaker
should reply to ping requests.";
}
uses vpn-common:service-status;
}
}
}
container oam {
description
"Defines the Operations, Administration,
and Maintenance (OAM) mechanisms used.
BFD is set as a fault detection mechanism,
but other mechanisms can be defined in the
future.";
container bfd {
if-feature "vpn-common:bfd";
description
"Container for BFD.";
leaf session-type {
type identityref {
base vpn-common:bfd-session-type;
}
default "vpn-common:classic-bfd";
description
"Specifies the BFD session type.";
}
leaf desired-min-tx-interval {
type uint32;
units "microseconds";
default "1000000";
description
"The minimum interval between
transmissions of BFD Control packets, as
desired by the operator.";
reference
"RFC 5880: Bidirectional Forwarding
Detection (BFD),
Section 6.8.7";
}
leaf required-min-rx-interval {
type uint32;
units "microseconds";
default "1000000";
description
"The minimum interval between received BFD
Control packets that the PE should
support.";
reference
"RFC 5880: Bidirectional Forwarding
Detection (BFD),
Section 6.8.7";
}
leaf local-multiplier {
type uint8 {
range "1..255";
}
default "3";
description
"Specifies the detection multiplier that
is transmitted to a BFD peer.
The detection interval for the receiving
BFD peer is calculated by multiplying the
value of the negotiated transmission
interval by the received detection
multiplier value.";
reference
"RFC 5880: Bidirectional Forwarding
Detection (BFD),
Section 6.8.7";
}
leaf holdtime {
type uint32;
units "milliseconds";
description
"Expected BFD holdtime.
The customer may impose some fixed
values for the holdtime period if the
provider allows the customer to use
this function.
If the provider doesn't allow the
customer to use this function,
fixed values will not be set.";
reference
"RFC 5880: Bidirectional Forwarding
Detection (BFD),
Section 6.8.18";
}
leaf profile {
type leafref {
path "/l3vpn-ntw/vpn-profiles"
+ "/valid-provider-identifiers"
+ "/bfd-profile-identifier/id";
}
description
"Well-known service provider profile name.
The provider can propose some profiles
to the customer, depending on the
service level the customer wants to
achieve.";
}
container authentication {
presence "Enables BFD authentication";
description
"Parameters for BFD authentication.";
leaf key-chain {
type key-chain:key-chain-ref;
description
"Name of the key chain.";
}
leaf meticulous {
type boolean;
description
"Enables meticulous mode.";
reference
"RFC 5880: Bidirectional Forwarding
Detection (BFD),
Section 6.7";
}
}
uses vpn-common:service-status;
}
}
container security {
description
"Site-specific security parameters.";
container encryption {
if-feature "vpn-common:encryption";
description
"Container for CE-PE security encryption.";
leaf enabled {
type boolean;
default "false";
description
"If set to 'true', traffic encryption on
the connection is required. Otherwise,
it is disabled.";
}
leaf layer {
when "../enabled = 'true'" {
description
"Included only when encryption
is enabled.";
}
type enumeration {
enum layer2 {
description
"Encryption occurs at Layer 2.";
}
enum layer3 {
description
"Encryption occurs at Layer 3.
For example, IPsec may be used when
a customer requests Layer 3
encryption.";
}
}
description
"Indicates the layer on which encryption
is applied.";
}
}
container encryption-profile {
when "../encryption/enabled = 'true'" {
description
"Indicates the layer on which encryption
is enabled.";
}
description
"Container for the encryption profile.";
choice profile {
description
"Choice for the encryption profile.";
case provider-profile {
leaf profile-name {
type leafref {
path "/l3vpn-ntw/vpn-profiles"
+ "/valid-provider-identifiers"
+ "/encryption-profile-identifier/id";
}
description
"Name of the service provider's
profile to be applied.";
}
}
case customer-profile {
leaf customer-key-chain {
type key-chain:key-chain-ref;
description
"Customer-supplied key chain.";
}
}
}
}
}
container service {
description
"Service parameters of the attachment.";
leaf pe-to-ce-bandwidth {
if-feature "vpn-common:inbound-bw";
type uint64;
units "bps";
description
"From the customer site's perspective, the
service inbound bandwidth of the connection
or download bandwidth from the SP to the
site. Note that the L3SM uses
'input-bandwidth' to refer to the same
concept.";
}
leaf ce-to-pe-bandwidth {
if-feature "vpn-common:outbound-bw";
type uint64;
units "bps";
description
"From the customer site's perspective,
the service outbound bandwidth of the
connection or upload bandwidth from
the site to the SP. Note that the L3SM
uses 'output-bandwidth' to refer to the
same concept.";
}
leaf mtu {
type uint32;
units "bytes";
description
"MTU at the service level. If the service
is IP, it refers to the IP MTU. If
Carriers' Carriers (CsC) is enabled, the
requested MTU will refer to the MPLS
maximum labeled packet size and not to the
IP MTU.";
}
container qos {
if-feature "vpn-common:qos";
description
"QoS configuration.";
container qos-classification-policy {
description
"Configuration of the traffic
classification policy.";
uses vpn-common:qos-classification-policy;
}
container qos-action {
description
"List of QoS action policies.";
list rule {
key "id";
description
"List of QoS actions.";
leaf id {
type string;
description
"An identifier of the QoS action
rule.";
}
leaf target-class-id {
type string;
description
"Identification of the class of
service. This identifier is internal
to the administration.";
}
leaf inbound-rate-limit {
type decimal64 {
fraction-digits 5;
range "0..100";
}
units "percent";
description
"Specifies whether/how to rate-limit
the inbound traffic matching this QoS
policy. It is expressed as a percent
of the value that is indicated in
'input-bandwidth'.";
}
leaf outbound-rate-limit {
type decimal64 {
fraction-digits 5;
range "0..100";
}
units "percent";
description
"Specifies whether/how to rate-limit
the outbound traffic matching this
QoS policy. It is expressed as a
percent of the value that is
indicated in 'output-bandwidth'.";
}
}
}
container qos-profile {
description
"QoS profile configuration.";
list qos-profile {
key "profile";
description
"QoS profile.
Can be a standard profile or
a customized profile.";
leaf profile {
type leafref {
path "/l3vpn-ntw/vpn-profiles"
+ "/valid-provider-identifiers"
+ "/qos-profile-identifier/id";
}
description
"QoS profile to be used.";
}
leaf direction {
type identityref {
base vpn-common:qos-profile-direction;
}
default "vpn-common:both";
description
"The direction to which the QoS
profile is applied.";
}
}
}
}
container carriers-carrier {
if-feature "vpn-common:carriers-carrier";
description
"This container is used when the customer
provides MPLS-based services. This is
only used in the case of CsC (i.e., a
customer builds an MPLS service using an
IP VPN to carry its traffic).";
leaf signaling-type {
type enumeration {
enum ldp {
description
"Uses LDP as the signaling protocol
between the PE and the CE. In this
case, an IGP routing protocol must
also be configured.";
}
enum bgp {
description
"Uses BGP as the signaling protocol
between the PE and the CE.
In this case, BGP must also be
configured as the routing protocol.";
reference
"RFC 8277: Using BGP to Bind MPLS
Labels to Address
Prefixes";
}
}
default "bgp";
description
"MPLS signaling type.";
}
}
container ntp {
description
"Time synchronization may be needed in some
VPNs, such as infrastructure and management
VPNs. This container includes parameters
to enable the NTP service.";
reference
"RFC 5905: Network Time Protocol Version 4:
Protocol and Algorithms
Specification";
leaf broadcast {
type enumeration {
enum client {
description
"The VPN node will listen to NTP
broadcast messages on this VPN
network access.";
}
enum server {
description
"The VPN node will behave as a
broadcast server.";
}
}
description
"Indicates the NTP broadcast mode to use
for the VPN network access.";
}
container auth-profile {
description
"Pointer to a local profile.";
leaf profile-id {
type string;
description
"A pointer to a local authentication
profile on the VPN node is provided.";
}
}
uses vpn-common:service-status;
}
container multicast {
if-feature "vpn-common:multicast";
description
"Multicast parameters for the network
access.";
leaf access-type {
type enumeration {
enum receiver-only {
description
"The peer site only has receivers.";
}
enum source-only {
description
"The peer site only has sources.";
}
enum source-receiver {
description
"The peer site has both sources and
receivers.";
}
}
default "source-receiver";
description
"Type of multicast site.";
}
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates the address family.";
}
leaf protocol-type {
type enumeration {
enum host {
description
"Hosts are directly connected to the
provider network.
Host protocols, such as IGMP or MLD,
are required.";
}
enum router {
description
"Hosts are behind a customer router.
PIM will be implemented.";
}
enum both {
description
"Some hosts are behind a customer
router, and some others are directly
connected to the provider network.
Both host and routing protocols must
be used.
Typically, IGMP and PIM will be
implemented.";
}
}
default "both";
description
"Multicast protocol type to be used with
the customer site.";
}
leaf remote-source {
type boolean;
default "false";
description
"A remote multicast source is a source
that is not on the same subnet as the
VPN network access. When set to 'true',
the multicast traffic from a remote
source is accepted.";
}
container igmp {
when "../protocol-type = 'host' and "
+ "../address-family = 'vpn-common:ipv4' "
+ "or 'vpn-common:dual-stack'";
if-feature "vpn-common:igmp";
description
"Includes IGMP-related parameters.";
list static-group {
key "group-addr";
description
"Multicast static source/group
associated with the IGMP session.";
leaf group-addr {
type rt-types:ipv4-multicast-group-address;
description
"Multicast group IPv4 address.";
}
leaf source-addr {
type
rt-types:ipv4-multicast-source-address;
description
"Multicast source IPv4 address.";
}
}
leaf max-groups {
type uint32;
description
"Indicates the maximum number of
groups.";
}
leaf max-entries {
type uint32;
description
"Indicates the maximum number of IGMP
entries.";
}
leaf max-group-sources {
type uint32;
description
"The maximum number of group sources.";
}
leaf version {
type identityref {
base vpn-common:igmp-version;
}
default "vpn-common:igmpv2";
description
"Indicates the IGMP version.";
}
uses vpn-common:service-status;
}
container mld {
when "../protocol-type = 'host' and "
+ "../address-family = 'vpn-common:ipv6' "
+ "or 'vpn-common:dual-stack'";
if-feature "vpn-common:mld";
description
"Includes MLD-related parameters.";
list static-group {
key "group-addr";
description
"Multicast static source/group associated
with the MLD session.";
leaf group-addr {
type rt-types:ipv6-multicast-group-address;
description
"Multicast group IPv6 address.";
}
leaf source-addr {
type
rt-types:ipv6-multicast-source-address;
description
"Multicast source IPv6 address.";
}
}
leaf max-groups {
type uint32;
description
"Indicates the maximum number of
groups.";
}
leaf max-entries {
type uint32;
description
"Indicates the maximum number of MLD
entries.";
}
leaf max-group-sources {
type uint32;
description
"The maximum number of group sources.";
}
leaf version {
type identityref {
base vpn-common:mld-version;
}
default "vpn-common:mldv2";
description
"Indicates the MLD protocol version.";
}
uses vpn-common:service-status;
}
container pim {
when "../protocol-type = 'router'";
if-feature "vpn-common:pim";
description
"Only applies when the protocol type is
'pim'.";
leaf hello-interval {
type rt-types:timer-value-seconds16;
default "30";
description
"Interval between PIM Hello messages.
If set to 'infinity' or 'not-set',
no periodic Hello messages are sent.";
reference
"RFC 7761: Protocol Independent
Multicast - Sparse Mode
(PIM-SM): Protocol
Specification (Revised),
Section 4.11
RFC 8294: Common YANG Data Types for
the Routing Area";
}
leaf dr-priority {
type uint32;
default "1";
description
"Indicates the preference associated
with the DR election process. A larger
value has a higher priority over a
smaller value.";
reference
"RFC 7761: Protocol Independent
Multicast - Sparse Mode
(PIM-SM): Protocol
Specification (Revised),
Section 4.3.2";
}
uses vpn-common:service-status;
}
}
}
}
}
}
}
}
}
}
}
<CODE ENDS>
9. Security Considerations
The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
The Network Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.
There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
and delete operations to these data nodes without proper protection
or authentication can have a negative effect on network operations.
These are the subtrees and data nodes and their sensitivity/
vulnerability in the "ietf-l3vpn-ntw" module:
'vpn-profiles': This container includes a set of sensitive data that
influence how the L3VPN service is delivered. For example, an
attacker who has access to these data nodes may be able to
manipulate routing policies, QoS policies, or encryption
properties. These data nodes are defined with "nacm:default-deny-
write" tagging [RFC9181].
'vpn-services': An attacker who is able to access network nodes can
undertake various attacks, such as deleting a running L3VPN
service, interrupting all the traffic of a client. In addition,
an attacker may modify the attributes of a running service (e.g.,
QoS, bandwidth, routing protocols, keying material), leading to
malfunctioning of the service and therefore to Service Level
Agreement (SLA) violations. In addition, an attacker could
attempt to create an L3VPN service or add a new network access.
In addition to using NACM to prevent unauthorized access, such
activity can be detected by adequately monitoring and tracking
network configuration changes.
Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes. These are the subtrees and data
nodes and their sensitivity/vulnerability:
'customer-name' and 'ip-connection': An attacker can retrieve
privacy-related information, which can be used to track a
customer. Disclosing such information may be considered a
violation of the customer-provider trust relationship.
'keying-material': An attacker can retrieve the cryptographic keys
protecting the underlying VPN service (CE-PE routing, in
particular). These keys could be used to inject spoofed routing
advertisements.
Several data nodes ('bgp', 'ospf', 'isis', 'rip', and 'bfd') rely
upon [RFC8177] for authentication purposes. Therefore, this module
inherits the security considerations discussed in Section 5 of
[RFC8177]. Also, these data nodes support supplying explicit keys as
strings in ASCII format. The use of keys in hexadecimal string
format would afford greater key entropy with the same number of key-
string octets. However, such a format is not included in this
version of the L3NM, because it is not supported by the underlying
device modules (e.g., [RFC8695]).
As discussed in Section 7.6.3, the module supports MD5 to basically
accommodate the installed BGP base. MD5 suffers from the security
weaknesses discussed in Section 2 of [RFC6151] and Section 2.1 of
[RFC6952].
[RFC8633] describes best current practices to be considered in VPNs
making use of NTP. Moreover, a mechanism to provide cryptographic
security for NTP is specified in [RFC8915].
10. IANA Considerations
IANA has registered the following URI in the "ns" subregistry within
the "IETF XML Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
IANA has registered the following YANG module in the "YANG Module
Names" subregistry [RFC6020] within the "YANG Parameters" registry.
Name: ietf-l3vpn-ntw
Maintained by IANA? N
Namespace: urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
Prefix: l3nm
Reference: RFC 9182
11. References
11.1. Normative References
[ISO10589] ISO, "Information technology - Telecommunications and
information exchange between systems - Intermediate System
to Intermediate System intra-domain routeing information
exchange protocol for use in conjunction with the protocol
for providing the connectionless-mode network service (ISO
8473)", ISO/IEC 10589:2002, 2002,
<https://www.iso.org/standard/30932.html>.
[RFC1112] Deering, S., "Host extensions for IP multicasting", STD 5,
RFC 1112, DOI 10.17487/RFC1112, August 1989,
<https://www.rfc-editor.org/info/rfc1112>.
[RFC1195] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
dual environments", RFC 1195, DOI 10.17487/RFC1195,
December 1990, <https://www.rfc-editor.org/info/rfc1195>.
[RFC2080] Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080,
DOI 10.17487/RFC2080, January 1997,
<https://www.rfc-editor.org/info/rfc2080>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2236] Fenner, W., "Internet Group Management Protocol, Version
2", RFC 2236, DOI 10.17487/RFC2236, November 1997,
<https://www.rfc-editor.org/info/rfc2236>.
[RFC2453] Malkin, G., "RIP Version 2", STD 56, RFC 2453,
DOI 10.17487/RFC2453, November 1998,
<https://www.rfc-editor.org/info/rfc2453>.
[RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast
Listener Discovery (MLD) for IPv6", RFC 2710,
DOI 10.17487/RFC2710, October 1999,
<https://www.rfc-editor.org/info/rfc2710>.
[RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
Thyagarajan, "Internet Group Management Protocol, Version
3", RFC 3376, DOI 10.17487/RFC3376, October 2002,
<https://www.rfc-editor.org/info/rfc3376>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC3810] Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
DOI 10.17487/RFC3810, June 2004,
<https://www.rfc-editor.org/info/rfc3810>.
[RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
Border Gateway Protocol 4 (BGP-4)", RFC 4271,
DOI 10.17487/RFC4271, January 2006,
<https://www.rfc-editor.org/info/rfc4271>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
2006, <https://www.rfc-editor.org/info/rfc4364>.
[RFC4552] Gupta, M. and N. Melam, "Authentication/Confidentiality
for OSPFv3", RFC 4552, DOI 10.17487/RFC4552, June 2006,
<https://www.rfc-editor.org/info/rfc4552>.
[RFC4577] Rosen, E., Psenak, P., and P. Pillay-Esnault, "OSPF as the
Provider/Customer Edge Protocol for BGP/MPLS IP Virtual
Private Networks (VPNs)", RFC 4577, DOI 10.17487/RFC4577,
June 2006, <https://www.rfc-editor.org/info/rfc4577>.
[RFC5308] Hopps, C., "Routing IPv6 with IS-IS", RFC 5308,
DOI 10.17487/RFC5308, October 2008,
<https://www.rfc-editor.org/info/rfc5308>.
[RFC5701] Rekhter, Y., "IPv6 Address Specific BGP Extended Community
Attribute", RFC 5701, DOI 10.17487/RFC5701, November 2009,
<https://www.rfc-editor.org/info/rfc5701>.
[RFC5709] Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,
Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic
Authentication", RFC 5709, DOI 10.17487/RFC5709, October
2009, <https://www.rfc-editor.org/info/rfc5709>.
[RFC5798] Nadas, S., Ed., "Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6", RFC 5798,
DOI 10.17487/RFC5798, March 2010,
<https://www.rfc-editor.org/info/rfc5798>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<https://www.rfc-editor.org/info/rfc5880>.
[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
"Network Time Protocol Version 4: Protocol and Algorithms
Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
<https://www.rfc-editor.org/info/rfc5905>.
[RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
June 2010, <https://www.rfc-editor.org/info/rfc5925>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC6513] Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/
BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February
2012, <https://www.rfc-editor.org/info/rfc6513>.
[RFC6514] Aggarwal, R., Rosen, E., Morin, T., and Y. Rekhter, "BGP
Encodings and Procedures for Multicast in MPLS/BGP IP
VPNs", RFC 6514, DOI 10.17487/RFC6514, February 2012,
<https://www.rfc-editor.org/info/rfc6514>.
[RFC6565] Pillay-Esnault, P., Moyer, P., Doyle, J., Ertekin, E., and
M. Lundberg, "OSPFv3 as a Provider Edge to Customer Edge
(PE-CE) Routing Protocol", RFC 6565, DOI 10.17487/RFC6565,
June 2012, <https://www.rfc-editor.org/info/rfc6565>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7166] Bhatia, M., Manral, V., and A. Lindem, "Supporting
Authentication Trailer for OSPFv3", RFC 7166,
DOI 10.17487/RFC7166, March 2014,
<https://www.rfc-editor.org/info/rfc7166>.
[RFC7474] Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
"Security Extension for OSPFv2 When Using Manual Key
Management", RFC 7474, DOI 10.17487/RFC7474, April 2015,
<https://www.rfc-editor.org/info/rfc7474>.
[RFC7761] Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,
Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent
Multicast - Sparse Mode (PIM-SM): Protocol Specification
(Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March
2016, <https://www.rfc-editor.org/info/rfc7761>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J.
Zhang, "YANG Data Model for Key Chains", RFC 8177,
DOI 10.17487/RFC8177, June 2017,
<https://www.rfc-editor.org/info/rfc8177>.
[RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
"Common YANG Data Types for the Routing Area", RFC 8294,
DOI 10.17487/RFC8294, December 2017,
<https://www.rfc-editor.org/info/rfc8294>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface
Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
<https://www.rfc-editor.org/info/rfc8343>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[RFC8466] Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
Data Model for Layer 2 Virtual Private Network (L2VPN)
Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
2018, <https://www.rfc-editor.org/info/rfc8466>.
[RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
"YANG Data Model for Network Access Control Lists (ACLs)",
RFC 8519, DOI 10.17487/RFC8519, March 2019,
<https://www.rfc-editor.org/info/rfc8519>.
[RFC9181] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
Ed., and Q. Wu, "A Common YANG Data Model for Layer 2 and
Layer 3 VPNs", RFC 9181, DOI 10.17487/RFC9181, February
2022, <https://www.rfc-editor.org/info/rfc9181>.
11.2. Informative References
[BGP-YANG] Jethanandani, M., Patel, K., Hares, S., and J. Haas, "BGP
YANG Model for Service Provider Networks", Work in
Progress, Internet-Draft, draft-ietf-idr-bgp-model-12, 25
October 2021, <https://datatracker.ietf.org/doc/html/
draft-ietf-idr-bgp-model-12>.
[Enhanced-VPN-Framework]
Dong, J., Bryant, S., Li, Z., Miyasaka, T., and Y. Lee, "A
Framework for Enhanced Virtual Private Network (VPN+)
Services", Work in Progress, Internet-Draft, draft-ietf-
teas-enhanced-vpn-09, 25 October 2021,
<https://datatracker.ietf.org/doc/html/draft-ietf-teas-
enhanced-vpn-09>.
[IEEE802.1AX]
IEEE, "802.1AX-2020 - IEEE Standard for Local and
Metropolitan Area Networks--Link Aggregation", IEEE Std
802.1AX-2020,
<https://ieeexplore.ieee.org/document/9105034>.
[Network-Slices-Framework]
Farrel, A., Ed., Gray, E., Drake, J., Rokui, R., Homma,
S., Makhijani, K., Contreras, LM., and J. Tantsura,
"Framework for IETF Network Slices", Work in Progress,
Internet-Draft, draft-ietf-teas-ietf-network-slices-05, 25
October 2021, <https://datatracker.ietf.org/doc/html/
draft-ietf-teas-ietf-network-slices-05>.
[PIM-YANG] Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
Y., and F. Hu, "A YANG Data Model for Protocol Independent
Multicast (PIM)", Work in Progress, Internet-Draft, draft-
ietf-pim-yang-17, 19 May 2018,
<https://datatracker.ietf.org/doc/html/draft-ietf-pim-
yang-17>.
[PYANG] "pyang", commit 524cf61, December 2021,
<https://github.com/mbj4668/pyang>.
[QoS-YANG] Choudhary, A., Jethanandani, M., Aries, E., and I. Chen,
"A YANG Data Model for Quality of Service (QoS)", Work in
Progress, Internet-Draft, draft-ietf-rtgwg-qos-model-06, 8
November 2021, <https://datatracker.ietf.org/doc/html/
draft-ietf-rtgwg-qos-model-06>.
[RFC3618] Fenner, B., Ed. and D. Meyer, Ed., "Multicast Source
Discovery Protocol (MSDP)", RFC 3618,
DOI 10.17487/RFC3618, October 2003,
<https://www.rfc-editor.org/info/rfc3618>.
[RFC3644] Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and B.
Moore, "Policy Quality of Service (QoS) Information
Model", RFC 3644, DOI 10.17487/RFC3644, November 2003,
<https://www.rfc-editor.org/info/rfc3644>.
[RFC4026] Andersson, L. and T. Madsen, "Provider Provisioned Virtual
Private Network (VPN) Terminology", RFC 4026,
DOI 10.17487/RFC4026, March 2005,
<https://www.rfc-editor.org/info/rfc4026>.
[RFC4110] Callon, R. and M. Suzuki, "A Framework for Layer 3
Provider-Provisioned Virtual Private Networks (PPVPNs)",
RFC 4110, DOI 10.17487/RFC4110, July 2005,
<https://www.rfc-editor.org/info/rfc4110>.
[RFC4176] El Mghazli, Y., Ed., Nadeau, T., Boucadair, M., Chan, K.,
and A. Gonguet, "Framework for Layer 3 Virtual Private
Networks (L3VPN) Operations and Management", RFC 4176,
DOI 10.17487/RFC4176, October 2005,
<https://www.rfc-editor.org/info/rfc4176>.
[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
Address Autoconfiguration", RFC 4862,
DOI 10.17487/RFC4862, September 2007,
<https://www.rfc-editor.org/info/rfc4862>.
[RFC6037] Rosen, E., Ed., Cai, Y., Ed., and IJ. Wijnands, "Cisco
Systems' Solution for Multicast in BGP/MPLS IP VPNs",
RFC 6037, DOI 10.17487/RFC6037, October 2010,
<https://www.rfc-editor.org/info/rfc6037>.
[RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
RFC 6151, DOI 10.17487/RFC6151, March 2011,
<https://www.rfc-editor.org/info/rfc6151>.
[RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
BGP, LDP, PCEP, and MSDP Issues According to the Keying
and Authentication for Routing Protocols (KARP) Design
Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
<https://www.rfc-editor.org/info/rfc6952>.
[RFC7149] Boucadair, M. and C. Jacquenet, "Software-Defined
Networking: A Perspective from within a Service Provider
Environment", RFC 7149, DOI 10.17487/RFC7149, March 2014,
<https://www.rfc-editor.org/info/rfc7149>.
[RFC7297] Boucadair, M., Jacquenet, C., and N. Wang, "IP
Connectivity Provisioning Profile (CPP)", RFC 7297,
DOI 10.17487/RFC7297, July 2014,
<https://www.rfc-editor.org/info/rfc7297>.
[RFC7426] Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
Defined Networking (SDN): Layers and Architecture
Terminology", RFC 7426, DOI 10.17487/RFC7426, January
2015, <https://www.rfc-editor.org/info/rfc7426>.
[RFC7880] Pignataro, C., Ward, D., Akiya, N., Bhatia, M., and S.
Pallagatti, "Seamless Bidirectional Forwarding Detection
(S-BFD)", RFC 7880, DOI 10.17487/RFC7880, July 2016,
<https://www.rfc-editor.org/info/rfc7880>.
[RFC8077] Martini, L., Ed. and G. Heron, Ed., "Pseudowire Setup and
Maintenance Using the Label Distribution Protocol (LDP)",
STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017,
<https://www.rfc-editor.org/info/rfc8077>.
[RFC8277] Rosen, E., "Using BGP to Bind MPLS Labels to Address
Prefixes", RFC 8277, DOI 10.17487/RFC8277, October 2017,
<https://www.rfc-editor.org/info/rfc8277>.
[RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
"YANG Data Model for L3VPN Service Delivery", RFC 8299,
DOI 10.17487/RFC8299, January 2018,
<https://www.rfc-editor.org/info/rfc8299>.
[RFC8309] Wu, Q., Liu, W., and A. Farrel, "Service Models
Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
<https://www.rfc-editor.org/info/rfc8309>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/info/rfc8342>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
2018, <https://www.rfc-editor.org/info/rfc8345>.
[RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
Routing Management (NMDA Version)", RFC 8349,
DOI 10.17487/RFC8349, March 2018,
<https://www.rfc-editor.org/info/rfc8349>.
[RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
Abstraction and Control of TE Networks (ACTN)", RFC 8453,
DOI 10.17487/RFC8453, August 2018,
<https://www.rfc-editor.org/info/rfc8453>.
[RFC8512] Boucadair, M., Ed., Sivakumar, S., Jacquenet, C.,
Vinapamula, S., and Q. Wu, "A YANG Module for Network
Address Translation (NAT) and Network Prefix Translation
(NPT)", RFC 8512, DOI 10.17487/RFC8512, January 2019,
<https://www.rfc-editor.org/info/rfc8512>.
[RFC8633] Reilly, D., Stenn, H., and D. Sibold, "Network Time
Protocol Best Current Practices", BCP 223, RFC 8633,
DOI 10.17487/RFC8633, July 2019,
<https://www.rfc-editor.org/info/rfc8633>.
[RFC8695] Liu, X., Sarda, P., and V. Choudhary, "A YANG Data Model
for the Routing Information Protocol (RIP)", RFC 8695,
DOI 10.17487/RFC8695, February 2020,
<https://www.rfc-editor.org/info/rfc8695>.
[RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
"Handling Long Lines in Content of Internet-Drafts and
RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
<https://www.rfc-editor.org/info/rfc8792>.
[RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
Sundblad, "Network Time Security for the Network Time
Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
<https://www.rfc-editor.org/info/rfc8915>.
[RFC8969] Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and
L. Geng, "A Framework for Automating Service and Network
Management with YANG", RFC 8969, DOI 10.17487/RFC8969,
January 2021, <https://www.rfc-editor.org/info/rfc8969>.
[RFC9136] Rabadan, J., Ed., Henderickx, W., Drake, J., Lin, W., and
A. Sajassi, "IP Prefix Advertisement in Ethernet VPN
(EVPN)", RFC 9136, DOI 10.17487/RFC9136, October 2021,
<https://www.rfc-editor.org/info/rfc9136>.
[YANG-Composed-VPN]
Even, R., Wu, B., Wu, Q., and Y. Cheng, "YANG Data Model
for Composed VPN Service Delivery", Work in Progress,
Internet-Draft, draft-evenwu-opsawg-yang-composed-vpn-03,
8 March 2019, <https://datatracker.ietf.org/doc/html/
draft-evenwu-opsawg-yang-composed-vpn-03>.
[YANG-SAPs]
Gonzalez de Dios, O., Barguil, S., Wu, Q., Boucadair, M.,
and V. Lopez, "A Network YANG Model for Service Attachment
Points", Work in Progress, Internet-Draft, draft-ietf-
opsawg-sap-00, 25 January 2022,
<https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
sap-00>.
Appendix A. L3VPN Examples
A.1. 4G VPN Provisioning Example
L3VPNs are widely used to deploy 3G/4G, fixed, and enterprise
services, mainly because several traffic discrimination policies can
be applied within the network to deliver to the mobile customers a
service that meets the SLA requirements.
Typically, and as shown in Figure 31, an eNodeB (CE) is directly
connected to the access routers of the mobile backhaul and their
logical interfaces (one or many, according to the service type) are
configured in a VPN that transports the packets to the mobile core
platforms. In this example, a 'vpn-node' is created with two 'vpn-
network-accesses'.
+-------------+ +------------------+
| | | PE |
| | | 198.51.100.1 |
| eNodeB |>--------/------->|........... |
| | vlan 1 | | |
| |>--------/------->|...... | |
| | vlan 2 | | | |
| | Direct | +-------------+ |
+-------------+ Routing | | vpn-node-id | |
| | 44 | |
| +-------------+ |
| |
+------------------+
Figure 31: Mobile Backhaul Example
To create an L3VPN service using the L3NM, the following steps can be
followed.
First, create the 4G VPN service (Figure 32).
POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/vpn-services
Host: example.com
Content-Type: application/yang-data+json
{
"ietf-l3vpn-ntw:vpn-services": {
"vpn-service": [
{
"vpn-id": "4G",
"vpn-description": "VPN to deploy 4G services",
"customer-name": "mycustomer",
"vpn-service-topology": "custom",
"vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "simple-profile",
"local-as": 65550,
"rd": "0:65550:1",
"address-family": [
{
"address-family": "ietf-vpn-common:dual-stack",
"vpn-targets": {
"vpn-target": [
{
"id": 1,
"route-targets": [
{
"route-target": "0:65550:1"
}
],
"route-target-type": "both"
}
]
}
}
]
}
]
}
}
]
}
}
Figure 32: Create VPN Service
Second, create a VPN node, as depicted in Figure 33. In this type of
service, the VPN node is equivalent to VRF configured in the physical
device ('ne-id'=198.51.100.1). NOTE: '\' line wrapping in Figures 33
and 34 is implemented per [RFC8792].
POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\
vpn-services/vpn-service=4G
Host: example.com
Content-Type: application/yang-data+json
{
"ietf-l3vpn-ntw:vpn-nodes": {
"vpn-node": [
{
"vpn-node-id": "44",
"ne-id": "198.51.100.1",
"active-vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "simple-profile"
}
]
}
}
]
}
}
Figure 33: Create VPN Node
Finally, two VPN network accesses are created using the same physical
port ('interface-id'=1/1/1). Each 'vpn-network-access' has a
particular VLAN interface (1,2): "SYNC" and "DATA" (Figure 34).
These interfaces differentiate the traffic between them.
POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\
vpn-services/vpn-service=4G/vpn-nodes/vpn-node=44
content-type: application/yang-data+json
{
"ietf-l3vpn-ntw:vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface SYNC to eNODE-B",
"vpn-network-access-type": "ietf-vpn-common:point-to-point",
"vpn-instance-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.1",
"prefix-length": 30,
"address-allocation-type": "static-address",
"static-addresses": {
"primary-address": "1",
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.2"
}
]
}
},
"ipv6": {
"local-address": "2001:db8::1",
"prefix-length": 64,
"address-allocation-type": "static-address",
"primary-address": "1",
"address": [
{
"address-id": "1",
"customer-address": "2001:db8::2"
}
]
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:direct"
}
]
}
},
{
"id": "1/1/1.2",
"interface-id": "1/1/1",
"description": "Interface DATA to eNODE-B",
"vpn-network-access-type": "ietf-vpn-common:point-to-point",
"vpn-instance-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 2
}
}
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.1",
"prefix-length": 30,
"address-allocation-type": "static-address",
"static-addresses": {
"primary-address": "1",
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.2"
}
]
}
},
"ipv6": {
"local-address": "2001:db8::1",
"prefix-length": 64,
"address-allocation-type": "static-address",
"primary-address": "1",
"address": [
{
"address-id": "1",
"customer-address": "2001:db8::2"
}
]
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:direct"
}
]
}
}
]
}
}
Figure 34: Create VPN Network Access
A.2. Loopback Interface
An example of a loopback interface is depicted in Figure 35.
{
"ietf-l3vpn-ntw:vpn-network-accesses": {
"vpn-network-access": [
{
"id": "vpn-access-loopback",
"interface-id": "Loopback1",
"description": "An example of a loopback interface.",
"vpn-network-access-type": "ietf-vpn-common:loopback",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"ip-connection": {
"ipv6": {
"local-address": "2001:db8::4",
"prefix-length": 128
}
}
}
]
}
}
Figure 35: VPN Network Access with a Loopback Interface (Message
Body)
A.3. Overriding VPN Instance Profile Parameters
Figure 36 shows a simplified example to illustrate how some
information that is provided at the VPN service level (particularly
as part of the 'vpn-instance-profiles') can be overridden by
information configured at the VPN node level. In this example, PE3
and PE4 inherit the 'vpn-instance-profiles' parameters that are
specified at the VPN service level, but PE1 and PE2 are provided with
"maximum-routes" values at the VPN node level that override the
values that are specified at the VPN service level.
{
"ietf-l3vpn-ntw:vpn-services": {
"vpn-service": [
{
"vpn-id": "override-example",
"vpn-service-topology": "ietf-vpn-common:hub-spoke",
"vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "HUB",
"role": "ietf-vpn-common:hub-role",
"local-as": 64510,
"rd-suffix": 1001,
"address-family": [
{
"address-family": "ietf-vpn-common:dual-stack",
"maximum-routes": [
{
"protocol": "ietf-vpn-common:any",
"maximum-routes": 100
}
]
}
]
},
{
"profile-id": "SPOKE",
"role": "ietf-vpn-common:spoke-role",
"local-as": 64510,
"address-family": [
{
"address-family": "ietf-vpn-common:dual-stack",
"maximum-routes": [
{
"protocol": "ietf-vpn-common:any",
"maximum-routes": 1000
}
]
}
]
}
]
},
"vpn-nodes": {
"vpn-node": [
{
"vpn-node-id": "PE1",
"ne-id": "pe1",
"router-id": "198.51.100.1",
"active-vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "HUB",
"rd": "1:198.51.100.1:1001",
"address-family": [
{
"address-family":
"ietf-vpn-common:dual-stack",
"maximum-routes": [
{
"protocol": "ietf-vpn-common:any",
"maximum-routes": 10
}
]
}
]
}
]
}
},
{
"vpn-node-id": "PE2",
"ne-id": "pe2",
"router-id": "198.51.100.2",
"active-vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "SPOKE",
"address-family": [
{
"address-family":
"ietf-vpn-common:dual-stack",
"maximum-routes": [
{
"protocol": "ietf-vpn-common:any",
"maximum-routes": 100
}
]
}
]
}
]
}
},
{
"vpn-node-id": "PE3",
"ne-id": "pe3",
"router-id": "198.51.100.3",
"active-vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "SPOKE"
}
]
}
},
{
"vpn-node-id": "PE4",
"ne-id": "pe4",
"router-id": "198.51.100.4",
"active-vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "SPOKE"
}
]
}
}
]
}
}
]
}
}
Figure 36: VPN Instance Profile Example (Message Body)
A.4. Multicast VPN Provisioning Example
IPTV is mainly distributed through multicast over the LANs. In the
following example, PIM - Sparse Mode (PIM-SM) is enabled and
functional between the PE and the CE. The PE receives multicast
traffic from a CE that is directly connected to the multicast source.
The signaling between the PE and the CE is achieved using BGP. Also,
the RP is statically configured for a multicast group.
+-----------+ +------+ +------+ +-----------+
| Multicast |---| CE |--/--| PE |----| Backbone |
| source | +------+ +------+ | IP/MPLS |
+-----------+ +-----------+
Figure 37: Multicast L3VPN Service Example
Figure 38 illustrates how to configure a multicast L3VPN service
using the L3NM.
First, the multicast service is created together with a generic VPN
instance profile (see the excerpt of the request message body shown
in Figure 38).
{
"ietf-l3vpn-ntw:vpn-services": {
"vpn-service": [
{
"vpn-id": "Multicast-IPTV",
"vpn-description": "Multicast IPTV VPN service",
"customer-name": "a-name",
"vpn-service-topology": "ietf-vpn-common:hub-spoke",
"vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "multicast",
"role": "ietf-vpn-common:hub-role",
"local-as": 65536,
"multicast": {
"rp": {
"rp-group-mappings": {
"rp-group-mapping": [
{
"id": 1,
"rp-address": "203.0.113.17",
"groups": {
"group": [
{
"id": 1,
"group-address": "239.130.0.0/15"
}
]
}
}
]
},
"rp-discovery": {
"rp-discovery-type": "ietf-vpn-common:static-rp"
}
}
}
}
]
}
}
]
}
}
Figure 38: Create Multicast VPN Service (Excerpt of the Message
Request Body)
Then, the VPN nodes are created (see the excerpt of the request
message body shown in Figure 39). In this example, the VPN node will
represent VRF configured in the physical device.
{
"ietf-l3vpn-ntw:vpn-node": [
{
"vpn-node-id": "500003105",
"description": "VRF-IPTV-MULTICAST",
"ne-id": "198.51.100.10",
"router-id": "198.51.100.10",
"active-vpn-instance-profiles": {
"vpn-instance-profile": [
{
"profile-id": "multicast",
"rd": "65536:31050202"
}
]
}
}
]
}
Figure 39: Create Multicast VPN Node (Excerpt of the Message
Request Body)
Finally, create the VPN network access with multicast enabled (see
the excerpt of the request message body shown in Figure 40).
{
"ietf-l3vpn-ntw:vpn-network-access": {
"id": "1/1/1",
"description": "Connected-to-source",
"vpn-network-access-type": "ietf-vpn-common:point-to-point",
"vpn-instance-profile": "multicast",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
},
"ip-connection": {
"ipv4": {
"local-address": "203.0.113.1",
"prefix-length": 30,
"address-allocation-type": "static-address",
"static-addresses": {
"primary-address": "1",
"address": [
{
"address-id": "1",
"customer-address": "203.0.113.2"
}
]
}
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:bgp-routing",
"bgp": {
"description": "Connected to CE",
"peer-as": "65537",
"address-family": "ietf-vpn-common:ipv4",
"neighbor": "203.0.113.2"
}
}
]
},
"service": {
"pe-to-ce-bandwidth": "100000000",
"ce-to-pe-bandwidth": "100000000",
"mtu": 1500,
"multicast": {
"access-type": "source-only",
"address-family": "ietf-vpn-common:ipv4",
"protocol-type": "router",
"pim": {
"hello-interval": 30,
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
}
}
}
}
}
}
}
Figure 40: Create VPN Network Access (Excerpt of the Message
Request Body)
Acknowledgements
During the discussions of this work, helpful comments, suggestions,
and reviews were received from (listed alphabetically) Raul Arco,
Miguel Cros Cecilia, Joe Clarke, Dhruv Dhody, Adrian Farrel, Roque
Gagliano, Christian Jacquenet, Kireeti Kompella, Julian Lucek, Greg
Mirsky, and Tom Petch. Many thanks to them. Thanks to Philip
Eardley for the review of an early draft version of the document.
Daniel King, Daniel Voyer, Luay Jalil, and Stephane Litkowski
contributed to early draft versions of this document. Many thanks to
Robert Wilton for the AD review. Thanks to Andrew Malis for the
routing directorate review, Rifaat Shekh-Yusef for the security
directorate review, Qin Wu for the opsdir review, and Pete Resnick
for the genart directorate review. Thanks to Michael Scharf for the
discussion on the TCP-AO. Thanks to Martin Duke, Lars Eggert,
Zaheduzzaman Sarker, Roman Danyliw, Erik Kline, Benjamin Kaduk,
Francesca Palombini, and Éric Vyncke for the IESG review.
This work was supported in part by the European Commission-funded
H2020-ICT-2016-2 METRO-HAUL project (G.A. 761727) and Horizon 2020
Secured autonomic traffic management for a Tera of SDN flows
(Teraflow) project (G.A. 101015857).
Contributors
Victor Lopez
Nokia
Madrid
Spain
Email: victor.lopez@nokia.com
Qin Wu
Huawei
Email: bill.wu@huawei.com
Manuel Lopez
Vodafone
Spain
Email: manuel-julian.lopez@vodafone.com
Lucia Oliva Ballega
Telefonica
Email: lucia.olivaballega.ext@telefonica.com
Erez Segev
Ribbon Communications
Email: erez.segev@rbbn.com
Paul Sherratt
Gamma Telecom
Email: paul.sherratt@gamma.co.uk
Authors' Addresses
Samier Barguil
Telefonica
Madrid
Spain
Email: samier.barguilgiraldo.ext@telefonica.com
Oscar Gonzalez de Dios (editor)
Telefonica
Madrid
Spain
Email: oscar.gonzalezdedios@telefonica.com
Mohamed Boucadair (editor)
Orange
35000 Rennes
France
Email: mohamed.boucadair@orange.com
Luis Angel Munoz
Vodafone
Spain
Email: luis-angel.munoz@vodafone.com
Alejandro Aguado
Nokia
Madrid
Spain
Email: alejandro.aguado_martin@nokia.com
|