1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
|
Internet Engineering Task Force (IETF) M. Boucadair, Ed.
Request for Comments: 9244 Orange
Category: Standards Track T. Reddy.K, Ed.
ISSN: 2070-1721 Akamai
E. Doron
Radware Ltd.
M. Chen
CMCC
J. Shallow
June 2022
Distributed Denial-of-Service Open Threat Signaling (DOTS) Telemetry
Abstract
This document aims to enrich the Distributed Denial-of-Service Open
Threat Signaling (DOTS) signal channel protocol with various
telemetry attributes, allowing for optimal Distributed Denial-of-
Service (DDoS) attack mitigation. It specifies the normal traffic
baseline and attack traffic telemetry attributes a DOTS client can
convey to its DOTS server in the mitigation request, the mitigation
status telemetry attributes a DOTS server can communicate to a DOTS
client, and the mitigation efficacy telemetry attributes a DOTS
client can communicate to a DOTS server. The telemetry attributes
can assist the mitigator in choosing the DDoS mitigation techniques
and performing optimal DDoS attack mitigation.
This document specifies two YANG modules: one for representing DOTS
telemetry message types and one for sharing the attack mapping
details over the DOTS data channel.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9244.
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
2. Terminology
3. DOTS Telemetry: Overview and Purpose
3.1. Need for More Visibility
3.2. Enhanced Detection
3.3. Efficient Mitigation
4. Design Overview
4.1. Overview of Telemetry Operations
4.2. Block-Wise Transfers
4.3. DOTS Multihoming Considerations
4.4. YANG Considerations
5. Generic Considerations
5.1. DOTS Client Identification
5.2. DOTS Gateways
5.3. Uri-Path Parameters and Empty Values
5.4. Controlling Configuration Data
5.5. Message Validation
5.6. A Note about Examples
6. Telemetry Operation Paths
7. DOTS Telemetry Setup Configuration
7.1. Telemetry Configuration
7.1.1. Retrieving the Current DOTS Telemetry Configuration
7.1.2. Conveying the DOTS Telemetry Configuration
7.1.3. Retrieving the Installed DOTS Telemetry Configuration
7.1.4. Deleting the DOTS Telemetry Configuration
7.2. Total Pipe Capacity
7.2.1. Conveying DOTS Client Domain Pipe Capacity
7.2.2. Retrieving Installed DOTS Client Domain Pipe Capacity
7.2.3. Deleting Installed DOTS Client Domain Pipe Capacity
7.3. Telemetry Baseline
7.3.1. Conveying DOTS Client Domain Baseline Information
7.3.2. Retrieving Installed Normal Traffic Baseline
Information
7.3.3. Deleting Installed Normal Traffic Baseline Information
7.4. Resetting the Installed Telemetry Setup
7.5. Conflict with Other DOTS Clients of the Same Domain
8. DOTS Pre-or-Ongoing-Mitigation Telemetry
8.1. Pre-or-Ongoing-Mitigation DOTS Telemetry Attributes
8.1.1. Target
8.1.2. Total Traffic
8.1.3. Total Attack Traffic
8.1.4. Total Attack Connections
8.1.5. Attack Details
8.1.6. Vendor Attack Mapping
8.2. From DOTS Clients to DOTS Servers
8.3. From DOTS Servers to DOTS Clients
9. DOTS Telemetry Mitigation Status Update
9.1. From DOTS Clients to DOTS Servers: Mitigation Efficacy DOTS
Telemetry Attributes
9.2. From DOTS Servers to DOTS Clients: Mitigation Status DOTS
Telemetry Attributes
10. Error Handling
11. YANG Modules
11.1. DOTS Signal Channel Telemetry YANG Module
11.2. Vendor Attack Mapping Details YANG Module
12. YANG/JSON Mapping Parameters to CBOR
13. IANA Considerations
13.1. DOTS Signal Channel CBOR Key Values
13.2. DOTS Signal Channel Conflict Cause Codes
13.3. DOTS Telemetry URIs and YANG Module Registrations
14. Security Considerations
14.1. DOTS Signal Channel Telemetry
14.2. Vendor Attack Mapping
15. References
15.1. Normative References
15.2. Informative References
Acknowledgments
Contributors
Authors' Addresses
1. Introduction
IT organizations and service providers are facing Distributed Denial-
of-Service (DDoS) attacks that fall into two broad categories:
1. Network-layer and transport-layer attacks target the victim's
infrastructure. These attacks are not necessarily aimed at
taking down the actual delivered services; rather, these attacks
prevent various network elements (routers, switches, firewalls,
transit links, and so on) from serving legitimate users' traffic.
The main method of such attacks is to send a large volume of
traffic (e.g., high-pps (packets per second) traffic) toward the
victim's infrastructure. Typically, attack volumes may vary from
a few hundred Mbps to hundreds of Gbps or even Tbps. Attacks are
commonly carried out leveraging botnets and attack reflectors for
amplification attacks (Section 3.1 of [RFC4732]) such as NTP
(Network Time Protocol), DNS (Domain Name System), SNMP (Simple
Network Management Protocol), or SSDP (Simple Service Discovery
Protocol).
2. Application-layer attacks target various applications. Typical
examples include attacks against HTTP/HTTPS, DNS, SIP (Session
Initiation Protocol), or SMTP (Simple Mail Transfer Protocol).
However, all applications with their port numbers open at network
edges can be attractive attack targets.
Application-layer attacks are considered more complex and harder
to categorize and are therefore harder to detect and mitigate
efficiently.
To compound the problem, attackers also leverage multi-vectored
attacks. These attacks are assembled from dynamic network-layer and
application-layer attack vectors and other tactics. As such,
multiple attack vectors formed by multiple attack types and volumes
are launched simultaneously toward a victim. Multi-vector attacks
are harder to detect and defend against. Multiple and simultaneous
mitigation techniques are needed to defeat such attack campaigns. It
is also common for attackers to change attack vectors right after a
successful mitigation, burdening their opponents with changing their
defense methods.
The conclusion derived from the aforementioned attack scenarios is
that modern attack detection and mitigation are most certainly
complicated and highly convoluted tasks. They demand a comprehensive
knowledge of the attack attributes and the normal behavior of the
targeted systems (including normal traffic patterns), as well as the
attacker's ongoing and past actions. Even more challenging,
retrieving all the analytics needed for detecting these attacks is
not simple with the industry's current reporting capabilities.
The Distributed Denial-of-Service Open Threat Signaling (DOTS) signal
channel protocol [RFC9132] is used to carry information about a
network resource or a network (or a part thereof) that is under a
DDoS attack. Such information is sent by a DOTS client to one or
multiple DOTS servers so that appropriate mitigation actions are
undertaken on traffic deemed suspicious. Various use cases are
discussed in [RFC8903].
DOTS clients can be integrated within a DDoS attack detector or
within network and security elements that have been actively engaged
with ongoing attacks. The DOTS client mitigation environment
determines that it is no longer possible or practical for it to
handle these attacks itself. This can be due to a lack of resources
or security capabilities, as derived from the complexities and
intensity of these attacks. In this circumstance, the DOTS client
has invaluable knowledge about the actual attacks that need to be
handled by its DOTS server(s). By enabling the DOTS client to share
this comprehensive knowledge of an ongoing attack under specific
circumstances, the DOTS server can drastically increase its ability
to accomplish successful mitigation. While the attack is being
handled by the mitigation resources associated with the DOTS server,
the DOTS server has knowledge about the ongoing attack mitigation.
The DOTS server can share this information with the DOTS client so
that the client can better assess and evaluate the actual mitigation
realized.
DOTS clients can send mitigation hints derived from attack details to
DOTS servers, with the full understanding that a DOTS server may
ignore mitigation hints, as described in [RFC8612] (Gen-004).
Mitigation hints will be transmitted across the DOTS signal channel,
as the data channel may not be functional during an attack. How a
DOTS server handles normal and attack traffic attributes, and
mitigation hints, is implementation specific.
Both DOTS clients and servers can benefit from this information by
presenting various information details in relevant management,
reporting, and portal systems.
This document defines DOTS telemetry attributes that can be conveyed
by DOTS clients to DOTS servers, and vice versa. The DOTS telemetry
attributes are not mandatory attributes of the DOTS signal channel
protocol [RFC9132]. When no limitation policy is provided to a DOTS
agent, it can signal available telemetry attributes to its peers in
order to optimize the overall mitigation service provisioned using
DOTS. The aforementioned policy can be, for example, agreed upon
during a service subscription (which is out of scope for this
document) to identify a subset of DOTS clients among those deployed
in a DOTS client domain that are allowed to send or receive telemetry
data.
Section 11.2 of this document specifies a YANG module that augments
the DOTS data channel [RFC8783] with information related to attack
details. Sharing such details during 'idle' time is meant to
optimize the data exchanged over the DOTS signal channel.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
The reader should be familiar with the terms defined in [RFC8612].
"DOTS telemetry" is defined as the collection of attributes that are
used to characterize the normal traffic baseline, attacks and their
mitigation measures, and any related information that may help in
enforcing countermeasures. "DOTS telemetry" is an optional set of
attributes that can be signaled in the DOTS signal channel protocol.
The Telemetry Setup Identifier (tsid) is an identifier that is
generated by DOTS clients to uniquely identify DOTS telemetry setup
configuration data. See Section 7.1.2 for more details.
The Telemetry Identifier (tmid) is an identifier that is generated by
DOTS clients to uniquely identify DOTS telemetry data that is
communicated prior to or during a mitigation. See Section 8.2 for
more details.
"Overlapped" lower numeric 'tsid' (or 'tmid') refers to the lower
'tsid' (or 'tmid') value of two overlapping telemetry requests.
The term "pipe" represents the maximum level of traffic that the DOTS
client domain can receive. Whether a "pipe" is mapped to one or a
group of network interfaces is deployment specific. For example,
each interconnection link may be considered as a specific pipe if the
DOTS server is hosted by each upstream provider, while the aggregate
of all links to connect to upstream network providers can be
considered by a DOTS client domain as a single pipe when
communicating with a DOTS server not hosted by these upstream
providers.
This document uses IANA-assigned Enterprise Numbers. These numbers
are also known as "Private Enterprise Numbers" and "SMI (Structure of
Management Information) Network Management Private Enterprise Codes"
[Private-Enterprise-Numbers].
The meanings of the symbols in YANG tree diagrams are defined in
[RFC8340] and [RFC8791].
Consistent with the convention set in Section 2 of [RFC8783], the
examples in Section 8.1.6 use "/restconf" as the discovered RESTCONF
API root path. Within these examples, some protocol header lines are
split into multiple lines for display purposes only. When a line
ends with a backslash ("\") as the last character, the line is
wrapped for display purposes. It is considered to be joined to the
next line by deleting the backslash, the following line break, and
the leading whitespace of the next line.
3. DOTS Telemetry: Overview and Purpose
Timely and effective signaling of up-to-date DDoS telemetry to all
elements involved in the mitigation process is essential and improves
the overall DDoS mitigation service's effectiveness. Bidirectional
feedback between DOTS agents is required for increased awareness by
each party of the attack and mitigation efforts, supporting a
superior and highly efficient attack mitigation service.
3.1. Need for More Visibility
When signaling a mitigation request, it is most certainly beneficial
for DOTS clients to signal to DOTS servers any knowledge regarding
ongoing attacks. This can happen in cases where DOTS clients are
asking DOTS servers for support in defending against attacks that
they have already detected and/or (partially) mitigated.
If attacks are already detected and categorized within a DOTS client
domain, the DOTS server, and its associated mitigation services, can
proactively benefit from this information and optimize the overall
service delivery. It is important to note that DOTS client domains'
and DOTS server domains' detection and mitigation approaches can be
different and can potentially result in different results and attack
classifications. The DDoS mitigation service treats the ongoing
attack details received from DOTS clients as hints and cannot
completely rely on or trust the attack details conveyed by DOTS
clients.
In addition to the DOTS server directly using telemetry data as
operational hints, the DOTS server's security operation team also
benefits from telemetry data. A basic requirement of security
operation teams is to be aware of and get visibility into the attacks
they need to handle. This holds especially for the case of ongoing
attacks, where DOTS telemetry provides data about the current attack
status. Even if some mitigation can be automated, operational teams
can use the DOTS telemetry information to be prepared for attack
mitigation and to assign the correct resources (e.g., operation
staff, networking resources, mitigation resources) for the specific
service. Similarly, security operations personnel at the DOTS client
side ask for feedback about their requests for protection.
Therefore, it is valuable for DOTS servers to share DOTS telemetry
with DOTS clients.
Mutual sharing of information is thus crucial for "closing the
mitigation loop" between DOTS clients and servers. For the server-
side team, it is important to confirm that the same attacks that the
DOTS server's mitigation resources are seeing are those for which a
DOTS client is requesting mitigation. For the DOTS client-side team,
it is important to realize that the DOTS clients receive the required
service -- for example, understanding that "I asked for mitigation of
two attacks, and my DOTS server detects and mitigates only one of
them." Cases of inconsistency in attack classification between DOTS
clients and servers can be highlighted, and maybe handled, using the
DOTS telemetry attributes.
In addition, management and orchestration systems, at both the DOTS
client and server sides, can use DOTS telemetry as feedback to
automate various control and management activities derived from
signaled telemetry information.
If the DOTS server's mitigation resources have the capabilities to
facilitate the DOTS telemetry, the DOTS server adapts its protection
strategy and activates the required countermeasures immediately
(automation enabled) for the sake of optimized attack mitigation
decisions and actions. Discussion regarding the interface from the
DOTS server to the mitigator to signal the telemetry data is out of
scope for this document.
3.2. Enhanced Detection
DOTS telemetry can also be used as input for determining what values
to use for the tuning parameters available on the mitigation
resources. During the last few years, DDoS attack detection
technologies have evolved from threshold-based detection (that is,
cases when all or specific parts of traffic cross a predefined
threshold for a certain period of time is considered as an attack) to
an "anomaly detection" approach. For the latter, it is required to
maintain rigorous learning of "normal" behavior, and an "anomaly" (or
an attack) is identified and categorized based on the knowledge about
the normal behavior and a deviation from this normal behavior.
Statistical and artificial intelligence algorithms (e.g., machine
learning) are used such that the actual traffic thresholds are
automatically calculated by learning the protected entity's normal
traffic behavior during 'idle' time (i.e., no mitigation is active).
The normal traffic characterization learned is referred to as the
"normal traffic baseline". An attack is detected when the victim's
actual traffic is deviating from this normal baseline pattern.
In addition, subsequent activities toward mitigating an attack are
much more challenging. The ability to distinguish legitimate traffic
from attacker traffic on a per-packet basis is complex. For example,
a packet may look "legitimate" and no attack signature can be
identified. The anomaly can be identified only after detailed
statistical analysis. DDoS attack mitigators use the normal baseline
during the mitigation of an attack to identify and categorize the
expected appearance of a specific traffic pattern. Particularly, the
mitigators use the normal baseline to recognize the "level of
normality" that needs to be achieved during the various mitigation
processes.
Normal baseline calculation is performed based on continuous learning
of the normal behavior of the protected entities. The minimum
learning period varies from hours to days and even weeks, depending
on the protected applications' behavior. The baseline cannot be
learned during active attacks because attack conditions do not
characterize the protected entities' normal behavior.
If the DOTS client has calculated the normal baseline of its
protected entities, signaling such information to the DOTS server
along with the attack traffic levels provides value. The DOTS server
benefits from this telemetry by tuning its mitigation resources with
the DOTS client's normal baseline. The DOTS server's mitigators use
the baseline to familiarize themselves with the attack victim's
normal behavior and target the baseline as the level of normality
they need to achieve. Fed with this information, the overall
mitigation performance is expected to be improved in terms of time to
mitigate, accuracy, and false-negative and false-positive rates.
Mitigation of attacks without having certain knowledge of normal
traffic can be inaccurate at best. This is especially true for
recursive signaling (see Section 3.2.3 of [RFC8811]). Given that
DOTS clients can be integrated in a highly diverse set of scenarios
and use cases, this emphasizes the need for knowledge of the behavior
of each DOTS client domain -- especially given that common global
thresholds for attack detection can almost never be realized. Each
DOTS client domain can have its own levels of traffic and normal
behavior. Without facilitating normal baseline signaling, it may be
very difficult for DOTS servers in some cases to detect and mitigate
the attacks accurately:
* It is important to emphasize that it is practically impossible for
the DOTS server's mitigators to calculate the normal baseline in
cases where they do not have any knowledge of the traffic
beforehand.
Of course, this information can be provided using out-of-band
mechanisms or manual configuration, at the risk of unmaintained
information becoming inaccurate as the network evolves and "normal"
patterns change. The use of a dynamic and collaborative means
between the DOTS client and server to identify and share key
parameters for the sake of efficient DDoS protection is valuable.
3.3. Efficient Mitigation
During a high-volume attack, DOTS client pipes can be totally
saturated. DOTS clients ask their DOTS servers to handle the attack
upstream so that DOTS client pipes return to a reasonable load level
(normal pattern, ideally). At this point, it is essential to ensure
that the mitigator does not overwhelm the DOTS client pipes by
sending back large volumes of "clean traffic", or what it believes is
"clean". This can happen when the mitigator has not managed to
detect and mitigate all the attacks launched toward the DOTS client
domain.
In this case, it can be valuable to DOTS clients to signal to DOTS
servers the total pipe capacity, which is the level of traffic the
DOTS client domain can absorb from its upstream network. This is
usually the circuit size, which includes all the packet overheads.
Dynamic updates of the condition of pipes between DOTS agents while
they are under a DDoS attack are essential (e.g., where multiple DOTS
clients share the same physical connectivity pipes). The DOTS server
should activate other mechanisms to ensure that it does not allow the
DOTS client domain's pipes to be saturated unintentionally. The
rate-limit action defined in [RFC8783] is a reasonable candidate to
achieve this objective; the DOTS client can indicate the type(s) of
traffic (such as ICMP, UDP, TCP port number 80) it prefers to limit.
The rate-limit action can be controlled via the signal channel
[RFC9133] even when the pipe is overwhelmed.
4. Design Overview
4.1. Overview of Telemetry Operations
The DOTS protocol suite is divided into two logical channels: the
signal channel [RFC9132] and data channel [RFC8783]. This division
is due to the vastly different requirements placed upon the traffic
they carry. The DOTS signal channel must remain available and usable
even in the face of attack traffic that might, for example, saturate
one direction of the links involved, rendering acknowledgment-based
mechanisms unreliable and strongly incentivizing messages to be small
enough to be contained in a single IP packet (Section 2.2 of
[RFC8612]). In contrast, the DOTS data channel is available for
high-bandwidth data transfer before or after an attack, using more
conventional transport protocol techniques (Section 2.3 of
[RFC8612]). It is generally preferable to perform advance
configuration over the DOTS data channel, including configuring
aliases for static or nearly static data sets such as sets of network
addresses/prefixes that might be subject to related attacks. This
design helps to optimize the use of the DOTS signal channel for the
small messages that are important to deliver during an attack. As a
reminder, the DOTS signal channel and data channel both require
secure communication channels (Section 11 of [RFC9132] and Section 10
of [RFC8783]).
Telemetry information has aspects that correspond to both operational
modes (i.e., signal channel and data channel): there is certainly a
need to convey updated information about ongoing attack traffic and
targets during an attack, so as to convey detailed information about
mitigation status and inform updates to mitigation strategy in the
face of adaptive attacks. However, it is also useful to provide
mitigation services with a picture of normal or "baseline" traffic
toward potential targets to aid in detecting when incoming traffic
deviates from normal into being an attack. Also, one might populate
a "database" of classifications of known types of attacks so that a
short attack identifier can be used during an attack period to
describe an observed attack. This specification does make provision
for use of the DOTS data channel for the latter function
(Section 8.1.6) but otherwise retains most telemetry functionality in
the DOTS signal channel.
Note that it is a functional requirement to convey information about
ongoing attack traffic during an attack, and information about
baseline traffic uses an essentially identical data structure that is
naturally defined to sit next to the description of attack traffic.
The related telemetry setup information used to parameterize actual
traffic data is also sent over the signal channel, out of expediency.
This document specifies an extension to the DOTS signal channel
protocol. Considerations about how to establish, maintain, and make
use of the DOTS signal channel are specified in [RFC9132].
Once the DOTS signal channel is established, DOTS clients that
support the DOTS telemetry extension proceed with the telemetry setup
configuration (e.g., measurement interval, telemetry notification
interval, pipe capacity, normal traffic baseline) as detailed in
Section 7. DOTS agents can then include DOTS telemetry attributes
using the DOTS signal channel (Section 8.1). A DOTS client can use
separate messages to share with its DOTS server(s) a set of telemetry
data bound to an ongoing mitigation (Section 8.2). Also, a DOTS
client that is interested in receiving telemetry notifications
related to some of its resources follows the procedure defined in
Section 8.3. A DOTS client that receives such notifications can then
decide to send a mitigation request if an attack cannot be mitigated
locally within the DOTS client domain.
Aggregate DOTS telemetry data can also be included in efficacy update
(Section 9.1) or mitigation update (Section 9.2) messages.
4.2. Block-Wise Transfers
DOTS clients can use a block-wise transfer [RFC7959] with the
recommendation detailed in Section 4.4.2 of [RFC9132] to control the
size of a response when the data to be returned does not fit within a
single datagram.
DOTS clients can also use the Constrained Application Protocol (CoAP)
Block1 Option in a PUT request (Section 2.5 of [RFC7959]) to initiate
large transfers, but these Block1 transfers are likely to fail if the
inbound "pipe" is running full because the transfer requires a
message from the server for each block, which would likely be lost in
the incoming flood. Consideration needs to be made to try to fit
this PUT into a single transfer or to separate out the PUT into
several discrete PUTs where each of them fits into a single packet.
Q-Block1 and Q-Block2 Options that are similar to the CoAP Block1 and
Block2 Options, but enable robust transmissions of big blocks of data
with less packet interchanges using NON messages, are defined in
[RFC9177]. DOTS implementations can consider the use of Q-Block1 and
Q-Block2 Options [DOTS-Robust-Blocks].
4.3. DOTS Multihoming Considerations
Considerations for multihomed DOTS clients to select which DOTS
server to contact and which IP prefixes to include in a telemetry
message to a given peer DOTS server are discussed in
[DOTS-Multihoming]. For example, if each upstream network exposes a
DOTS server and the DOTS client maintains DOTS channels with all of
them, only the information related to prefixes assigned by an
upstream network to the DOTS client domain will be signaled via the
DOTS channel established with the DOTS server of that upstream
network.
Considerations related to whether (and how) a DOTS client gleans some
telemetry information (e.g., attack details) it receives from a first
DOTS server and shares it with a second DOTS server are
implementation and deployment specific.
4.4. YANG Considerations
Telemetry messages exchanged between DOTS agents are serialized using
Concise Binary Object Representation (CBOR) [RFC8949]. CBOR-encoded
payloads are used to carry signal-channel-specific payload messages
that convey request parameters and response information such as
errors.
This document specifies a YANG module [RFC7950] for representing DOTS
telemetry message types (Section 11.1). All parameters in the
payload of the DOTS signal channel are mapped to CBOR types as
specified in Section 12. As a reminder, Section 3 of [RFC9132]
defines the rules for mapping YANG-modeled data to CBOR.
The DOTS telemetry module (Section 11.1) is not intended to be used
via the Network Configuration Protocol (NETCONF) / RESTCONF for DOTS
server management purposes. It serves only to provide a data model
and encoding following [RFC8791]. Server deviations (Section 5.6.3
of [RFC7950]) are strongly discouraged, as the peer DOTS agent does
not have the means to retrieve the list of deviations and thus
interoperability issues are likely to be encountered.
The DOTS telemetry module (Section 11.1) uses "enumerations" rather
than "identities" to define units, samples, and intervals because
otherwise the namespace identifier "ietf-dots-telemetry" must be
included when a telemetry attribute is included (e.g., in a
mitigation efficacy update). The use of "identities" is thus
suboptimal from the standpoint of message compactness, as message
compactness is one of the key requirements for DOTS signal channel
messages.
The DOTS telemetry module (Section 11.1) includes some lists for
which no "key" statement is included. This behavior is compliant
with [RFC8791]. The reason for not including these keys is that they
are not included in the message body of DOTS requests; such keys are
included as mandatory Uri-Paths in requests (Sections 7 and 8).
Otherwise, whenever a "key" statement is used in the module, the same
definition as the definition provided in Section 7.8.2 of [RFC7950]
is assumed.
Some parameters (e.g., low-percentile values) may be associated with
different YANG types (e.g., decimal64 and yang:gauge64). To easily
distinguish the types of these parameters while using meaningful
names, the following suffixes are used:
+========+==============+==================+
| Suffix | YANG Type | Example |
+========+==============+==================+
| -g | yang:gauge64 | low-percentile-g |
+--------+--------------+------------------+
| -c | container | connection-c |
+--------+--------------+------------------+
| -ps | per second | connection-ps |
+--------+--------------+------------------+
Table 1: Suffixes and YANG Types
The full tree diagram of the DOTS telemetry module can be generated
using the "pyang" tool [PYANG]. That tree is not included here
because it is too long (Section 3.3 of [RFC8340]). Instead, subtrees
are provided for the reader's convenience.
In order to optimize the data exchanged over the DOTS signal channel,
this document specifies a second YANG module ("ietf-dots-mapping";
see Section 11.2) that augments the DOTS data channel [RFC8783].
This augmentation can be used during 'idle' time to share the attack
mapping details (Section 8.1.5). DOTS clients can use tools, e.g.,
the YANG Library [RFC8525], to retrieve the list of features and
deviations supported by the DOTS server over the data channel.
5. Generic Considerations
5.1. DOTS Client Identification
Following the rules in Section 4.4.1 of [RFC9132], a unique
identifier is generated by a DOTS client to prevent request
collisions ('cuid').
As a reminder, Section 4.4.1.3 of [RFC9132] forbids 'cuid' to be
returned in a response message body.
5.2. DOTS Gateways
DOTS gateways may be located between DOTS clients and servers. The
considerations elaborated in Section 4.4.1 of [RFC9132] must be
followed. In particular, the 'cdid' attribute is used to
unambiguously identify a DOTS client domain.
As a reminder, Section 4.4.1.3 of [RFC9132] forbids 'cdid' (if
present) to be returned in a response message body.
5.3. Uri-Path Parameters and Empty Values
Uri-Path parameters and attributes with empty values MUST NOT be
present in a request. The presence of such an empty value renders
the entire containing message invalid.
5.4. Controlling Configuration Data
The DOTS server follows the same considerations discussed in
Section 4.5.3 of [RFC9132] for managing DOTS telemetry configuration
freshness and notifications.
Likewise, a DOTS client may control the selection of configuration
and non-configuration data nodes when sending a GET request by means
of the 'c' (content) Uri-Query option and following the procedure
specified in Section 4.4.2 of [RFC9132]. These considerations are
not reiterated in the following sections.
5.5. Message Validation
The authoritative references for validating telemetry messages
exchanged over the DOTS signal channel are Sections 7, 8, and 9
together with the mapping table provided in Section 12. The
structure of telemetry message bodies is represented as a YANG data
structure (Section 11.1).
5.6. A Note about Examples
Examples are provided for illustration purposes. This document does
not aim to provide a comprehensive list of message examples.
JSON encoding of YANG-modeled data is used to illustrate the various
telemetry operations. To ease readability, parameter names and their
JSON types are thus used in the examples rather than their CBOR key
values and CBOR types following the mappings in Section 12. These
conventions are inherited from [RFC9132].
The examples use Enterprise Number 32473, which is defined for
documentation use; see [RFC5612].
6. Telemetry Operation Paths
As discussed in Section 4.2 of [RFC9132], each DOTS operation is
indicated by a path suffix that indicates the intended operation.
The operation path is appended to the path prefix to form the URI
used with a CoAP request to perform the desired DOTS operation. The
following telemetry path suffixes are defined (Table 2):
+=================+================+===========+
| Operation | Operation Path | Details |
+=================+================+===========+
| Telemetry Setup | /tm-setup | Section 7 |
+-----------------+----------------+-----------+
| Telemetry | /tm | Section 8 |
+-----------------+----------------+-----------+
Table 2: DOTS Telemetry Operations
Consequently, the "ietf-dots-telemetry" YANG module defined in
Section 11.1 defines a data structure to represent new DOTS message
types called 'telemetry-setup' and 'telemetry'. The tree structure
is shown in Figure 1. More details are provided in Sections 7 and 8
about the exact structure of 'telemetry-setup' and 'telemetry'
message types.
structure dots-telemetry:
+-- (telemetry-message-type)?
+--:(telemetry-setup)
| ...
| +-- telemetry* []
| ...
| +-- (setup-type)?
| +--:(telemetry-config)
| | ...
| +--:(pipe)
| | ...
| +--:(baseline)
| ...
+--:(telemetry)
...
Figure 1: New DOTS Message Types (YANG Tree Structure)
DOTS implementations MUST support the Observe Option [RFC7641] for
'tm' (Section 8).
7. DOTS Telemetry Setup Configuration
In reference to Figure 1, a DOTS telemetry setup message MUST include
only telemetry-related configuration parameters (Section 7.1),
information about DOTS client domain pipe capacity (Section 7.2), or
information about the telemetry traffic baseline (Section 7.3). As
such, requests that include a mix of telemetry configuration, pipe
capacity, and traffic baseline information MUST be rejected by DOTS
servers with a 4.00 (Bad Request) Response Code.
A DOTS client can reset all installed DOTS telemetry setup
configuration data following the considerations detailed in
Section 7.4.
A DOTS server may detect conflicts when processing requests related
to DOTS client domain pipe capacity or telemetry traffic baseline
information with requests from other DOTS clients of the same DOTS
client domain. More details are included in Section 7.5.
Telemetry setup configuration is bound to a DOTS client domain. DOTS
servers MUST NOT expect DOTS clients to send regular requests to
refresh the telemetry setup configuration. Any available telemetry
setup configuration is valid until the DOTS server ceases to service
a DOTS client domain. DOTS servers MUST NOT reset 'tsid' because a
session failed with a DOTS client. DOTS clients update their
telemetry setup configuration upon change of a parameter that may
impact attack mitigation.
DOTS telemetry setup configuration request and response messages are
marked as Confirmable messages (Section 2.1 of [RFC7252]).
7.1. Telemetry Configuration
DOTS telemetry uses several percentile values to provide a picture of
a traffic distribution overall, as opposed to just a single snapshot
of observed traffic at a single point in time. Modeling raw traffic
flow data as a distribution and describing that distribution entails
choosing a measurement period that the distribution will describe,
and a number of sampling intervals, or "buckets", within that
measurement period. Traffic within each bucket is treated as a
single event (i.e., averaged), and then the distribution of buckets
is used to describe the distribution of traffic over the measurement
period. A distribution can be characterized by statistical measures
(e.g., mean, median, and standard deviation) and also by reporting
the value of the distribution at various percentile levels of the
data set in question (e.g., "quartiles" that correspond to 25th,
50th, and 75th percentiles). More details about percentile values
and their computation are found in Section 11.3 of [RFC2330].
DOTS telemetry uses up to three percentile values, plus the overall
peak, to characterize traffic distributions. Which percentile
thresholds are used for these "low-percentile", "mid-percentile", and
"high-percentile" values is configurable. Default values are defined
in Section 7.1.2.
A DOTS client can negotiate with its server(s) a set of telemetry
configuration parameters to be used for telemetry. Such parameters
include:
* Percentile-related measurement parameters. In particular,
'measurement-interval' defines the period during which percentiles
are computed, while 'measurement-sample' defines the time
distribution for measuring values that are used to compute
percentiles.
* Measurement units.
* Acceptable percentile values.
* Telemetry notification interval.
* Acceptable server-originated telemetry.
7.1.1. Retrieving the Current DOTS Telemetry Configuration
A GET request is used to obtain acceptable and current telemetry
configuration parameters on the DOTS server. This request may
include a 'cdid' Uri-Path when the request is relayed by a DOTS
gateway. An example of such a GET request (without a gateway) is
depicted in Figure 2.
Header: GET (Code=0.01)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Figure 2: GET to Retrieve the Current and Acceptable DOTS Telemetry
Configuration
Upon receipt of such a request, and assuming that no error is
encountered when processing the request, the DOTS server replies with
a 2.05 (Content) response that conveys the telemetry parameters that
are acceptable to the DOTS server, any pipe information
(Section 7.2), and the current baseline information (Section 7.3)
maintained by the DOTS server for this DOTS client. The tree
structure of the response message body is provided in Figure 3.
DOTS servers that support the capability of sending telemetry
information to DOTS clients prior to or during a mitigation
(Section 9.2) set 'server-originated-telemetry' under 'max-config-
values' to 'true' ('false' is used otherwise). If 'server-
originated-telemetry' is not present in a response, this is
equivalent to receiving a response with 'server-originated-telemetry'
set to 'false'.
structure dots-telemetry:
+-- (telemetry-message-type)?
+--:(telemetry-setup)
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-config-values
| | | +-- measurement-interval? interval
| | | +-- measurement-sample? sample
| | | +-- low-percentile? percentile
| | | +-- mid-percentile? percentile
| | | +-- high-percentile? percentile
| | | +-- server-originated-telemetry? boolean
| | | +-- telemetry-notify-interval? uint16
| | +-- min-config-values
| | | +-- measurement-interval? interval
| | | +-- measurement-sample? sample
| | | +-- low-percentile? percentile
| | | +-- mid-percentile? percentile
| | | +-- high-percentile? percentile
| | | +-- telemetry-notify-interval? uint16
| | +-- supported-unit-classes
| | | +-- unit-config* [unit]
| | | +-- unit unit-class
| | | +-- unit-status boolean
| | +-- supported-query-type* query-type
| +-- telemetry* []
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- tsid? uint32
| +-- (setup-type)?
| +--:(telemetry-config)
| | +-- current-config
| | +-- measurement-interval? interval
| | +-- measurement-sample? sample
| | +-- low-percentile? percentile
| | +-- mid-percentile? percentile
| | +-- high-percentile? percentile
| | +-- unit-config* [unit]
| | | +-- unit unit-class
| | | +-- unit-status boolean
| | +-- server-originated-telemetry? boolean
| | +-- telemetry-notify-interval? uint16
| +--:(pipe)
| | ...
| +--:(baseline)
| ...
+--:(telemetry)
...
Figure 3: Telemetry Configuration Tree Structure
When both 'min-config-values' and 'max-config-values' attributes are
present, the values carried in 'max-config-values' attributes MUST be
greater than or equal to their counterparts in 'min-config-values'
attributes.
7.1.2. Conveying the DOTS Telemetry Configuration
A PUT request is used to convey the configuration parameters for the
telemetry data (e.g., low-, mid-, or high-percentile values). For
example, a DOTS client may contact its DOTS server to change the
default percentile values used as the baseline for telemetry data.
Figure 3 lists the attributes that can be set by a DOTS client in
such a PUT request. An example of a DOTS client that modifies all
percentile reference values is shown in Figure 4.
| Note: The payload of the message depicted in Figure 4 is CBOR-
| encoded as indicated by setting the Content-Format entry to
| "application/dots+cbor" (Section 10.3 of [RFC9132]). However,
| and for the sake of better readability, the example (and other
| similar figures depicting a DOTS telemetry message body)
| follows the conventions set in Section 5.6: use the JSON names
| and types defined in Section 12.
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=123"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"current-config": {
"low-percentile": "5.00",
"mid-percentile": "65.00",
"high-percentile": "95.00"
}
}
]
}
}
Figure 4: PUT to Convey the DOTS Telemetry Configuration,
Depicted as per Section 5.6
'cuid' is a mandatory Uri-Path parameter for PUT requests.
The following additional Uri-Path parameter is defined:
tsid: The Telemetry Setup Identifier is an identifier for the DOTS
telemetry setup configuration data represented as an integer.
This identifier MUST be generated by DOTS clients. 'tsid' values
MUST increase monotonically whenever new configuration parameters
(not just for changed values) need to be conveyed by the DOTS
client.
The procedure specified in Section 4.4.1 of [RFC9132] for 'mid'
rollover MUST also be followed for 'tsid' rollover.
This is a mandatory attribute. 'tsid' MUST appear after 'cuid' in
the Uri-Path options.
'cuid' and 'tsid' MUST NOT appear in the PUT request message body.
At least one configurable attribute MUST be present in the PUT
request.
A PUT request with a higher numeric 'tsid' value overrides the DOTS
telemetry configuration data installed by a PUT request with a lower
numeric 'tsid' value. To avoid maintaining a long list of 'tsid'
requests for requests carrying telemetry configuration data from a
DOTS client, the lower numeric 'tsid' MUST be automatically deleted
and no longer be available at the DOTS server.
The DOTS server indicates the result of processing the PUT request
using the following Response Codes:
* If the request is missing a mandatory attribute, does not include
'cuid' or 'tsid' Uri-Path parameters, or contains one or more
invalid or unknown parameters, a 4.00 (Bad Request) Response Code
MUST be returned in the response.
* If the DOTS server does not find the 'tsid' parameter value
conveyed in the PUT request in its configuration data and if the
DOTS server has accepted the configuration parameters, then a 2.01
(Created) Response Code MUST be returned in the response.
* If the DOTS server finds the 'tsid' parameter value conveyed in
the PUT request in its configuration data and if the DOTS server
has accepted the updated configuration parameters, a 2.04
(Changed) Response Code MUST be returned in the response.
* If any of the enclosed configurable attribute values are not
acceptable to the DOTS server (Section 7.1.1), a 4.22
(Unprocessable Entity) Response Code MUST be returned in the
response.
The DOTS client may retry and send the PUT request with updated
attribute values acceptable to the DOTS server.
By default, low-percentile (10th percentile), mid-percentile (50th
percentile), high-percentile (90th percentile), and peak (100th
percentile) values are used to represent telemetry data.
Nevertheless, a DOTS client can disable some percentile types (low,
mid, high). In particular, setting 'low-percentile' to "0.00"
indicates that the DOTS client is not interested in receiving low-
percentiles. Likewise, setting 'mid-percentile' (or 'high-
percentile') to the same value as 'low-percentile' (or 'mid-
percentile') indicates that the DOTS client is not interested in
receiving mid-percentiles (or high-percentiles). For example, a DOTS
client can send the request depicted in Figure 5 to inform the server
that it is interested in receiving only high-percentiles. This
assumes that the client will only use that percentile type when
sharing telemetry data with the server.
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=124"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"current-config": {
"low-percentile": "0.00",
"mid-percentile": "0.00",
"high-percentile": "95.00"
}
}
]
}
}
Figure 5: PUT to Disable Low- and Mid-Percentiles, Depicted as
per Section 5.6
DOTS clients can also configure the unit class(es) to be used for
traffic-related telemetry data among the following supported unit
classes: packets per second, bits per second, and bytes per second.
Supplying both bits per second and bytes per second unit classes is
allowed for a given set of telemetry data. However, receipt of
conflicting values is treated as invalid parameters and rejected with
a 4.00 (Bad Request) Response Code.
DOTS clients that are interested in receiving pre-or-ongoing-
mitigation telemetry ('pre-or-ongoing-mitigation') information from a
DOTS server (Section 9.2) MUST set 'server-originated-telemetry' to
'true'. If 'server-originated-telemetry' is not present in a PUT
request, this is equivalent to receiving a request with 'server-
originated-telemetry' set to 'false'. An example of a request to
enable pre-or-ongoing-mitigation telemetry from DOTS servers is shown
in Figure 6.
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=125"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"current-config": {
"server-originated-telemetry": true
}
}
]
}
}
Figure 6: PUT to Enable Pre-or-Ongoing-Mitigation Telemetry from
the DOTS Server, Depicted as per Section 5.6
7.1.3. Retrieving the Installed DOTS Telemetry Configuration
A DOTS client may issue a GET message with a 'tsid' Uri-Path
parameter to retrieve the current DOTS telemetry configuration. An
example of such a request is depicted in Figure 7.
Header: GET (Code=0.01)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=123"
Figure 7: GET to Retrieve the Current DOTS Telemetry Configuration
If the DOTS server does not find the 'tsid' Uri-Path value conveyed
in the GET request in its configuration data for the requesting DOTS
client, it MUST respond with a 4.04 (Not Found) error Response Code.
7.1.4. Deleting the DOTS Telemetry Configuration
A DELETE request is used to delete the installed DOTS telemetry
configuration data (Figure 8). 'cuid' and 'tsid' are mandatory Uri-
Path parameters for such DELETE requests.
Header: DELETE (Code=0.04)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=123"
Figure 8: Deleting the Telemetry Configuration
The DOTS server resets the DOTS telemetry configuration back to the
default values and acknowledges a DOTS client's request to remove the
DOTS telemetry configuration using a 2.02 (Deleted) Response Code. A
2.02 (Deleted) Response Code is returned even if the 'tsid' parameter
value conveyed in the DELETE request does not exist in its
configuration data before the request.
Section 7.4 discusses the procedure to reset all DOTS telemetry setup
configuration data.
7.2. Total Pipe Capacity
A DOTS client can communicate to the DOTS server(s) its DOTS client
domain pipe information. The tree structure of the pipe information
is shown in Figure 9.
structure dots-telemetry:
+-- (telemetry-message-type)?
+--:(telemetry-setup)
| ...
| +-- telemetry* []
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- tsid? uint32
| +-- (setup-type)?
| +--:(telemetry-config)
| | ...
| +--:(pipe)
| | +-- total-pipe-capacity* [link-id unit]
| | +-- link-id nt:link-id
| | +-- capacity uint64
| | +-- unit unit
| +--:(baseline)
| ...
+--:(telemetry)
...
Figure 9: Pipe Tree Structure
A DOTS client domain pipe is defined as a list of limits on
(incoming) traffic volume ('total-pipe-capacity') that can be
forwarded over ingress interconnection links of a DOTS client domain.
Each of these links is identified with a 'link-id' [RFC8345].
The unit used by a DOTS client when conveying pipe information is
captured in the 'unit' attribute. The DOTS client MUST auto-scale so
that the appropriate unit is used. That is, for a given unit class,
the DOTS client uses the largest unit that gives a value greater than
one. As such, only one unit per unit class is allowed.
7.2.1. Conveying DOTS Client Domain Pipe Capacity
Considerations similar to those specified in Section 7.1.2 are
followed, with one exception:
* The relative order of two PUT requests carrying DOTS client domain
pipe attributes from a DOTS client is determined by comparing
their respective 'tsid' values. If these two requests have
overlapping 'link-id' and 'unit' settings, the PUT request with a
higher numeric 'tsid' value will override the request with a lower
numeric 'tsid' value. The overlapped lower numeric 'tsid' MUST be
automatically deleted and no longer be available.
DOTS clients SHOULD minimize the number of active 'tsid's used for
pipe information. In order to avoid maintaining a long list of
'tsid's for pipe information, it is RECOMMENDED that DOTS clients
include in any request to update information related to a given link
the information regarding other links (already communicated using a
lower 'tsid' value). By doing so, this update request will override
these existing requests and hence optimize the number of 'tsid'
requests per DOTS client.
| Note: This assumes that all link information can fit in one
| single message.
As an example of configuring pipe information, a DOTS client managing
a single-homed domain (Figure 10) can send a PUT request (shown in
Figure 11) to communicate the capacity of "link1" used to connect to
its ISP.
,--,--,--. ,--,--,--.
,-' `-. ,-' `-.
( DOTS Client )=====( ISP#A )
`-. Domain ,-' link1 `-. ,-'
`--'--'--' `--'--'--'
Figure 10: Single-Homed DOTS Client Domain
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=126"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"total-pipe-capacity": [
{
"link-id": "link1",
"capacity": "500",
"unit": "megabit-ps"
}
]
}
]
}
}
Figure 11: Example of a PUT Request to Convey Pipe Information
(Single-Homed), Depicted as per Section 5.6
DOTS clients may be instructed to signal a link aggregate instead of
individual links. For example, a DOTS client that manages a DOTS
client domain having two interconnection links with an upstream ISP
(Figure 12) can send a PUT request (shown in Figure 13) to
communicate the aggregate link capacity with its ISP. Signaling
individual or aggregate link capacity is deployment specific.
,--,--,--. ,--,--,--.
,-' `-.===== ,-' `-.
( DOTS Client ) ( ISP#C )
`-. Domain ,-'====== `-. ,-'
`--'--'--' `--'--'--'
Figure 12: DOTS Client Domain with Two Interconnection Links
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=hmcpH87lmPGsSTjkhXCbin"
Uri-Path: "tsid=896"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"total-pipe-capacity": [
{
"link-id": "aggregate",
"capacity": "700",
"unit": "megabit-ps"
}
]
}
]
}
}
Figure 13: Example of a PUT Request to Convey Pipe Information
(Aggregated Link), Depicted as per Section 5.6
Now consider that the DOTS client domain was upgraded to connect to
an additional ISP (e.g., ISP#B in Figure 14); the DOTS client can
inform a DOTS server that is not hosted with ISP#A and ISP#B domains
about this update by sending the PUT request depicted in Figure 15.
This request also includes information related to "link1" even if
that link is not upgraded. Upon receipt of this request, the DOTS
server removes the request with 'tsid=126' and updates its
configuration base to maintain two links (link1 and link2).
,--,--,--.
,-' `-.
( ISP#B )
`-. ,-'
`--'--'--'
||
|| link2
,--,--,--. ,--,--,--.
,-' `-. ,-' `-.
( DOTS Client )=====( ISP#A )
`-. Domain ,-' link1 `-. ,-'
`--'--'--' `--'--'--'
Figure 14: Multihomed DOTS Client Domain
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=127"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"total-pipe-capacity": [
{
"link-id": "link1",
"capacity": "500",
"unit": "megabit-ps"
},
{
"link-id": "link2",
"capacity": "500",
"unit": "megabit-ps"
}
]
}
]
}
}
Figure 15: Example of a PUT Request to Convey Pipe Information
(Multihomed), Depicted as per Section 5.6
A DOTS client can delete a link by sending a PUT request with the
'capacity' attribute set to "0" if other links are still active for
the same DOTS client domain. For example, if a DOTS client domain
re-homes (that is, it changes its ISP), the DOTS client can inform
its DOTS server about this update (e.g., from the network
configuration in Figure 10 to the network configuration shown in
Figure 16) by sending the PUT request depicted in Figure 17. Upon
receipt of this request, and assuming that no error is encountered
when processing the request, the DOTS server removes "link1" from its
configuration bases for this DOTS client domain. Note that if the
DOTS server receives a PUT request with a 'capacity' attribute set to
"0" for all included links, it MUST reject the request with a 4.00
(Bad Request) Response Code. Instead, the DOTS client can use a
DELETE request to delete all links (Section 7.2.3).
,--,--,--.
,-' `-.
( ISP#B )
`-. ,-'
`--'--'--'
||
|| link2
,--,--,--.
,-' `-.
( DOTS Client )
`-. Domain ,-'
`--'--'--'
Figure 16: Multihomed DOTS Client Domain
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=128"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"total-pipe-capacity": [
{
"link-id": "link1",
"capacity": "0",
"unit": "megabit-ps"
},
{
"link-id": "link2",
"capacity": "500",
"unit": "megabit-ps"
}
]
}
]
}
}
Figure 17: Example of a PUT Request to Convey Pipe Information
(Multihomed), Depicted as per Section 5.6
7.2.2. Retrieving Installed DOTS Client Domain Pipe Capacity
A GET request with a 'tsid' Uri-Path parameter is used to retrieve
the specific information related to an installed DOTS client domain
pipe. The same procedure as that defined in Section 7.1.3 is
followed.
To retrieve all pipe information bound to a DOTS client, the DOTS
client proceeds as specified in Section 7.1.1.
7.2.3. Deleting Installed DOTS Client Domain Pipe Capacity
A DELETE request is used to delete the specific information related
to an installed DOTS client domain pipe. The same procedure as that
defined in Section 7.1.4 is followed.
7.3. Telemetry Baseline
A DOTS client can communicate to its DOTS server(s) its normal
traffic baseline and connection capacity:
Total traffic normal baseline: Total traffic normal baseline data
provides the percentile values representing the total traffic
normal baseline. It can be represented for a target using 'total-
traffic-normal'.
The traffic normal per-protocol ('total-traffic-normal-per-
protocol') baseline is represented for a target and is transport-
protocol specific.
The traffic normal per-port-number ('total-traffic-normal-per-
port') baseline is represented for each port number bound to a
target.
If the DOTS client negotiated percentile values and units
(Section 7.1), these negotiated parameters will be used instead of
the default parameters. For each unit class used, the DOTS client
MUST auto-scale so that the appropriate unit is used.
Total connection capacity: If the target is susceptible to resource-
consuming DDoS attacks, the following optional attributes for the
target per transport protocol are useful for detecting resource-
consuming DDoS attacks:
* The maximum number of simultaneous connections that are allowed
to the target.
* The maximum number of simultaneous connections that are allowed
to the target per client.
* The maximum number of simultaneous embryonic connections that
are allowed to the target. The term "embryonic connection"
refers to a connection whose connection handshake is not
finished. Embryonic connections are only possible in
connection-oriented transport protocols like TCP or the Stream
Control Transmission Protocol (SCTP) [RFC9260].
* The maximum number of simultaneous embryonic connections that
are allowed to the target per client.
* The maximum number of connections allowed per second to the
target.
* The maximum number of connections allowed per second to the
target per client.
* The maximum number of requests (e.g., HTTP/DNS/SIP requests)
allowed per second to the target.
* The maximum number of requests allowed per second to the target
per client.
* The maximum number of outstanding partial requests allowed to
the target. Attacks relying upon partial requests create a
connection with a target but do not send a complete request
(e.g., an HTTP request).
* The maximum number of outstanding partial requests allowed to
the target per client.
The aggregate per transport protocol is captured in 'total-
connection-capacity', while port-specific capabilities are
represented using 'total-connection-capacity-per-port'.
Note that a target resource is identified using the attributes
'target-prefix', 'target-port-range', 'target-protocol', 'target-
fqdn', 'target-uri', or 'alias-name' as defined in Section 4.4.1.1 of
[RFC9132].
The tree structure of the normal traffic baseline is shown in
Figure 18.
structure dots-telemetry:
+-- (telemetry-message-type)?
+--:(telemetry-setup)
| ...
| +-- telemetry* []
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- tsid? uint32
| +-- (setup-type)?
| +--:(telemetry-config)
| | ...
| +--:(pipe)
| | ...
| +--:(baseline)
| +-- baseline* [id]
| +-- id uint32
| +-- target-prefix*
| | inet:ip-prefix
| +-- target-port-range* [lower-port]
| | +-- lower-port inet:port-number
| | +-- upper-port? inet:port-number
| +-- target-protocol* uint8
| +-- target-fqdn*
| | inet:domain-name
| +-- target-uri*
| | inet:uri
| +-- alias-name*
| | string
| +-- total-traffic-normal* [unit]
| | +-- unit unit
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| +-- total-traffic-normal-per-protocol*
| | [unit protocol]
| | +-- protocol uint8
| | +-- unit unit
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| +-- total-traffic-normal-per-port* [unit port]
| | +-- port inet:port-number
| | +-- unit unit
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| +-- total-connection-capacity* [protocol]
| | +-- protocol uint8
| | +-- connection? uint64
| | +-- connection-client? uint64
| | +-- embryonic? uint64
| | +-- embryonic-client? uint64
| | +-- connection-ps? uint64
| | +-- connection-client-ps? uint64
| | +-- request-ps? uint64
| | +-- request-client-ps? uint64
| | +-- partial-request-max? uint64
| | +-- partial-request-client-max? uint64
| +-- total-connection-capacity-per-port*
| [protocol port]
| +-- port
| | inet:port-number
| +-- protocol uint8
| +-- connection? uint64
| +-- connection-client? uint64
| +-- embryonic? uint64
| +-- embryonic-client? uint64
| +-- connection-ps? uint64
| +-- connection-client-ps? uint64
| +-- request-ps? uint64
| +-- request-client-ps? uint64
| +-- partial-request-max? uint64
| +-- partial-request-client-max? uint64
+--:(telemetry)
...
Figure 18: Telemetry Baseline Tree Structure
A DOTS client can share one or multiple normal traffic baselines
(e.g., aggregate or per-prefix baselines); each is uniquely
identified within the DOTS client domain with an identifier ('id').
This identifier can be used to update a baseline entry, delete a
specific entry, etc.
7.3.1. Conveying DOTS Client Domain Baseline Information
Considerations similar to those specified in Section 7.1.2 are
followed, with one exception:
* The relative order of two PUT requests carrying DOTS client domain
baseline attributes from a DOTS client is determined by comparing
their respective 'tsid' values. If these two requests have
overlapping targets, the PUT request with a higher numeric 'tsid'
value will override the request with a lower numeric 'tsid' value.
The overlapped lower numeric 'tsid' MUST be automatically deleted
and no longer be available.
Two PUT requests from a DOTS client have overlapping targets if there
is a common IP address, IP prefix, FQDN, URI, or alias name. Also,
two PUT requests from a DOTS client have overlapping targets from the
perspective of the DOTS server if the addresses associated with the
FQDN, URI, or alias are overlapping with each other or with 'target-
prefix'.
DOTS clients SHOULD minimize the number of active 'tsid's used for
baseline information. In order to avoid maintaining a long list of
'tsid's for baseline information, it is RECOMMENDED that DOTS clients
include in any request to update information related to a given
target the information regarding other targets (already communicated
using a lower 'tsid' value) (assuming that this information fits
within one single datagram). This update request will override these
existing requests and hence optimize the number of 'tsid' requests
per DOTS client.
If no target attribute is included in the request, this is an
indication that the baseline information applies for the DOTS client
domain as a whole.
An example of a PUT request to convey the baseline information is
shown in Figure 19.
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=129"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"baseline": [
{
"id": 1,
"target-prefix": [
"2001:db8:6401::1/128",
"2001:db8:6401::2/128"
],
"total-traffic-normal": [
{
"unit": "megabit-ps",
"peak-g": "60"
}
]
}
]
}
]
}
}
Figure 19: PUT to Convey DOTS Traffic Baseline Information,
Depicted as per Section 5.6
The DOTS client may share protocol-specific baseline information
(e.g., TCP and UDP) as shown in Figure 20.
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tsid=130"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry-setup": {
"telemetry": [
{
"baseline": [
{
"id": 1,
"target-prefix": [
"2001:db8:6401::1/128",
"2001:db8:6401::2/128"
],
"total-traffic-normal-per-protocol": [
{
"unit": "megabit-ps",
"protocol": 6,
"peak-g": "50"
},
{
"unit": "megabit-ps",
"protocol": 17,
"peak-g": "10"
}
]
}
]
}
]
}
}
Figure 20: PUT to Convey DOTS Traffic Baseline Information (2),
Depicted as per Section 5.6
The normal traffic baseline information should be updated to reflect
legitimate overloads (e.g., flash crowds) to prevent unnecessary
mitigation.
7.3.2. Retrieving Installed Normal Traffic Baseline Information
A GET request with a 'tsid' Uri-Path parameter is used to retrieve a
specific installed DOTS client domain's baseline traffic information.
The same procedure as that defined in Section 7.1.3 is followed.
To retrieve all baseline information bound to a DOTS client, the DOTS
client proceeds as specified in Section 7.1.1.
7.3.3. Deleting Installed Normal Traffic Baseline Information
A DELETE request is used to delete the installed DOTS client domain's
normal traffic baseline information. The same procedure as that
defined in Section 7.1.4 is followed.
7.4. Resetting the Installed Telemetry Setup
Upon bootstrapping (or reboot or any other event that may alter the
DOTS client setup), a DOTS client MAY send a DELETE request to set
the telemetry parameters to default values. Such a request does not
include any 'tsid' parameters. An example of such a request is
depicted in Figure 21.
Header: DELETE (Code=0.04)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm-setup"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Figure 21: Deleting the Telemetry Configuration
7.5. Conflict with Other DOTS Clients of the Same Domain
A DOTS server may detect conflicts between requests conveying pipe
and baseline information received from DOTS clients of the same DOTS
client domain. 'conflict-information' is used to report the conflict
to the DOTS client, following guidelines for conflict handling
similar to those discussed in Section 4.4.1 of [RFC9132]. The
conflict cause can be set to one of these values:
1: Overlapping targets (Section 4.4.1 of [RFC9132]).
5: Overlapping pipe scope (see Section 13).
8. DOTS Pre-or-Ongoing-Mitigation Telemetry
There are two broad types of DDoS attacks: bandwidth-consuming
attacks and target-resource-consuming attacks. This section outlines
the set of DOTS telemetry attributes (Section 8.1) that covers both
types of attacks. The objective of these attributes is to allow for
the complete knowledge of attacks and the various particulars that
can best characterize attacks.
The "ietf-dots-telemetry" YANG module (Section 11.1) defines the data
structure of a new message type called 'telemetry'. The tree
structure of the 'telemetry' message type is shown in Figure 22.
structure dots-telemetry:
+-- (telemetry-message-type)?
+--:(telemetry-setup)
| ...
| +-- telemetry* []
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- tsid? uint32
| +-- (setup-type)?
| +--:(telemetry-config)
| | ...
| +--:(pipe)
| | ...
| +--:(baseline)
| ...
+--:(telemetry)
+-- pre-or-ongoing-mitigation* []
+-- (direction)?
| +--:(server-to-client-only)
| +-- tmid? uint32
+-- target
| ...
+-- total-traffic* [unit]
| ...
+-- total-traffic-protocol* [unit protocol]
| ...
+-- total-traffic-port* [unit port]
| ...
+-- total-attack-traffic* [unit]
| ...
+-- total-attack-traffic-protocol* [unit protocol]
| ...
+-- total-attack-traffic-port* [unit port]
| ...
+-- total-attack-connection-protocol* [protocol]
| ...
+-- total-attack-connection-port* [protocol port]
| ...
+-- attack-detail* [vendor-id attack-id]
...
Figure 22: Telemetry Message Type Tree Structure
The pre-or-ongoing-mitigation telemetry attributes are indicated by
the path suffix '/tm'. '/tm' is appended to the path prefix to form
the URI used with a CoAP request to signal the DOTS telemetry. Pre-
or-ongoing-mitigation telemetry attributes as specified in
Section 8.1 can be signaled between DOTS agents.
Pre-or-ongoing-mitigation telemetry attributes may be sent by a DOTS
client or a DOTS server.
DOTS agents SHOULD bind pre-or-ongoing-mitigation telemetry data to
mitigation requests associated with the resources under attack. In
particular, a telemetry PUT request sent after a mitigation request
may include a reference to that mitigation request ('mid-list') as
shown in Figure 23. An example illustrating request correlation by
means of 'target-prefix' is shown in Figure 24.
Much of the pre-or-ongoing-mitigation telemetry data uses a unit that
falls under the unit class that is configured following the procedure
described in Section 7.1.2. When generating telemetry data to send
to a peer, the DOTS agent MUST auto-scale so that one or more
appropriate units are used.
+-----------+ +-----------+
|DOTS client| |DOTS server|
+-----------+ +-----------+
| |
|==============Mitigation Request (mid)==============>|
| |
|==============Telemetry (mid-list{mid})=============>|
| |
Figure 23: Example of Request Correlation Using 'mid'
+-----------+ +-----------+
|DOTS client| |DOTS server|
+-----------+ +-----------+
| |
|<===============Telemetry (target-prefix)============|
| |
|========Mitigation Request (target-prefix)==========>|
| |
Figure 24: Example of Request Correlation Using 'target-prefix'
DOTS agents MUST NOT send pre-or-ongoing-mitigation telemetry
notifications to the same peer more frequently than once every
'telemetry-notify-interval' (Section 7.1). If a telemetry
notification is sent using a block-like transfer mechanism (e.g.,
[RFC9177]), this rate-limit policy MUST NOT consider these individual
blocks as separate notifications, but as a single notification.
DOTS pre-or-ongoing-mitigation telemetry request and response
messages MUST be marked as Non-confirmable messages (Section 2.1 of
[RFC7252]).
8.1. Pre-or-Ongoing-Mitigation DOTS Telemetry Attributes
Section 3 discusses the motivation for using the DOTS telemetry
attributes. These attributes are specified in the following
subsections.
8.1.1. Target
A target resource (Figure 25) is identified using the attributes
'target-prefix', 'target-port-range', 'target-protocol', 'target-
fqdn', 'target-uri', 'alias-name', or a pointer to a mitigation
request ('mid-list').
+--:(telemetry)
+-- pre-or-ongoing-mitigation* []
+-- (direction)?
| +--:(server-to-client-only)
| +-- tmid? uint32
+-- target
| +-- target-prefix* inet:ip-prefix
| +-- target-port-range* [lower-port]
| | +-- lower-port inet:port-number
| | +-- upper-port? inet:port-number
| +-- target-protocol* uint8
| +-- target-fqdn* inet:domain-name
| +-- target-uri* inet:uri
| +-- alias-name* string
| +-- mid-list* uint32
+-- total-traffic* [unit]
| ...
+-- total-traffic-protocol* [unit protocol]
| ...
+-- total-traffic-port* [unit port]
| ...
+-- total-attack-traffic* [unit]
| ...
+-- total-attack-traffic-protocol* [unit protocol]
| ...
+-- total-attack-traffic-port* [unit port]
| ...
+-- total-attack-connection-protocol* [protocol]
| ...
+-- total-attack-connection-port* [protocol port]
| ...
+-- attack-detail* [vendor-id attack-id]
...
Figure 25: Target Tree Structure
At least one of the attributes 'target-prefix', 'target-fqdn',
'target-uri', 'alias-name', or 'mid-list' MUST be present in the
target definition.
If the target is susceptible to bandwidth-consuming attacks, the
attributes representing the percentile values of the 'attack-id'
attack traffic are included.
If the target is susceptible to resource-consuming DDoS attacks, the
attributes defined in Section 8.1.4 are applicable for representing
the attack.
At least the 'target' attribute and one other pre-or-ongoing-
mitigation attribute MUST be present in the DOTS telemetry message.
8.1.2. Total Traffic
The 'total-traffic' attribute (Figure 26) conveys the percentile
values (including peak and current observed values) of the total
observed traffic. More fine-grained information about the total
traffic can be conveyed in the 'total-traffic-protocol' and 'total-
traffic-port' attributes.
The 'total-traffic-protocol' attribute represents the total traffic
for a target and is transport-protocol specific.
The 'total-traffic-port' attribute represents the total traffic for a
target per port number.
+--:(telemetry)
+-- pre-or-ongoing-mitigation* []
+-- (direction)?
| +--:(server-to-client-only)
| +-- tmid? uint32
+-- target
| ...
+-- total-traffic* [unit]
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-traffic-protocol* [unit protocol]
| +-- protocol uint8
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-traffic-port* [unit port]
| +-- port inet:port-number
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-attack-traffic* [unit]
| ...
+-- total-attack-traffic-protocol* [unit protocol]
| ...
+-- total-attack-traffic-port* [unit port]
| ...
+-- total-attack-connection-protocol* [protocol]
| ...
+-- total-attack-connection-port* [protocol port]
| ...
+-- attack-detail* [vendor-id attack-id]
...
Figure 26: Total Traffic Tree Structure
8.1.3. Total Attack Traffic
The 'total-attack-traffic' attribute (Figure 27) conveys the total
observed attack traffic. More fine-grained information about the
total attack traffic can be conveyed in the 'total-attack-traffic-
protocol' and 'total-attack-traffic-port' attributes.
The 'total-attack-traffic-protocol' attribute represents the total
attack traffic for a target and is transport-protocol specific.
The 'total-attack-traffic-port' attribute represents the total attack
traffic for a target per port number.
+--:(telemetry)
+-- pre-or-ongoing-mitigation* []
+-- (direction)?
| +--:(server-to-client-only)
| +-- tmid? uint32
+-- target
| ...
+-- total-traffic* [unit]
| ...
+-- total-traffic-protocol* [unit protocol]
| ...
+-- total-traffic-port* [unit port]
| ...
+-- total-attack-traffic* [unit]
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-attack-traffic-protocol* [unit protocol]
| +-- protocol uint8
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-attack-traffic-port* [unit port]
| +-- port inet:port-number
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-attack-connection-protocol* [protocol]
| ...
+-- total-attack-connection-port* [protocol port]
| ...
+-- attack-detail* [vendor-id attack-id]
...
Figure 27: Total Attack Traffic Tree Structure
8.1.4. Total Attack Connections
If the target is susceptible to resource-consuming DDoS attacks, the
'total-attack-connection-protocol' attribute is used to convey the
percentile values (including peak and current observed values) of
various attributes related to the total attack connections. The
following optional sub-attributes for the target per transport
protocol are included to represent the attack characteristics:
* The number of simultaneous attack connections to the target.
* The number of simultaneous embryonic connections to the target.
* The number of attack connections per second to the target.
* The number of attack requests per second to the target.
* The number of attack partial requests to the target.
The total attack connections per port number are represented using
the 'total-attack-connection-port' attribute.
+--:(telemetry)
+-- pre-or-ongoing-mitigation* []
+-- (direction)?
| +--:(server-to-client-only)
| +-- tmid? uint32
+-- target
| ...
+-- total-traffic* [unit]
| ...
+-- total-traffic-protocol* [unit protocol]
| ...
+-- total-traffic-port* [unit port]
| ...
+-- total-attack-traffic* [unit]
| ...
+-- total-attack-traffic-protocol* [unit protocol]
| ...
+-- total-attack-traffic-port* [unit port]
| ...
+-- total-attack-connection-protocol* [protocol]
| +-- protocol uint8
| +-- connection-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- embryonic-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- connection-ps-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- request-ps-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- partial-request-c
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-attack-connection-port* [protocol port]
| +-- protocol uint8
| +-- port inet:port-number
| +-- connection-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- embryonic-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- connection-ps-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- request-ps-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- partial-request-c
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- attack-detail* [vendor-id attack-id]
...
Figure 28: Total Attack Connections Tree Structure
8.1.5. Attack Details
This attribute (depicted in Figure 29) is used to signal a set of
details characterizing an attack. The following sub-attributes
describing the ongoing attack can be signaled as attack details:
vendor-id: Vendor ID. This parameter represents a security vendor's
enterprise number as registered in the IANA "Private Enterprise
Numbers" registry [Private-Enterprise-Numbers].
attack-id: Unique identifier assigned for the attack by a vendor.
This parameter MUST be present, independently of whether 'attack-
description' is included or not.
description-lang: Indicates the language tag that is used for the
text that is included in the 'attack-description' attribute. This
attribute is encoded following the rules in Section 2.1 of
[RFC5646]. The default language tag is "en-US".
attack-description: Textual representation of the attack
description. This description is related to the class of attack
rather than a specific instance of it. Natural Language
Processing techniques (e.g., word embedding) might provide some
utility in mapping the attack description to an attack type.
Textual representation of an attack solves two problems: it avoids
the need to (a) create mapping tables manually between vendors and
(b) standardize attack types that keep evolving.
attack-severity: Attack severity level. This attribute takes one of
the values defined in Section 3.12.2 of [RFC7970].
start-time: The time the attack started. The attack's start time is
expressed in seconds relative to 1970-01-01T00:00Z (Section 3.4.2
of [RFC8949]). The CBOR encoding is modified so that the leading
tag 1 (epoch-based date/time) MUST be omitted.
end-time: The time the attack ended. The attack's end time is
expressed in seconds relative to 1970-01-01T00:00Z (Section 3.4.2
of [RFC8949]). The CBOR encoding is modified so that the leading
tag 1 (epoch-based date/time) MUST be omitted.
source-count: A count of sources involved in the attack targeting
the victim.
top-talker: A list of attack sources that are involved in an attack
and that are generating an important part of the attack traffic.
The top talkers are represented using 'source-prefix'.
'spoofed-status' indicates whether a top talker is a spoofed IP
address (e.g., reflection attacks) or not. If no 'spoofed-status'
data node is included, this means that the spoofing status is
unknown.
If the target is being subjected to a bandwidth-consuming attack,
a statistical profile of the attack traffic from each of the top
talkers is included ('total-attack-traffic'; see Section 8.1.3).
If the target is being subjected to a resource-consuming DDoS
attack, the same attributes as those defined in Section 8.1.4 are
applicable for characterizing the attack on a per-talker basis.
+--:(telemetry)
+-- pre-or-ongoing-mitigation* []
+-- (direction)?
| +--:(server-to-client-only)
| +-- tmid? uint32
+-- target
| ...
+-- total-traffic* [unit]
| ...
+-- total-traffic-protocol* [unit protocol]
| ...
+-- total-traffic-port* [unit port]
| ...
+-- total-attack-traffic* [unit]
| ...
+-- total-attack-traffic-protocol* [unit protocol]
| ...
+-- total-attack-traffic-port* [unit port]
| ...
+-- total-attack-connection-protocol* [protocol]
| ...
+-- total-attack-connection-port* [protocol port]
| ...
+-- attack-detail* [vendor-id attack-id]
+-- vendor-id uint32
+-- attack-id uint32
+-- description-lang? string
+-- attack-description? string
+-- attack-severity? attack-severity
+-- start-time? uint64
+-- end-time? uint64
+-- source-count
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- top-talker
+-- talker* [source-prefix]
+-- spoofed-status? boolean
+-- source-prefix inet:ip-prefix
+-- source-port-range* [lower-port]
| +-- lower-port inet:port-number
| +-- upper-port? inet:port-number
+-- source-icmp-type-range* [lower-type]
| +-- lower-type uint8
| +-- upper-type? uint8
+-- total-attack-traffic* [unit]
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-attack-connection-protocol*
[protocol]
+-- protocol uint8
+-- connection-c
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- embryonic-c
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- connection-ps-c
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- request-ps-c
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- partial-request-c
+-- low-percentile-g? yang:gauge64
+-- mid-percentile-g? yang:gauge64
+-- high-percentile-g? yang:gauge64
+-- peak-g? yang:gauge64
+-- current-g? yang:gauge64
Figure 29: Attack Details Tree Structure
In order to optimize the size of telemetry data conveyed over the
DOTS signal channel, DOTS agents MAY use the DOTS data channel
[RFC8783] to exchange vendor-specific attack mapping details (that
is, {vendor identifier, attack identifier} ==> textual representation
of the attack description). As such, DOTS agents do not have to
convey an attack description systematically in their telemetry
messages over the DOTS signal channel. Refer to Section 8.1.6.
8.1.6. Vendor Attack Mapping
Multiple mappings for different vendor identifiers may be used; the
DOTS agent transmitting telemetry information can elect to use one or
more vendor mappings even in the same telemetry message.
| Note: It is possible that a DOTS server is making use of
| multiple DOTS mitigators, each from a different vendor. How
| telemetry information and vendor mappings are exchanged between
| DOTS servers and DOTS mitigators is outside the scope of this
| document.
DOTS clients and servers may be provided with mappings from different
vendors and so have their own different sets of vendor attack
mappings. A DOTS agent MUST accept receipt of telemetry data with a
vendor identifier that is different than the identifier it uses to
transmit telemetry data. Furthermore, it is possible that the DOTS
client and DOTS server are provided by the same vendor but the vendor
mapping tables are at different revisions. The DOTS client SHOULD
transmit telemetry information using any vendor mapping(s) that it
provided to the DOTS server (e.g., using a POST as depicted in
Figure 30), and the DOTS server SHOULD use any vendor mappings(s)
provided to the DOTS client when transmitting telemetry data to the
peer DOTS agent.
POST /restconf/data/ietf-dots-data-channel:dots-data\
/dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
Host: example.com
Content-Type: application/yang-data+json
{
"ietf-dots-mapping:vendor-mapping": {
"vendor": [
{
"vendor-id": 345,
"vendor-name": "mitigator-c",
"last-updated": "1629898958",
"attack-mapping": [
{
"attack-id": 1,
"attack-description":
"Include a description of this attack"
},
{
"attack-id": 2,
"attack-description":
"Again, include a description of the attack"
}
]
}
]
}
}
Figure 30: POST to Install Vendor Attack Mapping Details
The "ietf-dots-mapping" YANG module defined in Section 11.2 augments
the "ietf-dots-data-channel" module [RFC8783]. The tree structure of
the "ietf-dots-mapping" module is shown in Figure 31.
module: ietf-dots-mapping
augment /data-channel:dots-data/data-channel:dots-client:
+--rw vendor-mapping {dots-telemetry}?
+--rw vendor* [vendor-id]
+--rw vendor-id uint32
+--rw vendor-name? string
+--rw description-lang? string
+--rw last-updated uint64
+--rw attack-mapping* [attack-id]
+--rw attack-id uint32
+--rw attack-description string
augment /data-channel:dots-data/data-channel:capabilities:
+--ro vendor-mapping-enabled? boolean {dots-telemetry}?
augment /data-channel:dots-data:
+--ro vendor-mapping {dots-telemetry}?
+--ro vendor* [vendor-id]
+--ro vendor-id uint32
+--ro vendor-name? string
+--ro description-lang? string
+--ro last-updated uint64
+--ro attack-mapping* [attack-id]
+--ro attack-id uint32
+--ro attack-description string
Figure 31: Vendor Attack Mapping Tree Structure
A DOTS client sends a GET request over the DOTS data channel to
retrieve the capabilities supported by a DOTS server as per
Section 7.1 of [RFC8783]. This request is meant to assess whether
the capability of sharing vendor attack mapping details is supported
by the server (i.e., check the value of 'vendor-mapping-enabled').
If 'vendor-mapping-enabled' is set to 'true', a DOTS client MAY send
a GET request to retrieve the DOTS server's vendor attack mapping
details. An example of such a GET request is shown in Figure 32.
GET /restconf/data/ietf-dots-data-channel:dots-data\
/ietf-dots-mapping:vendor-mapping HTTP/1.1
Host: example.com
Accept: application/yang-data+json
Figure 32: GET to Retrieve the Vendor Attack Mappings of a DOTS
Server
A DOTS client can retrieve only the list of vendors supported by the
DOTS server. It does so by setting the "depth" parameter
(Section 4.8.2 of [RFC8040]) to "3" in the GET request as shown in
Figure 33. An example of a response body received from the DOTS
server as a response to such a request is illustrated in Figure 34.
GET /restconf/data/ietf-dots-data-channel:dots-data\
/ietf-dots-mapping:vendor-mapping?depth=3 HTTP/1.1
Host: example.com
Accept: application/yang-data+json
Figure 33: GET to Retrieve the Vendors List Used by a DOTS Server
{
"ietf-dots-mapping:vendor-mapping": {
"vendor": [
{
"vendor-id": 32473,
"vendor-name": "mitigator-s",
"last-updated": "1629898758",
"attack-mapping": []
}
]
}
}
Figure 34: Response Message Body to a GET to Retrieve the Vendors
List Used by a DOTS Server
The DOTS client repeats the above procedure regularly (e.g., once a
week) to update the DOTS server's vendor attack mapping details.
If the DOTS client concludes that the DOTS server does not have any
reference to the specific vendor attack mapping details, the DOTS
client uses a POST request to install its vendor attack mapping
details. An example of such a POST request is depicted in Figure 30.
The DOTS server indicates the result of processing the POST request
using the status-line. A "201 Created" status-line MUST be returned
in the response if the DOTS server has accepted the vendor attack
mapping details. If the request is missing a mandatory attribute or
contains an invalid or unknown parameter, a "400 Bad Request" status-
line MUST be returned by the DOTS server in the response. The error-
tag is set to "missing-attribute", "invalid-value", or "unknown-
element" as a function of the encountered error.
If the request is received via a server-domain DOTS gateway but the
DOTS server does not maintain a 'cdid' for this 'cuid' while a 'cdid'
is expected to be supplied, the DOTS server MUST reply with a "403
Forbidden" status-line and the error-tag "access-denied". Upon
receipt of this message, the DOTS client MUST register (Section 5.1
of [RFC8783]).
The DOTS client uses the PUT request to modify its vendor attack
mapping details maintained by the DOTS server (e.g., add a new
mapping entry, update an existing mapping).
A DOTS client uses a GET request to retrieve its vendor attack
mapping details as maintained by the DOTS server (Figure 35).
GET /restconf/data/ietf-dots-data-channel:dots-data\
/dots-client=dz6pHjaADkaFTbjr0JGBpw\
/ietf-dots-mapping:vendor-mapping?\
content=all HTTP/1.1
Host: example.com
Accept: application/yang-data+json
Figure 35: GET to Retrieve Installed Vendor Attack Mapping Details
When conveying attack details in DOTS telemetry messages
(Sections 8.2, 8.3, and 9), DOTS agents MUST NOT include the 'attack-
description' attribute unless the corresponding attack mapping
details were not previously shared with the peer DOTS agent.
8.2. From DOTS Clients to DOTS Servers
DOTS clients use PUT requests to signal pre-or-ongoing-mitigation
telemetry to DOTS servers. An example of such a request is shown in
Figure 36.
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tmid=123"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry": {
"pre-or-ongoing-mitigation": [
{
"target": {
"target-prefix": [
"2001:db8::1/128"
]
},
"total-attack-traffic-protocol": [
{
"protocol": 17,
"unit": "megabit-ps",
"mid-percentile-g": "900"
}
],
"attack-detail": [
{
"vendor-id": 32473,
"attack-id": 77,
"start-time": "1608336568",
"attack-severity": "high"
}
]
}
]
}
}
Figure 36: PUT to Send Pre-or-Ongoing-Mitigation Telemetry,
Depicted as per Section 5.6
'cuid' is a mandatory Uri-Path parameter for DOTS PUT requests.
The following additional Uri-Path parameter is defined:
tmid: The Telemetry Identifier is an identifier for the DOTS pre-or-
ongoing-mitigation telemetry data represented as an integer. This
identifier MUST be generated by DOTS clients. 'tmid' values MUST
increase monotonically whenever a DOTS client needs to convey a
new set of pre-or-ongoing-mitigation telemetry data.
The procedure specified in Section 4.4.1 of [RFC9132] for 'mid'
rollover MUST be followed for 'tmid' rollover.
This is a mandatory attribute. 'tmid' MUST appear after 'cuid' in
the Uri-Path options.
'cuid' and 'tmid' MUST NOT appear in the PUT request message body.
At least the 'target' attribute and another pre-or-ongoing-mitigation
attribute (Section 8.1) MUST be present in the PUT request. If only
the 'target' attribute is present, this request is handled as per
Section 8.3.
The relative order of two PUT requests carrying DOTS pre-or-ongoing-
mitigation telemetry from a DOTS client is determined by comparing
their respective 'tmid' values. If these two requests have an
overlapping 'target', the PUT request with a higher numeric 'tmid'
value will override the request with a lower numeric 'tmid' value.
The overlapped lower numeric 'tmid' MUST be automatically deleted and
no longer be available.
The DOTS server indicates the result of processing a PUT request
using CoAP Response Codes. In particular, the 2.04 (Changed)
Response Code is returned if the DOTS server has accepted the pre-or-
ongoing-mitigation telemetry. The 5.03 (Service Unavailable)
Response Code is returned if the DOTS server has erred. The 5.03
Response Code uses the Max-Age Option to indicate the number of
seconds after which to retry.
How long a DOTS server maintains a 'tmid' as active or logs the
enclosed telemetry information is implementation specific. Note that
if a 'tmid' is still active, then logging details are updated by the
DOTS server as a function of the updates received from the peer DOTS
client.
A DOTS client that lost the state of its active 'tmid's or has to set
'tmid' back to zero (e.g., crash or restart) MUST send a GET request
to the DOTS server to retrieve the list of active 'tmid' values. The
DOTS client may then delete 'tmid's that should not be active anymore
(Figure 37). Sending a DELETE with no 'tmid' indicates that all
'tmid's must be deactivated (Figure 38).
Header: DELETE (Code=0.04)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tmid=123"
Figure 37: Deleting Specific Pre-or-Ongoing-Mitigation Telemetry
Information
Header: DELETE (Code=0.04)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Figure 38: Deleting All Pre-or-Ongoing-Mitigation Telemetry
Information
8.3. From DOTS Servers to DOTS Clients
The pre-or-ongoing-mitigation data (attack details in particular) can
also be signaled from DOTS servers to DOTS clients. For example, a
DOTS server co-located with a DDoS detector can collect monitoring
information from the target network, identify a DDoS attack using
statistical analysis or deep learning techniques, and signal the
attack details to the DOTS client.
The DOTS client can use the attack details to decide whether to
trigger a DOTS mitigation request or not. Furthermore, the security
operations personnel at the DOTS client domain can use the attack
details to determine the protection strategy and select the
appropriate DOTS server for mitigating the attack.
In order to receive pre-or-ongoing-mitigation telemetry notifications
from a DOTS server, a DOTS client MUST send a PUT (followed by a GET)
with the target filter. An example of such a PUT request is shown in
Figure 39. In order to avoid maintaining a long list of such
requests, it is RECOMMENDED that DOTS clients include all targets in
the same request (assuming that this information fits within one
single datagram). DOTS servers may be instructed to restrict the
number of pre-or-ongoing-mitigation requests per DOTS client domain.
The pre-or-ongoing-mitigation requests MUST be maintained in an
active state by the DOTS server until a DELETE request is received
from the same DOTS client to clear this pre-or-ongoing-mitigation
telemetry or when the DOTS client is considered inactive (e.g.,
Section 3.5 of [RFC8783]).
The relative order of two PUT requests carrying DOTS pre-or-ongoing-
mitigation telemetry from a DOTS client is determined by comparing
their respective 'tmid' values. If these two requests have an
overlapping 'target', the PUT request with a higher numeric 'tmid'
value will override the request with a lower numeric 'tmid' value.
The overlapped lower numeric 'tmid' MUST be automatically deleted and
no longer be available.
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tmid=567"
Content-Format: "application/dots+cbor"
{
"ietf-dots-telemetry:telemetry": {
"pre-or-ongoing-mitigation": [
{
"target": {
"target-prefix": [
"2001:db8::/32"
]
}
}
]
}
}
Figure 39: PUT to Request Pre-or-Ongoing-Mitigation Telemetry,
Depicted as per Section 5.6
DOTS clients of the same domain can ask to receive pre-or-ongoing-
mitigation telemetry bound to the same target without being
considered to be "overlapping" and in conflict.
Once the PUT request to instantiate request state on the server has
succeeded, the DOTS client issues a GET request to receive ongoing
telemetry updates. The client uses the Observe Option, set to "0"
(register), in the GET request to receive asynchronous notifications
carrying pre-or-ongoing-mitigation telemetry data from the DOTS
server. The GET request can specify a specific 'tmid' (Figure 40) or
omit the 'tmid' (Figure 41) to receive updates on all active requests
from that client.
Header: GET (Code=0.01)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "tmid=567"
Observe: 0
Figure 40: GET to Subscribe to Telemetry Asynchronous
Notifications for a Specific 'tmid'
Header: GET (Code=0.01)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Observe: 0
Figure 41: GET to Subscribe to Telemetry Asynchronous
Notifications for All 'tmid's
The DOTS client can use a filter to request a subset of the
asynchronous notifications from the DOTS server by indicating one or
more Uri-Query options in its GET request. A Uri-Query option can
include the following parameters to restrict the notifications based
on the attack target: 'target-prefix', 'target-port', 'target-
protocol', 'target-fqdn', 'target-uri', 'alias-name', 'mid', and 'c'
(content) (Section 5.4). Furthermore:
* If more than one Uri-Query option is included in a request, these
options are interpreted in the same way as when multiple target
attributes are included in a message body (Section 4.4.1 of
[RFC9132]).
* If multiple values of a query parameter are to be included in a
request, these values MUST be included in the same Uri-Query
option and separated by a "," character without any spaces.
* Range values (i.e., a contiguous inclusive block) can be included
for the 'target-port', 'target-protocol', and 'mid' parameters by
indicating the two boundary values separated by a "-" character.
* Wildcard names (i.e., a name with the leftmost label is the "*"
character) can be included in 'target-fqdn' or 'target-uri'
parameters. DOTS clients MUST NOT include a name in which the "*"
character is included in a label other than the leftmost label.
"*.example.com" is an example of a valid wildcard name that can be
included as a value of the 'target-fqdn' parameter in a Uri-Query
option.
DOTS clients may also filter out the asynchronous notifications from
the DOTS server by indicating information about a specific attack
source. To that aim, a DOTS client may include 'source-prefix',
'source-port', or 'source-icmp-type' in a Uri-Query option. The same
considerations (ranges, multiple values) specified for target
attributes apply for source attributes. Special care SHOULD be taken
when using these filters, as their use may cause some attacks to be
hidden from the requesting DOTS client (e.g., if the attack changes
its source information).
Requests with invalid query types (e.g., not supported, malformed)
received by the DOTS server MUST be rejected with a 4.00 (Bad
Request) Response Code.
An example of a request to subscribe to asynchronous telemetry
notifications regarding UDP traffic is shown in Figure 42. This
filter will be applied for all 'tmid's.
Header: GET (Code=0.01)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "tm"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Query: "target-protocol=17"
Observe: 0
Figure 42: GET Request to Receive Telemetry Asynchronous
Notifications Filtered Using Uri-Query
The DOTS server will send asynchronous notifications to the DOTS
client when an attack event is detected, following considerations
similar to those discussed in Section 4.4.2.1 of [RFC9132]. An
example of a pre-or-ongoing-mitigation telemetry notification is
shown in Figure 43.
{
"ietf-dots-telemetry:telemetry": {
"pre-or-ongoing-mitigation": [
{
"tmid": 567,
"target": {
"target-prefix": [
"2001:db8::1/128"
]
},
"target-protocol": [
17
],
"total-attack-traffic": [
{
"unit": "megabit-ps",
"mid-percentile-g": "900"
}
],
"attack-detail": [
{
"vendor-id": 32473,
"attack-id": 77,
"start-time": "1618339785",
"attack-severity": "high"
}
]
}
]
}
}
Figure 43: Message Body of a Pre-or-Ongoing-Mitigation Telemetry
Notification from the DOTS Server, Depicted as per Section 5.6
A DOTS server sends the aggregate data for a target using the 'total-
attack-traffic' attribute. The aggregate assumes that Uri-Query
filters are applied on the target. The DOTS server MAY include more
fine-grained data when needed (that is, 'total-attack-traffic-
protocol' and 'total-attack-traffic-port'). If a port filter (or
protocol filter) is included in a request, 'total-attack-traffic-
protocol' (or 'total-attack-traffic-port') conveys the data with the
port (or protocol) filter applied.
A DOTS server may aggregate pre-or-ongoing-mitigation data (e.g.,
'top-talker') for all targets of a domain or, when justified, send
specific information (e.g., 'top-talker') for a specific target.
The DOTS client may log pre-or-ongoing-mitigation telemetry data with
an alert sent to an administrator or a network controller. The DOTS
client may send a mitigation request if the attack cannot be handled
locally.
A DOTS client that is not interested in receiving pre-or-ongoing-
mitigation telemetry data for a target sends a DELETE request similar
to the DELETE request depicted in Figure 37.
9. DOTS Telemetry Mitigation Status Update
9.1. From DOTS Clients to DOTS Servers: Mitigation Efficacy DOTS
Telemetry Attributes
The mitigation efficacy telemetry attributes can be signaled from
DOTS clients to DOTS servers as part of the periodic mitigation
efficacy updates to the server (Section 4.4.3 of [RFC9132]).
Total attack traffic: The overall attack traffic as observed from
the DOTS client's perspective during an active mitigation. See
Figure 27.
Attack details: The overall attack details as observed from the DOTS
client's perspective during an active mitigation. See
Section 8.1.5.
The "ietf-dots-telemetry" YANG module (Section 11.1) augments the
'mitigation-scope' message type defined in the "ietf-dots-signal-
channel" module [RFC9132] so that these attributes can be signaled by
a DOTS client in a mitigation efficacy update (Figure 44).
augment-structure /dots-signal:dots-signal/dots-signal:message-type
/dots-signal:mitigation-scope/dots-signal:scope:
+-- total-attack-traffic* [unit]
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- attack-detail* [vendor-id attack-id]
+-- vendor-id uint32
+-- attack-id uint32
+-- attack-description? string
+-- attack-severity? attack-severity
+-- start-time? uint64
+-- end-time? uint64
+-- source-count
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- top-talker
+-- talker* [source-prefix]
+-- spoofed-status? boolean
+-- source-prefix inet:ip-prefix
+-- source-port-range* [lower-port]
| +-- lower-port inet:port-number
| +-- upper-port? inet:port-number
+-- source-icmp-type-range* [lower-type]
| +-- lower-type uint8
| +-- upper-type? uint8
+-- total-attack-traffic* [unit]
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-attack-connection
+-- connection-c
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- embryonic-c
| ...
+-- connection-ps-c
| ...
+-- request-ps-c
| ...
+-- partial-request-c
...
Figure 44: Telemetry Efficacy Update Tree Structure
In order to signal telemetry data in a mitigation efficacy update, it
is RECOMMENDED that the DOTS client have already established a DOTS
telemetry setup session with the server in 'idle' time. Such a
session is primarily meant to assess whether the peer DOTS server
supports telemetry extensions and to thus prevent message processing
failure (Section 3.1 of [RFC9132]).
An example of an efficacy update with telemetry attributes is
depicted in Figure 45.
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "mitigate"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "mid=123"
If-Match:
Content-Format: "application/dots+cbor"
{
"ietf-dots-signal-channel:mitigation-scope": {
"scope": [
{
"alias-name": [
"https1",
"https2"
],
"attack-status": "under-attack",
"ietf-dots-telemetry:total-attack-traffic": [
{
"unit": "megabit-ps",
"mid-percentile-g": "900"
}
]
}
]
}
}
Figure 45: Example of Mitigation Efficacy Update with Telemetry
Attributes, Depicted as per Section 5.6
9.2. From DOTS Servers to DOTS Clients: Mitigation Status DOTS
Telemetry Attributes
The mitigation status telemetry attributes can be signaled from the
DOTS server to the DOTS client as part of the periodic mitigation
status update (Section 4.4.2 of [RFC9132]). In particular, DOTS
clients can receive asynchronous notifications of the attack details
from DOTS servers using the Observe Option defined in [RFC7641].
In order to make use of this feature, DOTS clients MUST establish a
telemetry session with the DOTS server in 'idle' time and MUST set
the 'server-originated-telemetry' attribute to 'true'.
DOTS servers MUST NOT include telemetry attributes in mitigation
status updates sent to DOTS clients for telemetry sessions in which
the 'server-originated-telemetry' attribute is set to 'false'.
As defined in [RFC8612], the actual mitigation activities can include
several countermeasure mechanisms. The DOTS server signals the
current operational status of relevant countermeasures. A list of
attacks detected by these countermeasures MAY also be included. The
same attributes as those defined in Section 8.1.5 are applicable for
describing the attacks detected and mitigated at the DOTS server
domain.
The "ietf-dots-telemetry" YANG module (Section 11.1) augments the
'mitigation-scope' message type defined in the "ietf-dots-signal-
channel" module [RFC9132] with telemetry data as depicted in
Figure 46.
augment-structure /dots-signal:dots-signal/dots-signal:message-type
/dots-signal:mitigation-scope/dots-signal:scope:
+-- (direction)?
| +--:(server-to-client-only)
| +-- total-traffic* [unit]
| | +-- unit unit
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- total-attack-connection
| +-- connection-c
| | +-- low-percentile-g? yang:gauge64
| | +-- mid-percentile-g? yang:gauge64
| | +-- high-percentile-g? yang:gauge64
| | +-- peak-g? yang:gauge64
| | +-- current-g? yang:gauge64
| +-- embryonic-c
| | ...
| +-- connection-ps-c
| | ...
| +-- request-ps-c
| | ...
| +-- partial-request-c
| ...
+-- total-attack-traffic* [unit]
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- attack-detail* [vendor-id attack-id]
+-- vendor-id uint32
+-- attack-id uint32
+-- attack-description? string
+-- attack-severity? attack-severity
+-- start-time? uint64
+-- end-time? uint64
+-- source-count
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- top-talker
+-- talker* [source-prefix]
+-- spoofed-status? boolean
+-- source-prefix inet:ip-prefix
+-- source-port-range* [lower-port]
| +-- lower-port inet:port-number
| +-- upper-port? inet:port-number
+-- source-icmp-type-range* [lower-type]
| +-- lower-type uint8
| +-- upper-type? uint8
+-- total-attack-traffic* [unit]
| +-- unit unit
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- total-attack-connection
+-- connection-c
| +-- low-percentile-g? yang:gauge64
| +-- mid-percentile-g? yang:gauge64
| +-- high-percentile-g? yang:gauge64
| +-- peak-g? yang:gauge64
| +-- current-g? yang:gauge64
+-- embryonic-c
| ...
+-- connection-ps-c
| ...
+-- request-ps-c
| ...
+-- partial-request-c
...
Figure 46: DOTS Server-to-Client Mitigation Status Telemetry Tree
Structure
Figure 47 shows an example of an asynchronous notification of attack
mitigation status from the DOTS server. This notification signals
both the mid-percentile value of processed attack traffic and the
peak count of unique sources involved in the attack.
{
"ietf-dots-signal-channel:mitigation-scope": {
"scope": [
{
"mid": 12332,
"mitigation-start": "1507818434",
"alias-name": [
"https1",
"https2"
],
"lifetime": 1600,
"status": "attack-successfully-mitigated",
"bytes-dropped": "134334555",
"bps-dropped": "43344",
"pkts-dropped": "333334444",
"pps-dropped": "432432",
"ietf-dots-telemetry:total-attack-traffic": [
{
"unit": "megabit-ps",
"mid-percentile-g": "752"
}
],
"ietf-dots-telemetry:attack-detail": [
{
"vendor-id": 32473,
"attack-id": 77,
"source-count": {
"peak-g": "12683"
}
}
]
}
]
}
}
Figure 47: Response Body of a Mitigation Status with Telemetry
Attributes, Depicted as per Section 5.6
DOTS clients can filter out the asynchronous notifications from the
DOTS server by indicating one or more Uri-Query options in its GET
request. A Uri-Query option can include the following parameters:
'target-prefix', 'target-port', 'target-protocol', 'target-fqdn',
'target-uri', 'alias-name', and 'c' (content) (Section 5.4). The
considerations discussed in Section 8.3 MUST be followed to include
multiple query values, ranges ('target-port', 'target-protocol'), and
wildcard names ('target-fqdn', 'target-uri').
An example of a request to subscribe to asynchronous notifications
bound to the "https1" alias is shown in Figure 48.
Header: GET (Code=0.01)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "mitigate"
Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri-Path: "mid=12332"
Uri-Query: "target-alias=https1"
Observe: 0
Figure 48: GET Request to Receive Asynchronous Notifications
Filtered Using Uri-Query
If the target query does not match the target of the enclosed 'mid'
as maintained by the DOTS server, the latter MUST respond with a 4.04
(Not Found) error Response Code. The DOTS server MUST NOT add a new
Observe entry if this query overlaps with an existing Observe entry.
In such a case, the DOTS server replies with a 4.09 (Conflict)
Response Code.
10. Error Handling
A list of common CoAP errors that are implemented by DOTS servers is
provided in Section 9 of [RFC9132]. The following additional error
cases apply for the telemetry extension:
* 4.00 (Bad Request) is returned by the DOTS server when the DOTS
client has sent a request that violates the DOTS telemetry
extension.
* 4.04 (Not Found) is returned by the DOTS server when the DOTS
client is requesting a 'tsid' or 'tmid' that is not valid.
* 4.00 (Bad Request) is returned by the DOTS server when the DOTS
client has sent a request with invalid query types (e.g., not
supported, malformed).
* 4.04 (Not Found) is returned by the DOTS server when the DOTS
client has sent a request with a target query that does not match
the target of the enclosed 'mid' as maintained by the DOTS server.
As indicated in Section 9 of [RFC9132], an additional plaintext
diagnostic payload (Section 5.5.2 of [RFC7252]) to help with
troubleshooting is returned in the body of the response.
11. YANG Modules
11.1. DOTS Signal Channel Telemetry YANG Module
This module uses types defined in [RFC6991] and [RFC8345]. It also
reuses a grouping from [RFC8783].
<CODE BEGINS> file "ietf-dots-telemetry@2022-06-20.yang"
module ietf-dots-telemetry {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-dots-telemetry";
prefix dots-telemetry;
import ietf-dots-signal-channel {
prefix dots-signal;
reference
"RFC 9132: Distributed Denial-of-Service Open Threat
Signaling (DOTS) Signal Channel Specification";
}
import ietf-dots-data-channel {
prefix data-channel;
reference
"RFC 8783: Distributed Denial-of-Service Open Threat
Signaling (DOTS) Data Channel Specification";
}
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types, Section 3";
}
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types, Section 4";
}
import ietf-network-topology {
prefix nt;
reference
"RFC 8345: A YANG Data Model for Network Topologies,
Section 6.2";
}
import ietf-yang-structure-ext {
prefix sx;
reference
"RFC 8791: YANG Data Structure Extensions";
}
organization
"IETF DDoS Open Threat Signaling (DOTS) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/dots/>
WG List: <mailto:dots@ietf.org>
Author: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>
Author: Konda, Tirumaleswar Reddy.K
<mailto:kondtir@gmail.com>";
description
"This module contains YANG definitions for the signaling
of DOTS telemetry data exchanged between a DOTS client and
a DOTS server by means of the DOTS signal channel.
Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Revised BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9244; see the
RFC itself for full legal notices.";
revision 2022-06-20 {
description
"Initial revision.";
reference
"RFC 9244: Distributed Denial-of-Service Open Threat
Signaling (DOTS) Telemetry";
}
typedef attack-severity {
type enumeration {
enum none {
value 1;
description
"No effect on the DOTS client domain.";
}
enum low {
value 2;
description
"Minimal effect on the DOTS client domain.";
}
enum medium {
value 3;
description
"A subset of DOTS client domain resources is
out of service.";
}
enum high {
value 4;
description
"The DOTS client domain is under extremely severe
conditions.";
}
enum unknown {
value 5;
description
"The impact of the attack is not known.";
}
}
description
"Enumeration for attack severity.";
reference
"RFC 7970: The Incident Object Description Exchange
Format Version 2, Section 3.12.2";
}
typedef unit-class {
type enumeration {
enum packet-ps {
value 1;
description
"Packets per second (pps).";
}
enum bit-ps {
value 2;
description
"Bits per second (bps).";
}
enum byte-ps {
value 3;
description
"Bytes per second (Bps).";
}
}
description
"Enumeration to indicate which unit class is used.
These classes are supported: pps, bps, and Bps.";
}
typedef unit {
type enumeration {
enum packet-ps {
value 1;
description
"Packets per second (pps).";
}
enum bit-ps {
value 2;
description
"Bits per second (bps).";
}
enum byte-ps {
value 3;
description
"Bytes per second (Bps).";
}
enum kilopacket-ps {
value 4;
description
"Kilo packets per second (kpps).";
}
enum kilobit-ps {
value 5;
description
"Kilobits per second (kbps).";
}
enum kilobyte-ps {
value 6;
description
"Kilobytes per second (kBps).";
}
enum megapacket-ps {
value 7;
description
"Mega packets per second (Mpps).";
}
enum megabit-ps {
value 8;
description
"Megabits per second (Mbps).";
}
enum megabyte-ps {
value 9;
description
"Megabytes per second (MBps).";
}
enum gigapacket-ps {
value 10;
description
"Giga packets per second (Gpps).";
}
enum gigabit-ps {
value 11;
description
"Gigabits per second (Gbps).";
}
enum gigabyte-ps {
value 12;
description
"Gigabytes per second (GBps).";
}
enum terapacket-ps {
value 13;
description
"Tera packets per second (Tpps).";
}
enum terabit-ps {
value 14;
description
"Terabits per second (Tbps).";
}
enum terabyte-ps {
value 15;
description
"Terabytes per second (TBps).";
}
enum petapacket-ps {
value 16;
description
"Peta packets per second (Ppps).";
}
enum petabit-ps {
value 17;
description
"Petabits per second (Pbps).";
}
enum petabyte-ps {
value 18;
description
"Petabytes per second (PBps).";
}
enum exapacket-ps {
value 19;
description
"Exa packets per second (Epps).";
}
enum exabit-ps {
value 20;
description
"Exabits per second (Ebps).";
}
enum exabyte-ps {
value 21;
description
"Exabytes per second (EBps).";
}
enum zettapacket-ps {
value 22;
description
"Zetta packets per second (Zpps).";
}
enum zettabit-ps {
value 23;
description
"Zettabits per second (Zbps).";
}
enum zettabyte-ps {
value 24;
description
"Zettabytes per second (ZBps).";
}
}
description
"Enumeration to indicate which unit is used.
Only one unit per unit class is used owing to
unit auto-scaling.";
}
typedef interval {
type enumeration {
enum 5-minutes {
value 1;
description
"5 minutes.";
}
enum 10-minutes {
value 2;
description
"10 minutes.";
}
enum 30-minutes {
value 3;
description
"30 minutes.";
}
enum hour {
value 4;
description
"Hour.";
}
enum day {
value 5;
description
"Day.";
}
enum week {
value 6;
description
"Week.";
}
enum month {
value 7;
description
"Month.";
}
}
description
"Enumeration to indicate the overall measurement period.";
}
typedef sample {
type enumeration {
enum second {
value 1;
description
"One-second measurement period.";
}
enum 5-seconds {
value 2;
description
"5-second measurement period.";
}
enum 30-seconds {
value 3;
description
"30-second measurement period.";
}
enum minute {
value 4;
description
"One-minute measurement period.";
}
enum 5-minutes {
value 5;
description
"5-minute measurement period.";
}
enum 10-minutes {
value 6;
description
"10-minute measurement period.";
}
enum 30-minutes {
value 7;
description
"30-minute measurement period.";
}
enum hour {
value 8;
description
"One-hour measurement period.";
}
}
description
"Enumeration to indicate the sampling period.";
}
typedef percentile {
type decimal64 {
fraction-digits 2;
}
description
"The nth percentile of a set of data is the
value at which n percent of the data is below it.";
}
typedef query-type {
type enumeration {
enum target-prefix {
value 1;
description
"Query based on target prefix.";
}
enum target-port {
value 2;
description
"Query based on target port number.";
}
enum target-protocol {
value 3;
description
"Query based on target protocol.";
}
enum target-fqdn {
value 4;
description
"Query based on target FQDN.";
}
enum target-uri {
value 5;
description
"Query based on target URI.";
}
enum target-alias {
value 6;
description
"Query based on target alias.";
}
enum mid {
value 7;
description
"Query based on mitigation identifier (mid).";
}
enum source-prefix {
value 8;
description
"Query based on source prefix.";
}
enum source-port {
value 9;
description
"Query based on source port number.";
}
enum source-icmp-type {
value 10;
description
"Query based on ICMP type.";
}
enum content {
value 11;
description
"Query based on the 'c' (content) Uri-Query option,
which is used to control the selection of configuration
and non-configuration data nodes.";
reference
"RFC 9132: Distributed Denial-of-Service Open Threat
Signaling (DOTS) Signal Channel
Specification, Section 4.4.2";
}
}
description
"Enumeration of support for query types that can be used
in a GET request to filter out data. Requests with
invalid query types (e.g., not supported, malformed)
received by the DOTS server are rejected with
a 4.00 (Bad Request) Response Code.";
}
grouping telemetry-parameters {
description
"A grouping that includes a set of parameters that
are used to prepare the reported telemetry data.
The grouping indicates a measurement interval,
a measurement sample period, and
low-percentile/mid-percentile/high-percentile values.";
leaf measurement-interval {
type interval;
description
"Defines the period during which percentiles are
computed.";
}
leaf measurement-sample {
type sample;
description
"Defines the time distribution for measuring
values that are used to compute percentiles.
The measurement sample value must be less than the
measurement interval value.";
}
leaf low-percentile {
type percentile;
default "10.00";
description
"Low-percentile. If set to '0', this means that
the use of low-percentile values is disabled.";
}
leaf mid-percentile {
type percentile;
must '. >= ../low-percentile' {
error-message
"The mid-percentile must be greater than
or equal to the low-percentile.";
}
default "50.00";
description
"Mid-percentile. If set to the same value as
'low-percentile', this means that the use of
mid-percentile values is disabled.";
}
leaf high-percentile {
type percentile;
must '. >= ../mid-percentile' {
error-message
"The high-percentile must be greater than
or equal to the mid-percentile.";
}
default "90.00";
description
"High-percentile. If set to the same value as
'mid-percentile', this means that the use of
high-percentile values is disabled.";
}
}
grouping percentile-and-peak {
description
"Generic grouping for percentile and peak values.";
leaf low-percentile-g {
type yang:gauge64;
description
"Low-percentile value.";
}
leaf mid-percentile-g {
type yang:gauge64;
description
"Mid-percentile value.";
}
leaf high-percentile-g {
type yang:gauge64;
description
"High-percentile value.";
}
leaf peak-g {
type yang:gauge64;
description
"Peak value.";
}
}
grouping percentile-peak-and-current {
description
"Generic grouping for percentile and peak values.";
uses percentile-and-peak;
leaf current-g {
type yang:gauge64;
description
"Current value.";
}
}
grouping unit-config {
description
"Generic grouping for unit configuration.";
list unit-config {
key "unit";
description
"Controls which unit classes are allowed when sharing
telemetry data.";
leaf unit {
type unit-class;
description
"Can be 'packet-ps', 'bit-ps', or 'byte-ps'.";
}
leaf unit-status {
type boolean;
mandatory true;
description
"Enable/disable the use of the measurement unit class.";
}
}
}
grouping traffic-unit {
description
"Grouping of traffic as a function of the
measurement unit.";
leaf unit {
type unit;
description
"The traffic can be measured using unit classes:
'packet-ps', 'bit-ps', or 'byte-ps'. DOTS agents
auto-scale to the appropriate units (e.g., 'megabit-ps',
'kilobit-ps').";
}
uses percentile-and-peak;
}
grouping traffic-unit-all {
description
"Grouping of traffic as a function of the measurement unit,
including current values.";
uses traffic-unit;
leaf current-g {
type yang:gauge64;
description
"Current observed value.";
}
}
grouping traffic-unit-protocol {
description
"Grouping of traffic of a given transport protocol as
a function of the measurement unit.";
leaf protocol {
type uint8;
description
"The transport protocol.
Values are taken from the IANA 'Protocol Numbers'
registry:
<https://www.iana.org/assignments/protocol-numbers/>.
For example, this parameter contains 6 for TCP,
17 for UDP, 33 for the Datagram Congestion Control
Protocol (DCCP), or 132 for the Stream Control
Transmission Protocol (SCTP).";
}
uses traffic-unit;
}
grouping traffic-unit-protocol-all {
description
"Grouping of traffic of a given transport protocol as
a function of the measurement unit, including current
values.";
uses traffic-unit-protocol;
leaf current-g {
type yang:gauge64;
description
"Current observed value.";
}
}
grouping traffic-unit-port {
description
"Grouping of traffic bound to a port number as
a function of the measurement unit.";
leaf port {
type inet:port-number;
description
"Port number used by a transport protocol.";
}
uses traffic-unit;
}
grouping traffic-unit-port-all {
description
"Grouping of traffic bound to a port number as
a function of the measurement unit, including
current values.";
uses traffic-unit-port;
leaf current-g {
type yang:gauge64;
description
"Current observed value.";
}
}
grouping total-connection-capacity {
description
"Total connection capacities for various types of
connections, as well as overall capacity. These data nodes
are useful for detecting resource-consuming DDoS attacks.";
leaf connection {
type uint64;
description
"The maximum number of simultaneous connections that
are allowed to the target server.";
}
leaf connection-client {
type uint64;
description
"The maximum number of simultaneous connections that
are allowed to the target server per client.";
}
leaf embryonic {
type uint64;
description
"The maximum number of simultaneous embryonic connections
that are allowed to the target server. The term
'embryonic connection' refers to a connection whose
connection handshake is not finished. Embryonic
connections are only possible in connection-oriented
transport protocols like TCP or SCTP.";
}
leaf embryonic-client {
type uint64;
description
"The maximum number of simultaneous embryonic connections
that are allowed to the target server per client.";
}
leaf connection-ps {
type uint64;
description
"The maximum number of new connections allowed per second
to the target server.";
}
leaf connection-client-ps {
type uint64;
description
"The maximum number of new connections allowed per second
to the target server per client.";
}
leaf request-ps {
type uint64;
description
"The maximum number of requests allowed per second
to the target server.";
}
leaf request-client-ps {
type uint64;
description
"The maximum number of requests allowed per second
to the target server per client.";
}
leaf partial-request-max {
type uint64;
description
"The maximum number of outstanding partial requests
that are allowed to the target server.";
}
leaf partial-request-client-max {
type uint64;
description
"The maximum number of outstanding partial requests
that are allowed to the target server per client.";
}
}
grouping total-connection-capacity-protocol {
description
"Total connection capacity per protocol. These data nodes
are useful for detecting resource-consuming DDoS attacks.";
leaf protocol {
type uint8;
description
"The transport protocol.
Values are taken from the IANA 'Protocol Numbers'
registry:
<https://www.iana.org/assignments/protocol-numbers/>.";
}
uses total-connection-capacity;
}
grouping connection-percentile-and-peak {
description
"A set of data nodes that represent the attack
characteristics.";
container connection-c {
uses percentile-and-peak;
description
"The number of simultaneous attack connections to
the target server.";
}
container embryonic-c {
uses percentile-and-peak;
description
"The number of simultaneous embryonic connections to
the target server.";
}
container connection-ps-c {
uses percentile-and-peak;
description
"The number of attack connections per second to
the target server.";
}
container request-ps-c {
uses percentile-and-peak;
description
"The number of attack requests per second to
the target server.";
}
container partial-request-c {
uses percentile-and-peak;
description
"The number of attack partial requests to
the target server.";
}
}
grouping connection-all {
description
"Total attack connections, including current values.";
container connection-c {
uses percentile-peak-and-current;
description
"The number of simultaneous attack connections to
the target server.";
}
container embryonic-c {
uses percentile-peak-and-current;
description
"The number of simultaneous embryonic connections to
the target server.";
}
container connection-ps-c {
uses percentile-peak-and-current;
description
"The number of attack connections per second to
the target server.";
}
container request-ps-c {
uses percentile-peak-and-current;
description
"The number of attack requests per second to
the target server.";
}
container partial-request-c {
uses percentile-peak-and-current;
description
"The number of attack partial requests to
the target server.";
}
}
grouping connection-protocol {
description
"Total attack connections.";
leaf protocol {
type uint8;
description
"The transport protocol.
Values are taken from the IANA 'Protocol Numbers'
registry:
<https://www.iana.org/assignments/protocol-numbers/>.";
}
uses connection-percentile-and-peak;
}
grouping connection-port {
description
"Total attack connections per port number.";
leaf protocol {
type uint8;
description
"The transport protocol.
Values are taken from the IANA 'Protocol Numbers'
registry:
<https://www.iana.org/assignments/protocol-numbers/>.";
}
leaf port {
type inet:port-number;
description
"Port number.";
}
uses connection-percentile-and-peak;
}
grouping connection-protocol-all {
description
"Total attack connections per protocol, including current
values.";
leaf protocol {
type uint8;
description
"The transport protocol.
Values are taken from the IANA 'Protocol Numbers'
registry:
<https://www.iana.org/assignments/protocol-numbers/>.";
}
uses connection-all;
}
grouping connection-protocol-port-all {
description
"Total attack connections per port number, including current
values.";
leaf protocol {
type uint8;
description
"The transport protocol.
Values are taken from the IANA 'Protocol Numbers'
registry:
<https://www.iana.org/assignments/protocol-numbers/>.";
}
leaf port {
type inet:port-number;
description
"Port number.";
}
uses connection-all;
}
grouping attack-detail {
description
"Various details that describe the ongoing
attacks that need to be mitigated by the DOTS server.
The attack details need to cover well-known and common
attacks (such as a SYN flood) along with new emerging or
vendor-specific attacks.";
leaf vendor-id {
type uint32;
description
"The Vendor ID is a security vendor's Private Enterprise
Number as registered with IANA.";
reference
"IANA: Private Enterprise Numbers
(https://www.iana.org/assignments/enterprise-numbers/)";
}
leaf attack-id {
type uint32;
description
"Unique identifier assigned by the vendor for the attack.";
}
leaf description-lang {
type string {
pattern '((([A-Za-z]{2,3}(-[A-Za-z]{3}(-[A-Za-z]{3})'
+ '{0,2})?)|[A-Za-z]{4}|[A-Za-z]{5,8})(-[A-Za-z]{4})'
+ '?(-([A-Za-z]{2}|[0-9]{3}))?(-([A-Za-z0-9]{5,8}'
+ '|([0-9][A-Za-z0-9]{3})))*(-[0-9A-WYZa-wyz]'
+ '(-([A-Za-z0-9]{2,8}))+)*(-[Xx](-([A-Za-z0-9]'
+ '{1,8}))+)?|[Xx](-([A-Za-z0-9]{1,8}))+|'
+ '(([Ee][Nn]-[Gg][Bb]-[Oo][Ee][Dd]|[Ii]-'
+ '[Aa][Mm][Ii]|[Ii]-[Bb][Nn][Nn]|[Ii]-'
+ '[Dd][Ee][Ff][Aa][Uu][Ll][Tt]|[Ii]-'
+ '[Ee][Nn][Oo][Cc][Hh][Ii][Aa][Nn]'
+ '|[Ii]-[Hh][Aa][Kk]|'
+ '[Ii]-[Kk][Ll][Ii][Nn][Gg][Oo][Nn]|'
+ '[Ii]-[Ll][Uu][Xx]|[Ii]-[Mm][Ii][Nn][Gg][Oo]|'
+ '[Ii]-[Nn][Aa][Vv][Aa][Jj][Oo]|[Ii]-[Pp][Ww][Nn]|'
+ '[Ii]-[Tt][Aa][Oo]|[Ii]-[Tt][Aa][Yy]|'
+ '[Ii]-[Tt][Ss][Uu]|[Ss][Gg][Nn]-[Bb][Ee]-[Ff][Rr]|'
+ '[Ss][Gg][Nn]-[Bb][Ee]-[Nn][Ll]|[Ss][Gg][Nn]-'
+ '[Cc][Hh]-[Dd][Ee])|([Aa][Rr][Tt]-'
+ '[Ll][Oo][Jj][Bb][Aa][Nn]|[Cc][Ee][Ll]-'
+ '[Gg][Aa][Uu][Ll][Ii][Ss][Hh]|'
+ '[Nn][Oo]-[Bb][Oo][Kk]|[Nn][Oo]-'
+ '[Nn][Yy][Nn]|[Zz][Hh]-[Gg][Uu][Oo][Yy][Uu]|'
+ '[Zz][Hh]-[Hh][Aa][Kk][Kk][Aa]|[Zz][Hh]-'
+ '[Mm][Ii][Nn]|[Zz][Hh]-[Mm][Ii][Nn]-'
+ '[Nn][Aa][Nn]|[Zz][Hh]-[Xx][Ii][Aa][Nn][Gg])))';
}
default "en-US";
description
"Indicates the language tag that is used for
'attack-description'.";
reference
"RFC 5646: Tags for Identifying Languages, Section 2.1";
}
leaf attack-description {
type string;
description
"Textual representation of the attack description.
Natural Language Processing techniques (e.g.,
word embedding) might provide some utility in mapping
the attack description to an attack type.";
}
leaf attack-severity {
type attack-severity;
description
"Severity level of an attack. How this level is
determined is implementation specific.";
}
leaf start-time {
type uint64;
description
"The time the attack started. The start time is
represented in seconds relative to
1970-01-01T00:00:00Z.";
}
leaf end-time {
type uint64;
description
"The time the attack ended. The end time is represented
in seconds relative to 1970-01-01T00:00:00Z.";
}
container source-count {
description
"Indicates the count of unique sources involved
in the attack.";
uses percentile-and-peak;
leaf current-g {
type yang:gauge64;
description
"Current observed value.";
}
}
}
grouping talker {
description
"Defines generic data related to top talkers.";
leaf spoofed-status {
type boolean;
description
"When set to 'true', it indicates whether this address
is spoofed.";
}
leaf source-prefix {
type inet:ip-prefix;
description
"IPv4 or IPv6 prefix identifying the attacker(s).";
}
list source-port-range {
key "lower-port";
description
"Port range. When only 'lower-port' is
present, it represents a single port number.";
leaf lower-port {
type inet:port-number;
description
"Lower port number of the port range.";
}
leaf upper-port {
type inet:port-number;
must '. >= ../lower-port' {
error-message
"The upper port number must be greater than
or equal to the lower port number.";
}
description
"Upper port number of the port range.";
}
}
list source-icmp-type-range {
key "lower-type";
description
"ICMP type range. When only 'lower-type' is
present, it represents a single ICMP type.";
leaf lower-type {
type uint8;
description
"Lower ICMP type of the ICMP type range.";
}
leaf upper-type {
type uint8;
must '. >= ../lower-type' {
error-message
"The upper ICMP type must be greater than
or equal to the lower ICMP type.";
}
description
"Upper type of the ICMP type range.";
}
}
list total-attack-traffic {
key "unit";
description
"Total attack traffic issued from this source.";
uses traffic-unit-all;
}
}
grouping top-talker-aggregate {
description
"An aggregate of top attack sources. This aggregate is
typically used when included in a mitigation request.";
list talker {
key "source-prefix";
description
"Refers to a top talker that is identified by an IPv4
or IPv6 prefix identifying the attacker(s).";
uses talker;
container total-attack-connection {
description
"Total attack connections issued from this source.";
uses connection-all;
}
}
}
grouping top-talker {
description
"Top attack sources with detailed per-protocol
structure.";
list talker {
key "source-prefix";
description
"Refers to a top talker that is identified by an IPv4
or IPv6 prefix identifying the attacker(s).";
uses talker;
list total-attack-connection-protocol {
key "protocol";
description
"Total attack connections issued from this source.";
uses connection-protocol-all;
}
}
}
grouping baseline {
description
"Grouping for the telemetry baseline.";
uses data-channel:target;
leaf-list alias-name {
type string;
description
"An alias name that points to an IP resource.
An IP resource can be a router, a host,
an Internet of Things (IoT) object, a server, etc.";
}
list total-traffic-normal {
key "unit";
description
"Total traffic normal baselines.";
uses traffic-unit;
}
list total-traffic-normal-per-protocol {
key "unit protocol";
description
"Total traffic normal baselines per protocol.";
uses traffic-unit-protocol;
}
list total-traffic-normal-per-port {
key "unit port";
description
"Total traffic normal baselines per port number.";
uses traffic-unit-port;
}
list total-connection-capacity {
key "protocol";
description
"Total connection capacity.";
uses total-connection-capacity-protocol;
}
list total-connection-capacity-per-port {
key "protocol port";
description
"Total connection capacity per port number.";
leaf port {
type inet:port-number;
description
"The target port number.";
}
uses total-connection-capacity-protocol;
}
}
grouping pre-or-ongoing-mitigation {
description
"Grouping for the telemetry data.";
list total-traffic {
key "unit";
description
"Total traffic.";
uses traffic-unit-all;
}
list total-traffic-protocol {
key "unit protocol";
description
"Total traffic per protocol.";
uses traffic-unit-protocol-all;
}
list total-traffic-port {
key "unit port";
description
"Total traffic per port number.";
uses traffic-unit-port-all;
}
list total-attack-traffic {
key "unit";
description
"Total attack traffic.";
uses traffic-unit-all;
}
list total-attack-traffic-protocol {
key "unit protocol";
description
"Total attack traffic per protocol.";
uses traffic-unit-protocol-all;
}
list total-attack-traffic-port {
key "unit port";
description
"Total attack traffic per port number.";
uses traffic-unit-port-all;
}
list total-attack-connection-protocol {
key "protocol";
description
"Total attack connections.";
uses connection-protocol-all;
}
list total-attack-connection-port {
key "protocol port";
description
"Total attack connections per target port number.";
uses connection-protocol-port-all;
}
list attack-detail {
key "vendor-id attack-id";
description
"Provides a set of attack details.";
uses attack-detail;
container top-talker {
description
"Lists the top attack sources.";
uses top-talker;
}
}
}
sx:augment-structure "/dots-signal:dots-signal"
+ "/dots-signal:message-type"
+ "/dots-signal:mitigation-scope"
+ "/dots-signal:scope" {
description
"Extends mitigation scope with telemetry update data.";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a mitigation message
sent from the server to the client.";
list total-traffic {
key "unit";
description
"Total traffic.";
uses traffic-unit-all;
}
container total-attack-connection {
description
"Total attack connections.";
uses connection-all;
}
}
}
list total-attack-traffic {
key "unit";
description
"Total attack traffic.";
uses traffic-unit-all;
}
list attack-detail {
key "vendor-id attack-id";
description
"Attack details.";
uses attack-detail;
container top-talker {
description
"Top attack sources.";
uses top-talker-aggregate;
}
}
}
sx:structure dots-telemetry {
description
"Main structure for DOTS telemetry messages.";
choice telemetry-message-type {
description
"Can be 'telemetry-setup' or telemetry data.";
case telemetry-setup {
description
"Indicates that the message is about telemetry setup.";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a telemetry message
sent from the server to the client.";
container max-config-values {
description
"Maximum acceptable configuration values.";
uses telemetry-parameters;
leaf server-originated-telemetry {
type boolean;
default "false";
description
"Indicates whether the DOTS server can be
instructed to send pre-or-ongoing-mitigation
telemetry. If set to 'false' or the data node
is not present, this is an indication that
the server does not support this capability.";
}
leaf telemetry-notify-interval {
type uint16 {
range "1 .. 3600";
}
units "seconds";
must '. >= ../../min-config-values'
+ '/telemetry-notify-interval' {
error-message
"The value must be greater than or equal
to the 'telemetry-notify-interval' value in
the 'min-config-values' attribute";
}
description
"Minimum number of seconds between successive
telemetry notifications.";
}
}
container min-config-values {
description
"Minimum acceptable configuration values.";
uses telemetry-parameters;
leaf telemetry-notify-interval {
type uint16 {
range "1 .. 3600";
}
units "seconds";
description
"Minimum number of seconds between successive
telemetry notifications.";
}
}
container supported-unit-classes {
description
"Supported unit classes and default activation
status.";
uses unit-config;
}
leaf-list supported-query-type {
type query-type;
description
"Indicates which query types are supported by
the server. If the server does not announce
the query types it supports, the client will
be unable to use any of the potential
'query-type' values to reduce the returned data
content from the server.";
}
}
}
list telemetry {
description
"The telemetry data per DOTS client. The keys
of the list are 'cuid' and 'tsid', but these keys are
not represented here because these keys are conveyed
as mandatory Uri-Paths in requests. Omitting keys
is compliant with RFC 8791.";
reference
"RFC 8791: YANG Data Structure Extensions";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a telemetry
message sent from the server to the client.";
leaf tsid {
type uint32;
description
"A client-assigned identifier for the DOTS
telemetry setup data.";
}
}
}
choice setup-type {
description
"Can be a mitigation configuration, a pipe capacity,
or a baseline message.";
case telemetry-config {
description
"Used to set telemetry parameters such as setting
low-, mid-, and high-percentile values.";
container current-config {
description
"Current telemetry configuration values.";
uses telemetry-parameters;
uses unit-config;
leaf server-originated-telemetry {
type boolean;
description
"Used by a DOTS client to enable/disable
whether it requests pre-or-ongoing-mitigation
telemetry from the DOTS server.";
}
leaf telemetry-notify-interval {
type uint16 {
range "1 .. 3600";
}
units "seconds";
description
"Minimum number of seconds between successive
telemetry notifications.";
}
}
}
case pipe {
description
"Total pipe capacity of a DOTS client domain.";
list total-pipe-capacity {
key "link-id unit";
description
"Total pipe capacity of a DOTS client domain.";
leaf link-id {
type nt:link-id;
description
"Identifier of an interconnection link of
the DOTS client domain.";
}
leaf capacity {
type uint64;
mandatory true;
description
"Pipe capacity. This attribute is mandatory
when 'total-pipe-capacity' is included in a
message.";
}
leaf unit {
type unit;
description
"The traffic can be measured using unit
classes: packets per second (pps), bits per
second (bps), and/or bytes per second
(Bps).
For a given unit class, the DOTS agents
auto-scale to the appropriate units (e.g.,
'megabit-ps', 'kilobit-ps').";
}
}
}
case baseline {
description
"Traffic baseline information related to a DOTS
client domain.";
list baseline {
key "id";
description
"Traffic baseline information related to a DOTS
client domain.";
leaf id {
type uint32;
must '. >= 1';
description
"An identifier that uniquely identifies a
baseline entry communicated by a
DOTS client.";
}
uses baseline;
}
}
}
}
}
case telemetry {
description
"Telemetry information.";
list pre-or-ongoing-mitigation {
description
"Pre-or-ongoing-mitigation telemetry per DOTS client.
The keys of the list are 'cuid' and 'tmid', but these
keys are not represented here because these keys are
conveyed as mandatory Uri-Paths in requests.
Omitting keys is compliant with RFC 8791.";
reference
"RFC 8791: YANG Data Structure Extensions";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a telemetry
message sent from the server to the client.";
leaf tmid {
type uint32;
description
"A client-assigned identifier for the DOTS
telemetry data.";
}
}
}
container target {
description
"Indicates the target. At least one of the
attributes 'target-prefix', 'target-fqdn',
'target-uri', 'alias-name', or 'mid-list'
must be present in the target definition.";
uses data-channel:target;
leaf-list alias-name {
type string;
description
"An alias name that points to a resource.";
}
leaf-list mid-list {
type uint32;
description
"Reference to a list of associated mitigation
requests.";
reference
"RFC 9132: Distributed Denial-of-Service Open
Threat Signaling (DOTS) Signal Channel
Specification, Section 4.4.1";
}
}
uses pre-or-ongoing-mitigation;
}
}
}
}
}
<CODE ENDS>
11.2. Vendor Attack Mapping Details YANG Module
<CODE BEGINS> file "ietf-dots-mapping@2022-06-20.yang"
module ietf-dots-mapping {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-dots-mapping";
prefix dots-mapping;
import ietf-dots-data-channel {
prefix data-channel;
reference
"RFC 8783: Distributed Denial-of-Service Open Threat
Signaling (DOTS) Data Channel Specification";
}
organization
"IETF DDoS Open Threat Signaling (DOTS) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/dots/>
WG List: <mailto:dots@ietf.org>
Author: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>
Author: Jon Shallow
<mailto:supjps-ietf@jpshallow.com>";
description
"This module contains YANG definitions for the sharing
of DDoS attack mapping details between a DOTS client and
a DOTS server by means of the DOTS data channel.
Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Revised BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9244; see the
RFC itself for full legal notices.";
revision 2022-06-20 {
description
"Initial revision.";
reference
"RFC 9244: Distributed Denial-of-Service Open Threat
Signaling (DOTS) Telemetry";
}
feature dots-telemetry {
description
"This feature indicates that DOTS telemetry data can be
shared between DOTS clients and servers.";
}
grouping attack-mapping {
description
"A set of information used for sharing vendor attack mapping
information with a peer.";
list vendor {
key "vendor-id";
description
"Vendor attack mapping information related to the
client/server.";
leaf vendor-id {
type uint32;
description
"The Vendor ID is a security vendor's Private Enterprise
Number as registered with IANA.";
reference
"IANA: Private Enterprise Numbers
(https://www.iana.org/assignments/enterprise-numbers/)";
}
leaf vendor-name {
type string;
description
"The name of the vendor (e.g., company A).";
}
leaf description-lang {
type string {
pattern '((([A-Za-z]{2,3}(-[A-Za-z]{3}(-[A-Za-z]{3})'
+ '{0,2})?)|[A-Za-z]{4}|[A-Za-z]{5,8})(-[A-Za-z]{4})'
+ '?(-([A-Za-z]{2}|[0-9]{3}))?(-([A-Za-z0-9]{5,8}'
+ '|([0-9][A-Za-z0-9]{3})))*(-[0-9A-WYZa-wyz]'
+ '(-([A-Za-z0-9]{2,8}))+)*(-[Xx](-([A-Za-z0-9]'
+ '{1,8}))+)?|[Xx](-([A-Za-z0-9]{1,8}))+|'
+ '(([Ee][Nn]-[Gg][Bb]-[Oo][Ee][Dd]|[Ii]-'
+ '[Aa][Mm][Ii]|[Ii]-[Bb][Nn][Nn]|[Ii]-'
+ '[Dd][Ee][Ff][Aa][Uu][Ll][Tt]|[Ii]-'
+ '[Ee][Nn][Oo][Cc][Hh][Ii][Aa][Nn]'
+ '|[Ii]-[Hh][Aa][Kk]|'
+ '[Ii]-[Kk][Ll][Ii][Nn][Gg][Oo][Nn]|'
+ '[Ii]-[Ll][Uu][Xx]|[Ii]-[Mm][Ii][Nn][Gg][Oo]|'
+ '[Ii]-[Nn][Aa][Vv][Aa][Jj][Oo]|[Ii]-[Pp][Ww][Nn]|'
+ '[Ii]-[Tt][Aa][Oo]|[Ii]-[Tt][Aa][Yy]|'
+ '[Ii]-[Tt][Ss][Uu]|[Ss][Gg][Nn]-[Bb][Ee]-[Ff][Rr]|'
+ '[Ss][Gg][Nn]-[Bb][Ee]-[Nn][Ll]|[Ss][Gg][Nn]-'
+ '[Cc][Hh]-[Dd][Ee])|([Aa][Rr][Tt]-'
+ '[Ll][Oo][Jj][Bb][Aa][Nn]|[Cc][Ee][Ll]-'
+ '[Gg][Aa][Uu][Ll][Ii][Ss][Hh]|'
+ '[Nn][Oo]-[Bb][Oo][Kk]|[Nn][Oo]-'
+ '[Nn][Yy][Nn]|[Zz][Hh]-[Gg][Uu][Oo][Yy][Uu]|'
+ '[Zz][Hh]-[Hh][Aa][Kk][Kk][Aa]|[Zz][Hh]-'
+ '[Mm][Ii][Nn]|[Zz][Hh]-[Mm][Ii][Nn]-'
+ '[Nn][Aa][Nn]|[Zz][Hh]-[Xx][Ii][Aa][Nn][Gg])))';
}
default "en-US";
description
"Indicates the language tag that is used for
'attack-description'.";
reference
"RFC 5646: Tags for Identifying Languages, Section 2.1";
}
leaf last-updated {
type uint64;
mandatory true;
description
"The time the mapping table was updated. It is
represented in seconds relative to
1970-01-01T00:00:00Z.";
}
list attack-mapping {
key "attack-id";
description
"Attack mapping details.";
leaf attack-id {
type uint32;
description
"Unique identifier assigned by the vendor for the
attack.";
}
leaf attack-description {
type string;
mandatory true;
description
"Textual representation of the attack description.
Natural Language Processing techniques (e.g.,
word embedding) might provide some utility in
mapping the attack description to an attack type.";
}
}
}
}
augment "/data-channel:dots-data/data-channel:dots-client" {
if-feature "dots-telemetry";
description
"Augments the data channel with a vendor attack
mapping table of the DOTS client.";
container vendor-mapping {
description
"Used by DOTS clients to share their vendor
attack mapping information with DOTS servers.";
uses attack-mapping;
}
}
augment "/data-channel:dots-data/data-channel:capabilities" {
if-feature "dots-telemetry";
description
"Augments the DOTS server capabilities with a
parameter to indicate whether they can share
attack mapping details.";
leaf vendor-mapping-enabled {
type boolean;
config false;
description
"Indicates that the DOTS server supports sharing
attack vendor mapping details with DOTS clients.";
}
}
augment "/data-channel:dots-data" {
if-feature "dots-telemetry";
description
"Augments the data channel with a vendor attack
mapping table of the DOTS server.";
container vendor-mapping {
config false;
description
"Includes the list of vendor attack mapping details
that will be shared with DOTS clients upon request.";
uses attack-mapping;
}
}
}
<CODE ENDS>
12. YANG/JSON Mapping Parameters to CBOR
All DOTS telemetry parameters in the payload of the DOTS signal
channel MUST be mapped to CBOR types as shown in Table 3:
| Note: Implementers must check that the mapping output provided
| by their YANG-to-CBOR encoding schemes is aligned with the
| contents of Table 3.
+======================+==============+======+=============+========+
|Parameter Name |YANG Type |CBOR |CBOR Major | JSON |
| | |Key |Type & | Type |
| | | |Information | |
+======================+==============+======+=============+========+
|tsid |uint32 |128 |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
|telemetry |list |129 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|low-percentile |decimal64 |130 |6 tag 4 [-2, | String |
| | | |integer] | |
+----------------------+--------------+------+-------------+--------+
|mid-percentile |decimal64 |131 |6 tag 4 [-2, | String |
| | | |integer] | |
+----------------------+--------------+------+-------------+--------+
|high-percentile |decimal64 |132 |6 tag 4 [-2, | String |
| | | |integer] | |
+----------------------+--------------+------+-------------+--------+
|unit-config |list |133 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|unit |enumeration |134 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|unit-status |boolean |135 |7 bits 20 | False |
| | | +-------------+--------+
| | | |7 bits 21 | True |
+----------------------+--------------+------+-------------+--------+
|total-pipe-capacity |list |136 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|link-id |string |137 |3 text string| String |
+----------------------+--------------+------+-------------+--------+
|pre-or-ongoing- |list |138 |4 array | Array |
|mitigation | | | | |
+----------------------+--------------+------+-------------+--------+
|total-traffic-normal |list |139 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|low-percentile-g |yang:gauge64 |140 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|mid-percentile-g |yang:gauge64 |141 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|high-percentile-g |yang:gauge64 |142 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|peak-g |yang:gauge64 |143 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|total-attack-traffic |list |144 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|total-traffic |list |145 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|total-connection- |list |146 |4 array | Array |
|capacity | | | | |
+----------------------+--------------+------+-------------+--------+
|connection |uint64 |147 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|connection-client |uint64 |148 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|embryonic |uint64 |149 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|embryonic-client |uint64 |150 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|connection-ps |uint64 |151 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|connection-client-ps |uint64 |152 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|request-ps |uint64 |153 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|request-client-ps |uint64 |154 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|partial-request-max |uint64 |155 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|partial-request- |uint64 |156 |0 unsigned | String |
|client-max | | | | |
+----------------------+--------------+------+-------------+--------+
|total-attack- |container |157 |5 map | Object |
|connection | | | | |
+----------------------+--------------+------+-------------+--------+
|connection-c |container |158 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|embryonic-c |container |159 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|connection-ps-c |container |160 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|request-ps-c |container |161 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|attack-detail |list |162 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|id |uint32 |163 |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
|attack-id |uint32 |164 |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
|attack-description |string |165 |3 text string| String |
+----------------------+--------------+------+-------------+--------+
|attack-severity |enumeration |166 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|start-time |uint64 |167 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|end-time |uint64 |168 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|source-count |container |169 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|top-talker |container |170 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|spoofed-status |boolean |171 |7 bits 20 | False |
| | | +-------------+--------+
| | | |7 bits 21 | True |
+----------------------+--------------+------+-------------+--------+
|partial-request-c |container |172 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|total-attack- |list |173 |4 array | Array |
|connection-protocol | | | | |
+----------------------+--------------+------+-------------+--------+
|baseline |list |174 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|current-config |container |175 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|max-config-values |container |176 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|min-config-values |container |177 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|supported-unit-classes|container |178 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|server-originated- |boolean |179 |7 bits 20 | False |
|telemetry | | +-------------+--------+
| | | |7 bits 21 | True |
+----------------------+--------------+------+-------------+--------+
|telemetry-notify- |uint16 |180 |0 unsigned | Number |
|interval | | | | |
+----------------------+--------------+------+-------------+--------+
|tmid |uint32 |181 |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
|measurement-interval |enumeration |182 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|measurement-sample |enumeration |183 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|talker |list |184 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|source-prefix |inet:ip-prefix|185 |3 text string| String |
+----------------------+--------------+------+-------------+--------+
|mid-list |leaf-list |186 |4 array | Array |
| +--------------+------+-------------+--------+
| |uint32 | |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
|source-port-range |list |187 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|source-icmp-type-range|list |188 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|target |container |189 |5 map | Object |
+----------------------+--------------+------+-------------+--------+
|capacity |uint64 |190 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|protocol |uint8 |191 |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
|total-traffic-normal- |list |192 |4 array | Array |
|per-protocol | | | | |
+----------------------+--------------+------+-------------+--------+
|total-traffic-normal- |list |193 |4 array | Array |
|per-port | | | | |
+----------------------+--------------+------+-------------+--------+
|total-connection- |list |194 |4 array | Array |
|capacity-per-port | | | | |
+----------------------+--------------+------+-------------+--------+
|total-traffic-protocol|list |195 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|total-traffic-port |list |196 |4 array | Array |
+----------------------+--------------+------+-------------+--------+
|total-attack-traffic- |list |197 |4 array | Array |
|protocol | | | | |
+----------------------+--------------+------+-------------+--------+
|total-attack-traffic- |list |198 |4 array | Array |
|port | | | | |
+----------------------+--------------+------+-------------+--------+
|total-attack- |list |199 |4 array | Array |
|connection-port | | | | |
+----------------------+--------------+------+-------------+--------+
|port |inet:port- |200 |0 unsigned | Number |
| |number | | | |
+----------------------+--------------+------+-------------+--------+
|supported-query-type |leaf-list |201 |4 array | Array |
| +--------------+------+-------------+--------+
| | | |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|vendor-id |uint32 |202 |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
|ietf-dots- |container |203 |5 map | Object |
|telemetry:telemetry- | | | | |
|setup | | | | |
+----------------------+--------------+------+-------------+--------+
|ietf-dots- |list |204 |4 array | Array |
|telemetry:total- | | | | |
|traffic | | | | |
+----------------------+--------------+------+-------------+--------+
|ietf-dots- |list |205 |4 array | Array |
|telemetry:total- | | | | |
|attack-traffic | | | | |
+----------------------+--------------+------+-------------+--------+
|ietf-dots- |container |206 |5 map | Object |
|telemetry:total- | | | | |
|attack-connection | | | | |
+----------------------+--------------+------+-------------+--------+
|ietf-dots- |list |207 |4 array | Array |
|telemetry:attack- | | | | |
|detail | | | | |
+----------------------+--------------+------+-------------+--------+
|ietf-dots- |container |208 |5 map | Object |
|telemetry:telemetry | | | | |
+----------------------+--------------+------+-------------+--------+
|current-g |yang:gauge64 |209 |0 unsigned | String |
+----------------------+--------------+------+-------------+--------+
|description-lang |string |210 |3 text string| String |
+----------------------+--------------+------+-------------+--------+
|lower-type |uint8 |32771 |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
|upper-type |uint8 |32772 |0 unsigned | Number |
+----------------------+--------------+------+-------------+--------+
Table 3: YANG/JSON Mapping Parameters to CBOR
13. IANA Considerations
13.1. DOTS Signal Channel CBOR Key Values
This specification registers the following comprehension-optional
parameters in the IANA "DOTS Signal Channel CBOR Key Values" registry
[Key-Map].
+======================+==========+=======+============+===========+
| Parameter Name | CBOR Key | CBOR | Change | Reference |
| | Value | Major | Controller | |
| | | Type | | |
+======================+==========+=======+============+===========+
| tsid | 128 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| telemetry | 129 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| low-percentile | 130 | 6tag4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| mid-percentile | 131 | 6tag4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| high-percentile | 132 | 6tag4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| unit-config | 133 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| unit | 134 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| unit-status | 135 | 7 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| total-pipe-capacity | 136 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| link-id | 137 | 3 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| pre-or-ongoing- | 138 | 4 | IESG | RFC 9244 |
| mitigation | | | | |
+----------------------+----------+-------+------------+-----------+
| total-traffic-normal | 139 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| low-percentile-g | 140 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| mid-percentile-g | 141 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| high-percentile-g | 142 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| peak-g | 143 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| total-attack-traffic | 144 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| total-traffic | 145 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| total-connection- | 146 | 4 | IESG | RFC 9244 |
| capacity | | | | |
+----------------------+----------+-------+------------+-----------+
| connection | 147 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| connection-client | 148 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| embryonic | 149 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| embryonic-client | 150 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| connection-ps | 151 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| connection-client-ps | 152 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| request-ps | 153 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| request-client-ps | 154 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| partial-request-max | 155 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| partial-request- | 156 | 0 | IESG | RFC 9244 |
| client-max | | | | |
+----------------------+----------+-------+------------+-----------+
| total-attack- | 157 | 5 | IESG | RFC 9244 |
| connection | | | | |
+----------------------+----------+-------+------------+-----------+
| connection-c | 158 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| embryonic-c | 159 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| connection-ps-c | 160 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| request-ps-c | 161 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| attack-detail | 162 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| id | 163 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| attack-id | 164 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| attack-description | 165 | 3 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| attack-severity | 166 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| start-time | 167 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| end-time | 168 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| source-count | 169 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| top-talker | 170 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| spoofed-status | 171 | 7 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| partial-request-c | 172 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| total-attack- | 173 | 4 | IESG | RFC 9244 |
| connection-protocol | | | | |
+----------------------+----------+-------+------------+-----------+
| baseline | 174 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| current-config | 175 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| max-config-values | 176 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| min-config-values | 177 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| supported-unit- | 178 | 5 | IESG | RFC 9244 |
| classes | | | | |
+----------------------+----------+-------+------------+-----------+
| server-originated- | 179 | 7 | IESG | RFC 9244 |
| telemetry | | | | |
+----------------------+----------+-------+------------+-----------+
| telemetry-notify- | 180 | 0 | IESG | RFC 9244 |
| interval | | | | |
+----------------------+----------+-------+------------+-----------+
| tmid | 181 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| measurement-interval | 182 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| measurement-sample | 183 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| talker | 184 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| source-prefix | 185 | 3 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| mid-list | 186 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| source-port-range | 187 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| source-icmp-type- | 188 | 4 | IESG | RFC 9244 |
| range | | | | |
+----------------------+----------+-------+------------+-----------+
| target | 189 | 5 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| capacity | 190 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| protocol | 191 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| total-traffic- | 192 | 4 | IESG | RFC 9244 |
| normal-per-protocol | | | | |
+----------------------+----------+-------+------------+-----------+
| total-traffic- | 193 | 4 | IESG | RFC 9244 |
| normal-per-port | | | | |
+----------------------+----------+-------+------------+-----------+
| total-connection- | 194 | 4 | IESG | RFC 9244 |
| capacity-per-port | | | | |
+----------------------+----------+-------+------------+-----------+
| total-traffic- | 195 | 4 | IESG | RFC 9244 |
| protocol | | | | |
+----------------------+----------+-------+------------+-----------+
| total-traffic-port | 196 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| total-attack- | 197 | 4 | IESG | RFC 9244 |
| traffic-protocol | | | | |
+----------------------+----------+-------+------------+-----------+
| total-attack- | 198 | 4 | IESG | RFC 9244 |
| traffic-port | | | | |
+----------------------+----------+-------+------------+-----------+
| total-attack- | 199 | 4 | IESG | RFC 9244 |
| connection-port | | | | |
+----------------------+----------+-------+------------+-----------+
| port | 200 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| supported-query-type | 201 | 4 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| vendor-id | 202 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| ietf-dots- | 203 | 5 | IESG | RFC 9244 |
| telemetry:telemetry- | | | | |
| setup | | | | |
+----------------------+----------+-------+------------+-----------+
| ietf-dots- | 204 | 4 | IESG | RFC 9244 |
| telemetry:total- | | | | |
| traffic | | | | |
+----------------------+----------+-------+------------+-----------+
| ietf-dots- | 205 | 4 | IESG | RFC 9244 |
| telemetry:total- | | | | |
| attack-traffic | | | | |
+----------------------+----------+-------+------------+-----------+
| ietf-dots- | 206 | 5 | IESG | RFC 9244 |
| telemetry:total- | | | | |
| attack-connection | | | | |
+----------------------+----------+-------+------------+-----------+
| ietf-dots- | 207 | 4 | IESG | RFC 9244 |
| telemetry:attack- | | | | |
| detail | | | | |
+----------------------+----------+-------+------------+-----------+
| ietf-dots- | 208 | 5 | IESG | RFC 9244 |
| telemetry:telemetry | | | | |
+----------------------+----------+-------+------------+-----------+
| current-g | 209 | 0 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
| description-lang | 210 | 3 | IESG | RFC 9244 |
+----------------------+----------+-------+------------+-----------+
Table 4: Registered DOTS Signal Channel CBOR Key Values
13.2. DOTS Signal Channel Conflict Cause Codes
Per this document, IANA has assigned a new code from the "DOTS Signal
Channel Conflict Cause Codes" registry [Cause].
+======+===================+========================+===========+
| Code | Label | Description | Reference |
+======+===================+========================+===========+
| 5 | overlapping-pipes | Overlapping pipe scope | RFC 9244 |
+------+-------------------+------------------------+-----------+
Table 5: Registered DOTS Signal Channel Conflict Cause Code
13.3. DOTS Telemetry URIs and YANG Module Registrations
Per this document, IANA has registered the following URIs in the "ns"
subregistry within the "IETF XML Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-dots-telemetry
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-dots-mapping
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
Per this document, IANA has registered the following YANG modules in
the "YANG Module Names" subregistry [RFC6020] within the "YANG
Parameters" registry.
Name: ietf-dots-telemetry
Namespace: urn:ietf:params:xml:ns:yang:ietf-dots-telemetry
Maintained by IANA: N
Prefix: dots-telemetry
Reference: RFC 9244
Name: ietf-dots-mapping
Namespace: urn:ietf:params:xml:ns:yang:ietf-dots-mapping
Maintained by IANA: N
Prefix: dots-mapping
Reference: RFC 9244
14. Security Considerations
14.1. DOTS Signal Channel Telemetry
The security considerations for the DOTS signal channel protocol are
discussed in Section 11 of [RFC9132]. The following discusses the
security considerations that are specific to the DOTS signal channel
extension defined in this document.
The DOTS telemetry information includes DOTS client network topology,
DOTS client domain pipe capacity, normal traffic baseline and
connection capacity, and threat and mitigation information. Such
information is sensitive; it MUST be protected at rest by the DOTS
server domain to prevent data leakage. Note that sharing this
sensitive data with a trusted DOTS server does not introduce any new
significant considerations other than the need for the aforementioned
protection. Such a DOTS server is already trusted to have access to
that kind of information by being in the position to observe and
mitigate attacks.
DOTS clients are typically considered to be trusted devices by the
DOTS client domain. DOTS clients may be co-located on network
security services (e.g., firewall devices), and a compromised
security service potentially can do a lot more damage to the network
than just the DOTS client component. This assumption differs from
the often-held view (often referred to as the "zero-trust model")
that devices are untrusted. A compromised DOTS client can send fake
DOTS telemetry data to a DOTS server to mislead the DOTS server.
This attack can be prevented by monitoring and auditing DOTS clients
to detect misbehavior and to deter misuse, and by only authorizing
the DOTS client to convey DOTS telemetry information for specific
target resources (e.g., an application server is authorized to
exchange DOTS telemetry for its IP addresses but a DDoS mitigator can
exchange DOTS telemetry for any target resource in the network). As
a reminder, this is a variation of dealing with compromised DOTS
clients as discussed in Section 11 of [RFC9132].
DOTS servers must be capable of defending themselves against DoS
attacks from compromised DOTS clients. The following non-
comprehensive list of mitigation techniques can be used by a DOTS
server to handle misbehaving DOTS clients:
* The probing rate (defined in Section 4.5 of [RFC9132]) can be used
to limit the average data rate to the DOTS server.
* Rate-limiting DOTS telemetry, including packets with new 'tmid'
values from the same DOTS client, defends against DoS attacks that
would result in varying the 'tmid' to exhaust DOTS server
resources. Likewise, the DOTS server can enforce a quota and time
limit on the number of active pre-or-ongoing-mitigation telemetry
data items (identified by 'tmid') from the DOTS client.
Note also that the telemetry notification interval may be used to
rate-limit the pre-or-ongoing-mitigation telemetry notifications
received by a DOTS client domain.
14.2. Vendor Attack Mapping
The security considerations for the DOTS data channel protocol are
discussed in Section 10 of [RFC8783]. The following discusses the
security considerations that are specific to the DOTS data channel
extension defined in this document.
All data nodes defined in the YANG module specified in Section 11.2
that can be created, modified, and deleted (i.e., config true, which
is the default) are considered sensitive. Write operations to these
data nodes without proper protection can have a negative effect on
network operations. Appropriate security measures are recommended to
prevent illegitimate users from invoking DOTS data channel primitives
as discussed in [RFC8783]. Nevertheless, an attacker who can access
a DOTS client is technically capable of undertaking various attacks,
such as:
* Communicating invalid attack mapping details to the server
('/data-channel:dots-data/data-channel:dots-client/dots-
telemetry:vendor-mapping'), which will mislead the server when
correlating attack details.
Some of the readable data nodes in the YANG module specified in
Section 11.2 may be considered sensitive. It is thus important to
control read access to these data nodes. These are the data nodes
and their sensitivity:
* '/data-channel:dots-data/data-channel:dots-client/dots-
telemetry:vendor-mapping' can be misused to infer the DDoS
protection technology deployed in a DOTS client domain.
* '/data-channel:dots-data/dots-telemetry:vendor-mapping' can be
used by a compromised DOTS client to leak the attack detection
capabilities of the DOTS server. This is a variation of the
compromised DOTS client attacks discussed in Section 14.1.
15. References
15.1. Normative References
[Private-Enterprise-Numbers]
IANA, "Private Enterprise Numbers",
<https://www.iana.org/assignments/enterprise-numbers/>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
September 2009, <https://www.rfc-editor.org/info/rfc5646>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
Application Protocol (CoAP)", RFC 7252,
DOI 10.17487/RFC7252, June 2014,
<https://www.rfc-editor.org/info/rfc7252>.
[RFC7641] Hartke, K., "Observing Resources in the Constrained
Application Protocol (CoAP)", RFC 7641,
DOI 10.17487/RFC7641, September 2015,
<https://www.rfc-editor.org/info/rfc7641>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
the Constrained Application Protocol (CoAP)", RFC 7959,
DOI 10.17487/RFC7959, August 2016,
<https://www.rfc-editor.org/info/rfc7959>.
[RFC7970] Danyliw, R., "The Incident Object Description Exchange
Format Version 2", RFC 7970, DOI 10.17487/RFC7970,
November 2016, <https://www.rfc-editor.org/info/rfc7970>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
2018, <https://www.rfc-editor.org/info/rfc8345>.
[RFC8783] Boucadair, M., Ed. and T. Reddy.K, Ed., "Distributed
Denial-of-Service Open Threat Signaling (DOTS) Data
Channel Specification", RFC 8783, DOI 10.17487/RFC8783,
May 2020, <https://www.rfc-editor.org/info/rfc8783>.
[RFC8791] Bierman, A., Björklund, M., and K. Watsen, "YANG Data
Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,
June 2020, <https://www.rfc-editor.org/info/rfc8791>.
[RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
Representation (CBOR)", STD 94, RFC 8949,
DOI 10.17487/RFC8949, December 2020,
<https://www.rfc-editor.org/info/rfc8949>.
[RFC9132] Boucadair, M., Ed., Shallow, J., and T. Reddy.K,
"Distributed Denial-of-Service Open Threat Signaling
(DOTS) Signal Channel Specification", RFC 9132,
DOI 10.17487/RFC9132, September 2021,
<https://www.rfc-editor.org/info/rfc9132>.
15.2. Informative References
[Cause] IANA, "DOTS Signal Channel Conflict Cause Codes",
<https://www.iana.org/assignments/dots/>.
[DOTS-Multihoming]
Boucadair, M., Reddy.K, T., and W. Pan, "Multi-homing
Deployment Considerations for Distributed-Denial-of-
Service Open Threat Signaling (DOTS)", Work in Progress,
Internet-Draft, draft-ietf-dots-multihoming-13, 26 April
2022, <https://datatracker.ietf.org/doc/html/draft-ietf-
dots-multihoming-13>.
[DOTS-Robust-Blocks]
Boucadair, M. and J. Shallow, "Distributed Denial-of-
Service Open Threat Signaling (DOTS) Signal Channel
Configuration Attributes for Robust Block Transmission",
Work in Progress, Internet-Draft, draft-ietf-dots-robust-
blocks-03, 11 February 2022,
<https://datatracker.ietf.org/doc/html/draft-ietf-dots-
robust-blocks-03>.
[DOTS-Telemetry-Specs]
Doron, E., Reddy, T., Andreasen, F., Xia, L., and K.
Nishizuka, "Distributed Denial-of-Service Open Threat
Signaling (DOTS) Telemetry Specifications", Work in
Progress, Internet-Draft, draft-doron-dots-telemetry-00,
30 October 2016, <https://datatracker.ietf.org/doc/html/
draft-doron-dots-telemetry-00>.
[Key-Map] IANA, "DOTS Signal Channel CBOR Key Values",
<https://www.iana.org/assignments/dots/>.
[PYANG] "pyang", commit dad5c68, April 2022,
<https://github.com/mbj4668/pyang>.
[RFC2330] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
"Framework for IP Performance Metrics", RFC 2330,
DOI 10.17487/RFC2330, May 1998,
<https://www.rfc-editor.org/info/rfc2330>.
[RFC4732] Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
Denial-of-Service Considerations", RFC 4732,
DOI 10.17487/RFC4732, December 2006,
<https://www.rfc-editor.org/info/rfc4732>.
[RFC5612] Eronen, P. and D. Harrington, "Enterprise Number for
Documentation Use", RFC 5612, DOI 10.17487/RFC5612, August
2009, <https://www.rfc-editor.org/info/rfc5612>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
and R. Wilton, "YANG Library", RFC 8525,
DOI 10.17487/RFC8525, March 2019,
<https://www.rfc-editor.org/info/rfc8525>.
[RFC8612] Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
Threat Signaling (DOTS) Requirements", RFC 8612,
DOI 10.17487/RFC8612, May 2019,
<https://www.rfc-editor.org/info/rfc8612>.
[RFC8811] Mortensen, A., Ed., Reddy.K, T., Ed., Andreasen, F.,
Teague, N., and R. Compton, "DDoS Open Threat Signaling
(DOTS) Architecture", RFC 8811, DOI 10.17487/RFC8811,
August 2020, <https://www.rfc-editor.org/info/rfc8811>.
[RFC8903] Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
L., and K. Nishizuka, "Use Cases for DDoS Open Threat
Signaling", RFC 8903, DOI 10.17487/RFC8903, May 2021,
<https://www.rfc-editor.org/info/rfc8903>.
[RFC9133] Nishizuka, K., Boucadair, M., Reddy.K, T., and T. Nagata,
"Controlling Filtering Rules Using Distributed Denial-of-
Service Open Threat Signaling (DOTS) Signal Channel",
RFC 9133, DOI 10.17487/RFC9133, September 2021,
<https://www.rfc-editor.org/info/rfc9133>.
[RFC9177] Boucadair, M. and J. Shallow, "Constrained Application
Protocol (CoAP) Block-Wise Transfer Options Supporting
Robust Transmission", RFC 9177, DOI 10.17487/RFC9177,
March 2022, <https://www.rfc-editor.org/info/rfc9177>.
[RFC9260] Stewart, R., Tüxen, M., and K. Nielsen, "Stream Control
Transmission Protocol", RFC 9260, DOI 10.17487/RFC9260,
June 2022, <https://www.rfc-editor.org/info/rfc9260>.
Acknowledgments
The authors would like to thank Flemming Andreasen, Liang Xia, and
Kaname Nishizuka, coauthors of [DOTS-Telemetry-Specs], and everyone
who had contributed to that document.
Thanks to Kaname Nishizuka, Yuhei Hayashi, and Tom Petch for comments
and review.
Special thanks to Jon Shallow and Kaname Nishizuka for their
implementation and interoperability work.
Many thanks to Jan Lindblad for the yangdoctors review, Nagendra
Nainar for the opsdir review, James Gruessing for the artart review,
Michael Scharf for the tsv-art review, Ted Lemon for the int-dir
review, and Robert Sparks for the gen-art review.
Thanks to Benjamin Kaduk for the detailed AD review.
Thanks to Roman Danyliw, Éric Vyncke, Francesca Palombini, Warren
Kumari, Erik Kline, Lars Eggert, and Robert Wilton for the IESG
review.
Contributors
The following individuals have contributed to this document:
Li Su
CMCC
Email: suli@chinamobile.com
Pan Wei
Huawei
Email: william.panwei@huawei.com
Authors' Addresses
Mohamed Boucadair (editor)
Orange
35000 Rennes
France
Email: mohamed.boucadair@orange.com
Tirumaleswar Reddy.K (editor)
Akamai
Embassy Golf Link Business Park
Bangalore 560071
Karnataka
India
Email: kondtir@gmail.com
Ehud Doron
Radware Ltd.
Raoul Wallenberg Street
Tel-Aviv 69710
Israel
Email: ehudd@radware.com
Meiling Chen
CMCC
32 Xuanwumen West Street
Beijing
100053
China
Email: chenmeiling@chinamobile.com
Jon Shallow
United Kingdom
Email: supjps-ietf@jpshallow.com
|