1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
|
Internet Engineering Task Force (IETF) M. Boucadair, Ed.
Request for Comments: 9291 Orange
Category: Standards Track O. Gonzalez de Dios, Ed.
ISSN: 2070-1721 S. Barguil
Telefonica
L. Munoz
Vodafone
September 2022
A YANG Network Data Model for Layer 2 VPNs
Abstract
This document defines an L2VPN Network Model (L2NM) that can be used
to manage the provisioning of Layer 2 Virtual Private Network (L2VPN)
services within a network (e.g., a service provider network). The
L2NM complements the L2VPN Service Model (L2SM) by providing a
network-centric view of the service that is internal to a service
provider. The L2NM is particularly meant to be used by a network
controller to derive the configuration information that will be sent
to relevant network devices.
Also, this document defines a YANG module to manage Ethernet segments
and the initial versions of two IANA-maintained modules that include
a set of identities of BGP Layer 2 encapsulation types and pseudowire
types.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9291.
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
2. Terminology
3. Acronyms and Abbreviations
4. Reference Architecture
5. Relationship to Other YANG Data Models
6. Description of the Ethernet Segment YANG Module
7. Description of the L2NM YANG Module
7.1. Overall Structure of the Module
7.2. VPN Profiles
7.3. VPN Services
7.4. Global Parameters Profiles
7.5. VPN Nodes
7.5.1. BGP Auto-Discovery
7.5.2. Signaling Options
7.5.2.1. BGP
7.5.2.2. LDP
7.5.2.3. L2TP
7.6. VPN Network Accesses
7.6.1. Connection
7.6.2. EVPN-VPWS Service Instance
7.6.3. Ethernet OAM
7.6.4. Services
8. YANG Modules
8.1. IANA-Maintained Module for BGP Layer 2 Encapsulation Types
8.2. IANA-Maintained Module for Pseudowire Types
8.3. Ethernet Segments
8.4. L2NM
9. Security Considerations
10. IANA Considerations
10.1. Registering YANG Modules
10.2. BGP Layer 2 Encapsulation Types
10.3. Pseudowire Types
11. References
11.1. Normative References
11.2. Informative References
Appendix A. Examples
A.1. BGP-Based VPLS
A.2. BGP-Based VPWS with LDP Signaling
A.3. LDP-Based VPLS
A.4. VPWS-EVPN Service Instance
A.5. Automatic ESI Assignment
A.6. VPN Network Access Precedence
Acknowledgements
Contributors
Authors' Addresses
1. Introduction
[RFC8466] defines an L2VPN Service Model (L2SM) YANG data model that
can be used between customers and service providers for ordering
Layer 2 Virtual Private Network (L2VPN) services. This document
complements the L2SM by creating a network-centric view of the
service: the L2VPN Network Model (L2NM).
Also, this document defines the initial versions of two IANA-
maintained modules that define a set of identities of BGP Layer 2
encapsulation types (Section 8.1) and pseudowire types (Section 8.2).
These types are used in the L2NM to identify a Layer 2 encapsulation
type as a function of the signaling option used to deliver an L2VPN
service. Relying upon these IANA-maintained modules is meant to
provide more flexibility in handling new types rather than being
limited by a set of identities defined in the L2NM itself.
Section 8.3 defines another YANG module to manage Ethernet Segments
(ESes) that are required for instantiating Ethernet VPNs (EVPNs).
References to Ethernet segments that are created using the module in
Section 8.3 can be included in the L2NM for EVPNs.
The L2NM (Section 8.4) can be exposed, for example, by a network
controller to a service controller within the service provider's
network. In particular, the model can be used in the communication
interface between the entity that interacts directly with the
customer (i.e., the service orchestrator) and the entity in charge of
network orchestration and control (a.k.a., network controller/
orchestrator) by allowing for more network-centric information to be
included.
The L2NM supports capabilities such as exposing operational
parameters, transport protocols selection, and precedence. It can
also serve as a multi-domain orchestration interface.
The L2NM is scoped for a variety of Layer 2 Virtual Private Networks
such as:
* Virtual Private LAN Service (VPLS) [RFC4761] [RFC4762]
* Virtual Private Wire Service (VPWS) (Section 3.1.1 of [RFC4664])
* Various flavors of EVPNs:
- VPWS EVPN [RFC8214],
- Provider Backbone Bridging Combined with Ethernet VPNs (PBB-
EVPNs) [RFC7623],
- EVPN over MPLS [RFC7432], and
- EVPN over Virtual Extensible LAN (VXLAN) [RFC8365].
The L2NM is designed to easily support future Layer 2 VPN flavors and
procedures (e.g., advanced configuration such as pseudowires
resilience or multi-segment pseudowires [RFC7267]). A set of
examples to illustrate the use of the L2NM are provided in
Appendix A.
This document uses the common Virtual Private Network (VPN) YANG
module defined in [RFC9181].
The YANG data models in this document conform to the Network
Management Datastore Architecture (NMDA) defined in [RFC8342].
2. Terminology
This document assumes that the reader is familiar with [RFC6241],
[RFC7950], [RFC8466], [RFC4026], and [RFC8309]. This document uses
terminology from those documents.
This document uses the term "network model" as defined in Section 2.1
of [RFC8969].
The meanings of the symbols in the YANG tree diagrams are defined in
[RFC8340].
This document makes use of the following terms:
Ethernet Segment (ES): Refers to the set of Ethernet links that are
used by a customer site (device or network) to connect to one or
more Provider Edges (PEs).
L2VPN Service Model (L2SM): Describes the service characterization
of an L2VPN that interconnects a set of sites from the customer's
perspective. The customer service model does not provide details
on the service provider network. An L2VPN customer service model
is defined in [RFC8466].
L2VPN Network Model (L2NM): Refers to the YANG data model that
describes an L2VPN service with a network-centric view. It
contains information on the service provider network and might
include allocated resources. Network controllers can use it to
manage the Layer 2 VPN service configuration in the service
provider's network. The corresponding YANG module can be used by
a service orchestrator to request a VPN service to a network
controller or to expose the list of active L2VPN services. The
L2NM can also be used to retrieve a set of L2VPN-related state
information (including Operations, Administration, and Maintenance
(OAM)).
MAC-VRF: Refers to a Virtual Routing and Forwarding (VRF) table for
Media Access Control (MAC) addresses on a PE.
Network controller: Denotes a functional entity responsible for the
management of the service provider network.
Service orchestrator: Refers to a functional entity that interacts
with the customer of an L2VPN relying upon, e.g., the L2SM. The
service orchestrator is responsible for the Customer Edge to
Provider Edge (CE-PE) attachment circuits, the PE selection, and
requesting the activation of the L2VPN service to a network
controller.
Service provider network: A network that is able to provide L2VPN-
related services.
VPN node: An abstraction that represents a set of policies applied
on a PE and belongs to a single VPN service. A VPN service
involves one or more VPN nodes. The VPN node will identify the
service providers' node on which the VPN is deployed.
VPN network access: An abstraction that represents the network
interfaces that are associated with a given VPN node. Traffic
coming from the VPN network access belongs to the VPN. The
attachment circuits (bearers) between CEs and PEs are terminated
in the VPN network access.
VPN service provider: A service provider that offers L2VPN-related
services.
3. Acronyms and Abbreviations
The following acronyms and abbreviations are used in this document:
ACL Access Control List
BGP Border Gateway Protocol
BUM Broadcast, Unknown Unicast, or Multicast
CE Customer Edge
ES Ethernet Segment
ESI Ethernet Segment Identifier
EVPN Ethernet VPN
L2VPN Layer 2 Virtual Private Network
L2SM L2VPN Service Model
L2NM L2VPN Network Model
MAC Media Access Control
PBB Provider Backbone Bridging
PCP Priority Code Point
PE Provider Edge
QoS Quality of Service
RD Route Distinguisher
RT Route Target
VPLS Virtual Private LAN Service
VPN Virtual Private Network
VPWS Virtual Private Wire Service
VRF Virtual Routing and Forwarding
4. Reference Architecture
Figure 1 illustrates how the L2NM is used. As a reminder, this
figure is an expansion of the architecture presented in Section 3 of
[RFC8466] and decomposes the box marked "orchestration" in that
figure into three separate functional components called "Service
Orchestration", "Network Orchestration", and "Domain Orchestration".
Similar to Section 3 of [RFC8466], CE to PE attachment is achieved
through a bearer with a Layer 2 connection on top. The bearer refers
to properties of the attachment that are below Layer 2, while the
connection refers to Layer 2 protocol-oriented properties.
The reader may refer to [RFC8309] for the distinction between the
"Customer Service Model", "Service Delivery Model", "Network
Configuration Model", and "Device Configuration Model". The "Domain
Orchestration" and "Config Manager" roles may be performed by "SDN
Controllers".
+---------------+
| Customer |
+-------+-------+
Customer Service Model |
e.g., l2vpn-svc |
+-------+-------+
| Service |
| Orchestration |
+-------+-------+
Network Model |
l2vpn-ntw + l2vpn-es |
+-------+-------+
| Network |
| Orchestration |
+-------+-------+
Network Configuration Model |
+-----------+-----------+
| |
+--------+------+ +--------+------+
| Domain | | Domain |
| Orchestration | | Orchestration |
+---+-----------+ +--------+------+
Device | | |
Configuration | | |
Model | | |
+----+----+ | |
| Config | | |
| Manager | | |
+----+----+ | |
| | |
| NETCONF/CLI..................
| | |
+--------------------------------+
\ Network /
\ /
+----+ Bearer +----+ +----+ +----+
|CE A+ ---------- +PE A+ +PE B+ ------- +CE B|
+----+ Connection +----+ +----+ +----+
Site A Site B
NETCONF: Network Configuration Protocol
CLI: Command-Line Interface
Figure 1: L2SM and L2NM Interaction
The customer may use various means to request a service that may
trigger the instantiation of an L2NM. The customer may use the L2SM
or may rely upon more abstract models to request a service that
relies upon an L2VPN service. For example, the customer may supply
an IP Connectivity Provisioning Profile (CPP) that characterizes the
requested service [RFC7297], an enhanced VPN (VPN+) service
[VPN+-FRAMEWORK], or an IETF network slice service [IETF-NET-SLICES].
Note also that both the L2SM and L2NM may be used in the context of
the Abstraction and Control of TE Networks (ACTN) framework
[RFC8453]. Figure 2 shows the Customer Network Controller (CNC), the
Multi-Domain Service Coordinator (MDSC), and the Provisioning Network
Controller (PNC).
+----------------------------------+
| Customer |
| +-----------------------------+ |
| | CNC | |
| +-----------------------------+ |
+----+-----------------------+-----+
| |
| L2SM | L2SM
| |
+---------+---------+ +---------+---------+
| MDSC | | MDSC |
| +---------------+ | | (parent) |
| | Service | | +---------+---------+
| | Orchestration | | |
| +-------+-------+ | | L2NM
| | | |
| | L2NM | +---------+---------+
| | | | MDSC |
| +-------+-------+ | | (child) |
| | Network | | +---------+---------+
| | Orchestration | | |
| +---------------+ | |
+---------+---------+ |
| |
| Network Configuration |
| |
+------------+-------+ +---------+------------+
| Domain | | Domain |
| Controller | | Controller |
| +---------+ | | +---------+ |
| | PNC | | | | PNC | |
| +---------+ | | +---------+ |
+------------+-------+ +---------+------------+
| |
| Device Configuration |
| |
+----+---+ +----+---+
| Device | | Device |
+--------+ +--------+
Figure 2: L2SM and L2NM in the Context of ACTN
5. Relationship to Other YANG Data Models
The "ietf-vpn-common" module [RFC9181] includes a set of identities,
types, and groupings that are meant to be reused by VPN-related YANG
modules independently of the layer (e.g., Layer 2 or Layer 3) and the
type of the module (e.g., network model or service model) including
future revisions of existing models (e.g., [RFC8466]). The L2NM
reuses these common types and groupings.
Also, the L2NM uses the IANA-maintained modules "iana-bgp-l2-encaps"
(Section 8.1) and "iana-pseudowire-types" (Section 8.2) to identify
Layer 2 encapsulation and pseudowire types. More details are
provided in Sections 7.5.2.1 and 7.5.2.3.
For the particular case of EVPN, the L2NM includes a name that refers
to an Ethernet segment that is created using the "ietf-ethernet-
segment" module (Section 8.3). Some ES-related examples are provided
in Appendices A.4 and A.5.
As discussed in Section 4, the L2NM is used to manage L2VPN services
within a service provider network. The module provides a network
view of the L2VPN service. Such a view is only visible to the
service provider and is not exposed outside (to customers, for
example). The following discusses how the L2NM interfaces with other
YANG modules:
L2SM: The L2NM is not a customer service model.
The internal view of the service (i.e., the L2NM) may be mapped to
an external view that is visible to customers: L2VPN Service Model
(L2SM) [RFC8466].
The L2NM can be fed with inputs that are requested by customers
and that typically rely on an L2SM template. Concretely, some
parts of the L2SM module can be directly mapped into the L2NM
while other parts are generated as a function of the requested
service and local guidelines. Finally, there are parts local to
the service provider, and they do not map directly to the L2SM.
Note that using the L2NM within a service provider does not
assume, nor does it preclude, exposing the VPN service via the
L2SM. This is deployment specific. Nevertheless, the design of
L2NM tries to align as much as possible with the features
supported by the L2SM to ease the grafting of both the L2NM and
the L2SM for the sake of highly automated VPN service provisioning
and delivery.
Network Topology Modules: An L2VPN involves nodes that are part of a
topology managed by the service provider network. Such a topology
can be represented using the network topology module in [RFC8345]
or its extension, such as a network YANG module for Service
Attachment Points (SAPs) [YANG-SAPS].
Device Modules: The L2NM is not a device model.
Once a global VPN service is captured by means of the L2NM, the
actual activation and provisioning of the VPN service will involve
a variety of device modules to tweak the required functions for
the delivery of the service. These functions are supported by the
VPN nodes and can be managed using device YANG modules. A non-
comprehensive list of such device YANG modules is provided below:
* Interfaces [RFC8343]
* BGP [BGP-YANG-MODEL]
* MPLS [RFC8960]
* Access Control Lists (ACLs) [RFC8519]
How the L2NM is used to derive device-specific actions is
implementation specific.
6. Description of the Ethernet Segment YANG Module
The 'ietf-ethernet-segment' module (Figure 3) is used to manage a set
of Ethernet segments in the context of an EVPN service.
module: ietf-ethernet-segment
+--rw ethernet-segments
+--rw ethernet-segment* [name]
+--rw name string
+--rw esi-type? identityref
+--rw (esi-choice)?
| +--:(directly-assigned)
| | +--rw ethernet-segment-identifier? yang:hex-string
| +--:(auto-assigned)
| +--rw esi-auto
| +--rw (auto-mode)?
| | +--:(from-pool)
| | | +--rw esi-pool-name? string
| | +--:(full-auto)
| | +--rw auto? empty
| +--ro auto-ethernet-segment-identifier?
| yang:hex-string
+--rw esi-redundancy-mode? identityref
+--rw df-election
| +--rw df-election-method? identityref
| +--rw revertive? boolean
| +--rw election-wait-time? uint32
+--rw split-horizon-filtering? boolean
+--rw pbb
| +--rw backbone-src-mac? yang:mac-address
+--rw member* [ne-id interface-id]
+--rw ne-id string
+--rw interface-id string
Figure 3: Ethernet Segments Tree Structure
The descriptions of the data nodes depicted in Figure 3 are as
follows:
'name': Sets a name to uniquely identify an ES within a service
provider network. In order to ease referencing ESes by their name
in other modules, "es-ref" typedef is defined.
This typedef is used in the VPN network access level of the L2NM
to reference an ES (Section 7.6). An example to illustrate such a
use in the L2NM is provided in Appendix A.4.
'esi-type': Indicates the Ethernet Segment Identifier (ESI) type as
discussed in Section 5 of [RFC7432]. ESIs can be automatically
assigned either with or without indicating a pool from which an
ESI should be taken ('esi-pool-name'). The following types are
supported:
'esi-type-0-operator': The ESI is directly configured by the VPN
service provider. The configured value is provided in
'ethernet-segment-identifier'.
'esi-type-1-lacp': The ESI is auto-generated from the IEEE
802.1AX Link Aggregation Control Protocol (LACP) [IEEE802.1AX].
'esi-type-2-bridge': The ESI is auto-generated and determined
based on the Layer 2 bridge protocol.
'esi-type-3-mac': The ESI is a MAC-based ESI value that can be
auto-generated or configured by the VPN service provider.
'esi-type-4-router-id': The ESI is auto-generated or configured
by the VPN service provider based on the Router ID. The
'router-id' supplied in Section 7.5 can be used to auto-derive
an ESI when this type is used.
'esi-type-5-asn': The ESI is auto-generated or configured by the
VPN service provider based on the Autonomous System (AS)
number. The 'local-autonomous-system' supplied in Section 7.4
can be used to auto-derive an ESI when this type is used.
Auto-generated values can be retrieved using 'auto-ethernet-
segment-identifier'.
'esi-redundancy-mode': Specifies the EVPN redundancy mode for a
given ES. The following modes are supported: Single-Active
(Section 14.1.1 of [RFC7432]) or All-Active (Section 14.1.2 of
[RFC7432]).
'df-election': Specifies a set of parameters related to the
Designated Forwarder (DF) election (Section 8.5 of [RFC7432]).
For example, this data node can be used to indicate an election
method (e.g., [RFC8584] or [EVPN-PERF-DF]). If no election method
is indicated, the default method defined in Section 8.5 of
[RFC7432] is used.
As discussed in Section 1.3.2 of [RFC8584], the default behavior
is to trigger the DF election procedure when a DF fails (e.g.,
link failure). The former DF will take over when it is available
again. Such a mode is called 'revertive'. The behavior can be
overridden by setting the 'revertive' leaf to 'false'.
Also, this data node can be used to configure a DF Wait timer
('election-wait-time') (Section 2.1 of [RFC8584]).
'split-horizon-filtering': Controls the activation of the split-
horizon filtering for an ES (Section 8.3 of [RFC7432]).
'pbb': Indicates data nodes that are specific to PBB [IEEE-802-1ah]:
'backbone-src-mac': Associates a Provider Backbone MAC (B-MAC)
address with an ES. This is particularly useful for All-Active
multihomed ESes (Section 9.1 of [RFC7623]).
'member': Lists the members of an ES in a service provider network.
7. Description of the L2NM YANG Module
The L2NM ('ietf-l2vpn-ntw'; see Section 8.4) is used to manage L2VPNs
within a service provider network. In particular, the 'ietf-l2vpn-
ntw' module can be used to create, modify, delete, and retrieve L2VPN
services in a network controller. The module is designed to minimize
the amount of customer-related information.
The full tree diagram of the module can be generated using the
"pyang" tool [PYANG]. That tree is not included here because it is
too long (Section 3.3 of [RFC8340]). Instead, subtrees are provided
for the reader's convenience.
Note that the following subsections introduce some data nodes that
enclose textual descriptions (e.g., VPN service (Section 7.3), VPN
node (Section 7.5), or VPN network access (Section 7.6)). Such
descriptions are not intended for random end users but for
network/system/software engineers that use their local context to
provide and interpret such information. Therefore, no mechanism for
language tagging is needed.
7.1. Overall Structure of the Module
The 'ietf-l2vpn-ntw' module uses two main containers: 'vpn-profiles'
and 'vpn-services' (see Figure 4).
The 'vpn-profiles' container is used by the provider to define and
maintain a set of common VPN profiles that apply to VPN services
(Section 7.2).
The 'vpn-services' container maintains the set of L2VPN services
managed in the service provider network. The module allows creating
a new L2VPN service by adding a new instance of 'vpn-service'. The
'vpn-service' is the data structure that abstracts the VPN service
(Section 7.3).
module: ietf-l2vpn-ntw
+--rw l2vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
Figure 4: Overall L2NM Tree Structure
7.2. VPN Profiles
The 'vpn-profiles' container (Figure 5) is used by a VPN service
provider to define and maintain a set of VPN profiles [RFC9181] that
apply to one or several VPN services.
+--rw l2vpn-ntw
+--rw vpn-profiles
| +--rw valid-provider-identifiers
| +--rw external-connectivity-identifier* [id]
| | {external-connectivity}?
| | +--rw id string
| +--rw encryption-profile-identifier* [id]
| | +--rw id string
| +--rw qos-profile-identifier* [id]
| | +--rw id string
| +--rw bfd-profile-identifier* [id]
| | +--rw id string
| +--rw forwarding-profile-identifier* [id]
| | +--rw id string
| +--rw routing-profile-identifier* [id]
| +--rw id string
+--rw vpn-services
...
Figure 5: VPN Profiles Subtree Structure
The exact definition of these profiles is local to each VPN service
provider. The model only includes an identifier for these profiles
in order to ease identifying and binding local policies when building
a VPN service. As shown in Figure 5, the following identifiers can
be included:
'external-connectivity-identifier': This identifier refers to a
profile that defines the external connectivity provided to a VPN
service (or a subset of VPN sites). External connectivity may be
access to the Internet or restricted connectivity such as access
to a public/private cloud.
'encryption-profile-identifier': An encryption profile refers to a
set of policies related to the encryption schemes and setup that
can be applied when building and offering a VPN service.
'qos-profile-identifier': A Quality of Service (QoS) profile refers
to a set of policies such as classification, marking, and actions
(e.g., [RFC3644]).
'bfd-profile-identifier': A Bidirectional Forwarding Detection (BFD)
profile refers to a set of BFD policies [RFC5880] that can be
invoked when building a VPN service.
'forwarding-profile-identifier': A forwarding profile refers to the
policies that apply to the forwarding of packets conveyed within a
VPN. Such policies may consist of, for example, applying ACLs.
'routing-profile-identifier': A routing profile refers to a set of
routing policies that will be invoked (e.g., BGP policies) when
delivering the VPN service.
7.3. VPN Services
The 'vpn-service' is the data structure that abstracts an L2VPN
service in the service provider network. Each 'vpn-service' is
uniquely identified by an identifier: 'vpn-id'. Such a 'vpn-id' is
only meaningful locally within the network controller. The subtree
of the 'vpn-services' is shown in Figure 6.
+--rw vpn-services
+--rw vpn-service* [vpn-id]
+--rw vpn-id vpn-common:vpn-id
+--rw vpn-name? string
+--rw vpn-description? string
+--rw customer-name? string
+--rw parent-service-id? vpn-common:vpn-id
+--rw vpn-type? identityref
+--rw vpn-service-topology? identityref
+--rw bgp-ad-enabled? boolean
+--rw signaling-type? identityref
+--rw global-parameters-profiles
| ...
+--rw underlay-transport
| +--rw (type)?
| +--:(abstract)
| | +--rw transport-instance-id? string
| | +--rw instance-type? identityref
| +--:(protocol)
| +--rw protocol* identityref
+--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw vpn-nodes
...
Figure 6: VPN Services Subtree
The descriptions of the VPN service data nodes that are depicted in
Figure 6 are as follows:
'vpn-id': An identifier that is used to uniquely identify the L2VPN
service within the L2NM scope.
'vpn-name': Associates a name with the service in order to
facilitate the identification of the service.
'vpn-description': Includes a textual description of the service.
The internal structure of a VPN description is local to each VPN
service provider.
'customer-name': Indicates the name of the customer who ordered the
service.
'parent-service-id': Refers to an identifier of the parent service
(e.g., the L2SM, IETF network slice, and VPN+) that triggered the
creation of the L2VPN service. This identifier is used to easily
correlate the (network) service as built in the network with a
service order. A controller can use that correlation to enrich or
populate some fields (e.g., description fields) as a function of
local deployments.
'vpn-type': Indicates the L2VPN type. The following types, defined
in [RFC9181], can be used for the L2NM:
'vpls': Virtual Private LAN Service (VPLS) as defined in
[RFC4761] or [RFC4762]. This type is also used for
hierarchical VPLS (H-VPLS) (Section 10 of [RFC4762]).
'vpws': Virtual Private Wire Service (VPWS) as defined in
Section 3.1.1 of [RFC4664].
'vpws-evpn': VPWS EVPNs as defined in [RFC8214].
'pbb-evpn': Provider Backbone Bridging (PBB) EVPNs as defined in
[RFC7623].
'mpls-evpn': MPLS-based EVPNs [RFC7432].
'vxlan-evpn': VXLAN-based EVPNs [RFC8365].
The type is used as a condition for the presence of some data
nodes in the L2NM.
'vpn-service-topology': Indicates the network topology for the
service: hub-spoke, any-to-any, or custom. These types are
defined in [RFC9181].
'bgp-ad-enabled': Controls whether BGP auto-discovery is enabled.
If so, additional data nodes are included (Section 7.5.1).
'signaling-type': Indicates the signaling that is used for setting
up pseudowires. Signaling type values are taken from [RFC9181].
The following signaling options are supported:
'bgp-signaling': The L2NM supports two flavors of BGP-signaled
L2VPNs:
'l2vpn-bgp': The service is a Multipoint VPLS that uses a BGP
control plane as described in [RFC4761] and [RFC6624].
'evpn-bgp': The service is a Multipoint VPLS that uses a BGP
control plane but also includes the additional EVPN features
and related parameters as described in [RFC7432] and
[RFC7209].
'ldp-signaling': A Multipoint VPLS that uses a mesh of LDP-
signaled pseudowires [RFC6074].
'l2tp-signaling': The L2NM uses L2TP-signaled pseudowires as
described in [RFC6074].
Table 1 summarizes the allowed signaling types for each VPN
service type ('vpn-type'). See Section 7.5.2 for more details.
+============+================================+
| VPN Type | Signaling Options |
+============+================================+
| vpls | l2tp-signaling, ldp-signaling, |
| | bgp-signaling (l2vpn-bgp) |
+------------+--------------------------------+
| vpws | l2tp-signaling, ldp-signaling, |
| | bgp-signaling (l2vpn-bgp) |
+------------+--------------------------------+
| vpws-evpn | bgp-signaling (evpn-bgp) |
+------------+--------------------------------+
| pbb-evpn | bgp-signaling (evpn-bgp) |
+------------+--------------------------------+
| mpls-evpn | bgp-signaling (evpn-bgp) |
+------------+--------------------------------+
| vxlan-evpn | bgp-signaling (evpn-bgp) |
+------------+--------------------------------+
Table 1: Signaling Options per VPN Service Type
'global-parameters-profiles': Defines reusable parameters for the
same L2VPN service.
More details are provided in Section 7.4.
'underlay-transport': Describes the preference for the transport
technology to carry the traffic of the VPN service. This
preference is especially useful in networks with multiple domains
and Network-to-Network Interface (NNI) types. The underlay
transport can be expressed as an abstract transport instance
(e.g., an identifier of a VPN+ instance, a virtual network
identifier, or a network slice name) or as an ordered list of the
actual protocols to be enabled in the network.
A rich set of protocol identifiers that can be used to refer to an
underlay transport (or how such an underlay is set up) are defined
in [RFC9181].
The model defined in Section 6.3.2 of [TE-SERVICE-MAPPING] may be
used if specific protection and availability requirements are
needed between PEs.
'status': Used to track the overall status of a given VPN service.
Both operational and administrative status are maintained together
with a timestamp. For example, a service can be created but not
put into effect.
Administrative and operational status can be used as a trigger to
detect service anomalies. For example, a service that is declared
at the service layer as being created but still inactive at the
network layer is an indication that network provisioning actions
are needed to align the observed service status with the expected
service status.
'vpn-node': An abstraction that represents a set of policies applied
to a network node and belonging to a single 'vpn-service'. An
L2VPN service is typically built by adding instances of 'vpn-node'
to the 'vpn-nodes' container.
A 'vpn-node' contains 'vpn-network-accesses', which are the
interfaces attached to the VPN by which the customer traffic is
received. Therefore, the customer sites are connected to the
'vpn-network-accesses'.
Note that, as this is a network data model, the information about
customers sites is not required in the model. Such information is
rather relevant in the L2SM. Whether that information is included
in the L2NM, e.g., to populate the various 'description' data
nodes, is implementation specific.
More details are provided in Section 7.5.
7.4. Global Parameters Profiles
The 'global-parameters-profile' defines reusable parameters for the
same L2VPN service instance ('vpn-service'). Global parameters
profiles are defined at the VPN service level, activated at the VPN
node level, and then an activated VPN profile may be used at the VPN
network access level. Each VPN instance profile is identified by
'profile-id'. Some of the data nodes can be adjusted at the VPN node
or VPN network access levels. These adjusted values take precedence
over the global values. The subtree of 'global-parameters-profile'
is depicted in Figure 7.
...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw global-parameters-profiles
| +--rw global-parameters-profile* [profile-id]
| +--rw profile-id string
| +--rw (rd-choice)?
| | +--:(directly-assigned)
| | | +--rw rd?
| | | rt-types:route-distinguisher
| | +--:(directly-assigned-suffix)
| | | +--rw rd-suffix? uint16
| | +--:(auto-assigned)
| | | +--rw rd-auto
| | | +--rw (auto-mode)?
| | | | +--:(from-pool)
| | | | | +--rw rd-pool-name? string
| | | | +--:(full-auto)
| | | | +--rw auto? empty
| | | +--ro auto-assigned-rd?
| | | rt-types:route-distinguisher
| | +--:(auto-assigned-suffix)
| | | +--rw rd-auto-suffix
| | | +--rw (auto-mode)?
| | | | +--:(from-pool)
| | | | | +--rw rd-pool-name? string
| | | | +--:(full-auto)
| | | | +--rw auto? empty
| | | +--ro auto-assigned-rd-suffix? uint16
| | +--:(no-rd)
| | +--rw no-rd? empty
| +--rw vpn-target* [id]
| | +--rw id uint8
| | +--rw route-targets* [route-target]
| | | +--rw route-target rt-types:route-target
| | +--rw route-target-type
| | rt-types:route-target-type
| +--rw vpn-policies
| | +--rw import-policy? string
| | +--rw export-policy? string
| +--rw local-autonomous-system? inet:as-number
| +--rw svc-mtu? uint32
| +--rw ce-vlan-preservation? boolean
| +--rw ce-vlan-cos-preservation? boolean
| +--rw control-word-negotiation? boolean
| +--rw mac-policies
| | +--rw mac-addr-limit
| | | +--rw limit-number? uint16
| | | +--rw time-interval? uint32
| | | +--rw action? identityref
| | +--rw mac-loop-prevention
| | +--rw window? uint32
| | +--rw frequency? uint32
| | +--rw retry-timer? uint32
| | +--rw protection-type? identityref
| +--rw multicast {vpn-common:multicast}?
| +--rw enabled? boolean
| +--rw customer-tree-flavors
| +--rw tree-flavor* identityref
...
Figure 7: Global Parameters Profiles Subtree
The description of the global parameters profile is as follows:
'profile-id': Uniquely identifies a global parameter profile in the
context of an L2VPN service.
'rd': As defined in [RFC9181], these RD assignment modes are
supported: direct assignment, automatic assignment from a given
pool, full automatic assignment, and no assignment.
Also, the module accommodates deployments where only the Assigned
Number subfield of RDs is assigned from a pool while the
Administrator subfield is set to, e.g., the Router ID that is
assigned to a VPN node. The module supports these modes to manage
the Assigned Number subfield: explicit assignment, auto-assignment
from a pool, and full auto-assignment.
'vpn-targets': Specifies RT import/export rules for the VPN service.
'local-autonomous-system': Indicates the Autonomous System Number
(ASN) that is configured for the VPN node. The ASN can be used to
auto-derive some other attributes such as RDs or Ethernet Segment
Identifiers (ESIs).
'svc-mtu': Is the service MTU for an L2VPN service (i.e., a Layer 2
MTU including an L2 frame header/trailer). It is also known as
the maximum transmission unit or maximum frame size. It is
expressed in bytes.
'ce-vlan-preservation': Is set to preserve the Customer Edge VLAN
(CE VLAN) IDs from ingress to egress, i.e., CE VLAN tags of the
egress frame are identical to those of the ingress frame that
yielded this egress service frame. If all-to-one bundling within
a site is enabled, then preservation applies to all ingress
service frames. If all-to-one bundling is disabled, then
preservation applies to tagged Ingress service frames having CE
VLAN ID 1 through 4094.
'ce-vlan-cos-preservation': Controls the CE VLAN Class of Service
(CoS) preservation. When set, Priority Code Point (PCP) bits in
the CE VLAN tag of the egress frame are identical to those of the
ingress frame that yielded this egress service frame.
'control-word-negotiation': Controls whether control-word
negotiation is enabled (if set to true) or not (if set to false).
Refer to Section 7 of [RFC8077] for more details.
'mac-policies': Includes a set of MAC policies that apply to the
service:
'mac-addr-limit': Is a container of MAC address limit
configuration. It includes the following data nodes:
'limit-number': Maximum number of MAC addresses learned from
the customer for a single service instance.
'time-interval': The aging time of the MAC address.
'action': Specifies the action when the upper limit is
exceeded: drop the packet, flood the packet, or simply send
a warning message.
'mac-loop-prevention': Container for MAC loop prevention.
'window': The time interval over which a MAC mobility event is
detected and checked.
'frequency': The number of times to detect MAC duplication,
where a 'duplicate MAC address' situation has occurred
within the 'window' time interval, and the duplicate MAC
address has been added to a list of duplicate MAC addresses.
'retry-timer': The retry timer. When the retry timer expires,
the duplicate MAC address will be flushed from the MAC-VRF.
'protection-type': It defines the loop prevention type (e.g.,
shut).
'multicast': Controls whether multicast is allowed in the service.
7.5. VPN Nodes
The 'vpn-node' (Figure 8) is an abstraction that represents a set of
policies applied to a network node that belongs to a single 'vpn-
service'. A 'vpn-node' contains 'vpn-network-accesses', which are
the interfaces involved in the creation of the VPN. The customer
sites are connected to the 'vpn-network-accesses'.
+--rw l2vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
+--rw vpn-node-id vpn-common:vpn-id
+--rw description? string
+--rw ne-id? string
+--rw role? identityref
+--rw router-id? rt-types:router-id
+--rw active-global-parameters-profiles
| +--rw global-parameters-profile* [profile-id]
| +--rw profile-id leafref
| +--rw local-autonomous-system?
| | inet:as-number
| +--rw svc-mtu? uint32
| +--rw ce-vlan-preservation? boolean
| +--rw ce-vlan-cos-preservation? boolean
| +--rw control-word-negotiation? boolean
| +--rw mac-policies
| | +--rw mac-addr-limit
| | | +--rw limit-number? uint16
| | | +--rw time-interval? uint32
| | | +--rw action? identityref
| | +--rw mac-loop-prevention
| | +--rw window? uint32
| | +--rw frequency? uint32
| | +--rw retry-timer? uint32
| | +--rw protection-type? identityref
| +--rw multicast {vpn-common:multicast}?
| +--rw enabled? boolean
| +--rw customer-tree-flavors
| +--rw tree-flavor* identityref
+--rw status
| ...
+--rw bgp-auto-discovery
| ...
+--rw signaling-option
| ...
+--rw vpn-network-accesses
...
Figure 8: VPN Nodes Subtree
The descriptions of VPN node data nodes are as follows:
'vpn-node-id': Used to uniquely identify a node that enables a VPN
network access.
'description': Provides a textual description of the VPN node.
'ne-id': Includes an identifier of the network element where the VPN
node is deployed.
'role': Indicates the role of the VPN instance profile in the VPN.
Role values are defined in [RFC9181] (e.g., 'any-to-any-role',
'spoke-role', and 'hub-role').
'router-id': Indicates a 32-bit number that is used to uniquely
identify a router within an AS.
'active-global-parameters-profiles': Lists the set of active global
VPN parameter profiles for this VPN node. Concretely, one or more
global profiles that are defined at the VPN service level (i.e.,
under 'l2vpn-ntw/vpn-services/vpn-service' level) can be activated
at the VPN node level; each of these profiles is uniquely
identified by means of 'profile-id'. The structure of 'active-
global-parameters-profiles' uses the same data nodes as
Section 7.4 with the exception of the data nodes related to RD and
RT.
Values defined in 'active-global-parameters-profiles' override the
values defined in the VPN service level.
'status': Tracks the status of a node involved in a VPN service.
Both operational and administrative status are maintained. A
mismatch between the administrative status vs. the operational
status can be used as a trigger to detect anomalies.
'bgp-auto-discovery': See Section 7.5.1.
'signaling-option': See Section 7.5.2.
'vpn-network-accesses': Represents the point to which sites are
connected.
Note that, unlike the L2SM, the L2NM does not need to model the
customer site; only the points that receive traffic from the site
are covered (i.e., the PE side of Provider Edge to Customer Edge
(PE-CE) connections). Hence, the VPN network access contains the
connectivity information between the provider's network and the
customer premises. The VPN profiles ('vpn-profiles') have a set
of routing policies that can be applied during the service
creation.
See Section 7.6 for more details.
7.5.1. BGP Auto-Discovery
The 'bgp-auto-discovery' container (Figure 9) includes the required
information for the activation of BGP auto-discovery
[RFC4761][RFC6624].
+--rw l2vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw bgp-auto-discovery
| +--rw (bgp-type)?
| | +--:(l2vpn-bgp)
| | | +--rw vpn-id?
| | | vpn-common:vpn-id
| | +--:(evpn-bgp)
| | +--rw evpn-type? leafref
| | +--rw auto-rt-enable? boolean
| | +--ro auto-route-target?
| | rt-types:route-target
| +--rw (rd-choice)?
| | +--:(directly-assigned)
| | | +--rw rd?
| | | rt-types:route-distinguisher
| | +--:(directly-assigned-suffix)
| | | +--rw rd-suffix? uint16
| | +--:(auto-assigned)
| | | +--rw rd-auto
| | | +--rw (auto-mode)?
| | | | +--:(from-pool)
| | | | | +--rw rd-pool-name? string
| | | | +--:(full-auto)
| | | | +--rw auto? empty
| | | +--ro auto-assigned-rd?
| | | rt-types:route-distinguisher
| | +--:(auto-assigned-suffix)
| | | +--rw rd-auto-suffix
| | | +--rw (auto-mode)?
| | | | +--:(from-pool)
| | | | | +--rw rd-pool-name? string
| | | | +--:(full-auto)
| | | | +--rw auto? empty
| | | +--ro auto-assigned-rd-suffix? uint16
| | +--:(no-rd)
| | +--rw no-rd? empty
| +--rw vpn-target* [id]
| | +--rw id uint8
| | +--rw route-targets* [route-target]
| | | +--rw route-target rt-types:route-target
| | +--rw route-target-type
| | rt-types:route-target-type
| +--rw vpn-policies
| +--rw import-policy? string
| +--rw export-policy? string
+--rw signaling-option
| ...
+--rw vpn-network-accesses
...
Figure 9: BGP Auto-Discovery Subtree
As discussed in Section 1 of [RFC6624], all BGP-based methods include
the notion of a VPN identifier that serves to unify components of a
given VPN and the concept of auto-discovery, hence the support of the
data node 'vpn-id'.
For the particular case of EVPN, the L2NM supports RT auto-derivation
based on the Ethernet Tag ID specified in Section 7.10.1 of
[RFC7432]. A VPN service provider can enable/disable this
functionality by means of 'auto-rt-enable'. The assigned RT can be
retrieved using 'auto-route-target'.
For all BGP-based L2VPN flavors, other data nodes such as RD and RT
are used. These data nodes have the same structure as the one
discussed in Section 7.4.
7.5.2. Signaling Options
The 'signaling-option' container (Figure 10) defines a set of data
nodes for a given signaling protocol that is used for an L2VPN
service. As discussed in Section 7.3, several signaling options to
exchange membership information between PEs of an L2VPN are
supported. The signaling type to be used for an L2VPN service is
controlled at the VPN service level by means of 'signaling-type'.
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw signaling-option
| +--rw advertise-mtu? boolean
| +--rw mtu-allow-mismatch? boolean
| +--rw signaling-type? leafref
| +--rw (signaling-option)?
| +--:(bgp)
| | ...
| +--:(ldp-or-l2tp)
| +--rw ldp-or-l2tp
| ...
| +--rw (ldp-or-l2tp)?
| +--:(ldp)
| | ...
| +--:(l2tp)
| ...
Figure 10: Signaling Option Overall Subtree
The following signaling data nodes are supported:
'advertise-mtu': Controls whether MTU is advertised when setting a
pseudowire (e.g., Section 4.3 of [RFC4667], Section 5.1 of
[RFC6624], or Section 6.1 of [RFC4762]).
'mtu-allow-mismatch': When set to true, it allows an MTU mismatch
for a pseudowire (see, e.g., Section 4.3 of [RFC4667]).
'signaling-type': Indicates the signaling type. This type inherits
the value of 'signaling-type' defined at the service level
(Section 7.3).
'bgp': Is provided when BGP is used for L2VPN signaling. Refer to
Section 7.5.2.1 for more details.
'ldp': The model supports the configuration of the parameters that
are discussed in Section 6 of [RFC4762]. Refer to Section 7.5.2.2
for more details.
'l2tp': The model supports the configuration of the parameters that
are discussed in Section 4 of [RFC4667]. Refer to Section 7.5.2.3
for more details.
Note that LDP and L2TP choices are bundled ("ldp-or-l2tp") because
they share a set of common parameters that are further detailed in
Sections 7.5.2.2 and 7.5.2.3.
7.5.2.1. BGP
The structure of the BGP-related data nodes is provided in Figure 11.
...
| +--rw (signaling-option)?
| ...
| +--:(bgp)
| | +--rw (bgp-type)?
| | +--:(l2vpn-bgp)
| | | +--rw ce-range? uint16
| | | +--rw pw-encapsulation-type?
| | | | identityref
| | | +--rw vpls-instance
| | | +--rw vpls-edge-id? uint16
| | | +--rw vpls-edge-id-range? uint16
| | +--:(evpn-bgp)
| | +--rw evpn-type? leafref
| | +--rw service-interface-type?
| | | identityref
| | +--rw evpn-policies
| | +--rw mac-learning-mode?
| | | identityref
| | +--rw ingress-replication?
| | | boolean
| | +--rw p2mp-replication?
| | | boolean
| | +--rw arp-proxy {vpn-common:ipv4}?
| | | +--rw enable? boolean
| | | +--rw arp-suppression?
| | | | boolean
| | | +--rw ip-mobility-threshold?
| | | | uint16
| | | +--rw duplicate-ip-detection-interval?
| | | uint16
| | +--rw nd-proxy {vpn-common:ipv6}?
| | | +--rw enable? boolean
| | | +--rw nd-suppression?
| | | | boolean
| | | +--rw ip-mobility-threshold?
| | | | uint16
| | | +--rw duplicate-ip-detection-interval?
| | | uint16
| | +--rw underlay-multicast?
| | | boolean
| | +--rw flood-unknown-unicast-suppression?
| | | boolean
| | +--rw vpws-vlan-aware? boolean
| | +--rw bum-management
| | | +--rw discard-broadcast?
| | | | boolean
| | | +--rw discard-unknown-multicast?
| | | | boolean
| | | +--rw discard-unknown-unicast?
| | | boolean
| | +--rw pbb
| | +--rw backbone-src-mac?
| | yang:mac-address
| +--:(ldp-or-l2tp)
| ...
Figure 11: Signaling Option Subtree (BGP)
Remote CEs that are entitled to connect to the same VPN should fit
with the CE range ('ce-range') as discussed in Section 2.2.3 of
[RFC6624]. 'pw-encapsulation-type' is used to control the pseudowire
encapsulation type (Section 3 of [RFC6624]). The value of the 'pw-
encapsulation-type' is taken from the IANA-maintained "iana-bgp-
l2-encaps" module (Section 8.1).
For the specific case of VPLS, the VPLS Edge Identifier (VE ID)
('vpls-edge-id') and a VE ID range ('vpls-edge-id-range') are
provided as per Section 3.2 of [RFC4761]. If different VE IDs are
required (e.g., multihoming as per Section 3.5 of [RFC4761]), these
IDs are configured at the VPN network access level (under 'signaling-
option' in Section 7.6).
For EVPN-related L2VPNs, 'service-interface-type' indicates whether
this is a VLAN-based, VLAN-aware, or VLAN bundle service interface
(Section 6 of [RFC7432]). Moreover, a set of policies can be
provided such as the MAC address learning mode (Section 9 of
[RFC7432]), ingress replication (Section 12.1 of [RFC7432]), the
Address Resolution Protocol (ARP) and Neighbor Discovery (ND) proxy
(Section 10 of [RFC7432]), the processing of Broadcast, Unknown
Unicast, or Multicast (BUM) (Section 12 of [RFC7432]), etc.
7.5.2.2. LDP
The L2NM supports the configuration of the parameters that are
discussed in Section 6 of [RFC4762]. Such parameters include an
Attachment Group Identifier (AGI) (a.k.a., VPLS-id), a Source
Attachment Individual Identifier (SAII), a list of peers that are
associated with a Target Attachment Individual Identifier (TAII), a
pseudowire type, and a pseudowire description (Figure 12). Unlike
BGP, only Ethernet and Ethernet tagged mode are supported. The AGI,
SAII, and TAII are encoded following the types defined in Section 3.4
of [RFC4446].
...
| +--rw (signaling-option)?
| ...
| +--:(bgp)
| | ...
| +--:(ldp-or-l2tp)
| +--rw ldp-or-l2tp
| +--rw agi?
| | rt-types:route-distinguisher
| +--rw saii? uint32
| +--rw remote-targets* [taii]
| | +--rw taii uint32
| | +--rw peer-addr inet:ip-address
| +--rw (ldp-or-l2tp)?
| +--:(ldp)
| | +--rw t-ldp-pw-type?
| | | identityref
| | +--rw pw-type? identityref
| | +--rw pw-description? string
| | +--rw mac-addr-withdraw? boolean
| | +--rw pw-peer-list*
| | | [peer-addr vc-id]
| | | +--rw peer-addr
| | | | inet:ip-address
| | | +--rw vc-id string
| | | +--rw pw-priority? uint32
| | +--rw qinq
| | +--rw s-tag dot1q-types:vlanid
| | +--rw c-tag dot1q-types:vlanid
| +--:(l2tp)
| ...
...
Figure 12: Signaling Option Subtree (LDP)
7.5.2.3. L2TP
The L2NM supports the configuration of the parameters that are
discussed in Section 4 of [RFC4667]. Such parameters include a
Router ID that is used to uniquely identify a PE, a pseudowire type,
an AGI, an SAII, and a list of peers that are associated with a TAII
(Figure 13). The pseudowire type ('pseudowire-type') value is taken
from the IANA-maintained "iana-pseudowire-types" module
(Section 8.2).
...
| +--rw (signaling-option)?
| ...
| +--:(bgp)
| | ...
| +--:(ldp-or-l2tp)
| +--rw ldp-or-l2tp
| +--rw agi?
| | rt-types:route-distinguisher
| +--rw saii? uint32
| +--rw remote-targets* [taii]
| | +--rw taii uint32
| | +--rw peer-addr inet:ip-address
| +--rw (ldp-or-l2tp)?
| +--:(ldp)
| | ...
| +--:(l2tp)
| +--rw router-id?
| | rt-types:router-id
| +--rw pseudowire-type?
| identityref
...
Figure 13: Signaling Option Subtree (L2TP)
7.6. VPN Network Accesses
A 'vpn-network-access' (Figure 14) represents an entry point to a VPN
service. In other words, this container encloses the parameters that
describe the access information for the traffic that belongs to a
particular L2VPN.
A 'vpn-network-access' includes information such as the connection on
which the access is defined, the specific Layer 2 service
requirements, etc.
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
+--rw id vpn-common:vpn-id
+--rw description? string
+--rw interface-id? string
+--rw active-vpn-node-profile? leafref
+--rw status
| ...
+--rw connection
| ...
+--rw (signaling-option)?
| +--:(bgp)
| +--rw (bgp-type)?
| +--:(l2vpn-bgp)
| | +--rw ce-id? uint16
| | +--rw remote-ce-id? uint16
| | +--rw vpls-instance
| | +--rw vpls-edge-id? uint16
| +--:(evpn-bgp)
| +--rw df-preference? uint16
| +--rw vpws-service-instance
| ...
+--rw group* [group-id]
| +--rw group-id string
| +--rw precedence? identityref
| +--rw ethernet-segment-identifier?
| l2vpn-es:es-ref
+--rw ethernet-service-oam
| ...
+--rw service
...
Figure 14: VPN Network Access Subtree
The VPN network access is comprised of the following:
'id': Includes an identifier of the VPN network access.
'description': Includes a textual description of the VPN network
access.
'interface-id': Indicates the interface on which the VPN network
access is bound.
'active-vpn-node-profile': Provides a pointer to an active 'global-
parameters-profile' at the VPN node level. Referencing an active
'global-parameters-profile' implies that all associated data nodes
will be inherited by the VPN network access. However, some of the
inherited data nodes (e.g., ACL policies) can be overridden at the
VPN network access level. In such case, adjusted values take
precedence over inherited values.
'status': Indicates the administrative and operational status of the
VPN network access.
'connection': Represents and groups the set of Layer 2 connectivity
from where the traffic of the L2VPN in a particular VPN network
access is coming. See Section 7.6.1.
'signaling-option': Indicates a set of signaling options that are
specific to a given VPN network access, e.g., a CE ID ('ce-id'
identifying the CE within the VPN) and a remote CE ID as discussed
in Section 2.2.2 of [RFC6624].
It can also include a set of data nodes that are required for the
configuration of a VPWS-EVPN [RFC8214]. See Section 7.6.2.
'group': Is used for grouping VPN network accesses by assigning the
same identifier to these accesses. The precedence attribute is
used to differentiate the primary and secondary accesses for a
service with multiple accesses. An example to illustrate the use
of this container for redundancy purposes is provided in
Appendix A.6. This container is also used to identify the link of
an ES by allocating the same ESI. An example to illustrate this
functionality is provided in Appendices A.4 and A.5.
'ethernet-service-oam': Carries information about the service OAM.
See Section 7.6.3.
'service': Specifies the service parameters (e.g., QoS and
multicast) to apply for a given VPN network access. See
Section 7.6.4.
7.6.1. Connection
The 'connection' container (Figure 15) is used to configure the
relevant properties of the interface to which the L2VPN instance is
attached to (e.g., encapsulation type, Link Aggregation Group (LAG)
interfaces, and split-horizon). The L2NM supports tag manipulation
operations (e.g., tag rewrite).
Note that the 'connection' container does not include the physical-
specific configuration as this is assumed to be directly handled
using device modules (e.g., an interfaces module). Moreover, this
design is also meant to avoid manipulated global parameters at the
service level and lower the risk of impacting other services sharing
the same physical interface.
A reference to the bearer is maintained to allow keeping the link
between the L2SM and the L2NM when both data models are used in a
given deployment.
Some consistency checks should be ensured by implementations
(typically, network controllers) for LAG interfaces, as the same
information (e.g., LACP system-id) should be provided to the involved
nodes.
The L2NM inherits the 'member-link-list' structure from the L2SM
(including indication of OAM 802.3ah support [IEEE-802-3ah]).
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw connection
| +--rw l2-termination-point?
| | string
| +--rw local-bridge-reference?
| | string
| +--rw bearer-reference? string
| | {vpn-common:bearer-reference}?
| +--rw encapsulation
| | +--rw encap-type? identityref
| | +--rw dot1q
| | | +--rw tag-type? identityref
| | | +--rw cvlan-id?
| | | | dot1q-types:vlanid
| | | +--rw tag-operations
| | | +--rw (op-choice)?
| | | | +--:(pop)
| | | | | +--rw pop? empty
| | | | +--:(push)
| | | | | +--rw push? empty
| | | | +--:(translate)
| | | | +--rw translate? empty
| | | +--rw tag-1?
| | | | dot1q-types:vlanid
| | | +--rw tag-1-type?
| | | | dot1q-types:dot1q-tag-type
| | | +--rw tag-2?
| | | | dot1q-types:vlanid
| | | +--rw tag-2-type?
| | | dot1q-types:dot1q-tag-type
| | +--rw priority-tagged
| | | +--rw tag-type? identityref
| | +--rw qinq
| | +--rw tag-type? identityref
| | +--rw svlan-id
| | | dot1q-types:vlanid
| | +--rw cvlan-id
| | | dot1q-types:vlanid
| | +--rw tag-operations
| | +--rw (op-choice)?
| | | +--:(pop)
| | | | +--rw pop? uint8
| | | +--:(push)
| | | | +--rw push? empty
| | | +--:(translate)
| | | +--rw translate? empty
| | +--rw tag-1?
| | | dot1q-types:vlanid
| | +--rw tag-1-type?
| | | dot1q-types:dot1q-tag-type
| | +--rw tag-2?
| | | dot1q-types:vlanid
| | +--rw tag-2-type?
| | dot1q-types:dot1q-tag-type
| +--rw lag-interface
| | {vpn-common:lag-interface}?
| +--rw lag-interface-id? string
| +--rw lacp
| | +--rw lacp-state? boolean
| | +--rw mode? identityref
| | +--rw speed? uint32
| | +--rw mini-link-num? uint32
| | +--rw system-id?
| | | yang:mac-address
| | +--rw admin-key? uint16
| | +--rw system-priority? uint16
| | +--rw member-link-list
| | | +--rw member-link* [name]
| | | +--rw name string
| | | +--rw speed? uint32
| | | +--rw mode? identityref
| | | +--rw link-mtu? uint32
| | | +--rw oam-802.3ah-link
| | | | {oam-3ah}?
| | | +--rw enable? boolean
| | +--rw flow-control? boolean
| | +--rw lldp? boolean
| +--rw split-horizon
| +--rw group-name? string
...
Figure 15: Connection Subtree
7.6.2. EVPN-VPWS Service Instance
The 'vpws-service-instance' provides the local and remote VPWS
Service Instance (VSI) [RFC8214]. This container is only present
when the 'vpn-type' is VPWS-EVPN. As shown in Figure 16, the VSIs
can be configured by a VPN service provider or auto-generated.
An example to illustrate the use of the L2NM to configure VPWS-EVPN
instances is provided in Appendix A.4.
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw (signaling-option)?
| +--:(bgp)
| +--rw (bgp-type)?
| +--:(l2vpn-bgp)
| | ...
| +--:(evpn-bgp)
| +--rw df-preference? uint16
| +--rw vpws-service-instance
| +--rw (local-vsi-choice)?
| | +--:(directly-assigned)
| | | +--rw local-vpws-service-instance?
| | | uint32
| | +--:(auto-assigned)
| | +--rw local-vsi-auto
| | +--rw (auto-mode)?
| | | +--:(from-pool)
| | | | +--rw vsi-pool-name?
| | | | string
| | | +--:(full-auto)
| | | +--rw auto? empty
| | +--ro auto-local-vsi? uint32
| +--rw (remote-vsi-choice)?
| +--:(directly-assigned)
| | +--rw remote-vpws-service-instance?
| | uint32
| +--:(auto-assigned)
| +--rw remote-vsi-auto
| +--rw (auto-mode)?
| | +--:(from-pool)
| | | +--rw vsi-pool-name?
| | | string
| | +--:(full-auto)
| | +--rw auto? empty
| +--ro auto-remote-vsi? uint32
...
Figure 16: EVPN-VPWS Service Instance Subtree
7.6.3. Ethernet OAM
Ethernet OAM refers to both [IEEE-802-1ag] and [ITU-T-Y-1731].
As shown in Figure 17, the L2NM inherits the same structure as in
Section 5.3.2.2.6 of [RFC8466] for OAM matters.
+--rw l2vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw ethernet-service-oam
| +--rw md-name? string
| +--rw md-level? uint8
| +--rw cfm-802.1-ag
| | +--rw n2-uni-c* [maid]
| | | +--rw maid string
| | | +--rw mep-id? uint32
| | | +--rw mep-level? uint32
| | | +--rw mep-up-down?
| | | | enumeration
| | | +--rw remote-mep-id? uint32
| | | +--rw cos-for-cfm-pdus? uint32
| | | +--rw ccm-interval? uint32
| | | +--rw ccm-holdtime? uint32
| | | +--rw ccm-p-bits-pri?
| | | ccm-priority-type
| | +--rw n2-uni-n* [maid]
| | +--rw maid string
| | +--rw mep-id? uint32
| | +--rw mep-level? uint32
| | +--rw mep-up-down?
| | | enumeration
| | +--rw remote-mep-id? uint32
| | +--rw cos-for-cfm-pdus? uint32
| | +--rw ccm-interval? uint32
| | +--rw ccm-holdtime? uint32
| | +--rw ccm-p-bits-pri?
| | ccm-priority-type
| +--rw y-1731* [maid]
| +--rw maid string
| +--rw mep-id? uint32
| +--rw pm-type? identityref
| +--rw remote-mep-id? uint32
| +--rw message-period? uint32
| +--rw measurement-interval? uint32
| +--rw cos? uint32
| +--rw loss-measurement? boolean
| +--rw synthetic-loss-measurement?
| | boolean
| +--rw delay-measurement
| | +--rw enable-dm? boolean
| | +--rw two-way? boolean
| +--rw frame-size? uint32
| +--rw session-type? enumeration
...
Figure 17: OAM Subtree
7.6.4. Services
The 'service' container (Figure 18) provides a set of service-
specific configurations such as QoS.
+--rw l2vpn-ntw
+--rw vpn-profiles
| ...
+--rw vpn-services
+--rw vpn-service* [vpn-id]
...
+--rw vpn-nodes
+--rw vpn-node* [vpn-node-id]
...
+--rw vpn-network-accesses
+--rw vpn-network-access* [id]
...
+--rw service
+--rw mtu? uint32
+--rw svc-pe-to-ce-bandwidth
| {vpn-common:inbound-bw}?
| ...
+--rw svc-ce-to-pe-bandwidth
| {vpn-common:outbound-bw}?
| ...
+--rw qos {vpn-common:qos}?
| ...
+--rw mac-policies
| ...
+--rw broadcast-unknown-unicast-multicast
...
Figure 18: Service Overall Subtree
The description of the service data nodes is as follows:
'mtu': Specifies the Layer 2 MTU, in bytes, for the VPN network
access.
'svc-pe-to-ce-bandwidth' and 'svc-ce-to-pe-bandwidth': Specify the
service bandwidth for the L2VPN service.
'svc-pe-to-ce-bandwidth' indicates the inbound bandwidth of the
connection (i.e., download bandwidth from the service provider to
the site).
'svc-ce-to-pe-bandwidth' indicates the outbound bandwidth of the
connection (i.e., upload bandwidth from the site to the service
provider).
'svc-pe-to-ce-bandwidth' and 'svc-ce-to-pe-bandwidth' can be
represented using the Committed Information Rate (CIR), the Excess
Information Rate (EIR), or the Peak Information Rate (PIR).
As shown in Figure 19, the structure of service bandwidth data
nodes is inherited from the L2SM [RFC8466]. The following types,
defined in [RFC9181], can be used to indicate the bandwidth type:
'bw-per-cos': The bandwidth is per CoS.
'bw-per-port': The bandwidth is per VPN network access.
'bw-per-site': The bandwidth is to all VPN network accesses that
belong to the same site.
'bw-per-service': The bandwidth is per L2VPN service.
+--rw service
...
+--rw svc-pe-to-ce-bandwidth
| {vpn-common:inbound-bw}?
| +--rw pe-to-ce-bandwidth* [bw-type]
| +--rw bw-type identityref
| +--rw (type)?
| +--:(per-cos)
| | +--rw cos* [cos-id]
| | +--rw cos-id uint8
| | +--rw cir? uint64
| | +--rw cbs? uint64
| | +--rw eir? uint64
| | +--rw ebs? uint64
| | +--rw pir? uint64
| | +--rw pbs? uint64
| +--:(other)
| +--rw cir? uint64
| +--rw cbs? uint64
| +--rw eir? uint64
| +--rw ebs? uint64
| +--rw pir? uint64
| +--rw pbs? uint64
+--rw svc-ce-to-pe-bandwidth
| {vpn-common:outbound-bw}?
| +--rw ce-to-pe-bandwidth* [bw-type]
| +--rw bw-type identityref
| +--rw (type)?
| +--:(per-cos)
| | +--rw cos* [cos-id]
| | +--rw cos-id uint8
| | +--rw cir? uint64
| | +--rw cbs? uint64
| | +--rw eir? uint64
| | +--rw ebs? uint64
| | +--rw pir? uint64
| | +--rw pbs? uint64
| +--:(other)
| +--rw cir? uint64
| +--rw cbs? uint64
| +--rw eir? uint64
| +--rw ebs? uint64
| +--rw pir? uint64
| +--rw pbs? uint64
...
Figure 19: Service Bandwidth Subtree
'qos': Is used to define a set of QoS policies to apply on a given
VPN network access (Figure 20). The QoS classification can be
based on many criteria such as source MAC address, destination MAC
address, etc. See also Section 5.10.2.1 of [RFC8466] for more
discussion of QoS classification including the use of color types.
+--rw service
...
+--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw match-flow
| | | | +--rw dscp? inet:dscp
| | | | +--rw dot1q? uint16
| | | | +--rw pcp? uint8
| | | | +--rw src-mac-address?
| | | | | yang:mac-address
| | | | +--rw dst-mac-address?
| | | | | yang:mac-address
| | | | +--rw color-type?
| | | | | identityref
| | | | +--rw any? empty
| | | +--:(match-application)
| | | +--rw match-application?
| | | identityref
| | +--rw target-class-id? string
| +--rw qos-profile
| +--rw qos-profile* [profile]
| +--rw profile leafref
| +--rw direction? identityref
...
Figure 20: QoS Subtree
'mac-policies': Lists a set of MAC-related policies such as MAC
ACLs. Similar to [RFC8519], an ACL match can be based upon source
MAC address, source MAC address mask, destination MAC address,
destination MAC address mask, or a combination thereof.
A data frame that matches an ACL can be dropped, be flooded, or
trigger an alarm. A rate-limit policy can be defined for handling
frames that match an ACL entry with 'flood' action.
When 'mac-loop-prevention' or 'mac-addr-limit' data nodes are
provided, they take precedence over the ones included in the
'global-parameters-profile' at the VPN service or VPN node levels.
+--rw service
...
+--rw mac-policies
| +--rw access-control-list* [name]
| | +--rw name string
| | +--rw src-mac-address*
| | | yang:mac-address
| | +--rw src-mac-address-mask*
| | | yang:mac-address
| | +--rw dst-mac-address*
| | | yang:mac-address
| | +--rw dst-mac-address-mask*
| | | yang:mac-address
| | +--rw action? identityref
| | +--rw rate-limit? decimal64
| +--rw mac-loop-prevention
| | +--rw window? uint32
| | +--rw frequency? uint32
| | +--rw retry-timer? uint32
| | +--rw protection-type? identityref
| +--rw mac-addr-limit
| +--rw limit-number? uint16
| +--rw time-interval? uint32
| +--rw action? identityref
...
Figure 21: MAC Policies Subtree
'broadcast-unknown-unicast-multicast': Defines the type of site in
the customer multicast service topology: source, receiver, or
both. It is also used to define multicast group-to-port mappings.
+--rw service
...
+--rw broadcast-unknown-unicast-multicast
+--rw multicast-site-type?
| enumeration
+--rw multicast-gp-address-mapping* [id]
| +--rw id uint16
| +--rw vlan-id uint32
| +--rw mac-gp-address
| | yang:mac-address
| +--rw port-lag-number? uint32
+--rw bum-overall-rate? uint64
Figure 22: BUM Subtree
8. YANG Modules
8.1. IANA-Maintained Module for BGP Layer 2 Encapsulation Types
The "iana-bgp-l2-encaps" YANG module matches the "BGP Layer 2
Encapsulation Types" registry [IANA-BGP-L2].
This module references [RFC3032], [RFC4446], [RFC4448], [RFC4553],
[RFC4618], [RFC4619], [RFC4717], [RFC4761], [RFC4816], [RFC4842], and
[RFC5086].
<CODE BEGINS> file "iana-bgp-l2-encaps@2022-09-20.yang"
module iana-bgp-l2-encaps {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:iana-bgp-l2-encaps";
prefix iana-bgp-l2-encaps;
organization
"IANA";
contact
"Internet Assigned Numbers Authority
Postal: ICANN
12025 Waterfront Drive, Suite 300
Los Angeles, CA 90094-2536
United States of America
Tel: +1 310 301 5800
<mailto:iana@iana.org>";
description
"This YANG module contains a collection of IANA-maintained YANG
data types that are used for referring to BGP Layer 2
encapsulation types.
Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9291; see
the RFC itself for full legal notices.";
revision 2022-09-20 {
description
"First revision.";
reference
"RFC 9291: A YANG Network Data Model for Layer 2 VPNs.";
}
identity bgp-l2-encaps-type {
description
"Base BGP Layer 2 encapsulation type.";
reference
"RFC 6624: Layer 2 Virtual Private Networks Using BGP for
Auto-Discovery and Signaling";
}
identity frame-relay {
base bgp-l2-encaps-type;
description
"Frame Relay.";
reference
"RFC 4446: IANA Allocations for Pseudowire Edge
to Edge Emulation (PWE3)";
}
identity atm-aal5 {
base bgp-l2-encaps-type;
description
"ATM AAL5 SDU VCC transport.";
reference
"RFC 4446: IANA Allocations for Pseudowire Edge
to Edge Emulation (PWE3)";
}
identity atm-cell {
base bgp-l2-encaps-type;
description
"ATM transparent cell transport.";
reference
"RFC 4816: Pseudowire Emulation Edge-to-Edge (PWE3)
Asynchronous Transfer Mode (ATM) Transparent
Cell Transport Service";
}
identity ethernet-tagged-mode {
base bgp-l2-encaps-type;
description
"Ethernet (VLAN) Tagged Mode.";
reference
"RFC 4448: Encapsulation Methods for Transport of Ethernet
over MPLS Networks";
}
identity ethernet-raw-mode {
base bgp-l2-encaps-type;
description
"Ethernet Raw Mode.";
reference
"RFC 4448: Encapsulation Methods for Transport of Ethernet
over MPLS Networks";
}
identity hdlc {
base bgp-l2-encaps-type;
description
"Cisco HDLC.";
reference
"RFC 4618: Encapsulation Methods for Transport of
PPP/High-Level Data Link Control (HDLC)
over MPLS Networks";
}
identity ppp {
base bgp-l2-encaps-type;
description
"PPP.";
reference
"RFC 4618: Encapsulation Methods for Transport of
PPP/High-Level Data Link Control (HDLC)
over MPLS Networks";
}
identity circuit-emulation {
base bgp-l2-encaps-type;
description
"SONET/SDH Circuit Emulation Service.";
reference
"RFC 4842: Synchronous Optical Network/Synchronous Digital
Hierarchy (SONET/SDH) Circuit Emulation over Packet
(CEP)";
}
identity atm-to-vcc {
base bgp-l2-encaps-type;
description
"ATM n-to-one VCC cell transport.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity atm-to-vpc {
base bgp-l2-encaps-type;
description
"ATM n-to-one VPC cell transport.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity layer-2-transport {
base bgp-l2-encaps-type;
description
"IP Layer 2 Transport.";
reference
"RFC 3032: MPLS Label Stack Encoding";
}
identity fr-port-mode {
base bgp-l2-encaps-type;
description
"Frame Relay Port mode.";
reference
"RFC 4619: Encapsulation Methods for Transport of Frame Relay
over Multiprotocol Label Switching (MPLS)
Networks";
}
identity e1 {
base bgp-l2-encaps-type;
description
"Structure-agnostic E1 over packet.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity t1 {
base bgp-l2-encaps-type;
description
"Structure-agnostic T1 (DS1) over packet.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity vpls {
base bgp-l2-encaps-type;
description
"VPLS.";
reference
"RFC 4761: Virtual Private LAN Service (VPLS)
Using BGP for Auto-Discovery and Signaling";
}
identity t3 {
base bgp-l2-encaps-type;
description
"Structure-agnostic T3 (DS3) over packet.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity structure-aware {
base bgp-l2-encaps-type;
description
"Nx64kbit/s Basic Service using Structure-aware.";
reference
"RFC 5086: Structure-Aware Time Division Multiplexed (TDM)
Circuit Emulation Service over Packet Switched
Network (CESoPSN)";
}
identity dlci {
base bgp-l2-encaps-type;
description
"Frame Relay DLCI.";
reference
"RFC 4619: Encapsulation Methods for Transport of Frame Relay
over Multiprotocol Label Switching (MPLS)
Networks";
}
identity e3 {
base bgp-l2-encaps-type;
description
"Structure-agnostic E3 over packet.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity ds1 {
base bgp-l2-encaps-type;
description
"Octet-aligned payload for Structure-agnostic DS1 circuits.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity cas {
base bgp-l2-encaps-type;
description
"E1 Nx64kbit/s with CAS using Structure-aware.";
reference
"RFC 5086: Structure-Aware Time Division Multiplexed (TDM)
Circuit Emulation Service over Packet Switched
Network (CESoPSN)";
}
identity esf {
base bgp-l2-encaps-type;
description
"DS1 (ESF) Nx64kbit/s with CAS using Structure-aware.";
reference
"RFC 5086: Structure-Aware Time Division Multiplexed (TDM)
Circuit Emulation Service over Packet Switched
Network (CESoPSN)";
}
identity sf {
base bgp-l2-encaps-type;
description
"DS1 (SF) Nx64kbit/s with CAS using Structure-aware.";
reference
"RFC 5086: Structure-Aware Time Division Multiplexed (TDM)
Circuit Emulation Service over Packet Switched
Network (CESoPSN)";
}
}
<CODE ENDS>
8.2. IANA-Maintained Module for Pseudowire Types
The initial version of the "iana-pseudowire-types" YANG module
matches the "MPLS Pseudowire Types Registry" [IANA-PW-TYPES].
This module references [MFA], [RFC2507], [RFC2508], [RFC3032],
[RFC3545], [RFC4448], [RFC4553], [RFC4618], [RFC4619], [RFC4717],
[RFC4842], [RFC4863], [RFC4901], [RFC5086], [RFC5087], [RFC5143],
[RFC5795], and [RFC6307].
<CODE BEGINS> file "iana-pseudowire-types@2022-09-20.yang"
module iana-pseudowire-types {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:iana-pseudowire-types";
prefix iana-pw-types;
organization
"IANA";
contact
"Internet Assigned Numbers Authority
Postal: ICANN
12025 Waterfront Drive, Suite 300
Los Angeles, CA 90094-2536
United States of America
Tel: +1 310 301 5800
<mailto:iana@iana.org>";
description
"This module contains a collection of IANA-maintained YANG
data types that are used for referring to Pseudowire Types.
Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9291; see
the RFC itself for full legal notices.";
revision 2022-09-20 {
description
"First revision.";
reference
"RFC RFC 9291: A YANG Network Data Model for Layer 2 VPNs.";
}
identity iana-pw-types {
description
"Base Pseudowire Layer 2 encapsulation type.";
}
identity frame-relay {
base iana-pw-types;
description
"Frame Relay DLCI (Martini Mode).";
reference
"RFC 4619: Encapsulation Methods for Transport of Frame Relay
over Multiprotocol Label Switching (MPLS)
Networks";
}
identity atm-aal5 {
base iana-pw-types;
description
"ATM AAL5 SDU VCC transport.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity atm-cell {
base iana-pw-types;
description
"ATM transparent cell transport.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity ethernet-tagged-mode {
base iana-pw-types;
description
"Ethernet (VLAN) Tagged Mode.";
reference
"RFC 4448: Encapsulation Methods for Transport of Ethernet
over MPLS Networks";
}
identity ethernet {
base iana-pw-types;
description
"Ethernet.";
reference
"RFC 4448: Encapsulation Methods for Transport of Ethernet
over MPLS Networks";
}
identity hdlc {
base iana-pw-types;
description
"HDLC.";
reference
"RFC 4618: Encapsulation Methods for Transport of
PPP/High-Level Data Link Control (HDLC)
over MPLS Networks";
}
identity ppp {
base iana-pw-types;
description
"PPP.";
reference
"RFC 4618: Encapsulation Methods for Transport of
PPP/High-Level Data Link Control (HDLC)
over MPLS Networks";
}
identity circuit-emulation-mpls {
base iana-pw-types;
description
"SONET/SDH Circuit Emulation Service Over MPLS Encapsulation.";
reference
"RFC 5143: Synchronous Optical Network/Synchronous Digital
Hierarchy (SONET/SDH) Circuit Emulation Service over
MPLS (CEM) Encapsulation";
}
identity atm-to-vcc {
base iana-pw-types;
description
"ATM n-to-one VCC cell transport.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity atm-to-vpc {
base iana-pw-types;
description
"ATM n-to-one VPC cell transport.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity layer-2-transport {
base iana-pw-types;
description
"IP Layer2 Transport.";
reference
"RFC 3032: MPLS Label Stack Encoding";
}
identity atm-one-to-one-vcc {
base iana-pw-types;
description
"ATM one-to-one VCC Cell Mode.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity atm-one-to-one-vpc {
base iana-pw-types;
description
"ATM one-to-one VPC Cell Mode.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity atm-aal5-vcc {
base iana-pw-types;
description
"ATM AAL5 PDU VCC transport.";
reference
"RFC 4717: Encapsulation Methods for Transport of
Asynchronous Transfer Mode (ATM) over MPLS
Networks";
}
identity fr-port-mode {
base iana-pw-types;
description
"Frame-Relay Port mode.";
reference
"RFC 4619: Encapsulation Methods for Transport of Frame Relay
over Multiprotocol Label Switching (MPLS)
Networks";
}
identity circuit-emulation-packet {
base iana-pw-types;
description
"SONET/SDH Circuit Emulation over Packet.";
reference
"RFC 4842: Synchronous Optical Network/Synchronous Digital
Hierarchy (SONET/SDH) Circuit Emulation over Packet
(CEP)";
}
identity e1 {
base iana-pw-types;
description
"Structure-agnostic E1 over Packet.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity t1 {
base iana-pw-types;
description
"Structure-agnostic T1 (DS1) over Packet.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity e3 {
base iana-pw-types;
description
"Structure-agnostic E3 over Packet.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity t3 {
base iana-pw-types;
description
"Structure-agnostic T3 (DS3) over Packet.";
reference
"RFC 4553: Structure-Agnostic Time Division Multiplexing (TDM)
over Packet (SAToP)";
}
identity ces-over-psn {
base iana-pw-types;
description
"CESoPSN basic mode.";
reference
"RFC 5086: Structure-Aware Time Division Multiplexed (TDM)
Circuit Emulation Service over Packet Switched
Network (CESoPSN)";
}
identity tdm-over-ip-aal1 {
base iana-pw-types;
description
"TDMoIP AAL1 Mode.";
reference
"RFC 5087: Time Division Multiplexing over IP (TDMoIP)";
}
identity ces-over-psn-cas {
base iana-pw-types;
description
"CESoPSN TDM with CAS.";
reference
"RFC 5086: Structure-Aware Time Division Multiplexed (TDM)
Circuit Emulation Service over Packet Switched
Network (CESoPSN)";
}
identity tdm-over-ip-aal2 {
base iana-pw-types;
description
"TDMoIP AAL2 Mode.";
reference
"RFC 5087: Time Division Multiplexing over IP (TDMoIP)";
}
identity dlci {
base iana-pw-types;
description
"Frame Relay DLCI.";
reference
"RFC 4619: Encapsulation Methods for Transport of Frame Relay
over Multiprotocol Label Switching (MPLS)
Networks";
}
identity rohc {
base iana-pw-types;
description
"ROHC Transport Header-compressed Packets.";
reference
"RFC 5795: The RObust Header Compression (ROHC) Framework
RFC 4901: Protocol Extensions for Header Compression over
MPLS";
}
identity ecrtp {
base iana-pw-types;
description
"ECRTP Transport Header-compressed Packets.";
reference
"RFC 3545: Enhanced Compressed RTP (CRTP) for Links with High
Delay, Packet Loss and Reordering
RFC 4901: Protocol Extensions for Header Compression over
MPLS";
}
identity iphc {
base iana-pw-types;
description
"IPHC Transport Header-compressed Packets.";
reference
"RFC 2507: IP Header Compression
RFC 4901: Protocol Extensions for Header Compression over
MPLS";
}
identity crtp {
base iana-pw-types;
description
"cRTP Transport Header-compressed Packets.";
reference
"RFC 2508: Compressing IP/UDP/RTP Headers for Low-Speed Serial
Links
RFC 4901: Protocol Extensions for Header Compression over
MPLS";
}
identity atm-vp-virtual-trunk {
base iana-pw-types;
description
"ATM VP Virtual Trunk.";
reference
"MFA Forum: The Use of Virtual Trunks for ATM/MPLS
Control Plane Interworking Specification";
}
identity fc-port-mode {
base iana-pw-types;
description
"FC Port Mode.";
reference
"RFC 6307: Encapsulation Methods for Transport of
Fibre Channel Traffic over MPLS Networks";
}
identity wildcard {
base iana-pw-types;
description
"Wildcard.";
reference
"RFC 4863: Wildcard Pseudowire Type";
}
}
<CODE ENDS>
8.3. Ethernet Segments
The "ietf-ethernet-segment" YANG module uses types defined in
[RFC6991].
<CODE BEGINS> file "ietf-ethernet-segment@2022-09-20.yang"
module ietf-ethernet-segment {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-ethernet-segment";
prefix l2vpn-es;
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types (see Section 3)";
}
organization
"IETF OPSA (Operations and Management Area) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/opsawg/>
WG List: <mailto:opsawg@ietf.org>
Editor: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>
Editor: Samier Barguil
<mailto:samier.barguilgiraldo.ext@telefonica.com>
Author: Oscar Gonzalez de Dios
<mailto:oscar.gonzalezdedios@telefonica.com>";
description
"This YANG module defines a model for Ethernet Segments.
Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9291; see
the RFC itself for full legal notices.";
revision 2022-09-20 {
description
"Initial version.";
reference
"RFC 9291: A YANG Network Data Model for Layer 2 VPNs.";
}
/* Typedefs */
typedef es-ref {
type leafref {
path "/l2vpn-es:ethernet-segments/l2vpn-es:ethernet-segment"
+ "/l2vpn-es:name";
}
description
"Defines a type for referencing an Ethernet segment in
other modules.";
}
/* Identities */
identity esi-type {
description
"T (Ethernet Segment Identifier (ESI) Type) is a 1-octet field
(most significant octet) that specifies the format of the
remaining 9 octets (ESI Value).";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 5";
}
identity esi-type-0-operator {
base esi-type;
description
"This type indicates an arbitrary 9-octet ESI value,
which is managed and configured by the operator.";
}
identity esi-type-1-lacp {
base esi-type;
description
"When the IEEE 802.1AX Link Aggregation Control Protocol (LACP)
is used between the Provider Edge (PE) and Customer Edge (CE)
devices, this ESI type indicates an auto-generated ESI value
determined from LACP.";
reference
"IEEE Std 802.1AX: Link Aggregation";
}
identity esi-type-2-bridge {
base esi-type;
description
"The ESI value is auto-generated and determined based
on the Layer 2 bridge protocol.";
}
identity esi-type-3-mac {
base esi-type;
description
"This type indicates a MAC-based ESI value that can be
auto-generated or configured by the operator.";
}
identity esi-type-4-router-id {
base esi-type;
description
"This type indicates a Router ID ESI value that can be
auto-generated or configured by the operator.";
}
identity esi-type-5-asn {
base esi-type;
description
"This type indicates an Autonomous System (AS)-based ESI value
that can be auto-generated or configured by the operator.";
}
identity df-election-methods {
description
"Base Identity Designated Forwarder (DF) election method.";
}
identity default-7432 {
base df-election-methods;
description
"The default DF election method.
The default procedure for DF election at the granularity of
<ES,VLAN> for VLAN-based service or <ES, VLAN bundle> for
VLAN-(aware) bundle service is referred to as
'service carving'.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 8.5";
}
identity highest-random-weight {
base df-election-methods;
description
"The highest random weight (HRW) method.";
reference
"RFC 8584: Framework for Ethernet VPN Designated
Forwarder Election Extensibility, Section 3";
}
identity preference {
base df-election-methods;
description
"The preference-based method. PEs are assigned with
preferences to become the DF in the Ethernet Segment (ES).
The exact preference-based algorithm (e.g., lowest-preference
algorithm or highest-preference algorithm) to use is
signaled at the control plane.";
}
identity es-redundancy-mode {
description
"Base identity for ES redundancy modes.";
}
identity single-active {
base es-redundancy-mode;
description
"Indicates Single-Active redundancy mode for a given ES.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 14.1.1";
}
identity all-active {
base es-redundancy-mode;
description
"Indicates All-Active redundancy mode for a given ES.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 14.1.2";
}
/* Main Ethernet Segment Container */
container ethernet-segments {
description
"Top container for the Ethernet Segment Identifier (ESI).";
list ethernet-segment {
key "name";
description
"Top list for ESIs.";
leaf name {
type string;
description
"Includes the name of the Ethernet Segment (ES) that
is used to unambiguously identify an ES.";
}
leaf esi-type {
type identityref {
base esi-type;
}
default "esi-type-0-operator";
description
"T-(ESI Type) is a 1-octet field (most significant
octet) that specifies the format of the remaining
9 octets (ESI Value).";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 5";
}
choice esi-choice {
description
"Ethernet segment choice between several types.
For ESI Type 0: The esi is directly configured by the
operator.
For ESI Type 1: The auto-mode must be used.
For ESI Type 2: The auto-mode must be used.
For ESI Type 3: The directly-assigned or auto-mode must
be used.
For ESI Type 4: The directly-assigned or auto-mode must
be used.
For ESI Type 5: The directly-assigned or auto-mode must
be used.";
case directly-assigned {
description
"Explicitly assign an ESI value.";
leaf ethernet-segment-identifier {
type yang:hex-string {
length "29";
}
description
"10-octet ESI.";
}
}
case auto-assigned {
description
"The ESI is auto-assigned.";
container esi-auto {
description
"The ESI is auto-assigned.";
choice auto-mode {
description
"Indicates the auto-assignment mode. ESI can be
automatically assigned either with or without
indicating a pool from which the ESI should be
taken.
For both cases, the server will auto-assign an
ESI value 'auto-assigned-ESI' and use that value
operationally.";
case from-pool {
leaf esi-pool-name {
type string;
description
"The auto-assignment will be made from the
pool identified by the ESI-pool-name.";
}
}
case full-auto {
leaf auto {
type empty;
description
"Indicates an ESI is fully auto-assigned.";
}
}
}
leaf auto-ethernet-segment-identifier {
type yang:hex-string {
length "29";
}
config false;
description
"The value of the auto-assigned ESI.";
}
}
}
}
leaf esi-redundancy-mode {
type identityref {
base es-redundancy-mode;
}
description
"Indicates the ES redundancy mode.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 14.1";
}
container df-election {
description
"Top container for the DF election method properties.";
leaf df-election-method {
type identityref {
base df-election-methods;
}
default "default-7432";
description
"Specifies the DF election method.";
reference
"RFC 8584: Framework for Ethernet VPN Designated
Forwarder Election Extensibility";
}
leaf revertive {
when "derived-from-or-self(../df-election-method, "
+ "'preference')" {
description
"The revertive value is only applicable
to the preference method.";
}
type boolean;
default "true";
description
"The default behavior is that the DF election
procedure is triggered upon PE failures following
configured preference values. Such a mode is called
the 'revertive' mode. This mode may not be suitable in
some scenarios where, e.g., an operator may want to
maintain the new DF even if the former DF recovers.
Such a mode is called the 'non-revertive' mode.
The non-revertive mode can be configured by
setting 'revertive' leaf to 'false'.";
reference
"RFC 8584: Framework for Ethernet VPN Designated
Forwarder Election Extensibility,
Section 1.3.2";
}
leaf election-wait-time {
type uint32;
units "seconds";
default "3";
description
"Designated Forwarder Wait timer.";
reference
"RFC 8584: Framework for Ethernet VPN Designated
Forwarder Election Extensibility";
}
}
leaf split-horizon-filtering {
type boolean;
description
"Controls split-horizon filtering. It is enabled
when set to 'true'.
In order to achieve split-horizon filtering, every
Broadcast, Unknown Unicast, or Multicast (BUM)
packet originating from a non-DF PE is encapsulated
with an MPLS label that identifies the origin ES.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 8.3";
}
container pbb {
description
"Provider Backbone Bridging (PBB) parameters .";
reference
"IEEE 802.1ah: Provider Backbone Bridges";
leaf backbone-src-mac {
type yang:mac-address;
description
"The PEs connected to the same CE must share the
same Provider Backbone (B-MAC) address in
All-Active mode.";
reference
"RFC 7623: Provider Backbone Bridging Combined with
Ethernet VPN (PBB-EVPN), Section 6.2.1.1";
}
}
list member {
key "ne-id interface-id";
description
"Includes a list of ES members.";
leaf ne-id {
type string;
description
"An identifier of the network element where the ES
is configured within a service provider network.";
}
leaf interface-id {
type string;
description
"Identifier of a node interface.";
}
}
}
}
}
<CODE ENDS>
8.4. L2NM
The "ietf-l2vpn-ntw" YANG module uses types defined in [RFC6991],
[RFC9181], [RFC8294], and [IEEE802.1Qcp].
<CODE BEGINS> file "ietf-l2vpn-ntw@2022-09-20.yang"
module ietf-l2vpn-ntw {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-l2vpn-ntw";
prefix l2vpn-ntw;
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types, Section 4";
}
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types, Section 3";
}
import ietf-vpn-common {
prefix vpn-common;
reference
"RFC 9181: A Common YANG for Data Model for Layer 2
and Layer 3 VPNs";
}
import iana-bgp-l2-encaps {
prefix iana-bgp-l2-encaps;
reference
"RFC 9291: A YANG Network Data Model for Layer 2 VPNs.";
}
import iana-pseudowire-types {
prefix iana-pw-types;
reference
"RFC 9291: A YANG Network Data Model for Layer 2 VPNs.";
}
import ietf-ethernet-segment {
prefix l2vpn-es;
reference
"RFC 9291: A YANG Network Data Model for Layer 2 VPNs.";
}
import ietf-routing-types {
prefix rt-types;
reference
"RFC 8294: Common YANG Data Types for the Routing Area";
}
import ieee802-dot1q-types {
prefix dot1q-types;
reference
"IEEE Std 802.1Qcp: Bridges and Bridged Networks--
Amendment 30: YANG Data Model";
}
organization
"IETF OPSA (Operations and Management Area) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/opsawg/>
WG List: <mailto:opsawg@ietf.org>
Editor: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>
Editor: Samier Barguil
<mailto:samier.barguilgiraldo.ext@telefonica.com>
Author: Oscar Gonzalez de Dios
<mailto:oscar.gonzalezdedios@telefonica.com>";
description
"This YANG module defines a network model for Layer 2 VPN
services.
Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9291; see
the RFC itself for full legal notices.";
revision 2022-09-20 {
description
"Initial version.";
reference
"RFC 9291: A YANG Network Data Model for Layer 2 VPNs.";
}
/* Features */
feature oam-3ah {
description
"Indicates the support of OAM 802.3ah.";
reference
"IEEE Std 802.3ah: Media Access Control Parameters, Physical
Layers, and Management Parameters for
Subscriber Access Networks";
}
/* Identities */
identity evpn-service-interface-type {
description
"Base identity for EVPN service interface type.";
}
identity vlan-based-service-interface {
base evpn-service-interface-type;
description
"VLAN-based service interface.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 6.1";
}
identity vlan-bundle-service-interface {
base evpn-service-interface-type;
description
"VLAN bundle service interface.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 6.2";
}
identity vlan-aware-bundle-service-interface {
base evpn-service-interface-type;
description
"VLAN-aware bundle service interface.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN, Section 6.3";
}
identity mapping-type {
base vpn-common:multicast-gp-address-mapping;
description
"Identity for multicast group mapping type.";
}
identity loop-prevention-type {
description
"Identity of loop prevention.";
}
identity shut {
base loop-prevention-type;
description
"Shut protection type.";
}
identity trap {
base loop-prevention-type;
description
"Trap protection type.";
}
identity color-type {
description
"Identity of color types. A type is assigned to a service
frame to identify its QoS profile conformance.";
}
identity green {
base color-type;
description
"'green' color type. A service frame is 'green' if it is
conformant with the committed rate of the bandwidth profile.";
}
identity yellow {
base color-type;
description
"'yellow' color type. A service frame is 'yellow' if it
exceeds the committed rate but is conformant with the excess
rate of the bandwidth profile.";
}
identity red {
base color-type;
description
"'red' color type. A service frame is 'red' if it is not
conformant with both the committed and excess rates of the
bandwidth profile.";
}
identity t-ldp-pw-type {
description
"Identity for T-LDP pseudowire (PW) type.";
}
identity vpws-type {
base t-ldp-pw-type;
description
"Virtual Private Wire Service (VPWS) t-ldp-pw-type.";
reference
"RFC 4664: Framework for Layer 2 Virtual Private Networks
(L2VPNs), Section 3.3";
}
identity vpls-type {
base t-ldp-pw-type;
description
"Virtual Private LAN Service (VPLS) t-ldp-pw-type.";
reference
"RFC 4762: Virtual Private LAN Service (VPLS) Using
Label Distribution Protocol (LDP)
Signaling, Section 6.1";
}
identity hvpls {
base t-ldp-pw-type;
description
"Identity for Hierarchical Virtual Private LAN Service (H-VPLS)
t-ldp-pw-type.";
reference
"RFC 4762: Virtual Private LAN Service (VPLS) Using
Label Distribution Protocol (LDP)
Signaling, Section 10";
}
identity lacp-mode {
description
"Identity of the LACP mode.";
}
identity lacp-active {
base lacp-mode;
description
"LACP active mode.
This mode refers to the mode where auto-speed negotiation
is initiated followed by an establishment of an
Ethernet channel with the other end.";
}
identity lacp-passive {
base lacp-mode;
description
"LACP passive mode.
This mode refers to the LACP mode where an endpoint does
not initiate the negotiation but only responds to LACP
packets initiated by the other end (e.g., full duplex
or half duplex)";
}
identity pm-type {
description
"Identity for performance monitoring type.";
}
identity loss {
base pm-type;
description
"Loss measurement is the performance monitoring type.";
}
identity delay {
base pm-type;
description
"Delay measurement is the performance monitoring type.";
}
identity mac-learning-mode {
description
"Media Access Control (MAC) learning mode.";
}
identity data-plane {
base mac-learning-mode;
description
"User MAC addresses are learned through ARP broadcast.";
}
identity control-plane {
base mac-learning-mode;
description
"User MAC addresses are advertised through EVPN-BGP.";
}
identity mac-action {
description
"Base identity for a MAC action.";
}
identity drop {
base mac-action;
description
"Dropping a packet as the MAC action.";
}
identity flood {
base mac-action;
description
"Packet flooding as the MAC action.";
}
identity warning {
base mac-action;
description
"Log a warning message as the MAC action.";
}
identity precedence-type {
description
"Redundancy type. The service can be created
with primary and secondary signalization.";
}
identity primary {
base precedence-type;
description
"Identifies the main VPN network access.";
}
identity secondary {
base precedence-type;
description
"Identifies the secondary VPN network access.";
}
identity ldp-pw-type {
description
"Identity for allowed LDP-based pseudowire (PW) type.";
reference
"RFC 4762: Virtual Private LAN Service (VPLS) Using
Label Distribution Protocol (LDP)
Signaling, Section 6.1.1";
}
identity ethernet {
base ldp-pw-type;
description
"PW Ethernet type.";
}
identity ethernet-tagged {
base ldp-pw-type;
description
"PW Ethernet tagged mode type.";
}
/* Typedefs */
typedef ccm-priority-type {
type uint8 {
range "0..7";
}
description
"A 3-bit priority value to be used in the VLAN tag
if present in the transmitted frame. A larger value
indicates a higher priority.";
}
/* Groupings */
grouping cfm-802 {
description
"Grouping for 802.1ag Connectivity Fault Management (CFM)
attributes.";
reference
"IEEE Std 802.1ag: Virtual Bridged Local Area Networks
Amendment 5: Connectivity Fault Management";
leaf maid {
type string;
description
"Maintenance Association Identifier (MAID).";
}
leaf mep-id {
type uint32;
description
"Local Maintenance Entity Group End Point (MEP) ID.";
}
leaf mep-level {
type uint32;
description
"MEP level.";
}
leaf mep-up-down {
type enumeration {
enum up {
description
"MEP is up.";
}
enum down {
description
"MEP is down.";
}
}
default "up";
description
"MEP up/down.";
}
leaf remote-mep-id {
type uint32;
description
"Remote MEP ID.";
}
leaf cos-for-cfm-pdus {
type uint32;
description
"Class of Service for CFM PDUs.";
}
leaf ccm-interval {
type uint32;
units "milliseconds";
default "10000";
description
"Continuity Check Message (CCM) interval.";
}
leaf ccm-holdtime {
type uint32;
units "milliseconds";
default "35000";
description
"CCM hold time.";
}
leaf ccm-p-bits-pri {
type ccm-priority-type;
description
"The priority parameter for CCMs
transmitted by the MEP.";
}
}
grouping y-1731 {
description
"Grouping for Y-1731";
reference
"ITU-T G.8013/Y.1731: Operations, administration and
maintenance (OAM) functions and
mechanisms for Ethernet-based
networks";
list y-1731 {
key "maid";
description
"List of configured Y-1731 instances.";
leaf maid {
type string;
description
"MAID.";
}
leaf mep-id {
type uint32;
description
"Local MEP ID.";
}
leaf pm-type {
type identityref {
base pm-type;
}
default "delay";
description
"Performance monitor types.";
}
leaf remote-mep-id {
type uint32;
description
"Remote MEP ID.";
}
leaf message-period {
type uint32;
units "milliseconds";
default "10000";
description
"Defines the interval between OAM messages.";
}
leaf measurement-interval {
type uint32;
units "seconds";
description
"Specifies the measurement interval for statistics.";
}
leaf cos {
type uint32;
description
"Identifies the Class of Service.";
}
leaf loss-measurement {
type boolean;
default "false";
description
"Controls whether loss measurement is ('true') or
disabled ('false').";
}
leaf synthetic-loss-measurement {
type boolean;
default "false";
description
"Indicates whether synthetic loss measurement is
enabled ('true') or disabled ('false').";
}
container delay-measurement {
description
"Container for delay measurement.";
leaf enable-dm {
type boolean;
default "false";
description
"Controls whether delay measurement is enabled
('true') or disabled ('false').";
}
leaf two-way {
type boolean;
default "false";
description
"Whether delay measurement is two-way ('true') of one-
way ('false').";
}
}
leaf frame-size {
type uint32;
units "bytes";
description
"Indicates the frame size.";
}
leaf session-type {
type enumeration {
enum proactive {
description
"Proactive mode.";
}
enum on-demand {
description
"On-demand mode.";
}
}
default "on-demand";
description
"Specifies the session type.";
}
}
}
grouping parameters-profile {
description
"Container for per-service parameters.";
leaf local-autonomous-system {
type inet:as-number;
description
"Indicates a local AS Number (ASN).";
}
leaf svc-mtu {
type uint32;
units "bytes";
description
"Layer 2 service MTU. It is also known
as the maximum transmission unit or
maximum frame size.";
}
leaf ce-vlan-preservation {
type boolean;
description
"Preserves the CE VLAN ID from ingress to egress, i.e.,
the CE VLAN tag of the egress frame is identical to
that of the ingress frame that yielded this egress
service frame. If all-to-one bundling within a site
is enabled, then preservation applies to all ingress
service frames. If all-to-one bundling is disabled,
then preservation applies to tagged ingress service
frames having CE VLAN ID 1 through 4094.";
}
leaf ce-vlan-cos-preservation {
type boolean;
description
"CE VLAN CoS preservation. Priority Code Point (PCP) bits
in the CE VLAN tag of the egress frame are identical to
those of the ingress frame that yielded this egress
service frame.";
}
leaf control-word-negotiation {
type boolean;
description
"Controls whether control-word negotiation is enabled
(if set to true) or not (if set to false).";
reference
"RFC 8077: Pseudowire Setup and Maintenance
Using the Label Distribution Protocol (LDP),
Section 7";
}
container mac-policies {
description
"Container of MAC policies.";
container mac-addr-limit {
description
"Container of MAC address limit configuration.";
leaf limit-number {
type uint16;
description
"Maximum number of MAC addresses learned from
the customer for a single service instance.
The default value is '2' when this grouping
is used at the service level.";
}
leaf time-interval {
type uint32;
units "milliseconds";
description
"The aging time of the MAC address.
The default value is '300' when this grouping
is used at the service level.";
}
leaf action {
type identityref {
base mac-action;
}
description
"Specifies the action when the upper limit is
exceeded: drop the packet, flood the packet,
or log a warning message (without dropping
the packet).
The default value is 'warning' when this
grouping is used at the service level.";
}
}
container mac-loop-prevention {
description
"Container for MAC loop prevention.";
leaf window {
type uint32;
units "seconds";
description
"The time interval over which a MAC mobility event
is detected and checked.
The default value is '180' when this grouping
is used at the service level.";
}
leaf frequency {
type uint32;
description
"The number of times to detect MAC duplication, where
a 'duplicate MAC address' situation has occurred
within the 'window' time interval and the duplicate
MAC address has been added to a list of duplicate
MAC addresses.
The default value is '5' when this grouping is
called at the service level.";
}
leaf retry-timer {
type uint32;
units "seconds";
description
"The retry timer. When the retry timer expires,
the duplicate MAC address will be flushed from
the MAC-VRF.";
}
leaf protection-type {
type identityref {
base loop-prevention-type;
}
description
"Protection type.
The default value is 'trap' when this grouping
is used at the service level.";
}
}
}
container multicast {
if-feature "vpn-common:multicast";
description
"Multicast container.";
leaf enabled {
type boolean;
default "false";
description
"Enables multicast.";
}
container customer-tree-flavors {
description
"Type of trees used by the customer.";
leaf-list tree-flavor {
type identityref {
base vpn-common:multicast-tree-type;
}
description
"Type of multicast tree to be used.";
}
}
}
}
grouping bandwidth-parameters {
description
"A grouping for bandwidth parameters.";
leaf cir {
type uint64;
units "bps";
description
"Committed Information Rate (CIR). The maximum
number of bits that a port can receive or
send during one second over an
interface.";
}
leaf cbs {
type uint64;
units "bytes";
description
"Committed Burst Size (CBS). CBS controls the
bursty nature of the traffic. Traffic
that does not use the configured CIR
accumulates credits until the credits
reach the configured CBS.";
}
leaf eir {
type uint64;
units "bps";
description
"Excess Information Rate (EIR), i.e., excess
frame delivery allowed not subject to
a Service Level Agreement (SLA). The
traffic rate can be limited by EIR.";
}
leaf ebs {
type uint64;
units "bytes";
description
"Excess Burst Size (EBS). The bandwidth
available for burst traffic from the
EBS is subject to the amount of
bandwidth that is accumulated during
periods when traffic allocated by the
EIR policy is not used.";
}
leaf pir {
type uint64;
units "bps";
description
"Peak Information Rate (PIR), i.e., maximum
frame delivery allowed. It is equal
to or less than sum of CIR and EIR.";
}
leaf pbs {
type uint64;
units "bytes";
description
"Peak Burst Size (PBS).";
}
}
/* Main L2NM Container */
container l2vpn-ntw {
description
"Container for the L2NM.";
container vpn-profiles {
description
"Container for VPN profiles.";
uses vpn-common:vpn-profile-cfg;
}
container vpn-services {
description
"Container for L2VPN services.";
list vpn-service {
key "vpn-id";
description
"Container of a VPN service.";
uses vpn-common:vpn-description;
leaf parent-service-id {
type vpn-common:vpn-id;
description
"Pointer to the parent service that
triggered the L2NM.";
}
leaf vpn-type {
type identityref {
base vpn-common:service-type;
}
must "not(derived-from-or-self(current(), "
+ "'vpn-common:l3vpn'))" {
error-message "L3VPN is only applicable in L3NM.";
}
description
"Service type.";
}
leaf vpn-service-topology {
type identityref {
base vpn-common:vpn-topology;
}
description
"Defines service topology such as
any-to-any, hub-spoke, etc.";
}
leaf bgp-ad-enabled {
type boolean;
description
"Indicates whether BGP auto-discovery is enabled
or disabled.";
}
leaf signaling-type {
type identityref {
base vpn-common:vpn-signaling-type;
}
description
"VPN signaling type.";
}
container global-parameters-profiles {
description
"Container for a list of global parameters
profiles.";
list global-parameters-profile {
key "profile-id";
description
"List of global parameters profiles.";
leaf profile-id {
type string;
description
"The identifier of the global parameters profile.";
}
uses vpn-common:route-distinguisher;
uses vpn-common:vpn-route-targets;
uses parameters-profile;
}
}
container underlay-transport {
description
"Container for the underlay transport.";
uses vpn-common:underlay-transport;
}
uses vpn-common:service-status;
container vpn-nodes {
description
"Set of VPN nodes that are involved in the L2NM.";
list vpn-node {
key "vpn-node-id";
description
"Container of the VPN nodes.";
leaf vpn-node-id {
type vpn-common:vpn-id;
description
"Sets the identifier of the VPN node.";
}
leaf description {
type string;
description
"Textual description of a VPN node.";
}
leaf ne-id {
type string;
description
"An identifier of the network element where
the VPN node is deployed. This identifier
uniquely identifies the network element within
an administrative domain.";
}
leaf role {
type identityref {
base vpn-common:role;
}
default "vpn-common:any-to-any-role";
description
"Role of the VPN node in the VPN.";
}
leaf router-id {
type rt-types:router-id;
description
"A 32-bit number in the dotted-quad format that is
used to uniquely identify a node within an
Autonomous System (AS).";
}
container active-global-parameters-profiles {
description
"Container for a list of global parameters
profiles.";
list global-parameters-profile {
key "profile-id";
description
"List of active global parameters profiles.";
leaf profile-id {
type leafref {
path "../../../../../global-parameters-profiles"
+ "/global-parameters-profile/profile-id";
}
description
"Points to a global profile defined at the
service level.";
}
uses parameters-profile;
}
}
uses vpn-common:service-status;
container bgp-auto-discovery {
when "../../../bgp-ad-enabled = 'true'" {
description
"Only applies when BGP auto-discovery is enabled.";
}
description
"BGP is used for auto-discovery.";
choice bgp-type {
description
"Choice for the BGP type.";
case l2vpn-bgp {
description
"Container for BGP L2VPN.";
leaf vpn-id {
type vpn-common:vpn-id;
description
"VPN Identifier. This identifier serves to
unify components of a given VPN for the
sake of auto-discovery.";
reference
"RFC 6624: Layer 2 Virtual Private Networks
Using BGP for Auto-Discovery and
Signaling";
}
}
case evpn-bgp {
description
"EVPN case.";
leaf evpn-type {
type leafref {
path "../../../../vpn-type";
}
description
"EVPN type.";
}
leaf auto-rt-enable {
type boolean;
default "false";
description
"Enables/disabled RT auto-derivation based on
the ASN and Ethernet Tag ID.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN,
Section 7.10.1";
}
leaf auto-route-target {
when "../auto-rt-enable = 'true'" {
description
"Can only be used when auto-RD is enabled.";
}
type rt-types:route-target;
config false;
description
"The value of the auto-assigned RT.";
}
}
}
uses vpn-common:route-distinguisher;
uses vpn-common:vpn-route-targets;
}
container signaling-option {
description
"Container for the L2VPN signaling.";
leaf advertise-mtu {
type boolean;
description
"Controls whether MTU is advertised.";
reference
"RFC 4667: Layer 2 Virtual Private Network (L2VPN)
Extensions for Layer 2 Tunneling
Protocol (L2TP), Section 4.3";
}
leaf mtu-allow-mismatch {
type boolean;
description
"When set to true, it allows MTU mismatch.";
reference
"RFC 4667: Layer 2 Virtual Private Network (L2VPN)
Extensions for Layer 2 Tunneling
Protocol (L2TP), Section 4.3";
}
leaf signaling-type {
type leafref {
path "../../../../signaling-type";
}
description
"VPN signaling type.";
}
choice signaling-option {
description
"Choice for the signaling-option.";
case bgp {
description
"BGP is used as the signaling protocol.";
choice bgp-type {
description
"Choice for the BGP type.";
case l2vpn-bgp {
description
"Container for BGP L2VPN.";
leaf ce-range {
type uint16;
description
"Determines the number of remote CEs with
which a given CE can communicate in the
context of a VPN.";
reference
"RFC 6624: Layer 2 Virtual Private Networks
Using BGP for Auto-Discovery and
Signaling";
}
leaf pw-encapsulation-type {
type identityref {
base iana-bgp-l2-encaps:bgp-l2-encaps-type;
}
description
"PW encapsulation type.";
}
container vpls-instance {
when "derived-from-or-self(../../../../"
+ "vpn-type, 'vpn-common:vpls')" {
description
"Only applies for VPLS.";
}
description
"VPLS instance.";
leaf vpls-edge-id {
type uint16;
description
"VPLS Edge Identifier (VE ID). This is
used when the same VE ID is configured
for the PE.";
reference
"RFC 4761: Virtual Private LAN Service
(VPLS) Using BGP for Auto-
Discovery and Signaling,
Section 3.5";
}
leaf vpls-edge-id-range {
type uint16;
description
"Specifies the size of the range of
VE ID in a VPLS service. The range
controls the size of the label
block advertised in the context of
a VPLS instance.";
reference
"RFC 4761: Virtual Private LAN Service
(VPLS) Using BGP for Auto-
Discovery and Signaling";
}
}
}
case evpn-bgp {
description
"Used for EVPN.";
leaf evpn-type {
type leafref {
path "../../bgp-auto-discovery/evpn-type";
}
description
"EVPN type.";
}
leaf service-interface-type {
type identityref {
base evpn-service-interface-type;
}
description
"EVPN service interface type.";
}
container evpn-policies {
description
"Includes a set of EVPN policies such
as those related to handling MAC
addresses.";
leaf mac-learning-mode {
type identityref {
base mac-learning-mode;
}
description
"Indicates through which plane MAC
addresses are advertised.";
}
leaf ingress-replication {
type boolean;
description
"Controls whether ingress replication is
enabled ('true') or disabled
('false').";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN,
Section 8.3.1.1";
}
leaf p2mp-replication {
type boolean;
description
"Controls whether Point-to-Multipoint
(P2MP) replication is enabled ('true')
or disabled ('false')";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN,
Section 8.3.1.2";
}
container arp-proxy {
if-feature "vpn-common:ipv4";
description
"Top container for the ARP proxy.";
leaf enable {
type boolean;
default "false";
description
"Enables (when set to 'true') or
disables (when set to 'false')
the ARP proxy.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN,
Section 10";
}
leaf arp-suppression {
type boolean;
default "false";
description
"Enables (when set to 'true') or
disables (when set to 'false') ARP
suppression.";
reference
"RFC 7432: BGP MPLS-Based Ethernet
VPN";
}
leaf ip-mobility-threshold {
type uint16;
description
"It is possible for a given host (as
defined by its IP address) to move
from one ES to another. The
IP mobility threshold specifies the
number of IP mobility events
that are detected for a given IP
address within the
detection-threshold before it
is identified as a duplicate IP
address. Once the detection threshold
is reached, updates for the IP address
are suppressed.";
}
leaf duplicate-ip-detection-interval {
type uint16;
units "seconds";
description
"The time interval used in detecting a
duplicate IP address. Duplicate IP
address detection number of host moves
are allowed within this interval
period.";
}
}
container nd-proxy {
if-feature "vpn-common:ipv6";
description
"Top container for the ND proxy.";
leaf enable {
type boolean;
default "false";
description
"Enables (when set to 'true') or
disables (when set to 'false') the
ND proxy.";
reference
"RFC 7432: BGP MPLS-Based Ethernet VPN,
Section 10";
}
leaf nd-suppression {
type boolean;
default "false";
description
"Enables (when set to 'true') or
disables (when set to 'false')
Neighbor Discovery (ND) message
suppression.
ND suppression is a technique that
is used to reduce the amount of ND
packets flooding within individual
segments between hosts
connected to the same logical
switch.";
}
leaf ip-mobility-threshold {
type uint16;
description
"It is possible for a given host (as
defined by its IP address) to move
from one ES to another. The
IP mobility threshold specifies the
number of IP mobility events
that are detected for a given IP
address within the
detection-threshold before it
is identified as a duplicate IP
address.
Once the detection threshold is
reached, updates for the IP address
are suppressed.";
}
leaf duplicate-ip-detection-interval {
type uint16;
units "seconds";
description
"The time interval used in detecting a
duplicate IP address. Duplicate IP
address detection number of host moves
are allowed within this interval
period.";
}
}
leaf underlay-multicast {
type boolean;
default "false";
description
"Enables (when set to 'true') or disables
(when set to 'false') underlay
multicast.";
}
leaf flood-unknown-unicast-suppression {
type boolean;
default "false";
description
"Enables (when set to 'true') or disables
(when set to 'false') unknown flood
unicast suppression.";
}
leaf vpws-vlan-aware {
type boolean;
default "false";
description
"Enables (when set to 'true') or disables
(when set to 'false') VPWS VLAN-aware
service for the EVPN instance.";
}
container bum-management {
description
"Broadcast-unknown-unicast-multicast
management.";
leaf discard-broadcast {
type boolean;
default "false";
description
"Discards broadcast, when enabled.";
}
leaf discard-unknown-multicast {
type boolean;
default "false";
description
"Discards unknown multicast, when
enabled.";
}
leaf discard-unknown-unicast {
type boolean;
default "false";
description
"Discards unknown unicast, when
enabled.";
}
}
container pbb {
when "derived-from-or-self("
+ "../../evpn-type, 'pbb-evpn')" {
description
"Only applies for PBB EVPN.";
}
description
"PBB parameters container.";
reference
"IEEE 802.1ah: Provider Backbone
Bridges";
leaf backbone-src-mac {
type yang:mac-address;
description
"Includes Provider Backbone MAC (B-MAC)
address.";
reference
"RFC 7623: Provider Backbone Bridging
Combined with Ethernet VPN
(PBB-EVPN), Section 8.1";
}
}
}
}
}
}
container ldp-or-l2tp {
description
"Container for LDP or L2TP-signaled PWs
choice.";
leaf agi {
type rt-types:route-distinguisher;
description
"Attachment Group Identifier. Also, called
VPLS-Id.";
reference
"RFC 4667: Layer 2 Virtual Private Network
(L2VPN) Extensions for Layer 2
Tunneling Protocol (L2TP),
Section 4.3
RFC 4762: Virtual Private LAN Service (VPLS)
Using Label Distribution Protocol
(LDP) Signaling, Section 6.1.1";
}
leaf saii {
type uint32;
description
"Source Attachment Individual Identifier
(SAII).";
reference
"RFC 4667: Layer 2 Virtual Private Network
(L2VPN) Extensions for Layer 2
Tunneling Protocol (L2TP),
Section 3";
}
list remote-targets {
key "taii";
description
"List of allowed target Attachment Individual
Identifiers (AIIs) and peers.";
reference
"RFC 4667: Layer 2 Virtual Private Network
(L2VPN) Extensions for Layer 2
Tunneling Protocol (L2TP),
Section 5";
leaf taii {
type uint32;
description
"Target Attachment Individual Identifier.";
reference
"RFC 4667: Layer 2 Virtual Private Network
(L2VPN) Extensions for Layer 2
Tunneling Protocol (L2TP),
Section 3";
}
leaf peer-addr {
type inet:ip-address;
description
"Indicates the peer forwarder's IP address.";
}
}
choice ldp-or-l2tp {
description
"Choice of LDP or L2TP-signaled PWs.";
case ldp {
description
"Container for T-LDP PW configurations.";
leaf t-ldp-pw-type {
type identityref {
base t-ldp-pw-type;
}
description
"T-LDP PW type.";
}
leaf pw-type {
type identityref {
base ldp-pw-type;
}
description
"PW encapsulation type.";
reference
"RFC 4762: Virtual Private LAN Service
(VPLS) Using Label Distribution
Protocol (LDP) Signaling,
Section 6.1.1";
}
leaf pw-description {
type string;
description
"Includes a human-readable description
of the interface. This may be used when
communicating with a remote peer.";
reference
"RFC 4762: Virtual Private LAN Service
(VPLS) Using Label Distribution
Protocol (LDP) Signaling,
Section 6.1.1";
}
leaf mac-addr-withdraw {
type boolean;
description
"If set to 'true', then MAC address
withdrawal is enabled. If 'false',
then MAC address withdrawal is
disabled.";
reference
"RFC 4762: Virtual Private LAN Service
(VPLS) Using Label Distribution
Protocol (LDP) Signaling,
Section 6.2";
}
list pw-peer-list {
key "peer-addr vc-id";
description
"List of attachment circuit (AC) and PW
bindings.";
leaf peer-addr {
type inet:ip-address;
description
"Indicates the peer's IP address.";
}
leaf vc-id {
type string;
description
"VC label used to identify a PW.";
}
leaf pw-priority {
type uint32;
description
"Defines the priority for the PW.
The higher the pw-priority value, the
higher the preference of the PW will
be.";
}
}
container qinq {
when "derived-from-or-self("
+ "../t-ldp-pw-type, 'hvpls')" {
description
"Only applies when T-LDP PW type
is H-VPLS.";
}
description
"Container for QinQ.";
leaf s-tag {
type dot1q-types:vlanid;
mandatory true;
description
"S-TAG.";
}
leaf c-tag {
type dot1q-types:vlanid;
mandatory true;
description
"C-TAG.";
}
}
}
case l2tp {
description
"Container for L2TP PWs.";
leaf router-id {
type rt-types:router-id;
description
"A 32-bit number in the dotted-quad format
that is used to uniquely identify a node
within a service provider network.";
reference
"RFC 4667: Layer 2 Virtual Private Network
(L2VPN) Extensions for Layer 2
Tunneling Protocol (L2TP),
Section 4.2";
}
leaf pseudowire-type {
type identityref {
base iana-pw-types:iana-pw-types;
}
description
"Encapsulation type.";
reference
"RFC 4667: Layer 2 Virtual Private Network
(L2VPN) Extensions for Layer 2
Tunneling Protocol (L2TP),
Section 4.2";
}
}
}
}
}
}
container vpn-network-accesses {
description
"Main container for VPN network accesses.";
list vpn-network-access {
key "id";
description
"List of VPN network accesses.";
leaf id {
type vpn-common:vpn-id;
description
"Identifier of the network access.";
}
leaf description {
type string;
description
"A textual description of the VPN network
access.";
}
leaf interface-id {
type string;
description
"Refers to a physical or logical interface.";
}
leaf active-vpn-node-profile {
type leafref {
path "../../.."
+ "/active-global-parameters-profiles"
+ "/global-parameters-profile/profile-id";
}
description
"An identifier of an active VPN instance
profile.";
}
uses vpn-common:service-status;
container connection {
description
"Container for the bearer and AC.";
leaf l2-termination-point {
type string;
description
"Specifies a reference to a local Layer 2
termination point such as a Layer 2
sub-interface.";
}
leaf local-bridge-reference {
type string;
description
"Specifies a local bridge reference to
accommodate, for example, implementations
that require internal bridging.
A reference may be a local bridge domain.";
}
leaf bearer-reference {
if-feature "vpn-common:bearer-reference";
type string;
description
"This is an internal reference for the service
provider to identify the bearer associated
with this VPN.";
}
container encapsulation {
description
"Container for Layer 2 encapsulation.";
leaf encap-type {
type identityref {
base vpn-common:encapsulation-type;
}
default "vpn-common:priority-tagged";
description
"Tagged interface type. By default, the
type of the tagged interface is
'priority-tagged'.";
}
container dot1q {
when "derived-from-or-self(../encap-type, "
+ "'vpn-common:dot1q')" {
description
"Only applies when the type of the
tagged interface is 'dot1q'.";
}
description
"Tagged interface.";
leaf tag-type {
type identityref {
base vpn-common:tag-type;
}
default "vpn-common:c-vlan";
description
"Tag type. By default, the tag type is
'c-vlan'.";
}
leaf cvlan-id {
type dot1q-types:vlanid;
description
"VLAN identifier.";
}
container tag-operations {
description
"Sets the tag manipulation policy for this
VPN network access. It defines a set of
tag manipulations that allow for the
insertion, removal, or rewriting
of 802.1Q VLAN tags. These operations are
indicated for the CE-PE direction.
By default, tag operations are symmetric.
As such, the reverse tag operation is
assumed on the PE-CE direction.";
choice op-choice {
description
"Selects the tag rewriting policy for a
VPN network access.";
leaf pop {
type empty;
description
"Pop the outer tag.";
}
leaf push {
type empty;
description
"Pushes one or two tags defined by the
tag-1 and tag-2 leaves. It is
assumed that, absent any policy, the
default value of 0 will be used for
the PCP setting.";
}
leaf translate {
type empty;
description
"Translates the outer tag to one or two
tags. PCP bits are preserved.";
}
}
leaf tag-1 {
when 'not(../pop)';
type dot1q-types:vlanid;
description
"A first tag to be used for push or
translate operations. This tag will be
used as the outermost tag as a result
of the tag operation.";
}
leaf tag-1-type {
type dot1q-types:dot1q-tag-type;
default "dot1q-types:s-vlan";
description
"Specifies a specific 802.1Q tag type
of tag-1.";
}
leaf tag-2 {
when '(../translate)';
type dot1q-types:vlanid;
description
"A second tag to be used for
translation.";
}
leaf tag-2-type {
type dot1q-types:dot1q-tag-type;
default "dot1q-types:c-vlan";
description
"Specifies a specific 802.1Q tag type
of tag-2.";
}
}
}
container priority-tagged {
when "derived-from-or-self(../encap-type, "
+ "'vpn-common:priority-tagged')" {
description
"Only applies when the type of the
tagged interface is 'priority-tagged'.";
}
description
"Priority tagged container.";
leaf tag-type {
type identityref {
base vpn-common:tag-type;
}
default "vpn-common:c-vlan";
description
"Tag type. By default, the tag type is
'c-vlan'.";
}
}
container qinq {
when "derived-from-or-self(../encap-type, "
+ "'vpn-common:qinq')" {
description
"Only applies when the type of the tagged
interface is 'QinQ'.";
}
description
"Includes QinQ parameters.";
leaf tag-type {
type identityref {
base vpn-common:tag-type;
}
default "vpn-common:s-c-vlan";
description
"Tag type. By default, the tag type is
's-c-vlan'.";
}
leaf svlan-id {
type dot1q-types:vlanid;
mandatory true;
description
"S-VLAN identifier.";
}
leaf cvlan-id {
type dot1q-types:vlanid;
mandatory true;
description
"C-VLAN identifier.";
}
container tag-operations {
description
"Sets the tag manipulation policy for this
VPN network access. It defines a set of
tag manipulations that allow for the
insertion, removal, or rewriting
of 802.1Q VLAN tags. These operations are
indicated for the CE-PE direction.
By default, tag operations are symmetric.
As such, the reverse tag operation is
assumed on the PE-CE direction.";
choice op-choice {
description
"Selects the tag rewriting policy for a
VPN network access.";
leaf pop {
type uint8 {
range "1|2";
}
description
"Pops one or two tags as a function
of the indicated pop value.";
}
leaf push {
type empty;
description
"Pushes one or two tags defined by the
tag-1 and tag-2 leaves. It is
assumed that, absent any policy, the
default value of 0 will be used for
PCP setting.";
}
leaf translate {
type uint8 {
range "1|2";
}
description
"Translates one or two outer tags. PCP
bits are preserved.
The following operations are
supported:
- translate 1 with tag-1 leaf is
provided: only the outermost tag is
translated to the value in tag-1.
- translate 2 with both tag-1 and
tag-2 leaves are provided: both
outer and inner tags are translated
to the values in tag-1 and tag-2,
respectively.
- translate 2 with tag-1 leaf is
provided: the outer tag is popped
while the inner tag is translated
to the value in tag-1.";
}
}
leaf tag-1 {
when 'not(../pop)';
type dot1q-types:vlanid;
description
"A first tag to be used for push or
translate operations. This tag will be
used as the outermost tag as a result
of the tag operation.";
}
leaf tag-1-type {
type dot1q-types:dot1q-tag-type;
default "dot1q-types:s-vlan";
description
"Specifies a specific 802.1Q tag type
of tag-1.";
}
leaf tag-2 {
when 'not(../pop)';
type dot1q-types:vlanid;
description
"A second tag to be used for push or
translate operations.";
}
leaf tag-2-type {
type dot1q-types:dot1q-tag-type;
default "dot1q-types:c-vlan";
description
"Specifies a specific 802.1Q tag type
of tag-2.";
}
}
}
}
container lag-interface {
if-feature "vpn-common:lag-interface";
description
"Container of LAG interface attributes
configuration.";
leaf lag-interface-id {
type string;
description
"LAG interface identifier.";
}
container lacp {
description
"Container for LACP.";
leaf lacp-state {
type boolean;
default "false";
description
"Controls whether LACP is enabled.";
}
leaf mode {
type identityref {
base lacp-mode;
}
description
"Indicates the LACP mode.";
}
leaf speed {
type uint32;
units "mbps";
default "10";
description
"LACP speed. This low default value
is inherited from the L2SM.";
}
leaf mini-link-num {
type uint32;
description
"Defines the minimum number of links that
must be active before the aggregating
link is put into service.";
}
leaf system-id {
type yang:mac-address;
description
"Indicates the System ID used by LACP.";
}
leaf admin-key {
type uint16;
description
"Indicates the value of the key used for
the aggregate interface.";
}
leaf system-priority {
type uint16 {
range "0..65535";
}
default "32768";
description
"Indicates the LACP priority for the
system.";
}
container member-link-list {
description
"Container of Member link list.";
list member-link {
key "name";
description
"Member link.";
leaf name {
type string;
description
"Member link name.";
}
leaf speed {
type uint32;
units "mbps";
default "10";
description
"Port speed.";
}
leaf mode {
type identityref {
base vpn-common:neg-mode;
}
description
"Negotiation mode.";
}
leaf link-mtu {
type uint32;
units "bytes";
description
"Link MTU size.";
}
container oam-802.3ah-link {
if-feature "oam-3ah";
description
"Container for the OAM 802.3ah
link.";
leaf enable {
type boolean;
default "false";
description
"Indicates support of the OAM
802.3ah link.";
}
}
}
}
leaf flow-control {
type boolean;
default "false";
description
"Indicates whether flow control is
supported.";
}
leaf lldp {
type boolean;
default "false";
description
"Indicates whether the Link Layer
Discovery Protocol (LLDP) is
supported.";
}
}
container split-horizon {
description
"Configuration with Split Horizon enabled.";
leaf group-name {
type string;
description
"Group name of the Split Horizon.";
}
}
}
}
choice signaling-option {
description
"Choice for the signaling-option.";
case bgp {
description
"BGP is used as the signaling protocol.";
choice bgp-type {
description
"Choice for the BGP type.";
case l2vpn-bgp {
description
"Container for BGP L2VPN.";
leaf ce-id {
type uint16;
description
"Identifies the CE within the VPN.";
reference
"RFC 6624: Layer 2 Virtual Private
Networks Using BGP for
Auto-Discovery and
Signaling";
}
leaf remote-ce-id {
type uint16;
description
"Indicates the identifier of the remote
CE.";
}
container vpls-instance {
when "derived-from-or-self(../../../../../"
+ "vpn-type, 'vpn-common:vpls')" {
description
"Only applies for VPLS.";
}
description
"VPLS instance.";
leaf vpls-edge-id {
type uint16;
description
"VPLS Edge Identifier (VE ID).";
reference
"RFC 4761: Virtual Private LAN Service
(VPLS) Using BGP for Auto-
Discovery and Signaling,
Section 3.2.1";
}
}
}
case evpn-bgp {
description
"Used for EVPN.";
leaf df-preference {
type uint16;
default "32767";
description
"Defines a 2-octet value that indicates
the PE preference to become the DF in
the ES.
The preference value is only applicable
to the preference-based method.";
reference
"RFC 8584: Framework for Ethernet VPN
Designated Forwarder Election
Extensibility";
}
container vpws-service-instance {
when "derived-from-or-self(../../../../../"
+ "vpn-type, 'vpn-common:vpws-evpn')" {
description
"Only applies for EVPN-VPWS.";
}
description
"Local and remote VPWS Service Instance
(VSI)";
reference
"RFC 8214: Virtual Private Wire Service
Support in Ethernet VPN";
choice local-vsi-choice {
description
"Choices for assigning local VSI.";
case directly-assigned {
description
"Explicitly assign a local VSI.";
leaf local-vpws-service-instance {
type uint32 {
range "1..16777215";
}
description
"Indicates the assigned local
VSI.";
}
}
case auto-assigned {
description
"The local VSI is auto-assigned.";
container local-vsi-auto {
description
"The local VSI is auto-assigned.";
choice auto-mode {
description
"Indicates the auto-assignment
mode of local VSI. VSI can be
automatically assigned either
with or without indicating a
pool from which the VSI
should be taken.
For both cases, the server
will auto-assign a local VSI
value and use that value.";
case from-pool {
leaf vsi-pool-name {
type string;
description
"The auto-assignment will be
made from this pool.";
}
}
case full-auto {
leaf auto {
type empty;
description
"Indicates that a local VSI
is fully auto-assigned.";
}
}
}
leaf auto-local-vsi {
type uint32 {
range "1..16777215";
}
config false;
description
"The value of the auto-assigned
local VSI.";
}
}
}
}
choice remote-vsi-choice {
description
"Choice for assigning the remote VSI.";
case directly-assigned {
description
"Explicitly assign a remote VSI.";
leaf remote-vpws-service-instance {
type uint32 {
range "1..16777215";
}
description
"Indicates the value of the remote
VSI.";
}
}
case auto-assigned {
description
"The remote VSI is auto-assigned.";
container remote-vsi-auto {
description
"The remote VSI is auto-assigned.";
choice auto-mode {
description
"Indicates the auto-assignment
mode of remote VSI. VSI can be
automatically assigned either
with or without indicating a
pool from which the VSI
should be taken.
For both cases, the server
will auto-assign a remote VSI
value and use that value.";
case from-pool {
leaf vsi-pool-name {
type string;
description
"The auto-assignment will be
made from this pool.";
}
}
case full-auto {
leaf auto {
type empty;
description
"Indicates that a remote VSI
is fully auto-assigned.";
}
}
}
leaf auto-remote-vsi {
type uint32 {
range "1..16777215";
}
config false;
description
"The value of the auto-assigned
remote VSI.";
}
}
}
}
}
}
}
}
}
list group {
key "group-id";
description
"List of group-ids.";
leaf group-id {
type string;
description
"Indicates the group-id to which the network
access belongs to.";
}
leaf precedence {
type identityref {
base precedence-type;
}
description
"Defines service redundancy in transport
network.";
}
leaf ethernet-segment-identifier {
type l2vpn-es:es-ref;
description
"Reference to the ESI associated with the VPN
network access.";
}
}
container ethernet-service-oam {
description
"Container for Ethernet service OAM.";
leaf md-name {
type string;
description
"Maintenance domain name.";
}
leaf md-level {
type uint8;
description
"Maintenance domain level.";
}
container cfm-802.1-ag {
description
"Container of 802.1ag CFM configurations.";
list n2-uni-c {
key "maid";
description
"List of UNI-N to UNI-C.";
uses cfm-802;
}
list n2-uni-n {
key "maid";
description
"List of UNI-N to UNI-N.";
uses cfm-802;
}
}
uses y-1731;
}
container service {
description
"Container for service";
leaf mtu {
type uint32;
units "bytes";
description
"Layer 2 MTU; it is also known as the maximum
transmission unit or maximum frame size.";
}
container svc-pe-to-ce-bandwidth {
if-feature "vpn-common:inbound-bw";
description
"From the customer site's perspective, the
service inbound bandwidth of the connection
or download bandwidth from the service
provider to the site. Note that the L2SM uses
'input-bandwidth' to refer to the same
concept.";
list pe-to-ce-bandwidth {
key "bw-type";
description
"List for PE-to-CE bandwidth data nodes.";
leaf bw-type {
type identityref {
base vpn-common:bw-type;
}
description
"Indicates the bandwidth type.";
}
choice type {
description
"Choice based upon bandwidth type.";
case per-cos {
description
"Bandwidth per CoS.";
list cos {
key "cos-id";
description
"List of Class of Services.";
leaf cos-id {
type uint8;
description
"Identifier of the CoS, indicated by
a Differentiated Services Code Point
(DSCP) or a CE-CLAN CoS (802.1p)
value in the service frame.";
reference
"IEEE Std 802.1Q: Bridges and Bridged
Networks";
}
uses bandwidth-parameters;
}
}
case other {
description
"Other bandwidth types.";
uses bandwidth-parameters;
}
}
}
}
container svc-ce-to-pe-bandwidth {
if-feature "vpn-common:outbound-bw";
description
"From the customer site's perspective,
the service outbound bandwidth of the
connection or upload bandwidth from
the CE to the PE. Note that the L2SM uses
'output-bandwidth' to refer to the same
concept.";
list ce-to-pe-bandwidth {
key "bw-type";
description
"List for CE-to-PE bandwidth.";
leaf bw-type {
type identityref {
base vpn-common:bw-type;
}
description
"Indicates the bandwidth type.";
}
choice type {
description
"Choice based upon bandwidth type.";
case per-cos {
description
"Bandwidth per CoS.";
list cos {
key "cos-id";
description
"List of Class of Services.";
leaf cos-id {
type uint8;
description
"Identifier of the CoS, indicated by
DSCP or a CE-CLAN CoS (802.1p) value
in the service frame.";
reference
"IEEE Std 802.1Q: Bridges and Bridged
Networks";
}
uses bandwidth-parameters;
}
}
case other {
description
"Other non CoS-aware bandwidth types.";
uses bandwidth-parameters;
}
}
}
}
container qos {
if-feature "vpn-common:qos";
description
"QoS configuration.";
container qos-classification-policy {
description
"Configuration of the traffic classification
policy.";
list rule {
key "id";
ordered-by user;
description
"List of classification rules.";
leaf id {
type string;
description
"A description identifying the QoS
classification policy rule.";
}
choice match-type {
default "match-flow";
description
"Choice for classification.";
case match-flow {
container match-flow {
description
"Describes flow-matching criteria.";
leaf dscp {
type inet:dscp;
description
"DSCP value.";
}
leaf dot1q {
type uint16;
description
"802.1Q matching. It is a VLAN tag
added into a frame.";
reference
"IEEE Std 802.1Q: Bridges and
Bridged
Networks";
}
leaf pcp {
type uint8 {
range "0..7";
}
description
"Priority Code Point (PCP) value.";
}
leaf src-mac-address {
type yang:mac-address;
description
"Source MAC address.";
}
leaf dst-mac-address {
type yang:mac-address;
description
"Destination MAC address.";
}
leaf color-type {
type identityref {
base color-type;
}
description
"Color type.";
}
leaf any {
type empty;
description
"Allows all.";
}
}
}
case match-application {
leaf match-application {
type identityref {
base vpn-common:customer-application;
}
description
"Defines the application to match.";
}
}
}
leaf target-class-id {
type string;
description
"Identification of the CoS.
This identifier is internal to the
administration.";
}
}
}
container qos-profile {
description
"QoS profile configuration.";
list qos-profile {
key "profile";
description
"QoS profile.
Can be a standard or customized
profile.";
leaf profile {
type leafref {
path "/l2vpn-ntw/vpn-profiles"
+ "/valid-provider-identifiers"
+ "/qos-profile-identifier/id";
}
description
"QoS profile to be used.";
}
leaf direction {
type identityref {
base vpn-common:qos-profile-direction;
}
default "vpn-common:both";
description
"The direction to which the QoS profile
is applied.";
}
}
}
}
container mac-policies {
description
"Container for MAC-related policies.";
list access-control-list {
key "name";
description
"Container for the Access Control List
(ACL).";
leaf name {
type string;
description
"Specifies the name of the ACL.";
}
leaf-list src-mac-address {
type yang:mac-address;
description
"Specifies the source MAC address.";
}
leaf-list src-mac-address-mask {
type yang:mac-address;
description
"Specifies the source MAC address mask.";
}
leaf-list dst-mac-address {
type yang:mac-address;
description
"Specifies the destination MAC address.";
}
leaf-list dst-mac-address-mask {
type yang:mac-address;
description
"Specifies the destination MAC address
mask.";
}
leaf action {
type identityref {
base mac-action;
}
default "drop";
description
"Specifies the filtering action.";
}
leaf rate-limit {
when "derived-from-or-self(../action, "
+ "'flood')" {
description
"Rate-limit is valid only when the action
is to accept the matching frame.";
}
type decimal64 {
fraction-digits 2;
}
units "bytes per second";
description
"Specifies how to rate-limit the traffic.";
}
}
container mac-loop-prevention {
description
"Container of MAC loop prevention.";
leaf window {
type uint32;
units "seconds";
default "180";
description
"The timer when a MAC mobility event is
detected.";
}
leaf frequency {
type uint32;
default "5";
description
"The number of times to detect MAC
duplication, where a 'duplicate MAC
address' situation has occurred and
the duplicate MAC address has been
added to a list of duplicate MAC
addresses.";
}
leaf retry-timer {
type uint32;
units "seconds";
description
"The retry timer. When the retry timer
expires, the duplicate MAC address will
be flushed from the MAC-VRF.";
}
leaf protection-type {
type identityref {
base loop-prevention-type;
}
default "trap";
description
"Protection type";
}
}
container mac-addr-limit {
description
"Container of MAC-Addr limit
configurations.";
leaf limit-number {
type uint16;
default "2";
description
"Maximum number of MAC addresses learned
from the subscriber for a single service
instance.";
}
leaf time-interval {
type uint32;
units "milliseconds";
default "300";
description
"The aging time of the MAC address.";
}
leaf action {
type identityref {
base mac-action;
}
default "warning";
description
"Specifies the action when the upper limit
is exceeded: drop the packet, flood the
packet, or log a warning message (without
dropping the packet).";
}
}
}
container broadcast-unknown-unicast-multicast {
description
"Container of broadcast, unknown unicast, or
multicast configurations.";
leaf multicast-site-type {
type enumeration {
enum receiver-only {
description
"The site only has receivers.";
}
enum source-only {
description
"The site only has sources.";
}
enum source-receiver {
description
"The site has both sources and
receivers.";
}
}
default "source-receiver";
description
"Type of the multicast site.";
}
list multicast-gp-address-mapping {
key "id";
description
"List of port-to-group mappings.";
leaf id {
type uint16;
description
"Unique identifier for the mapping.";
}
leaf vlan-id {
type uint32;
mandatory true;
description
"The VLAN ID of the multicast group.";
}
leaf mac-gp-address {
type yang:mac-address;
mandatory true;
description
"The MAC address of the multicast group.";
}
leaf port-lag-number {
type uint32;
description
"The port/LAG belonging to the multicast
group.";
}
}
leaf bum-overall-rate {
type uint64;
units "bps";
description
"Overall rate for BUM.";
}
}
}
}
}
}
}
}
}
}
}
<CODE ENDS>
9. Security Considerations
The YANG modules specified in this document define schemas for data
that are designed to be accessed via network management protocols
such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF
layer is the secure transport layer, and the mandatory-to-implement
secure transport is Secure Shell (SSH) [RFC6242]. The lowest
RESTCONF layer is HTTPS, and the mandatory-to-implement secure
transport is TLS [RFC8446].
The Network Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.
There are a number of data nodes defined in the "ietf-l2vpn-ntw" and
"ietf-ethernet-segment" YANG modules that are writable/creatable/
deletable (i.e., config true, which is the default). These data
nodes may be considered sensitive or vulnerable in some network
environments. Write operations (e.g., edit-config) and delete
operations to these data nodes without proper protection or
authentication can have a negative effect on network operations.
These are the subtrees and data nodes and their sensitivity/
vulnerability in the "ietf-l2vpn-ntw" and "ietf-ethernet-segment"
modules:
'vpn-profiles': This container includes a set of sensitive data that
influences how the L3VPN service is delivered. For example, an
attacker who has access to these data nodes may be able to
manipulate routing policies, QoS policies, or encryption
properties. These data nodes are defined with "nacm:default-deny-
write" tagging [RFC9181].
'ethernet-segments' and 'vpn-services': An attacker who is able to
access network nodes can undertake various attacks, such as
deleting a running L2VPN service, interrupting all the traffic of
a client. In addition, an attacker may modify the attributes of a
running service (e.g., QoS, bandwidth) or an ES, leading to
malfunctioning of the service and therefore to SLA violations. In
addition, an attacker could attempt to create an L2VPN service,
add a new network access, or intercept/redirect the traffic to a
non-authorized node. In addition to using NACM to prevent
authorized access, such activity can be detected by adequately
monitoring and tracking network configuration changes.
Some of the readable data nodes in the "ietf-l2vpn-ntw" YANG module
may be considered sensitive or vulnerable in some network
environments. It is thus important to control read access (e.g., via
get, get-config, or notification) to these data nodes. These are the
subtrees and data nodes and their sensitivity/vulnerability:
'customer-name' and 'ip-connection': An attacker can retrieve
privacy-related information that can be used to track a customer.
Disclosing such information may be considered a violation of the
customer-provider trust relationship.
Both "iana-bgp-l2-encaps" and "iana-pseudowire-types" modules define
YANG identities for encapsulation/pseudowires types. These
identities are intended to be referenced by other YANG modules and by
themselves do not expose any nodes that are writable or contain read-
only state or RPCs.
10. IANA Considerations
10.1. Registering YANG Modules
IANA has registered the following URIs in the "ns" subregistry within
the "IETF XML Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:iana-bgp-l2-encaps
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:iana-pseudowire-types
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-ethernet-segment
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-l2vpn-ntw
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
IANA has registered the following YANG modules in the "YANG Module
Names" subregistry [RFC6020] within the "YANG Parameters" registry:
name: iana-bgp-l2-encaps
namespace: urn:ietf:params:xml:ns:yang:iana-bgp-l2-encaps
maintained by IANA: Y
prefix: iana-bgp-l2-encaps
reference: RFC 9291
name: iana-pseudowire-types
namespace: urn:ietf:params:xml:ns:yang:iana-pseudowire-types
maintained by IANA: Y
prefix: iana-pw-types
reference: RFC 9291
name: ietf-ethernet-segment
namespace: urn:ietf:params:xml:ns:yang:ietf-ethernet-segment
maintained by IANA: N
prefix: l2vpn-es
reference: RFC 9291
name: ietf-l2vpn-ntw
namespace: urn:ietf:params:xml:ns:yang:ietf-l2vpn-ntw
maintained by IANA: N
prefix: l2vpn-ntw
reference: RFC 9291
10.2. BGP Layer 2 Encapsulation Types
This document defines the initial version of the IANA-maintained
"iana-bgp-l2-encaps" YANG module (Section 8.1). IANA has added this
note to the "YANG Module Names" registry:
BGP Layer 2 encapsulation types must not be directly added to the
"iana-bgp-l2-encaps" YANG module. They must instead be added to
the "BGP Layer 2 Encapsulation Types" registry at [IANA-BGP-L2].
When a Layer 2 encapsulation type is added to the "BGP Layer 2
Encapsulation Types" registry, a new "identity" statement must be
added to the "iana-bgp-l2-encaps" YANG module. The name of the
"identity" is a lower-case version of the encapsulation name provided
in the description. The "identity" statement should have the
following sub-statements defined:
"base": Contains 'bgp-l2-encaps-type'.
"description": Replicates the description from the registry.
"reference": Replicates the reference from the registry with the
title of the document added.
Unassigned or reserved values are not present in the module.
When the "iana-bgp-l2-encaps" YANG module is updated, a new
"revision" statement with a unique revision date must be added in
front of the existing revision statements.
IANA has added this note to [IANA-BGP-L2]:
When this registry is modified, the YANG module "iana-bgp-
l2-encaps" must be updated as defined in RFC 9291.
10.3. Pseudowire Types
This document defines the initial version of the IANA-maintained
"iana-pseudowire-types" YANG module (Section 8.2). IANA has added
this note to the "YANG Module Names" registry:
MPLS pseudowire types must not be directly added to the "iana-
pseudowire-types" YANG module. They must instead be added to the
"MPLS Pseudowire Types" registry at [IANA-PW-TYPES].
When a pseudowire type is added to the "iana-pseudowire-types"
registry, a new "identity" statement must be added to the "iana-
pseudowire-types" YANG module. The name of the "identity" is a
lower-case version of the encapsulation name provided in the
description. The "identity" statement should have the following sub-
statements defined:
"base": Contains 'iana-pw-types'.
"description": Replicates the description from the registry.
"reference": Replicates the reference from the registry with the
title of the document added.
Unassigned or reserved values are not present in the module.
When the "iana-pseudowire-types" YANG module is updated, a new
"revision" statement with a unique revision date must be added in
front of the existing revision statements.
IANA has added this note to [IANA-PW-TYPES]:
When this registry is modified, the YANG module "iana-pseudowire-
types" must be updated as defined in RFC 9291.
11. References
11.1. Normative References
[IANA-BGP-L2]
IANA, "BGP Layer 2 Encapsulation Types",
<https://www.iana.org/assignments/bgp-parameters>.
[IANA-PW-TYPES]
IANA, "MPLS Pseudowire Types Registry",
<http://www.iana.org/assignments/pwe3-parameters/>.
[IEEE-802-1ag]
IEEE, "IEEE Standard for Local and Metropolitan Area
Networks - Virtual Bridged Local Area Networks Amendment
5: Connectivity Fault Management",
DOI 10.1109/IEEESTD.2007.4431836, IEEE Std 802.1ag-2007,
December 2007,
<https://doi.org/10.1109/IEEESTD.2007.4431836>.
[IEEE802.1Qcp]
IEEE, "IEEE Standard for Local and metropolitan area
networks--Bridges and Bridged Networks--Amendment 30: YANG
Data Model", DOI 10.1109/IEEESTD.2018.8467507, IEEE Std
802.1Qcp-2018, September 2018,
<https://doi.org/10.1109/IEEESTD.2018.8467507>.
[ITU-T-Y-1731]
ITU-T, "Operation, administration and maintenance (OAM)
functions and mechanisms for Ethernet-based networks",
ITU-T Recommendation G.8013/Y.1731, August 2015,
<https://www.itu.int/rec/T-REC-Y.1731/en>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC4026] Andersson, L. and T. Madsen, "Provider Provisioned Virtual
Private Network (VPN) Terminology", RFC 4026,
DOI 10.17487/RFC4026, March 2005,
<https://www.rfc-editor.org/info/rfc4026>.
[RFC4446] Martini, L., "IANA Allocations for Pseudowire Edge to Edge
Emulation (PWE3)", BCP 116, RFC 4446,
DOI 10.17487/RFC4446, April 2006,
<https://www.rfc-editor.org/info/rfc4446>.
[RFC4667] Luo, W., "Layer 2 Virtual Private Network (L2VPN)
Extensions for Layer 2 Tunneling Protocol (L2TP)",
RFC 4667, DOI 10.17487/RFC4667, September 2006,
<https://www.rfc-editor.org/info/rfc4667>.
[RFC4761] Kompella, K., Ed. and Y. Rekhter, Ed., "Virtual Private
LAN Service (VPLS) Using BGP for Auto-Discovery and
Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007,
<https://www.rfc-editor.org/info/rfc4761>.
[RFC4762] Lasserre, M., Ed. and V. Kompella, Ed., "Virtual Private
LAN Service (VPLS) Using Label Distribution Protocol (LDP)
Signaling", RFC 4762, DOI 10.17487/RFC4762, January 2007,
<https://www.rfc-editor.org/info/rfc4762>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6074] Rosen, E., Davie, B., Radoaca, V., and W. Luo,
"Provisioning, Auto-Discovery, and Signaling in Layer 2
Virtual Private Networks (L2VPNs)", RFC 6074,
DOI 10.17487/RFC6074, January 2011,
<https://www.rfc-editor.org/info/rfc6074>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC6624] Kompella, K., Kothari, B., and R. Cherukuri, "Layer 2
Virtual Private Networks Using BGP for Auto-Discovery and
Signaling", RFC 6624, DOI 10.17487/RFC6624, May 2012,
<https://www.rfc-editor.org/info/rfc6624>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
2015, <https://www.rfc-editor.org/info/rfc7432>.
[RFC7623] Sajassi, A., Ed., Salam, S., Bitar, N., Isaac, A., and W.
Henderickx, "Provider Backbone Bridging Combined with
Ethernet VPN (PBB-EVPN)", RFC 7623, DOI 10.17487/RFC7623,
September 2015, <https://www.rfc-editor.org/info/rfc7623>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8077] Martini, L., Ed. and G. Heron, Ed., "Pseudowire Setup and
Maintenance Using the Label Distribution Protocol (LDP)",
STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017,
<https://www.rfc-editor.org/info/rfc8077>.
[RFC8214] Boutros, S., Sajassi, A., Salam, S., Drake, J., and J.
Rabadan, "Virtual Private Wire Service Support in Ethernet
VPN", RFC 8214, DOI 10.17487/RFC8214, August 2017,
<https://www.rfc-editor.org/info/rfc8214>.
[RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
"Common YANG Data Types for the Routing Area", RFC 8294,
DOI 10.17487/RFC8294, December 2017,
<https://www.rfc-editor.org/info/rfc8294>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/info/rfc8342>.
[RFC8365] Sajassi, A., Ed., Drake, J., Ed., Bitar, N., Shekhar, R.,
Uttaro, J., and W. Henderickx, "A Network Virtualization
Overlay Solution Using Ethernet VPN (EVPN)", RFC 8365,
DOI 10.17487/RFC8365, March 2018,
<https://www.rfc-editor.org/info/rfc8365>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[RFC8466] Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
Data Model for Layer 2 Virtual Private Network (L2VPN)
Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
2018, <https://www.rfc-editor.org/info/rfc8466>.
[RFC8584] Rabadan, J., Ed., Mohanty, S., Ed., Sajassi, A., Drake,
J., Nagaraj, K., and S. Sathappan, "Framework for Ethernet
VPN Designated Forwarder Election Extensibility",
RFC 8584, DOI 10.17487/RFC8584, April 2019,
<https://www.rfc-editor.org/info/rfc8584>.
[RFC9181] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
Ed., and Q. Wu, "A Common YANG Data Model for Layer 2 and
Layer 3 VPNs", RFC 9181, DOI 10.17487/RFC9181, February
2022, <https://www.rfc-editor.org/info/rfc9181>.
11.2. Informative References
[BGP-YANG-MODEL]
Jethanandani, M., Patel, K., Hares, S., and J. Haas, "BGP
YANG Model for Service Provider Networks", Work in
Progress, Internet-Draft, draft-ietf-idr-bgp-model-14, 3
July 2022, <https://datatracker.ietf.org/doc/html/draft-
ietf-idr-bgp-model-14>.
[EVPN-PERF-DF]
Rabadan, J., Ed., Sathappan, S., Lin, W., Drake, J., and
A. Sajassi, "Preference-based EVPN DF Election", Work in
Progress, Internet-Draft, draft-ietf-bess-evpn-pref-df-10,
2 September 2022, <https://datatracker.ietf.org/doc/html/
draft-ietf-bess-evpn-pref-df-10>.
[EVPN-YANG]
Brissette, P., Ed., Shah, H., Ed., Chen, I., Ed., Hussain,
I., Ed., Tiruveedhula, K., Ed., and J. Rabadan, Ed., "Yang
Data Model for EVPN", Work in Progress, Internet-Draft,
draft-ietf-bess-evpn-yang-07, 11 March 2019,
<https://datatracker.ietf.org/doc/html/draft-ietf-bess-
evpn-yang-07>.
[IEEE-802-1ah]
IEEE, "IEEE Standard for Local and metropolitan area
networks -- Virtual Bridged Local Area Networks Amendment
7: Provider Backbone Bridges", IEEE Std 801.3AH-2008,
August 2008,
<https://standards.ieee.org/standard/802_1ah-2008.html>.
[IEEE-802-3ah]
IEEE, "IEEE Standard for Information technology-- Local
and metropolitan area networks-- Part 3: CSMA/CD Access
Method and Physical Layer Specifications Amendment: Media
Access Control Parameters, Physical Layers, and Management
Parameters for Subscriber Access Networks",
DOI 10.1109/IEEESTD.2004.94617, IEEE Std 802.3AH-2004,
September 2004,
<https://doi.org/10.1109/IEEESTD.2004.94617>.
[IEEE802.1AX]
IEEE, "IEEE Standard for Local and Metropolitan Area
Networks--Link Aggregation",
DOI 10.1109/IEEESTD.2020.9105034, IEEE Std 802.1AX-2020,
May 2020, <https://doi.org/10.1109/IEEESTD.2020.9105034>.
[IEEE802.1Q]
IEEE, "IEEE Standard for Local and Metropolitan Area
Network--Bridges and Bridged Networks",
DOI 10.1109/IEEESTD.2018.8403927, IEEE Std 802.1Q-2018,
July 2018, <https://doi.org/10.1109/IEEESTD.2018.8403927>.
[IETF-NET-SLICES]
Farrel, A., Ed., Drake, J., Ed., Rokui, R., Homma, S.,
Makhijani, K., Contreras, L. M., and J. Tantsura,
"Framework for IETF Network Slices", Work in Progress,
Internet-Draft, draft-ietf-teas-ietf-network-slices-14, 3
August 2022, <https://datatracker.ietf.org/doc/html/draft-
ietf-teas-ietf-network-slices-14>.
[MFA] MFA Forum Technical Committee, "The Use of Virtual Trunks
for ATM/MPLS Control Plane Interworking Specification",
MFA Forum 9.0.0, February 2006.
[PYANG] "pyang", November 2020,
<https://github.com/mbj4668/pyang>.
[RFC2507] Degermark, M., Nordgren, B., and S. Pink, "IP Header
Compression", RFC 2507, DOI 10.17487/RFC2507, February
1999, <https://www.rfc-editor.org/info/rfc2507>.
[RFC2508] Casner, S. and V. Jacobson, "Compressing IP/UDP/RTP
Headers for Low-Speed Serial Links", RFC 2508,
DOI 10.17487/RFC2508, February 1999,
<https://www.rfc-editor.org/info/rfc2508>.
[RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
<https://www.rfc-editor.org/info/rfc3032>.
[RFC3545] Koren, T., Casner, S., Geevarghese, J., Thompson, B., and
P. Ruddy, "Enhanced Compressed RTP (CRTP) for Links with
High Delay, Packet Loss and Reordering", RFC 3545,
DOI 10.17487/RFC3545, July 2003,
<https://www.rfc-editor.org/info/rfc3545>.
[RFC3644] Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and B.
Moore, "Policy Quality of Service (QoS) Information
Model", RFC 3644, DOI 10.17487/RFC3644, November 2003,
<https://www.rfc-editor.org/info/rfc3644>.
[RFC4448] Martini, L., Ed., Rosen, E., El-Aawar, N., and G. Heron,
"Encapsulation Methods for Transport of Ethernet over MPLS
Networks", RFC 4448, DOI 10.17487/RFC4448, April 2006,
<https://www.rfc-editor.org/info/rfc4448>.
[RFC4553] Vainshtein, A., Ed. and YJ. Stein, Ed., "Structure-
Agnostic Time Division Multiplexing (TDM) over Packet
(SAToP)", RFC 4553, DOI 10.17487/RFC4553, June 2006,
<https://www.rfc-editor.org/info/rfc4553>.
[RFC4618] Martini, L., Rosen, E., Heron, G., and A. Malis,
"Encapsulation Methods for Transport of PPP/High-Level
Data Link Control (HDLC) over MPLS Networks", RFC 4618,
DOI 10.17487/RFC4618, September 2006,
<https://www.rfc-editor.org/info/rfc4618>.
[RFC4619] Martini, L., Ed., Kawa, C., Ed., and A. Malis, Ed.,
"Encapsulation Methods for Transport of Frame Relay over
Multiprotocol Label Switching (MPLS) Networks", RFC 4619,
DOI 10.17487/RFC4619, September 2006,
<https://www.rfc-editor.org/info/rfc4619>.
[RFC4664] Andersson, L., Ed. and E. Rosen, Ed., "Framework for Layer
2 Virtual Private Networks (L2VPNs)", RFC 4664,
DOI 10.17487/RFC4664, September 2006,
<https://www.rfc-editor.org/info/rfc4664>.
[RFC4717] Martini, L., Jayakumar, J., Bocci, M., El-Aawar, N.,
Brayley, J., and G. Koleyni, "Encapsulation Methods for
Transport of Asynchronous Transfer Mode (ATM) over MPLS
Networks", RFC 4717, DOI 10.17487/RFC4717, December 2006,
<https://www.rfc-editor.org/info/rfc4717>.
[RFC4816] Malis, A., Martini, L., Brayley, J., and T. Walsh,
"Pseudowire Emulation Edge-to-Edge (PWE3) Asynchronous
Transfer Mode (ATM) Transparent Cell Transport Service",
RFC 4816, DOI 10.17487/RFC4816, February 2007,
<https://www.rfc-editor.org/info/rfc4816>.
[RFC4842] Malis, A., Pate, P., Cohen, R., Ed., and D. Zelig,
"Synchronous Optical Network/Synchronous Digital Hierarchy
(SONET/SDH) Circuit Emulation over Packet (CEP)",
RFC 4842, DOI 10.17487/RFC4842, April 2007,
<https://www.rfc-editor.org/info/rfc4842>.
[RFC4863] Martini, L. and G. Swallow, "Wildcard Pseudowire Type",
RFC 4863, DOI 10.17487/RFC4863, May 2007,
<https://www.rfc-editor.org/info/rfc4863>.
[RFC4901] Ash, J., Ed., Hand, J., Ed., and A. Malis, Ed., "Protocol
Extensions for Header Compression over MPLS", RFC 4901,
DOI 10.17487/RFC4901, June 2007,
<https://www.rfc-editor.org/info/rfc4901>.
[RFC5086] Vainshtein, A., Ed., Sasson, I., Metz, E., Frost, T., and
P. Pate, "Structure-Aware Time Division Multiplexed (TDM)
Circuit Emulation Service over Packet Switched Network
(CESoPSN)", RFC 5086, DOI 10.17487/RFC5086, December 2007,
<https://www.rfc-editor.org/info/rfc5086>.
[RFC5087] Stein, Y(J)., Shashoua, R., Insler, R., and M. Anavi,
"Time Division Multiplexing over IP (TDMoIP)", RFC 5087,
DOI 10.17487/RFC5087, December 2007,
<https://www.rfc-editor.org/info/rfc5087>.
[RFC5143] Malis, A., Brayley, J., Shirron, J., Martini, L., and S.
Vogelsang, "Synchronous Optical Network/Synchronous
Digital Hierarchy (SONET/SDH) Circuit Emulation Service
over MPLS (CEM) Encapsulation", RFC 5143,
DOI 10.17487/RFC5143, February 2008,
<https://www.rfc-editor.org/info/rfc5143>.
[RFC5795] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
Header Compression (ROHC) Framework", RFC 5795,
DOI 10.17487/RFC5795, March 2010,
<https://www.rfc-editor.org/info/rfc5795>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<https://www.rfc-editor.org/info/rfc5880>.
[RFC6307] Black, D., Ed., Dunbar, L., Ed., Roth, M., and R. Solomon,
"Encapsulation Methods for Transport of Fibre Channel
Traffic over MPLS Networks", RFC 6307,
DOI 10.17487/RFC6307, April 2012,
<https://www.rfc-editor.org/info/rfc6307>.
[RFC7209] Sajassi, A., Aggarwal, R., Uttaro, J., Bitar, N.,
Henderickx, W., and A. Isaac, "Requirements for Ethernet
VPN (EVPN)", RFC 7209, DOI 10.17487/RFC7209, May 2014,
<https://www.rfc-editor.org/info/rfc7209>.
[RFC7267] Martini, L., Ed., Bocci, M., Ed., and F. Balus, Ed.,
"Dynamic Placement of Multi-Segment Pseudowires",
RFC 7267, DOI 10.17487/RFC7267, June 2014,
<https://www.rfc-editor.org/info/rfc7267>.
[RFC7297] Boucadair, M., Jacquenet, C., and N. Wang, "IP
Connectivity Provisioning Profile (CPP)", RFC 7297,
DOI 10.17487/RFC7297, July 2014,
<https://www.rfc-editor.org/info/rfc7297>.
[RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,
<https://www.rfc-editor.org/info/rfc7951>.
[RFC8309] Wu, Q., Liu, W., and A. Farrel, "Service Models
Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
<https://www.rfc-editor.org/info/rfc8309>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface
Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
<https://www.rfc-editor.org/info/rfc8343>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
2018, <https://www.rfc-editor.org/info/rfc8345>.
[RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
Abstraction and Control of TE Networks (ACTN)", RFC 8453,
DOI 10.17487/RFC8453, August 2018,
<https://www.rfc-editor.org/info/rfc8453>.
[RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
"YANG Data Model for Network Access Control Lists (ACLs)",
RFC 8519, DOI 10.17487/RFC8519, March 2019,
<https://www.rfc-editor.org/info/rfc8519>.
[RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
"Handling Long Lines in Content of Internet-Drafts and
RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
<https://www.rfc-editor.org/info/rfc8792>.
[RFC8960] Saad, T., Raza, K., Gandhi, R., Liu, X., and V. Beeram, "A
YANG Data Model for MPLS Base", RFC 8960,
DOI 10.17487/RFC8960, December 2020,
<https://www.rfc-editor.org/info/rfc8960>.
[RFC8969] Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and
L. Geng, "A Framework for Automating Service and Network
Management with YANG", RFC 8969, DOI 10.17487/RFC8969,
January 2021, <https://www.rfc-editor.org/info/rfc8969>.
[TE-SERVICE-MAPPING]
Lee, Y., Ed., Dhody, D., Ed., Fioccola, G., Wu, Q., Ed.,
Ceccarelli, D., and J. Tantsura, "Traffic Engineering (TE)
and Service Mapping YANG Data Model", Work in Progress,
Internet-Draft, draft-ietf-teas-te-service-mapping-yang-
11, 11 July 2022, <https://datatracker.ietf.org/doc/html/
draft-ietf-teas-te-service-mapping-yang-11>.
[VPN+-FRAMEWORK]
Dong, J., Bryant, S., Li, Z., Miyasaka, T., and Y. Lee, "A
Framework for Enhanced Virtual Private Network (VPN+)",
Work in Progress, Internet-Draft, draft-ietf-teas-
enhanced-vpn-11, 19 September 2022,
<https://datatracker.ietf.org/doc/html/draft-ietf-teas-
enhanced-vpn-11>.
[YANG-SAPS]
Boucadair, M., Ed., Gonzalez de Dios, O., Barguil, S., Wu,
Q., and V. Lopez, "A YANG Network Model for Service
Attachment Points (SAPs)", Work in Progress, Internet-
Draft, draft-ietf-opsawg-sap-09, 28 July 2022,
<https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
sap-09>.
Appendix A. Examples
This section includes a non-exhaustive list of examples to illustrate
the use of the L2NM.
In the following subsections, only the content of the message bodies
is shown using JSON notations [RFC7951].
The examples use folding as defined in [RFC8792] for long lines.
A.1. BGP-Based VPLS
This section provides an example to illustrate how the L2NM can be
used to manage BGP-based VPLS. We consider the sample VPLS service
delivered using the architecture depicted in Figure 23. In
accordance with [RFC4761], we assume that a full mesh is established
between all PEs. The details about such full mesh are not detailed
here.
+-----+ +--------------+ +-----+
+----+ | PE1 |===| |===| PE3 | +----+
| CE1+-------+ | | | | +-------+ CE3|
+----+ +-----+ | | +-----+ +----+
| Core |
+----+ +-----+ | | +-----+ +----+
|CE2 +-------+ | | | | +-------+ CE4|
+----+ | PE2 |===| |===| PE4 | +----+
+-----+ +--------------+ +-----+
Figure 23: An Example of VPLS
Figure 24 shows an example of a message body used to configure a VPLS
instance using the L2NM. In this example, BGP is used for both auto-
discovery and signaling. The 'signaling-type' data node is set to
'vpn-common:bgp-signaling'.
=============== NOTE: '\' line wrapping per RFC 8792 ================
{
"ietf-l2vpn-ntw:l2vpn-ntw": {
"vpn-services": {
"vpn-service": [
{
"vpn-id": "vpls7714825356",
"vpn-description": "Sample BGP-based VPLS",
"customer-name": "customer-7714825356",
"vpn-type": "ietf-vpn-common:vpls",
"bgp-ad-enabled": true,
"signaling-type": "ietf-vpn-common:bgp-signaling",
"global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile",
"local-autonomous-system": 65535,
"svc-mtu": 1518,
"rd-suffix": 1,
"vpn-target": [
{
"id": 1,
"route-targets": [
{
"route-target": "0:65535:1"
}
],
"route-target-type": "both"
}
]
}
]
},
"vpn-nodes": {
"vpn-node": [
{
"vpn-node-id": "pe1",
"ne-id": "198.51.100.1",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"bgp-auto-discovery": {
"vpn-id": "1"
},
"signaling-option": {
"pw-encapsulation-type": "iana-bgp-l2-encaps:\
ethernet-tagged-mode",
"vpls-instance": {
"vpls-edge-id": 1,
"vpls-edge-id-range": 100
}
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE1",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
}
}
]
}
},
{
"vpn-node-id": "pe2",
"ne-id": "198.51.100.2",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"bgp-auto-discovery": {
"vpn-id": "1"
},
"signaling-option": {
"pw-encapsulation-type": "iana-bgp-l2-encaps:\
ethernet-tagged-mode",
"vpls-instance": {
"vpls-edge-id": 2,
"vpls-edge-id-range": 100
}
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE2",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
}
}
]
}
},
{
"vpn-node-id": "pe3",
"ne-id": "198.51.100.3",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"bgp-auto-discovery": {
"vpn-id": "1"
},
"signaling-option": {
"pw-encapsulation-type": "iana-bgp-l2-encaps:\
ethernet-tagged-mode",
"vpls-instance": {
"vpls-edge-id": 3,
"vpls-edge-id-range": 100
}
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE3",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
}
}
]
}
},
{
"vpn-node-id": "pe4",
"ne-id": "198.51.100.4",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"bgp-auto-discovery": {
"vpn-id": "1"
},
"signaling-option": {
"pw-encapsulation-type": "iana-bgp-l2-encaps:\
ethernet-tagged-mode",
"vpls-instance": {
"vpls-edge-id": 4,
"vpls-edge-id-range": 100
}
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE4",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
}
}
]
}
}
]
}
}
]
}
}
}
Figure 24: An Example of an L2NM Message Body to Configure a BGP-
Based VPLS
A.2. BGP-Based VPWS with LDP Signaling
Let's consider the simple architecture depicted in Figure 25 to offer
a VPWS between CE1 and CE2. The service uses BGP for auto-discovery
and LDP for signaling.
+-----+ +--------------+ +-----+
+----+ | PE1 |===| |===| PE2 | +----+
| CE1+-------+ | | Core | | +-------+ CE2|
+----+ +-----+ +--------------+ +-----+ +----+
site1 site2
Figure 25: An Example of VPLS
{
"ietf-l2vpn-ntw:l2vpn-ntw": {
"vpn-services": {
"vpn-service": [
{
"vpn-id": "vpws12345",
"vpn-description": "Sample VPWS",
"customer-name": "customer-12345",
"vpn-type": "ietf-vpn-common:vpws",
"bgp-ad-enabled": true,
"signaling-type": "ietf-vpn-common:ldp-signaling",
"global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile",
"local-autonomous-system": 65550,
"rd-auto": {
"auto": [
null
]
},
"vpn-target": [
{
"id": 1,
"route-targets": [
{
"route-target": "0:65535:1"
}
],
"route-target-type": "both"
}
]
}
]
},
"vpn-nodes": {
"vpn-node": [
{
"vpn-node-id": "pe1",
"ne-id": "2001:db8:100::1",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"bgp-auto-discovery": {
"vpn-id": "587"
},
"signaling-option": {
"advertise-mtu": true,
"ldp-or-l2tp": {
"saii": 1,
"remote-targets": [
{
"taii": 2
}
],
"t-ldp-pw-type": "ethernet"
}
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE1",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
}
}
]
}
},
{
"vpn-node-id": "pe2",
"ne-id": "2001:db8:200::1",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"bgp-auto-discovery": {
"vpn-id": "587"
},
"signaling-option": {
"advertise-mtu": true,
"ldp-or-l2tp": {
"saii": 2,
"remote-targets": [
{
"taii": 1
}
],
"t-ldp-pw-type": "ethernet"
}
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "5/1/1.1",
"interface-id": "5/1/1",
"description": "Interface to CE2",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
}
}
]
}
}
]
}
}
]
}
}
}
Figure 26: An Example of an L2NM Message Body to Configure a BGP-
Based VPWS with LDP Signaling
A.3. LDP-Based VPLS
This section provides an example that illustrates how the L2NM can be
used to manage a VPLS with LDP signaling. The connectivity between
the CE and the PE is direct using Dot1q encapsulation [IEEE802.1Q].
We consider the sample service delivered using the architecture
depicted in Figure 27.
+---------- VPLS "1543" ----------+
+-----+ +--------------+ +-----+
+----+ | PE1 |===| |===| PE2 | +----+
| CE1 +-----+"450"| | MPLS | |"451"+-------+ CE2|
+----+ +-----+ | | +-----+ +----+
| Core |
+--------------+
Figure 27: An Example of VPLS Topology
Figure 28 shows how the L2NM is used to instruct both PE1 and PE2 to
use the targeted LDP session between them to establish the VPLS
"1543" between the ends. A single VPN service is created for this
purpose. Additionally, two VPN Nodes that each have corresponding
VPN network access are also created.
=============== NOTE: '\' line wrapping per RFC 8792 ================
{
"ietf-l2vpn-ntw:l2vpn-ntw": {
"vpn-services": {
"vpn-service": [
{
"vpn-id": "450",
"vpn-name": "CORPO-EXAMPLE",
"vpn-description": "SEDE_CENTRO_450",
"customer-name": "EXAMPLE",
"vpn-type": "ietf-vpn-common:vpls",
"vpn-service-topology": "ietf-vpn-common:hub-spoke",
"bgp-ad-enabled": false,
"signaling-type": "ietf-vpn-common:ldp-signaling",
"global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile",
"ce-vlan-preservation": true,
"ce-vlan-cos-preservation": true
}
]
},
"vpn-nodes": {
"vpn-node": [
{
"vpn-node-id": "450",
"description": "SEDE_CENTRO_450",
"ne-id": "2001:db8:5::1",
"role": "ietf-vpn-common:hub-role",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"signaling-option": {
"ldp-or-l2tp": {
"t-ldp-pw-type": "vpls-type",
"pw-peer-list": [
{
"peer-addr": "2001:db8:50::1",
"vc-id": "1543"
}
]
}
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "4508671287",
"description": "VPN_450_SNA",
"interface-id": "gigabithethernet0/0/1",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"l2-termination-point": "550",
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"tag-type": "ietf-vpn-common:c-vlan",
"cvlan-id": 550
}
}
},
"service": {
"mtu": 1550,
"svc-pe-to-ce-bandwidth": {
"pe-to-ce-bandwidth": [
{
"bw-type": "ietf-vpn-common:\
bw-per-port",
"cir": "20480000"
}
]
},
"svc-ce-to-pe-bandwidth": {
"ce-to-pe-bandwidth": [
{
"bw-type": "ietf-vpn-common:\
bw-per-port",
"cir": "20480000"
}
]
},
"qos": {
"qos-profile": {
"qos-profile": [
{
"profile": "QoS_Profile_A",
"direction": "ietf-vpn-common:both"
}
]
}
}
}
}
]
}
},
{
"vpn-node-id": "451",
"description": "SEDE_CHAPINERO_451",
"ne-id": "2001:db8:50::1",
"role": "ietf-vpn-common:spoke-role",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"signaling-option": {
"ldp-or-l2tp": {
"t-ldp-pw-type": "vpls-type",
"pw-peer-list": [
{
"peer-addr": "2001:db8:5::1",
"vc-id": "1543"
}
]
}
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "4508671288",
"description": "VPN_450_SNA",
"interface-id": "gigabithethernet0/0/1",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"l2-termination-point": "550",
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"tag-type": "ietf-vpn-common:c-vlan",
"cvlan-id": 550
}
}
},
"service": {
"mtu": 1550,
"svc-pe-to-ce-bandwidth": {
"pe-to-ce-bandwidth": [
{
"bw-type": "ietf-vpn-common:\
bw-per-port",
"cir": "20480000"
}
]
},
"svc-ce-to-pe-bandwidth": {
"ce-to-pe-bandwidth": [
{
"bw-type": "ietf-vpn-common:\
bw-per-port",
"cir": "20480000"
}
]
},
"qos": {
"qos-profile": {
"qos-profile": [
{
"profile": "QoS_Profile_A",
"direction": "ietf-vpn-common:both"
}
]
}
}
}
}
]
}
}
]
}
}
]
}
}
}
Figure 28: An Example of an L2NM Message Body for LDP-Based VPLS
A.4. VPWS-EVPN Service Instance
Figure 29 depicts a sample architecture to offer VPWS-EVPN service
between CE1 and CE2. Both CEs are multihomed. BGP sessions are
maintained between these PEs as per [RFC8214]. In this EVPN
instance, an All-Active redundancy mode is used.
|<-------- EVPN Instance --------->|
| |
ESI1 V V ESI2
| +-----+ +--------------+ +-----+ |
+----+ | | PE1 |===| |===| PE3 | | +----+
| +-------+ | | | | +-------+ |
| | | +-----+ | | +-----+ | | |
| CE1| | | Core | | |CE2 |
| | | +-----+ | | +-----+ | | |
| +-------+ | | | | +-------+ |
+----+ | | PE2 |===| |===| PE4 | | +----+
^ | +-----+ +--------------+ +-----+ | ^
| ESI1 ESI2 |
|<-------------- Emulated Service ---------------->|
Figure 29: An Example of VPWS-EVPN
Let's first suppose that the following ES was created (Figure 30).
=============== NOTE: '\' line wrapping per RFC 8792 ================
{
"ietf-ethernet-segment:ethernet-segments": {
"ethernet-segment": [
{
"name": "esi1",
"ethernet-segment-identifier": "00:11:11:11:11:11:11:\
11:11:11",
"esi-redundancy-mode": "all-active"
},
{
"name": "esi2",
"ethernet-segment-identifier": "00:22:22:22:22:22:22:\
22:22:22",
"esi-redundancy-mode": "all-active"
}
]
}
}
Figure 30: An Example of an L2NM Message Body to Configure an
Ethernet Segment
Figure 31 shows a simplified configuration to illustrate the use of
the L2NM to configure a VPWS-EVPN instance.
{
"ietf-l2vpn-ntw:l2vpn-ntw": {
"vpn-services": {
"vpn-service": [
{
"vpn-id": "vpws15432855",
"vpn-description": "Sample VPWS-EVPN",
"customer-name": "customer_15432855",
"vpn-type": "ietf-vpn-common:vpws-evpn",
"bgp-ad-enabled": true,
"signaling-type": "ietf-vpn-common:bgp-signaling",
"global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile",
"local-autonomous-system": 65535,
"rd-suffix": 1,
"vpn-target": [
{
"id": 1,
"route-targets": [
{
"route-target": "0:65535:1"
}
],
"route-target-type": "both"
}
]
}
]
},
"vpn-nodes": {
"vpn-node": [
{
"vpn-node-id": "pe1",
"ne-id": "198.51.100.1",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE1",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
},
"vpws-service-instance": {
"local-vpws-service-instance": 1111,
"remote-vpws-service-instance": 1112
},
"group": [
{
"group-id": "gr1",
"ethernet-segment-identifier": "esi1"
}
]
}
]
}
},
{
"vpn-node-id": "pe2",
"ne-id": "198.51.100.2",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE1",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
},
"vpws-service-instance": {
"local-vpws-service-instance": 1111,
"remote-vpws-service-instance": 1112
},
"group": [
{
"group-id": "gr1",
"ethernet-segment-identifier": "esi1"
}
]
}
]
}
},
{
"vpn-node-id": "pe3",
"ne-id": "198.51.100.3",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE2",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
},
"vpws-service-instance": {
"local-vpws-service-instance": 1112,
"remote-vpws-service-instance": 1111
},
"group": [
{
"group-id": "gr1",
"ethernet-segment-identifier": "esi2"
}
]
}
]
}
},
{
"vpn-node-id": "pe4",
"ne-id": "198.51.100.4",
"active-global-parameters-profiles": {
"global-parameters-profile": [
{
"profile-id": "simple-profile"
}
]
},
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE2",
"active-vpn-node-profile": "simple-profile",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"encapsulation": {
"encap-type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
},
"vpws-service-instance": {
"local-vpws-service-instance": 1112,
"remote-vpws-service-instance": 1111
},
"group": [
{
"group-id": "gr1",
"ethernet-segment-identifier": "esi2"
}
]
}
]
}
}
]
}
}
]
}
}
}
Figure 31: An Example of an L2NM Message Body to Configure a
VPWS-EVPN Instance
A.5. Automatic ESI Assignment
This section provides an example to illustrate how the L2NM can be
used to manage ESI auto-assignment. We consider the sample EVPN
service delivered using the architecture depicted in Figure 32.
ES
| +-----+ +--------------+ +-----+
+----+ | | PE1 |======| |===| PE3 | +----+
| +-------+ | | | | +-------+ CE3|
| | | +-----+ | | +-----+ +----+
| CE1| | | Core |
| | | +-----+ | | +-----+ +----+
| +-------+ | | | | +-------+ CE2|
+----+ | | PE2 |======| |===| PE4 | +----+
| +-----+ +--------------+ +-----+
LACP
Figure 32: An Example of Automatic ESI Assignment
Figures 33 and 34 show how the L2NM is used to instruct both PE1 and
PE2 to auto-assign the ESI to identify the ES used with CE1. In this
example, we suppose that LACP is enabled and that a Type 1 (T=0x01)
is used as per Section 5 of [RFC7432]. Note that this example does
not include all the details to configure the EVPN service but focuses
only on the ESI management part.
{
"ietf-ethernet-segment:ethernet-segments": {
"ethernet-segment": [
{
"name": "esi1",
"esi-type": "esi-type-1-lacp",
"esi-redundancy-mode": "all-active"
}
]
}
}
Figure 33: An Example of an L2NM Message Body to Auto-Assign
Ethernet Segment Identifiers
{
"ietf-l2vpn-ntw:l2vpn-ntw": {
"ietf-l2vpn-ntw:vpn-services": {
"vpn-service": [
{
"vpn-id": "auto-esi-lacp",
"vpn-description": "Sample to illustrate auto-ESI",
"vpn-type": "ietf-vpn-common:vpws-evpn",
"vpn-nodes": {
"vpn-node": [
{
"vpn-node-id": "pe1",
"ne-id": "198.51.100.1",
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "1/1/1.1",
"interface-id": "1/1/1",
"description": "Interface to CE1",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"lag-interface": {
"lag-interface-id": "1",
"lacp": {
"lacp-state": true,
"system-id": "11:00:11:00:11:11",
"admin-key": 154
}
}
},
"group": [
{
"group-id": "gr1",
"ethernet-segment-identifier": "esi1"
}
]
}
]
}
},
{
"vpn-node-id": "pe2",
"ne-id": "198.51.100.2",
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "2/2/2.5",
"interface-id": "2/2/2",
"description": "Interface to CE1",
"status": {
"admin-status": {
"status": "ietf-vpn-common:admin-up"
}
},
"connection": {
"lag-interface": {
"lag-interface-id": "1",
"lacp": {
"lacp-state": true,
"system-id": "11:00:11:00:11:11",
"admin-key": 154
}
}
},
"group": [
{
"group-id": "gr1",
"ethernet-segment-identifier": "esi1"
}
]
}
]
}
}
]
}
}
]
}
}
}
Figure 34: An Example of an L2NM Message Body for ESI Auto-Assignment
The auto-assigned ESI can be retrieved using, e.g., a GET RESTCONF
method. The assigned value will then be returned as shown in the
'esi-auto' data node in Figure 35.
=============== NOTE: '\' line wrapping per RFC 8792 ================
{
"ietf-ethernet-segment:ethernet-segments": {
"ethernet-segment": [
{
"name": "esi1",
"ethernet-segment-identifier": "esi-type-1-lacp",
"esi-auto": {
"auto-ethernet-segment-identifier": "01:11:00:11:00:11:\
11:9a:00:00"
},
"esi-redundancy-mode": "all-active"
}
]
}
}
Figure 35: An Example of an L2NM Message Body to Retrieve the
Assigned ESI
A.6. VPN Network Access Precedence
In reference to the example depicted in Figure 36, an L2VPN service
involves two VPN network accesses to sites that belong to the same
customer.
+--------------+
|VPN-NODE |
| +--+-------+
| | NET-ACC-1| Primary
| | +------------------
| +--+-------+
| |
| +--+-------+
| | NET-ACC-2| Secondary
| | +------------------
| +--+-------+
| |
+--------------+
Figure 36: An Example of Multiple VPN Network Accesses
In order to tag one of these VPN network accesses as "primary" and
the other one as "secondary", Figure 37 shows an excerpt of the
corresponding L2NM configuration. In such a configuration, both
accesses are bound to the same "group-id", and the "precedence" data
node is set as a function of the intended role of each access
(primary or secondary).
{
"ietf-l2vpn-ntw:l2vpn-ntw": {
"vpn-services": {
"vpn-service": [
{
"vpn-id": "Sample-Service",
"vpn-nodes": {
"vpn-node": [
{
"vpn-node-id": "VPN-NODE",
"vpn-network-accesses": {
"vpn-network-access": [
{
"id": "NET-ACC-1",
"connection": {
"bearer-reference": "br1"
},
"group": [
{
"group-id": "1",
"precedence": "primary"
}
]
},
{
"id": "NET-ACC-2",
"connection": {
"bearer-reference": "br2"
},
"group": [
{
"group-id": "1",
"precedence": "secondary"
}
]
}
]
}
}
]
}
}
]
}
}
}
Figure 37: An Example of a Message Body to Associate Priority
Levels with VPN Network Accesses
Acknowledgements
During the discussions of this work, helpful comments, suggestions,
and reviews were received from: Sergio Belotti, Italo Busi, Miguel
Cros Cecilia, Joe Clarke, Dhruv Dhody, Adrian Farrel, Roque Gagliano,
Christian Jacquenet, Kireeti Kompella, Julian Lucek, Moti
Morgenstern, Tom Petch, and Erez Segev. Many thanks to them.
Zhang Guiyu, Luay Jalil, Daniel King, and Jichun Ma contributed to an
early draft version of this document.
Thanks to Yingzhen Qu and Himanshu Shah for the rtgdir reviews,
Ladislav Lhotka for the yangdoctors review, Chris Lonvick for the
secdir review, and Dale Worley for the gen-art review. Special
thanks to Adrian Farrel for the careful Shepherd review.
Thanks to Robert Wilton for the careful AD review and various
suggestions to enhance the model.
Thanks to Roman Danyliw, Lars Eggert, Erik Kline, Francesca
Palombini, Zaheduzzaman Sarker, and Éric Vyncke for the IESG review.
A YANG module for Ethernet segments was first defined in the context
of the EVPN device module [EVPN-YANG].
This work is partially supported by the European Commission under
Horizon 2020 Secured autonomic traffic management for a Tera of SDN
flows (Teraflow) project (grant agreement number 101015857).
Contributors
Victor Lopez
Nokia
Email: victor.lopez@nokia.com
Qin Wu
Huawei
Email: bill.wu@huawei.com
Raul Arco
Nokia
Email: raul.arco@nokia.com
Authors' Addresses
Mohamed Boucadair (editor)
Orange
Rennes
France
Email: mohamed.boucadair@orange.com
Oscar Gonzalez de Dios (editor)
Telefonica
Madrid
Spain
Email: oscar.gonzalezdedios@telefonica.com
Samier Barguil
Telefonica
Madrid
Spain
Email: samier.barguilgiraldo.ext@telefonica.com
Luis Angel Munoz
Vodafone
Spain
Email: luis-angel.munoz@vodafone.com
|