summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc9337.txt
blob: d67bc870ef6c5cca0d441f452ca6fa6c78672bb7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
Independent Submission                                  E. Karelina, Ed.
Request for Comments: 9337                                      InfoTeCS
Category: Informational                                    December 2022
ISSN: 2070-1721


        Generating Password-Based Keys Using the GOST Algorithms

Abstract

   This document specifies how to use "PKCS #5: Password-Based
   Cryptography Specification Version 2.1" (RFC 8018) to generate a
   symmetric key from a password in conjunction with the Russian
   national standard GOST algorithms.

   PKCS #5 applies a Pseudorandom Function (PRF) -- a cryptographic
   hash, cipher, or Hash-Based Message Authentication Code (HMAC) -- to
   the input password along with a salt value and repeats the process
   many times to produce a derived key.

   This specification has been developed outside the IETF.  The purpose
   of publication being to facilitate interoperable implementations that
   wish to support the GOST algorithms.  This document does not imply
   IETF endorsement of the cryptographic algorithms used here.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This is a contribution to the RFC Series, independently of any other
   RFC stream.  The RFC Editor has chosen to publish this document at
   its discretion and makes no statement about its value for
   implementation or deployment.  Documents approved for publication by
   the RFC Editor are not candidates for any level of Internet Standard;
   see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc9337.

Copyright Notice

   Copyright (c) 2022 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Table of Contents

   1.  Introduction
   2.  Conventions Used in This Document
   3.  Basic Terms and Definitions
   4.  Algorithm for Generating a Key from a Password
   5.  Data Encryption
     5.1.  GOST R 34.12-2015 Data Encryption
       5.1.1.  Encryption
       5.1.2.  Decryption
   6.  Message Authentication
     6.1.  MAC Generation
     6.2.  MAC Verification
   7.  Identifiers and Parameters
     7.1.  PBKDF2
     7.2.  PBES2
     7.3.  Identifier and Parameters of Gost34.12-2015 Encryption
           Scheme
     7.4.  PBMAC1
   8.  Security Considerations
   9.  IANA Considerations
   10. References
     10.1.  Normative References
     10.2.  Informative References
   Appendix A.  PBKDF2 HMAC_GOSTR3411 Test Vectors
   Acknowledgments
   Author's Address

1.  Introduction

   This document provides a specification of usage of GOST R 34.12-2015
   encryption algorithms and the GOST R 34.11-2012 hashing functions
   with PKCS #5.  The methods described in this document are designed to
   generate key information using the user's password and to protect
   information using the generated keys.

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Basic Terms and Definitions

   Throughout this document, the following notation is used:

     +==========+====================================================+
     | Notation | Definition                                         |
     +==========+====================================================+
     | P        | a password encoded as a Unicode UTF-8 string       |
     +----------+----------------------------------------------------+
     | S        | a random initializing value                        |
     +----------+----------------------------------------------------+
     | c        | a number of iterations of algorithm, a positive    |
     |          | integer                                            |
     +----------+----------------------------------------------------+
     | dkLen    | a length in octets of derived key, a positive      |
     |          | integer                                            |
     +----------+----------------------------------------------------+
     | DK       | a derived key of length dkLen                      |
     +----------+----------------------------------------------------+
     | B_n      | a set of all octet strings of length n, n >= 0; if |
     |          | n = 0, then the set B_n consists of an empty       |
     |          | string of length 0                                 |
     +----------+----------------------------------------------------+
     | A||C     | a concatenation of two octet strings A, C, i.e., a |
     |          | vector from B_(|A|+|C|), where the left subvector  |
     |          | from B_(|A|) is equal to the vector A and the      |
     |          | right subvector from B_(|C|) is equal to the       |
     |          | vector C: A = (a_(n_1),...,a_1) in B_(n_1) and C = |
     |          | (c_(n_2),..., c_1) in B_(n_2), res =               |
     |          | (a_(n_1),...,a_1,c_(n_2),..., c_1) in B_(n_1+n_2)) |
     +----------+----------------------------------------------------+
     | \xor     | a bit-wise exclusive-or of two octet strings of    |
     |          | the same length                                    |
     +----------+----------------------------------------------------+
     | MSB^n_r: | a truncating of an octet string to size r by       |
     | B_n ->   | removing the least significant n-r octets:         |
     | B_r      | MSB^n_r(a_n,...,a_(n-r+1),a_(n-r),...,a_1)         |
     |          | =(a_n,...,a_(n-r+1))                               |
     +----------+----------------------------------------------------+
     | LSB^n_r: | a truncating of an octet string to size r by       |
     | B_n ->   | removing the most significant n-r octets:          |
     | B_r      | LSB^n_r(a_n,...,a_(n-r+1),a_(n-r),...,a_1)         |
     |          | =(a_r,...,a_1)                                     |
     +----------+----------------------------------------------------+
     | Int(i)   | a four-octet encoding of the integer i =< 2^32:    |
     |          | (i_1, i_2, i_3, i_4) in B_4, i = i_1 + 2^8 * i_2 + |
     |          | 2^16 * i_3 + 2^24 * i_4                            |
     +----------+----------------------------------------------------+
     | b[i, j]  | a substring extraction operator, extracts octets i |
     |          | through j, 0 =< i =< j                             |
     +----------+----------------------------------------------------+
     | CEIL(x)  | the smallest integer greater than or equal to x    |
     +----------+----------------------------------------------------+

                       Table 1: Terms and Definitions

   This document uses the following abbreviations and symbols:

    +================+===============================================+
    | Abbreviations  | Definition                                    |
    | and Symbols    |                                               |
    +================+===============================================+
    | HMAC_GOSTR3411 | Hashed-Based Message Authentication Code.  A  |
    |                | function for calculating a Message            |
    |                | Authentication Code (MAC) based on the GOST R |
    |                | 34.11-2012 hash function (see [RFC6986]) with |
    |                | 512-bit output in accordance with [RFC2104].  |
    +----------------+-----------------------------------------------+

                    Table 2: Abbreviations and Symbols

4.  Algorithm for Generating a Key from a Password

   The DK is calculated by means of a key derivation function PBKDF2 (P,
   S, c, dkLen) (see [RFC8018], Section 5.2) using the HMAC_GOSTR3411
   function as the PRF:

         DK = PBKDF2 (P, S, c, dkLen).

   The PBKDF2 function is defined as the following algorithm:

   1.  If dkLen > (2^32 - 1) * 64, output "derived key too long" and
       stop.

   2.  Calculate n = CEIL (dkLen / 64).

   3.  Calculate a set of values for each i from 1 to n:

          U_1(i) = HMAC_GOSTR3411 (P, S || INT (i)),

          U_2(i) = HMAC_GOSTR3411 (P, U_1(i)),

          ...

          U_c(i) = HMAC_GOSTR3411 (P, U_(c-1)(i)),

          T(i) = U_1(i) \xor U_2(i) \xor ... \xor U_c(i).

   4.  Concatenate the octet strings T(i) and extract the first dkLen
       octets to produce a derived key DK:

       *  DK = MSB^(n * 64)_dkLen(T(1)||T(2)||...||T(n))

5.  Data Encryption

5.1.  GOST R 34.12-2015 Data Encryption

   Data encryption using the DK is carried out in accordance with the
   PBES2 scheme (see [RFC8018], Section 6.2) using GOST R 34.12-2015 in
   CTR_ACPKM mode (see [RFC8645]).

5.1.1.  Encryption

   The encryption process for PBES2 consists of the following steps:

   1.  Select the random value S of a length from 8 to 32 octets.

   2.  Select the iteration count c depending on the conditions of use
       (see [GostPkcs5]).  The minimum allowable value for the parameter
       is 1000.

   3.  Set the value dkLen = 32.

   4.  Apply the key derivation function to the password P, the random
       value S, and the iteration count c to produce a derived key DK of
       length dkLen octets in accordance with the algorithm from
       Section 4.  Generate the sequence T(1) and truncate it to 32
       octets, i.e.,

          DK = PBKDF2 (P, S, c, 32) = MSB^64_32(T(1)).

   5.  Generate the random value ukm of size n, where n takes a value of
       12 or 16 octets depending on the selected encryption algorithm:

       *  GOST R 34.12-2015 "Kuznyechik" n = 16 (see [RFC7801])

       *  GOST R 34.12-2015 "Magma" n = 12 (see [RFC8891])

   6.  Set the value S' = ukm[1..n-8].

   7.  For the id-gostr3412-2015-magma-ctracpkm and id-gostr3412-2015-
       kuznyechik-ctracpkm algorithms (see Section 7.3), encrypt the
       message M with the GOST R 34.12-2015 algorithm with the derived
       key DK and the random value S' to produce a ciphertext C.

   8.  For the id-gostr3412-2015-magma-ctracpkm-omac and id-
       gostr3412-2015-kuznyechik-ctracpkm-omac algorithms (see
       Section 7.3), encrypt the message M with the GOST R 34.12-2015
       algorithm with the derived key DK and the ukm in accordance with
       the following steps:

       *  Generate two keys from the derived key DK using the
          KDF_TREE_GOSTR3411_2012_256 algorithm (see [RFC7836]):

             encryption key K(1)

             MAC key K(2)

          Input parameters for the KDF_TREE_GOSTR3411_2012_256 algorithm
          take the following values:

             K_in = DK

             label = "kdf tree" (8 octets)

             seed = ukm[n-7..n]

             R = 1

          The input string label above is encoded using ASCII (see
          [RFC0020]).

       *  Compute the MAC for the message M using the K(2) key in
          accordance with the GOST R 34.12-2015 algorithm.  Append the
          computed MAC value to the message M: M||MAC.

       *  Encrypt the resulting octet string with MAC with the GOST R
          34.12-2015 algorithm with the derived key K(1) and the random
          value S' to produce a ciphertext C.

   9.  Serialize the parameters S, c, and ukm as algorithm parameters in
       accordance with Section 7.2.

5.1.2.  Decryption

   The decryption process for PBES2 consists of the following steps:

   1.  Set the value dkLen = 32.

   2.  Apply the key derivation function PBKDF2 to the password P, the
       random value S, and the iteration count c to produce a derived
       key DK of length dkLen octets in accordance with the algorithm
       from Section 4.  Generate the sequence T(1) and truncate it to 32
       octets, i.e., DK = PBKFD2 (P, S, c, 32) = MSB^64_32(T(1)).

   3.  Set the value S' = ukm[1..n-8], where n is the size of ukm in
       octets.

   4.  For the id-gostr3412-2015-magma-ctracpkm and id-gostr3412-2015-
       kuznyechik-ctracpkm algorithms (see Section 7.3), decrypt the
       ciphertext C with the GOST R 34.12-2015 algorithm with the
       derived key DK and the random value S' to produce the message M.

   5.  For id-gostr3412-2015-magma-ctracpkm-omac and id-gostr3412-2015-
       kuznyechik-ctracpkm-omac algorithms (see Section 7.3), decrypt
       the ciphertext C with the GOST R 34.12-2015 algorithm with the
       derived key DK and the ukm in accordance with the following
       steps:

       *  Generate two keys from the derived key DK using the
          KDF_TREE_GOSTR3411_2012_256 algorithm:

             encryption key K(1)

             MAC key K(2)

          Input parameters for the KDF_TREE_GOSTR3411_2012_256 algorithm
          take the following values:

             K_in = DK

             label = "kdf tree" (8 octets)

             seed = ukm[n-7..n]

             R = 1

          The input string label above is encoded using ASCII (see
          [RFC0020]).

       *  Decrypt the ciphertext C with the GOST R 34.12-2015 algorithm
          with the derived key K(1) and the random value S' to produce
          the plaintext.  The last k octets of the text are the MAC,
          where k depends on the selected encryption algorithm.

       *  Compute the MAC for the text[1..m - k] using the K(2) key in
          accordance with GOST R 34.12-2015 algorithm, where m is the
          size of text.

       *  Compare the computing MAC and the receiving MAC.  If the sizes
          or values do not match, the message is distorted.

6.  Message Authentication

   The PBMAC1 scheme is used for message authentication (see [RFC8018],
   Section 7.1).  This scheme is based on the HMAC_GOSTR3411 function.

6.1.  MAC Generation

   The MAC generation operation for PBMAC1 consists of the following
   steps:

   1.  Select the random value S of a length from 8 to 32 octets.

   2.  Select the iteration count c depending on the conditions of use
       (see [GostPkcs5]).  The minimum allowable value for the parameter
       is 1000.

   3.  Set the dkLen to at least 32 octets.  The number of octets
       depends on previous parameter values.

   4.  Apply the key derivation function to the password P, the random
       value S, and the iteration count c to generate a sequence K of
       length dkLen octets in accordance with the algorithm from
       Section 4.

   5.  Truncate the sequence K to 32 octets to get the derived key DK,
       i.e., DK = LSB^dkLen_32(K).

   6.  Process the message M with the underlying message authentication
       scheme with the derived key DK to generate a message
       authentication code T.

   7.  Save the parameters S and c as algorithm parameters in accordance
       with Section 7.4.

6.2.  MAC Verification

   The MAC verification operation for PBMAC1 consists of the following
   steps:

   1.  Set the dkLen to at least 32 octets.  The number of octets
       depends on previous parameter values.

   2.  Apply the key derivation function to the password P, the random
       value S, and the iteration count c to generate a sequence K of
       length dkLen octets in accordance with the algorithm from
       Section 4.

   3.  Truncate the sequence K to 32 octets to get the derived key DK,
       i.e., DK = LSB^dkLen_32(K).

   4.  Process the message M with the underlying message authentication
       scheme with the derived key DK to generate a MAC.

   5.  Compare the computing MAC and the receiving MAC.  If the sizes or
       values do not match, the message is distorted.

7.  Identifiers and Parameters

   This section defines the ASN.1 syntax for the key derivation
   functions, the encryption schemes, the message authentication scheme,
   and supporting techniques (see [RFC8018]).

   rsadsi OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 113549 }
   pkcs OBJECT IDENTIFIER ::= { rsadsi 1 }
   pkcs-5 OBJECT IDENTIFIER ::= { pkcs 5 }

7.1.  PBKDF2

   The Object Identifier (OID) id-PBKDF2 identifies the PBKDF2 key
   derivation function:

   id-PBKDF2 OBJECT IDENTIFIER ::= { pkcs-5 12 }

   The parameters field associated with this OID in an
   AlgorithmIdentifier SHALL have type PBKDF2-params:

   PBKDF2-params ::= SEQUENCE
   {
       salt            CHOICE
       {
           specified       OCTET STRING,
           otherSource     AlgorithmIdentifier {{PBKDF2-SaltSources}}
       },
       iterationCount  INTEGER (1000..MAX),
       keyLength       INTEGER (32..MAX) OPTIONAL,
       prf             AlgorithmIdentifier {{PBKDF2-PRFs}}
   }

   The fields of type PBKDF2-params have the following meanings:

   *  salt contains the random value S in OCTET STRING.

   *  iterationCount specifies the iteration count c.

   *  keyLength is the length of the derived key in octets.  It is an
      optional field for the PBES2 scheme since it is always 32 octets.
      It MUST be present for the PBMAC1 scheme and MUST be at least 32
      octets since the HMAC_GOSTR3411 function has a variable key size.

   *  prf identifies the pseudorandom function.  The identifier value
      MUST be id-tc26-hmac-gost-3411-12-512 and the parameters value
      must be NULL:

   id-tc26-hmac-gost-3411-12-512 OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) reg7(7)
       tk26(1) algorithms(1) hmac(4) 512(2)
   }

7.2.  PBES2

   The OID id-PBES2 identifies the PBES2 encryption scheme:

   id-PBES2 OBJECT IDENTIFIER ::= { pkcs-5 13 }

   The parameters field associated with this OID in an
   AlgorithmIdentifier SHALL have type PBES2-params:

   PBES2-params ::= SEQUENCE
   {
       keyDerivationFunc   AlgorithmIdentifier { { PBES2-KDFs } },
       encryptionScheme    AlgorithmIdentifier { { PBES2-Encs } }
   }

   The fields of type PBES2-params have the following meanings:

   *  keyDerivationFunc identifies the key derivation function in
      accordance with Section 7.1.

   *  encryptionScheme identifies the encryption scheme in accordance
      with Section 7.3.

7.3.  Identifier and Parameters of Gost34.12-2015 Encryption Scheme

   The Gost34.12-2015 encryption algorithm identifier SHALL take one of
   the following values:

   id-gostr3412-2015-magma-ctracpkm OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) rosstandart(7)
       tc26(1) algorithms(1) cipher(5)
       gostr3412-2015-magma(1) mode-ctracpkm(1)
   }

   When the id-gostr3412-2015-magma-ctracpkm identifier is used, the
   data is encrypted by the GOST R 34.12-2015 Magma cipher in CTR_ACPKM
   mode in accordance with [RFC8645].  The block size is 64 bits and the
   section size is fixed within a specific protocol based on the
   requirements of the system capacity and the key lifetime.

   id-gostr3412-2015-magma-ctracpkm-omac OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) rosstandart(7)
       tc26(1) algorithms(1) cipher(5)
       gostr3412-2015-magma(1) mode-ctracpkm-omac(2)
   }

   When the id-gostr3412-2015-magma-ctracpkm-omac identifier is used,
   the data is encrypted by the GOST R 34.12-2015 Magma cipher in
   CTR_ACPKM mode in accordance with [RFC8645] and the MAC is computed
   by the GOST R 34.12-2015 Magma cipher in MAC mode (MAC size is 64
   bits).  The block size is 64 bits and the section size is fixed
   within a specific protocol based on the requirements of the system
   capacity and the key lifetime.

   id-gostr3412-2015-kuznyechik-ctracpkm OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) rosstandart(7)
       tc26(1) algorithms(1) cipher(5)
       gostr3412-2015-kuznyechik(2) mode-ctracpkm(1)
   }

   When the id-gostr3412-2015-kuznyechik-ctracpkm identifier is used,
   the data is encrypted by the GOST R 34.12-2015 Kuznyechik cipher in
   CTR_ACPKM mode in accordance with [RFC8645].  The block size is 128
   bits and the section size is fixed within a specific protocol based
   on the requirements of the system capacity and the key lifetime.

   id-gostr3412-2015-kuznyechik-ctracpkm-omac OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) rosstandart(7)
       tc26(1) algorithms(1) cipher(5)
       gostr3412-2015-kuznyechik(2) mode-ctracpkm-omac(2)
   }

   When the id-gostr3412-2015-kuznyechik-ctracpkm-omac identifier is
   used, the data is encrypted by the GOST R 34.12-2015 Kuznyechik
   cipher in CTR_ACPKM mode in accordance with [RFC8645] and MAC is
   computed by the GOST R 34.12-2015 Kuznyechik cipher in MAC mode (MAC
   size is 128 bits).  The block size is 128 bits and the section size
   is fixed within a specific protocol based on the requirements of the
   system capacity and the key lifetime.

   The parameters field in an AlgorithmIdentifier SHALL have type
   Gost3412-15-Encryption-Parameters:

   Gost3412-15-Encryption-Parameters ::= SEQUENCE
   {
       ukm OCTET STRING
   }

   The field of type Gost3412-15-Encryption-Parameters have the
   following meanings:

   *  ukm MUST be present and MUST contain n octets.  Its value depends
      on the selected encryption algorithm:

      -  GOST R 34.12-2015 "Kuznyechik" n = 16 (see [RFC7801])

      -  GOST R 34.12-2015 "Magma" n = 12 (see [RFC8891])

7.4.  PBMAC1

   The OID id-PBMAC1 identifies the PBMAC1 message authentication
   scheme:

   id-PBMAC1 OBJECT IDENTIFIER ::= { pkcs-5 14 }

   The parameters field associated with this OID in an
   AlgorithmIdentifier SHALL have type PBMAC1-params:

   PBMAC1-params ::=  SEQUENCE
   {
       keyDerivationFunc AlgorithmIdentifier { { PBMAC1-KDFs } },
       messageAuthScheme AlgorithmIdentifier { { PBMAC1-MACs } }
   }

   The fields of type PBMAC1-params have the following meanings:

   *  keyDerivationFunc is the identifier and parameters of key
      derivation function in accordance with Section 7.1.

   *  messageAuthScheme is the identifier and parameters of the
      HMAC_GOSTR3411 algorithm.

8.  Security Considerations

   For information on security considerations for password-based
   cryptography, see [RFC8018].

   Conforming applications MUST use unique values for ukm and S in order
   to avoid the encryption of different data on the same keys with the
   same initialization vector.

   It is RECOMMENDED that parameter S consist of at least 32 octets of
   pseudorandom data in order to reduce the probability of collisions of
   keys generated from the same password.

9.  IANA Considerations

   This document has no IANA actions.

10.  References

10.1.  Normative References

   [GostPkcs5]
              Potashnikov, A., Karelina, E., Pianov, S., and A.
              Naumenko, "Information technology. Cryptographic Data
              Security. Password-based key security.",
              R 1323565.1.040-2022. Federal Agency on Technical
              Regulating and Metrology (In Russian).

   [RFC0020]  Cerf, V., "ASCII format for network interchange", STD 80,
              RFC 20, DOI 10.17487/RFC0020, October 1969,
              <https://www.rfc-editor.org/info/rfc20>.

   [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104,
              DOI 10.17487/RFC2104, February 1997,
              <https://www.rfc-editor.org/info/rfc2104>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC6986]  Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
              Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
              2013, <https://www.rfc-editor.org/info/rfc6986>.

   [RFC7801]  Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
              "Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
              <https://www.rfc-editor.org/info/rfc7801>.

   [RFC7836]  Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
              Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
              on the Cryptographic Algorithms to Accompany the Usage of
              Standards GOST R 34.10-2012 and GOST R 34.11-2012",
              RFC 7836, DOI 10.17487/RFC7836, March 2016,
              <https://www.rfc-editor.org/info/rfc7836>.

   [RFC8018]  Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:
              Password-Based Cryptography Specification Version 2.1",
              RFC 8018, DOI 10.17487/RFC8018, January 2017,
              <https://www.rfc-editor.org/info/rfc8018>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8645]  Smyshlyaev, S., Ed., "Re-keying Mechanisms for Symmetric
              Keys", RFC 8645, DOI 10.17487/RFC8645, August 2019,
              <https://www.rfc-editor.org/info/rfc8645>.

   [RFC8891]  Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015:
              Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891,
              September 2020, <https://www.rfc-editor.org/info/rfc8891>.

10.2.  Informative References

   [RFC6070]  Josefsson, S., "PKCS #5: Password-Based Key Derivation
              Function 2 (PBKDF2) Test Vectors", RFC 6070,
              DOI 10.17487/RFC6070, January 2011,
              <https://www.rfc-editor.org/info/rfc6070>.

Appendix A.  PBKDF2 HMAC_GOSTR3411 Test Vectors

   These test vectors are formed by analogy with test vectors from
   [RFC6070].  The input strings below are encoded using ASCII (see
   [RFC0020]).  The sequence "\0" (without quotation marks) means a
   literal ASCII NULL value (1 octet).  "DK" refers to the derived key.

   Input:
       P = "password" (8 octets)
       S = "salt" (4 octets)
       c = 1
       dkLen = 64

   Output:
       DK = 64 77 0a f7 f7 48 c3 b1 c9 ac 83 1d bc fd 85 c2
            61 11 b3 0a 8a 65 7d dc 30 56 b8 0c a7 3e 04 0d
            28 54 fd 36 81 1f 6d 82 5c c4 ab 66 ec 0a 68 a4
            90 a9 e5 cf 51 56 b3 a2 b7 ee cd db f9 a1 6b 47

   Input:
       P = "password" (8 octets)
       S = "salt" (4 octets)
       c = 2
       dkLen = 64

   Output:
       DK = 5a 58 5b af df bb 6e 88 30 d6 d6 8a a3 b4 3a c0
            0d 2e 4a eb ce 01 c9 b3 1c 2c ae d5 6f 02 36 d4
            d3 4b 2b 8f bd 2c 4e 89 d5 4d 46 f5 0e 47 d4 5b
            ba c3 01 57 17 43 11 9e 8d 3c 42 ba 66 d3 48 de

   Input:
       P = "password" (8 octets)
       S = "salt" (4 octets)
       c = 4096
       dkLen = 64

   Output:
       DK = e5 2d eb 9a 2d 2a af f4 e2 ac 9d 47 a4 1f 34 c2
            03 76 59 1c 67 80 7f 04 77 e3 25 49 dc 34 1b c7
            86 7c 09 84 1b 6d 58 e2 9d 03 47 c9 96 30 1d 55
            df 0d 34 e4 7c f6 8f 4e 3c 2c da f1 d9 ab 86 c3

   Input:
       P = "password" (8 octets)
       S = "salt" (4 octets)
       c = 16777216
       dkLen = 64

   Output:
       DK = 49 e4 84 3b ba 76 e3 00 af e2 4c 4d 23 dc 73 92
            de f1 2f 2c 0e 24 41 72 36 7c d7 0a 89 82 ac 36
            1a db 60 1c 7e 2a 31 4e 8c b7 b1 e9 df 84 0e 36
            ab 56 15 be 5d 74 2b 6c f2 03 fb 55 fd c4 80 71

   Input:
       P = "passwordPASSWORDpassword" (24 octets)
       S = "saltSALTsaltSALTsaltSALTsaltSALTsalt" (36 octets)
       c = 4096
       dkLen = 100

   Output:
       DK = b2 d8 f1 24 5f c4 d2 92 74 80 20 57 e4 b5 4e 0a
            07 53 aa 22 fc 53 76 0b 30 1c f0 08 67 9e 58 fe
            4b ee 9a dd ca e9 9b a2 b0 b2 0f 43 1a 9c 5e 50
            f3 95 c8 93 87 d0 94 5a ed ec a6 eb 40 15 df c2
            bd 24 21 ee 9b b7 11 83 ba 88 2c ee bf ef 25 9f
            33 f9 e2 7d c6 17 8c b8 9d c3 74 28 cf 9c c5 2a
            2b aa 2d 3a

   Input:
       P = "pass\0word" (9 octets)
       S = "sa\0lt" (5 octets)
       c = 4096
       dkLen = 64

   Output:
       DK = 50 df 06 28 85 b6 98 01 a3 c1 02 48 eb 0a 27 ab
            6e 52 2f fe b2 0c 99 1c 66 0f 00 14 75 d7 3a 4e
            16 7f 78 2c 18 e9 7e 92 97 6d 9c 1d 97 08 31 ea
            78 cc b8 79 f6 70 68 cd ac 19 10 74 08 44 e8 30

Acknowledgments

   The author thanks Potashnikov Alexander, Pianov Semen, Davletshina
   Alexandra, Belyavsky Dmitry, and Smyslov Valery for their careful
   readings and useful comments.

Author's Address

   Ekaterina Karelina (editor)
   InfoTeCS
   2B stroenie 1, ul. Otradnaya
   Moscow
   127273
   Russian Federation
   Email: Ekaterina.Karelina@infotecs.ru