1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
|
Internet Engineering Task Force (IETF) M. Boucadair
Request for Comments: 9362 Orange
Category: Standards Track J. Shallow
ISSN: 2070-1721 February 2023
Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal
Channel Configuration Attributes for Robust Block Transmission
Abstract
This document specifies new DDoS Open Threat Signaling (DOTS) signal
channel configuration parameters that can be negotiated between DOTS
peers to enable the use of Q-Block1 and Q-Block2 Constrained
Application Protocol (CoAP) options. These options enable robust and
faster transmission rates for large amounts of data with less packet
interchanges as well as support for faster recovery should any of the
blocks get lost in transmission (especially during DDoS attacks).
Also, this document defines a YANG data model for representing these
new DOTS signal channel configuration parameters. This model
augments the DOTS signal YANG module ("ietf-dots-signal-channel")
defined in RFC 9132.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9362.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
2. Terminology
3. DOTS Attributes for Robust Block Transmission
4. YANG/JSON Mapping Parameters to CBOR
5. DOTS Robust Block Transmission YANG Module
6. IANA Considerations
6.1. Registry for DOTS Signal Channel CBOR Mappings
6.2. DOTS Robust Block Transmission YANG Module
7. Security Considerations
8. References
8.1. Normative References
8.2. Informative References
Acknowledgements
Authors' Addresses
1. Introduction
The Constrained Application Protocol (CoAP) [RFC7252], although
inspired by HTTP, was designed to use UDP instead of TCP. The
message layer of CoAP over UDP includes support for reliable
delivery, simple congestion control, and flow control. The block-
wise transfer [RFC7959] introduced the CoAP Block1 and Block2 options
to handle data records that cannot fit in a single IP packet, to
avoid having to rely on IP fragmentation. The block-wise transfer
was further updated by [RFC8323] for use over TCP, TLS, and
WebSockets.
The CoAP Block1 and Block2 options work well in environments where
there are no or minimal packet losses. These options operate
synchronously where each individual block has to be requested and can
only ask for (or send) the next block when the request for the
previous block has completed. Packet rates, and hence block
transmission rates, are controlled by Round-Trip Times (RTTs).
There is a requirement for these blocks of data to be transmitted at
higher rates under network conditions where there may be asymmetrical
transient packet loss (e.g., responses may get dropped). An example
is when a network is subject to a Distributed Denial of Service
(DDoS) attack and there is a need for DDoS mitigation agents relying
upon CoAP to communicate with each other (e.g., [RFC9244]). As a
reminder, [RFC7959] recommends the use of Confirmable (CON) responses
to handle potential packet loss. However, such a recommendation does
not work with a "flooded pipe" DDoS situation because the returning
ACK packets may not get through.
The block-wise transfer specified in [RFC7959] covers the general
case but falls short in situations where packet loss is highly
asymmetrical. The mechanism specified in [RFC9177] provides features
roughly similar to the Block1/Block2 options but also provides
additional properties that are tailored towards the intended DDoS
Open Threat Signaling (DOTS) transmission. Concretely, [RFC9177]
primarily targets applications such as DOTS that can't use
Confirmable responses to handle potential packet loss and that
support application-specific mechanisms to assess whether the remote
peer is able to handle the messages sent by a CoAP endpoint (e.g.,
DOTS heartbeats as discussed in Section 4.7 of [RFC9132]).
[RFC9177] includes guards to prevent a CoAP agent from overloading
the network by adopting an aggressive sending rate. These guards are
followed in addition to the existing CoAP congestion control as
specified in Section 4.7 of [RFC7252] (mainly PROBING_RATE). Table 1
lists the additional CoAP parameters that are used for the guards
(Section 7.2 of [RFC9177]). Note that NON in this table refers to
Non-confirmable.
+=====================+===================+
| Parameter Name | Default Value |
+=====================+===================+
| MAX_PAYLOADS | 10 |
+---------------------+-------------------+
| NON_MAX_RETRANSMIT | 4 |
+---------------------+-------------------+
| NON_TIMEOUT | 2 s |
+---------------------+-------------------+
| NON_TIMEOUT_RANDOM | between 2-3 s |
+---------------------+-------------------+
| NON_RECEIVE_TIMEOUT | 4 s |
+---------------------+-------------------+
| NON_PROBING_WAIT | between 247-248 s |
+---------------------+-------------------+
| NON_PARTIAL_TIMEOUT | 247 s |
+---------------------+-------------------+
Table 1: Congestion Control Parameters
PROBING_RATE and other transmission parameters are negotiated between
DOTS peers as discussed in Section 4.5.2 of [RFC9132]. Nevertheless,
negotiating the parameters listed in Table 1 is not supported in
[RFC9132]. This document defines new DOTS signal channel attributes,
corresponding to the parameters in Table 1, that are used to
customize the configuration of robust block transmission in a DOTS
context.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
Readers should be familiar with the terms and concepts defined in
[RFC7252] and [RFC8612].
The terms "payload" and "body" are defined in [RFC7959]. The term
"payload" is thus used for the content of a single CoAP message
(i.e., a single block being transferred), while the term "body" is
used for the entire resource representation that is being transferred
in a block-wise fashion.
The meanings of the symbols in YANG tree diagrams are defined in
[RFC8340] and [RFC8791].
3. DOTS Attributes for Robust Block Transmission
Section 7.2 of [RFC9177] defines the following parameters that are
used for congestion control purposes:
MAX_PAYLOADS: This parameter represents the maximum number of
payloads that can be transmitted at any one time.
NON_MAX_RETRANSMIT: This parameter represents the maximum number of
times a request for the retransmission of missing payloads can
occur without a response from the remote peer. By default,
NON_MAX_RETRANSMIT has the same value as MAX_RETRANSMIT
(Section 4.8 of [RFC7252]).
NON_TIMEOUT: This parameter represents the maximum period of delay
between sending sets of MAX_PAYLOADS payloads for the same body.
NON_TIMEOUT has the same value as ACK_TIMEOUT (Section 4.8 of
[RFC7252]).
NON_TIMEOUT_RANDOM: This parameter represents the initial actual
delay between sending the first two MAX_PAYLOADS_SETs of the same
body. It is a random duration between NON_TIMEOUT and
(NON_TIMEOUT * ACK_RANDOM_FACTOR).
NON_RECEIVE_TIMEOUT: This parameter represents the maximum time to
wait for a missing payload before requesting retransmission. By
default, NON_RECEIVE_TIMEOUT has a value of twice NON_TIMEOUT.
NON_PROBING_WAIT: This parameter is used to limit the potential wait
needed when using PROBING_RATE.
NON_PARTIAL_TIMEOUT: This parameter is used for expiring partially
received bodies.
These parameters are used together with the PROBING_RATE parameter,
which in CoAP indicates the average data rate that must not be
exceeded by a CoAP endpoint in sending to a peer endpoint that does
not respond. The single body of blocks will be subjected to
PROBING_RATE (Section 4.7 of [RFC7252]), not the individual packets.
If the wait time between sending bodies that are not being responded
to based on PROBING_RATE exceeds NON_PROBING_WAIT, then the wait time
is limited to NON_PROBING_WAIT.
This document augments the "ietf-dots-signal-channel" DOTS signal
YANG module defined in Section 5.3 of [RFC9132] with the following
additional attributes that can be negotiated between DOTS peers to
enable robust and faster transmission:
max-payloads: This attribute echoes the MAX_PAYLOADS parameter
defined in [RFC9177].
This is an optional attribute. If the attribute is supplied in
both 'idle-config' and 'mitigating-config', then it MUST convey
the same value. If the attribute is only provided as part of
'idle-config' (or 'mitigating-config'), then the other definition
(i.e., 'mitigating-config' (or 'idle-config')) MUST be updated to
the same value.
non-max-retransmit: This attribute echoes the NON_MAX_RETRANSMIT
parameter defined in [RFC9177]. The default value of this
attribute is 'max-retransmit'. Note that DOTS uses a default
value of '3' instead of '4' (which is used generically by CoAP for
'max-transmit'; see Section 4.5.2 of [RFC9132] and Section 4.8 of
[RFC7252]).
This is an optional attribute.
non-timeout: This attribute, expressed in seconds, echoes the
NON_TIMEOUT parameter defined in [RFC9177]. The default value of
this attribute is 'ack-timeout'.
This attribute is also used to compute the NON_TIMEOUT_RANDOM
parameter.
This is an optional attribute.
non-receive-timeout: This attribute, expressed in seconds, echoes
the NON_RECEIVE_TIMEOUT parameter defined in [RFC9177]. The
default value of this attribute is twice 'non-timeout'.
This is an optional attribute.
non-probing-wait: This attribute, expressed in seconds, echoes the
NON_PROBING_WAIT parameter defined in [RFC9177].
This is an optional attribute.
non-partial-timeout: This attribute, expressed in seconds, echoes
the NON_PARTIAL_TIMEOUT parameter defined in [RFC9177]. The
default value of this attribute is 247 seconds.
This is an optional attribute.
The tree structure of the "ietf-dots-robust-trans" module (Section 5)
is shown in Figure 1.
module: ietf-dots-robust-trans
augment-structure /dots-signal:dots-signal/dots-signal:message-type
/dots-signal:signal-config
/dots-signal:mitigating-config:
+-- max-payloads
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value? uint16
| | +-- min-value? uint16
| +-- current-value? uint16
+-- non-max-retransmit
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value? uint16
| | +-- min-value? uint16
| +-- current-value? uint16
+-- non-timeout
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value-decimal? decimal64
| | +-- min-value-decimal? decimal64
| +-- current-value-decimal? decimal64
+-- non-receive-timeout
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value-decimal? decimal64
| | +-- min-value-decimal? decimal64
| +-- current-value-decimal? decimal64
+-- non-probing-wait
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value-decimal? decimal64
| | +-- min-value-decimal? decimal64
| +-- current-value-decimal? decimal64
+-- non-partial-timeout:
+-- (direction)?
| +--:(server-to-client-only)
| +-- max-value-decimal? decimal64
| +-- min-value-decimal? decimal64
+-- current-value-decimal? decimal64
augment-structure /dots-signal:dots-signal/dots-signal:message-type
/dots-signal:signal-config
/dots-signal:idle-config:
+-- max-payloads
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value? uint16
| | +-- min-value? uint16
| +-- current-value? uint16
+-- non-max-retransmit
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value? uint16
| | +-- min-value? uint16
| +-- current-value? uint16
+-- non-timeout
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value-decimal? decimal64
| | +-- min-value-decimal? decimal64
| +-- current-value-decimal? decimal64
+-- non-receive-timeout
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value-decimal? decimal64
| | +-- min-value-decimal? decimal64
| +-- current-value-decimal? decimal64
+-- non-probing-wait
| +-- (direction)?
| | +--:(server-to-client-only)
| | +-- max-value-decimal? decimal64
| | +-- min-value-decimal? decimal64
| +-- current-value-decimal? decimal64
+-- non-partial-timeout:
+-- (direction)?
| +--:(server-to-client-only)
| +-- max-value-decimal? decimal64
| +-- min-value-decimal? decimal64
+-- current-value-decimal? decimal64
Figure 1: DOTS Fast Block Transmission Tree Structure
These attributes are mapped to Concise Binary Object Representation
(CBOR) types as specified in Section 4 and in Section 6 of [RFC9132].
DOTS clients follow the procedure specified in Section 4.5 of
[RFC9132] to negotiate, configure, and retrieve the DOTS signal
channel session behavior (including Q-Block parameters) with DOTS
peers.
Implementation Note 1: 'non-probing-wait' ideally should be left
having some jitter and so should not be hard-coded with an
explicit value. It is suggested to use a base value (using
NON_TIMEOUT instead of NON_TIMEOUT_RANDOM); the jitter
(ACK_RANDOM_FACTOR - 1) is then added to each time the value is
checked.
Implementation Note 2: If any of the signal channel session
configuration parameters is updated, the 'non-probing-wait' and
'non-partial-timeout' values should be recalculated according to
the definition algorithms provided in Section 7.2 of [RFC9177]
unless explicit values are provided as part of the negotiated
configuration.
An example of a PUT message to configure Q-Block parameters is
depicted in Figure 2. In this example, a non-default value is
configured for the 'max-payloads' attribute, while default values are
used for 'non-max-retransmit', 'non-timeout', and 'non-receive-
timeout' in both idle and mitigation times. Given that 'non-probing-
wait' and 'non-partial-timeout' are not explicitly configured in this
example, these attributes will be computed following the algorithms
provided in Section 7.2 of [RFC9177]. The meanings of the other
attributes are detailed in Section 4.5 of [RFC9132].
Header: PUT (Code=0.03)
Uri-Path: ".well-known"
Uri-Path: "dots"
Uri-Path: "config"
Uri-Path: "sid=123"
Content-Format: "application/dots+cbor"
{
"ietf-dots-signal-channel:signal-config": {
"mitigating-config": {
"heartbeat-interval": {
"current-value": 30
},
"missing-hb-allowed": {
"current-value": 15
},
"probing-rate": {
"current-value": 15
},
"max-retransmit": {
"current-value": 3
},
"ack-timeout": {
"current-value-decimal": "2.00"
},
"ack-random-factor": {
"current-value-decimal": "1.50"
},
"ietf-dots-robust-trans:max-payloads": {
"current-value": 15
},
"ietf-dots-robust-trans:non-max-retransmit": {
"current-value": 3
},
"ietf-dots-robust-trans:non-timeout": {
"current-value-decimal": "2.00"
},
"ietf-dots-robust-trans:non-receive-timeout": {
"current-value-decimal": "4.00"
}
},
"idle-config": {
"heartbeat-interval": {
"current-value": 0
},
"max-retransmit": {
"current-value": 3
},
"ack-timeout": {
"current-value-decimal": "2.00"
},
"ack-random-factor": {
"current-value-decimal": "1.50"
},
"ietf-dots-robust-trans:max-payloads": {
"current-value": 15
},
"ietf-dots-robust-trans:non-max-retransmit": {
"current-value": 3
},
"ietf-dots-robust-trans:non-timeout": {
"current-value-decimal": "2.00"
},
"ietf-dots-robust-trans:non-receive-timeout": {
"current-value-decimal": "4.00"
}
}
}
}
Figure 2: Example of PUT to Convey the Configuration Parameters
The payload of the message depicted in Figure 2 is CBOR-encoded as
indicated by the Content-Format set to "application/dots+cbor"
(Section 10.4 of [RFC9132]). However, and for the sake of better
readability, the example uses JSON encoding of YANG-modeled data
following the mapping tables in Section 4 and in Section 6 of
[RFC9132]: use the JSON names and types defined in Section 4. These
conventions are inherited from [RFC9132].
4. YANG/JSON Mapping Parameters to CBOR
The YANG/JSON mapping parameters to CBOR are listed in Table 2.
Note: Implementers must check that the mapping output provided by
their YANG-to-CBOR encoding schemes is aligned with the content of
Table 2.
+====================+===========+=======+=================+========+
| Parameter Name | YANG Type | CBOR | CBOR Major Type | JSON |
| | | Key | & Information | Type |
+====================+===========+=======+=================+========+
| ietf-dots-robust- | container | 32776 | 5 map | Object |
| trans:max- | | | | |
| payloads | | | | |
+--------------------+-----------+-------+-----------------+--------+
| ietf-dots-robust- | container | 32777 | 5 map | Object |
| trans:non-max- | | | | |
| retransmit | | | | |
+--------------------+-----------+-------+-----------------+--------+
| ietf-dots-robust- | container | 32778 | 5 map | Object |
| trans:non-timeout | | | | |
+--------------------+-----------+-------+-----------------+--------+
| ietf-dots-robust- | container | 32779 | 5 map | Object |
| trans:non- | | | | |
| receive-timeout | | | | |
+--------------------+-----------+-------+-----------------+--------+
| ietf-dots-robust- | container | 32780 | 5 map | Object |
| trans:non- | | | | |
| probing-wait | | | | |
+--------------------+-----------+-------+-----------------+--------+
| ietf-dots-robust- | container | 32781 | 5 map | Object |
| trans:non- | | | | |
| partial-timeout | | | | |
+--------------------+-----------+-------+-----------------+--------+
Table 2: YANG/JSON Mapping Parameters to CBOR
5. DOTS Robust Block Transmission YANG Module
This module uses the data structure extension defined in [RFC8791].
<CODE BEGINS> file "ietf-dots-robust-trans@2023-02-28.yang"
module ietf-dots-robust-trans {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-dots-robust-trans";
prefix dots-robust;
import ietf-dots-signal-channel {
prefix dots-signal;
reference
"RFC 9132: Distributed Denial-of-Service Open Threat
Signaling (DOTS) Signal Channel Specification";
}
import ietf-yang-structure-ext {
prefix sx;
reference
"RFC 8791: YANG Data Structure Extensions";
}
organization
"IETF DDoS Open Threat Signaling (DOTS) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/dots/>
WG List: <mailto:dots@ietf.org>
Author: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>;
Author: Jon Shallow
<mailto:ietf-supjps@jpshallow.com>";
description
"This module contains YANG definitions for the configuration
of parameters that can be negotiated between a DOTS client
and a DOTS server for robust block transmission.
Copyright (c) 2023 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9362; see the
RFC itself for full legal notices.";
revision 2023-02-28 {
description
"Initial revision.";
reference
"RFC 9362: Distributed Denial-of-Service Open Threat
Signaling (DOTS) Configuration Attributes
for Robust Block Transmission";
}
grouping robust-transmission-attributes {
description
"A set of DOTS signal channel session configuration
parameters that are negotiated between DOTS agents when
making use of Q-Block1 and Q-Block2 options.";
container max-payloads {
description
"Indicates the maximum number of payloads that
can be transmitted at any one time.";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a message sent
from the server to the client.";
leaf max-value {
type uint16;
description
"Maximum acceptable 'max-payloads' value.";
}
leaf min-value {
type uint16;
description
"Minimum acceptable 'max-payloads' value.";
}
}
}
leaf current-value {
type uint16;
default "10";
description
"Current 'max-payloads' value.";
reference
"RFC 9177: Constrained Application Protocol (CoAP)
Block-Wise Transfer Options Supporting
Robust Transmission, Section 7.2";
}
}
container non-max-retransmit {
description
"Indicates the maximum number of times a request
for the retransmission of missing payloads can
occur without a response from the remote peer.";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a message sent
from the server to the client.";
leaf max-value {
type uint16;
description
"Maximum acceptable 'non-max-retransmit' value.";
}
leaf min-value {
type uint16;
description
"Minimum acceptable 'non-max-retransmit' value.";
}
}
}
leaf current-value {
type uint16;
default "3";
description
"Current 'non-max-retransmit' value.";
reference
"RFC 9177: Constrained Application Protocol (CoAP)
Block-Wise Transfer Options Supporting
Robust Transmission, Section 7.2";
}
}
container non-timeout {
description
"Indicates the maximum period of delay between
sending sets of MAX_PAYLOADS payloads for the same
body.";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a message sent
from the server to the client.";
leaf max-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Maximum 'ack-timeout' value.";
}
leaf min-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Minimum 'ack-timeout' value.";
}
}
}
leaf current-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
default "2.00";
description
"Current 'ack-timeout' value.";
reference
"RFC 9177: Constrained Application Protocol (CoAP)
Block-Wise Transfer Options Supporting
Robust Transmission, Section 7.2";
}
}
container non-receive-timeout {
description
"Indicates the time to wait for a missing payload
before requesting retransmission.";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a message sent
from the server to the client.";
leaf max-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Maximum 'non-receive-timeout' value.";
}
leaf min-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Minimum 'non-receive-timeout' value.";
}
}
}
leaf current-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
default "4.00";
description
"Current 'non-receive-timeout' value.";
reference
"RFC 9177: Constrained Application Protocol (CoAP)
Block-Wise Transfer Options Supporting
Robust Transmission, Section 7.2";
}
}
container non-probing-wait {
description
"Used to limit the potential wait needed when
using 'probing-rate'.";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a message sent
from the server to the client.";
leaf max-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Maximum 'non-probing-wait' value.";
}
leaf min-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Minimum 'non-probing-wait' value.";
}
}
}
leaf current-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Current 'non-probing-wait' value.";
reference
"RFC 9177: Constrained Application Protocol (CoAP)
Block-Wise Transfer Options Supporting
Robust Transmission, Section 7.2";
}
}
container non-partial-timeout {
description
"Used for expiring partially received bodies.";
choice direction {
description
"Indicates the communication direction in which the
data nodes can be included.";
case server-to-client-only {
description
"These data nodes appear only in a message sent
from the server to the client.";
leaf max-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Maximum 'non-partial-timeout' value.";
}
leaf min-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
description
"Minimum 'non-partial-timeout' value.";
}
}
}
leaf current-value-decimal {
type decimal64 {
fraction-digits 2;
}
units "seconds";
default "247.00";
description
"Current 'non-partial-timeout' value.";
reference
"RFC 9177: Constrained Application Protocol (CoAP)
Block-Wise Transfer Options Supporting
Robust Transmission, Section 7.2";
}
}
}
sx:augment-structure "/dots-signal:dots-signal"
+ "/dots-signal:message-type"
+ "/dots-signal:signal-config"
+ "/dots-signal:mitigating-config" {
description
"Indicates DOTS configuration attributes to use for
robust transmission when a mitigation is active.";
uses robust-transmission-attributes;
}
sx:augment-structure "/dots-signal:dots-signal"
+ "/dots-signal:message-type"
+ "/dots-signal:signal-config"
+ "/dots-signal:idle-config" {
description
"Indicates DOTS configuration parameters to use for
robust transmission when no mitigation is active.";
uses robust-transmission-attributes;
}
}
<CODE ENDS>
6. IANA Considerations
6.1. Registry for DOTS Signal Channel CBOR Mappings
This specification registers the following parameters in the IANA
"DOTS Signal Channel CBOR Key Values" registry [Key-Map].
+===================+==========+=======+============+===============+
| Parameter Name | CBOR | CBOR | Change | Specification |
| | Key | Major | Controller | Document(s) |
| | Value | Type | | |
+===================+==========+=======+============+===============+
| ietf-dots-robust- | 32776 | 5 | IESG | RFC 9362 |
| trans:max- | | | | |
| payloads | | | | |
+-------------------+----------+-------+------------+---------------+
| ietf-dots-robust- | 32777 | 5 | IESG | RFC 9362 |
| trans:non-max- | | | | |
| retransmit | | | | |
+-------------------+----------+-------+------------+---------------+
| ietf-dots-robust- | 32778 | 5 | IESG | RFC 9362 |
| trans:non-timeout | | | | |
+-------------------+----------+-------+------------+---------------+
| ietf-dots-robust- | 32779 | 5 | IESG | RFC 9362 |
| trans:non- | | | | |
| receive-timeout | | | | |
+-------------------+----------+-------+------------+---------------+
| ietf-dots-robust- | 32780 | 5 | IESG | RFC 9362 |
| trans:non- | | | | |
| probing-wait | | | | |
+-------------------+----------+-------+------------+---------------+
| ietf-dots-robust- | 32781 | 5 | IESG | RFC 9362 |
| trans:non- | | | | |
| partial-timeout | | | | |
+-------------------+----------+-------+------------+---------------+
Table 3: DOTS Robust Block Transmission CBOR Mappings
6.2. DOTS Robust Block Transmission YANG Module
IANA has registered the following URI in the "ns" subregistry within
the "IETF XML Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-dots-robust-trans
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
IANA has registered the following YANG module in the "YANG Module
Names" subregistry [RFC6020] within the "YANG Parameters" registry.
Name: ietf-dots-robust-trans
Namespace: urn:ietf:params:xml:ns:yang:ietf-dots-robust-trans
Maintained by IANA? N
Prefix: dots-robust
Reference: RFC 9362
7. Security Considerations
The security considerations for the DOTS signal channel protocol are
discussed in Section 11 of [RFC9132].
CoAP-specific security considerations are discussed in Section 11 of
[RFC9177].
Consistent with Section 5 of [RFC9132], the "ietf-dots-robust-trans"
module is not intended to be used via NETCONF/RESTCONF. It serves as
an abstract representation in DOTS signal channel messages. The
"ietf-dots-robust-trans" module does not introduce any new
vulnerabilities beyond those specified above.
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
Application Protocol (CoAP)", RFC 7252,
DOI 10.17487/RFC7252, June 2014,
<https://www.rfc-editor.org/info/rfc7252>.
[RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
the Constrained Application Protocol (CoAP)", RFC 7959,
DOI 10.17487/RFC7959, August 2016,
<https://www.rfc-editor.org/info/rfc7959>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
Application Protocol) over TCP, TLS, and WebSockets",
RFC 8323, DOI 10.17487/RFC8323, February 2018,
<https://www.rfc-editor.org/info/rfc8323>.
[RFC8791] Bierman, A., Björklund, M., and K. Watsen, "YANG Data
Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,
June 2020, <https://www.rfc-editor.org/info/rfc8791>.
[RFC9132] Boucadair, M., Ed., Shallow, J., and T. Reddy.K,
"Distributed Denial-of-Service Open Threat Signaling
(DOTS) Signal Channel Specification", RFC 9132,
DOI 10.17487/RFC9132, September 2021,
<https://www.rfc-editor.org/info/rfc9132>.
[RFC9177] Boucadair, M. and J. Shallow, "Constrained Application
Protocol (CoAP) Block-Wise Transfer Options Supporting
Robust Transmission", RFC 9177, DOI 10.17487/RFC9177,
March 2022, <https://www.rfc-editor.org/info/rfc9177>.
8.2. Informative References
[Key-Map] IANA, "DOTS Signal Channel CBOR Key Values",
<https://www.iana.org/assignments/dots/>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8612] Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
Threat Signaling (DOTS) Requirements", RFC 8612,
DOI 10.17487/RFC8612, May 2019,
<https://www.rfc-editor.org/info/rfc8612>.
[RFC9244] Boucadair, M., Ed., Reddy.K, T., Ed., Doron, E., Chen, M.,
and J. Shallow, "Distributed Denial-of-Service Open Threat
Signaling (DOTS) Telemetry", RFC 9244,
DOI 10.17487/RFC9244, June 2022,
<https://www.rfc-editor.org/info/rfc9244>.
Acknowledgements
Thanks to Tiru Reddy, Meiling Chen, and Kaname Nishizuka for the
review.
Thanks to Michal Vaško for the yangdoctors review.
Thanks to Valery Smyslov for shepherding the document, Paul Wouters
for the AD review, Paul Kyzivat for the artart directorate review,
Tim Evens for the Gen-ART review, and Jean-Michel Combes for the int-
dir review.
Thanks to John Scudder, Lars Eggert, Éric Vyncke, Roman Danyliw, Rob
Wilton, and Martin Duke for their comments during the IESG review.
Authors' Addresses
Mohamed Boucadair
Orange
35000 Rennes
France
Email: mohamed.boucadair@orange.com
Jon Shallow
United Kingdom
Email: supjps-ietf@jpshallow.com
|