1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
|
Internet Research Task Force (IRTF) S. Goldberg
Request for Comments: 9381 Boston University
Category: Informational L. Reyzin
ISSN: 2070-1721 Boston University and Algorand
D. Papadopoulos
Hong Kong University of Science and Technology
J. Včelák
NS1
August 2023
Verifiable Random Functions (VRFs)
Abstract
A Verifiable Random Function (VRF) is the public key version of a
keyed cryptographic hash. Only the holder of the secret key can
compute the hash, but anyone with the public key can verify the
correctness of the hash. VRFs are useful for preventing enumeration
of hash-based data structures. This document specifies VRF
constructions based on RSA and elliptic curves that are secure in the
cryptographic random oracle model.
This document is a product of the Crypto Forum Research Group (CFRG)
in the IRTF.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Research Task Force
(IRTF). The IRTF publishes the results of Internet-related research
and development activities. These results might not be suitable for
deployment. This RFC represents the consensus of the Crypto Forum
Research Group of the Internet Research Task Force (IRTF). Documents
approved for publication by the IRSG are not candidates for any level
of Internet Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9381.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
1. Introduction
1.1. Requirements
1.2. Terminology
2. VRF Algorithms
3. VRF Security Properties
3.1. Full Uniqueness
3.2. Full Collision Resistance
3.3. Trusted Uniqueness and Trusted Collision Resistance
3.4. Full Pseudorandomness or Selective Pseudorandomness
3.5. Unpredictability under Malicious Key Generation
4. RSA Full Domain Hash VRF (RSA-FDH-VRF)
4.1. RSA-FDH-VRF Proving
4.2. RSA-FDH-VRF Proof to Hash
4.3. RSA-FDH-VRF Verifying
4.4. RSA-FDH-VRF Ciphersuites
5. Elliptic Curve VRF (ECVRF)
5.1. ECVRF Proving
5.2. ECVRF Proof to Hash
5.3. ECVRF Verifying
5.4. ECVRF Auxiliary Functions
5.4.1. ECVRF Encode to Curve
5.4.2. ECVRF Nonce Generation
5.4.3. ECVRF Challenge Generation
5.4.4. ECVRF Decode Proof
5.4.5. ECVRF Validate Key
5.5. ECVRF Ciphersuites
6. IANA Considerations
7. Security Considerations
7.1. Key Generation
7.1.1. Uniqueness and Collision Resistance under Malicious Key
Generation
7.1.2. Pseudorandomness under Malicious Key Generation
7.1.3. Unpredictability under Malicious Key Generation
7.2. Security Levels
7.3. Selective vs. Full Pseudorandomness
7.4. Proper Pseudorandom Nonce for the ECVRF
7.5. Side-Channel Attacks
7.6. Proofs Provide No Secrecy for the VRF Input
7.7. Prehashing
7.8. Hash Function Domain Separation
7.9. Hash Function Salting
7.10. Futureproofing
8. References
8.1. Normative References
8.2. Informative References
Appendix A. Test Vectors for the RSA-FDH-VRF Ciphersuites
A.1. RSA-FDH-VRF-SHA256
A.2. RSA-FDH-VRF-SHA384
A.3. RSA-FDH-VRF-SHA512
Appendix B. Test Vectors for the ECVRF Ciphersuites
B.1. ECVRF-P256-SHA256-TAI
B.2. ECVRF-P256-SHA256-SSWU
B.3. ECVRF-EDWARDS25519-SHA512-TAI
B.4. ECVRF-EDWARDS25519-SHA512-ELL2
Contributors
Authors' Addresses
1. Introduction
A Verifiable Random Function (VRF) [MRV99] is the public key version
of a keyed cryptographic hash. Only the holder of the VRF secret key
can compute the hash, but anyone with the corresponding public key
can verify the correctness of the hash.
A key application of the VRF is to provide privacy against offline
dictionary attacks (also known as enumeration attacks) on data stored
in a hash-based data structure. In this application, a Prover holds
the VRF secret key and uses the VRF hashing to construct a hash-based
data structure on the input data.
Due to the nature of the VRF, only the Prover can answer queries
about whether or not some data is stored in the data structure.
Anyone who knows the VRF public key can verify that the Prover has
answered the queries correctly. However, no offline inferences
(i.e., inferences without querying the Prover) can be made about the
data stored in the data structure.
This document defines VRFs based on RSA and elliptic curves. The
choices of VRFs for inclusion in this document were based, in part,
on synergy with existing RFCs and commonly available implementations
of individual components that are used within the VRFs.
The particular choice of the VRF for a given application depends on
the desired security properties, the availability of
cryptographically strong implementations, efficiency constraints, and
the trust one places in RSA and elliptic curve Diffie-Hellman
assumptions (and the trust in a particular choice of curve in the
case of elliptic curves). Differences in the security properties
provided by the different options are discussed in Sections 3 and 7.
This document represents the consensus of the Crypto Forum Research
Group (CFRG).
1.1. Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
1.2. Terminology
The following terminology is used throughout this document:
SK: The secret key for the VRF. (Note: The secret key is also
sometimes called a "private key".)
PK: The public key for the VRF.
alpha or alpha_string: The input to be hashed by the VRF.
beta or beta_string: The VRF hash output.
pi or pi_string: The VRF proof.
Prover: Holds the VRF secret key SK and public key PK.
Verifier: Holds the VRF public key PK.
Adversary: Potential attacker; often used to define a security
property.
Malicious (or adversarial): Performed by an adversary.
2. VRF Algorithms
A VRF comes with a key generation algorithm that generates a VRF
public key PK and secret key SK.
The Prover hashes an input alpha using the VRF secret key SK to
obtain a VRF hash output beta:
beta = VRF_hash(SK, alpha)
The VRF_hash algorithm is deterministic, in the sense that it always
produces the same output beta, given the same pair of inputs (SK,
alpha).
The Prover also uses the secret key SK to construct a proof pi that
beta is the correct hash output:
pi = VRF_prove(SK, alpha)
The VRFs defined in this document allow anyone to deterministically
obtain the VRF hash output beta directly from the proof value pi by
using the function VRF_proof_to_hash:
beta = VRF_proof_to_hash(pi)
Thus, for the VRFs defined in this document, VRF_hash is defined as
VRF_hash(SK, alpha) = VRF_proof_to_hash(VRF_prove(SK, alpha)),
and therefore this document will specify VRF_prove and
VRF_proof_to_hash rather than VRF_hash.
The proof pi allows a Verifier holding the public key PK to verify
that beta is the correct VRF hash of input alpha under key PK. Thus,
the VRFs defined in this document also come with an algorithm
VRF_verify(PK, alpha, pi)
that outputs ("VALID", beta = VRF_proof_to_hash(pi)) if pi is valid,
and "INVALID" otherwise.
3. VRF Security Properties
VRFs are designed to ensure the following security properties:
uniqueness (full or trusted), collision resistance (full or trusted),
and pseudorandomness (full or selective). Some are designed to also
ensure unpredictability under malicious key generation. We now
describe these properties.
3.1. Full Uniqueness
Uniqueness means that, for any fixed VRF public key and for any input
alpha, it is infeasible to find proofs for more than one VRF output
beta.
More precisely, "full uniqueness" means that an adversary cannot find
* a VRF public key PK,
* a VRF input alpha, and
* two proofs pi1 and pi2
such that
* VRF_verify(PK, alpha, pi1) outputs ("VALID", beta1),
* VRF_verify(PK, alpha, pi2) outputs ("VALID", beta2), and
* beta1 is not equal to beta2.
3.2. Full Collision Resistance
Like cryptographic hash functions, VRFs are collision resistant.
Collision resistance means that it is infeasible to find two
different inputs alpha1 and alpha2 with the same output beta.
More precisely, "full collision resistance" means that an adversary
cannot find
* a VRF public key PK,
* two VRF inputs alpha1 and alpha2 that are not equal to each other,
and
* two proofs pi1 and pi2
such that
* VRF_verify(PK, alpha1, pi1) outputs ("VALID", beta1),
* VRF_verify(PK, alpha2, pi2) outputs ("VALID", beta2), and
* beta1 is equal to beta2.
3.3. Trusted Uniqueness and Trusted Collision Resistance
Full uniqueness and full collision resistance hold even if the VRF
keys are generated maliciously. For some applications, it is
sufficient for a VRF to possess weaker security properties than full
uniqueness and full collision resistance. These properties are
called "trusted uniqueness" and "trusted collision resistance"; they
are the same as full uniqueness and full collision resistance,
respectively, but are not guaranteed to hold if the adversary gets to
choose the VRF public key PK. Instead, they are guaranteed to hold
only if the VRF keys PK and SK are generated as specified by the VRF
key generation algorithm and then given to the adversary. In other
words, they are guaranteed to hold even if the adversary has
knowledge of SK and PK but are not guaranteed to hold if the
adversary has the ability to choose SK and PK.
As further discussed in Section 7.1.1, some of the VRFs specified in
this document satisfy only trusted uniqueness and trusted collision
resistance. VRFs in this document that satisfy only trusted
uniqueness and trusted collision resistance MUST NOT be used in
applications that need protection against adversarial VRF key
generation.
3.4. Full Pseudorandomness or Selective Pseudorandomness
Pseudorandomness ensures that when someone who does not know SK sees
a VRF hash output beta without its corresponding VRF proof pi, beta
is indistinguishable from a random value.
More precisely, suppose that the public and secret VRF keys (PK, SK)
were generated correctly. Pseudorandomness ensures that the VRF hash
output beta (without its corresponding VRF proof pi) on any
adversarially chosen "target" VRF input alpha looks indistinguishable
from random for any adversary who does not know the VRF secret key
SK. This holds even if the adversary sees VRF hash outputs beta' and
proofs pi' for multiple other inputs alpha' (and even if those other
inputs alpha' are chosen by the adversary).
The "full pseudorandomness" security property holds even against an
adversary who is allowed to choose the target VRF input alpha at any
time, even after it observes VRF outputs beta' and proofs pi' on a
variety of chosen inputs alpha'.
"Selective pseudorandomness" is a weaker security property that
suffices in many applications. This security property holds against
an adversary who chooses the target VRF input alpha first, before it
learns the VRF public key PK and obtains VRF outputs beta' and proofs
pi' on other inputs alpha' of its choice.
As further discussed in Section 7.3, the VRFs specified in this
document satisfy both full pseudorandomness and selective
pseudorandomness, but their quantitative security against the
selective pseudorandomness attack is stronger.
It is important to remember that the VRF output beta is always
distinguishable from random by the Prover or by any other party that
knows the VRF secret key SK. Such a party can easily distinguish
beta from a random value by comparing beta to the result of
VRF_hash(SK, alpha). In particular, if the key is generated
maliciously, even parties other than the Prover may know SK, and thus
pseudorandomness cannot be guaranteed.
Similarly, the VRF output beta is always distinguishable from random
by any party that knows a valid VRF proof pi corresponding to the VRF
input alpha, even if this party does not know the VRF secret key SK.
Such a party can easily distinguish beta from a random value by
checking to see whether VRF_verify(PK, alpha, pi) returns ("VALID",
beta).
Additionally, the VRF output beta may be distinguishable from random
if VRF key generation was not done correctly (for example, if VRF
keys were generated with bad randomness).
3.5. Unpredictability under Malicious Key Generation
As explained in Section 3.4, pseudorandomness cannot hold against
malicious key generation. For instance, if an adversary outputs VRF
keys that are deterministically generated (or hard-coded and publicly
known), then the outputs are easily derived by anyone and are
therefore not pseudorandom.
There is, however, a different type of unpredictability that is
desirable in certain VRF applications (such as leader selection in
the consensus protocols of [GHMVZ17] and [DGKR18]), called
"unpredictability under malicious key generation". This property is
similar to the unpredictability achieved by an (ordinary, unkeyed)
cryptographic hash function: if the input has enough entropy (i.e.,
cannot be predicted), then the correct output is indistinguishable
from uniformly random, no matter how the VRF keys are generated.
A formal definition of this property appears in Section 3.2 of
[DGKR18]. As further discussed in Section 7.1.3, only some of the
VRFs specified in this document satisfy this property.
4. RSA Full Domain Hash VRF (RSA-FDH-VRF)
The RSA Full Domain Hash VRF (RSA-FDH-VRF) is a VRF that, for
suitable key lengths, satisfies the "trusted uniqueness", "trusted
collision resistance", and "full pseudorandomness" properties defined
in Section 3, as further discussed in Section 7. Its security
follows from the standard RSA assumption in the random oracle model.
Formal security proofs are provided in [PWHVNRG17].
The VRF computes the proof pi as a deterministic RSA signature on
input alpha using the RSA Full Domain Hashing algorithm [RFC8017]
parameterized with the selected hash algorithm. RSA signature
verification is used to verify the correctness of the proof. The VRF
hash output beta is simply obtained by hashing the proof pi with the
selected hash algorithm.
The key pair for the RSA-FDH-VRF MUST satisfy the conditions
specified in Section 3 of [RFC8017].
In this section, the notation from [RFC8017] is used.
Parameters used:
(n, e): RSA public key
K: RSA private key (its representation is implementation
dependent)
k: length, in octets, of the RSA modulus n (k must be less than
2^32)
Fixed options (specified in Section 4.4):
Hash: cryptographic hash function
hLen: output length, in octets, of hash function Hash
suite_string: an octet string specifying the RSA-FDH-VRF
ciphersuite, which determines the above options
Primitives used:
I2OSP: Conversion of a non-negative integer to an octet string as
defined in Section 4.1 of [RFC8017] (given an integer and a
length (in octets), produces a big-endian representation of the
integer, zero-padded to the desired length)
OS2IP: Conversion of an octet string to a non-negative integer as
defined in Section 4.2 of [RFC8017] (given a big-endian
encoding of an integer, produces the integer)
RSASP1: RSA signature primitive as defined in Section 5.2.1 of
[RFC8017] (given a private key and an input, raises the input
to the private RSA exponent modulo n)
RSAVP1: RSA verification primitive as defined in Section 5.2.2 of
[RFC8017] (given a public key and an input, raises the input to
the public RSA exponent modulo n)
MGF1: Mask generation function based on the hash function Hash as
defined in Appendix B.2.1 of [RFC8017] (given an input,
produces a random-oracle-like output of desired length)
||: octet string concatenation
4.1. RSA-FDH-VRF Proving
RSAFDHVRF_prove(K, alpha_string[, MGF_salt])
Input:
K: RSA private key
alpha_string: VRF hash input, an octet string
Optional input:
MGF_salt: a public octet string used as a hash function salt;
this input is not used when MGF_salt is specified as part of
the ciphersuite
Output:
pi_string: proof, an octet string of length k
Steps:
1. mgf_domain_separator = 0x01
2. EM = MGF1(suite_string || mgf_domain_separator || MGF_salt ||
alpha_string, k - 1)
3. m = OS2IP(EM)
4. s = RSASP1(K, m)
5. pi_string = I2OSP(s, k)
6. Output pi_string
4.2. RSA-FDH-VRF Proof to Hash
RSAFDHVRF_proof_to_hash(pi_string)
Input:
pi_string: proof, an octet string of length k
Output:
beta_string: VRF hash output, an octet string of length hLen
Important note:
RSAFDHVRF_proof_to_hash should be run only on a pi_string value
that is known to have been produced by RSAFDHVRF_prove, or from
within RSAFDHVRF_verify as specified in Section 4.3.
Steps:
1. proof_to_hash_domain_separator = 0x02
2. beta_string = Hash(suite_string ||
proof_to_hash_domain_separator || pi_string)
3. Output beta_string
4.3. RSA-FDH-VRF Verifying
RSAFDHVRF_verify((n, e), alpha_string, pi_string[, MGF_salt])
Input:
(n, e): RSA public key
alpha_string: VRF hash input, an octet string
pi_string: proof to be verified, an octet string of length k
Optional input:
MGF_salt: a public octet string used as a hash function salt;
this input is not used when MGF_salt is specified as part of
the ciphersuite
Output:
("VALID", beta_string), where beta_string is the VRF hash output,
an octet string of length hLen, or
"INVALID"
Steps:
1. s = OS2IP(pi_string)
2. m = RSAVP1((n, e), s); if RSAVP1 returns "signature
representative out of range", output "INVALID" and stop
3. mgf_domain_separator = 0x01
4. EM' = MGF1(suite_string || mgf_domain_separator || MGF_salt ||
alpha_string, k - 1)
5. m' = OS2IP(EM')
6. If m and m' are equal, output ("VALID",
RSAFDHVRF_proof_to_hash(pi_string)); else output "INVALID"
4.4. RSA-FDH-VRF Ciphersuites
This document defines RSA-FDH-VRF-SHA256 as follows:
* suite_string = 0x01.
* The hash function Hash is SHA-256 as specified in [RFC6234], with
hLen = 32.
* MGF_salt = I2OSP(k, 4) || I2OSP(n, k).
This document defines RSA-FDH-VRF-SHA384 as follows:
* suite_string = 0x02.
* The hash function Hash is SHA-384 as specified in [RFC6234], with
hLen = 48.
* MGF_salt = I2OSP(k, 4) || I2OSP(n, k).
This document defines RSA-FDH-VRF-SHA512 as follows:
* suite_string = 0x03.
* The hash function Hash is SHA-512 as specified in [RFC6234], with
hLen = 64.
* MGF_salt = I2OSP(k, 4) || I2OSP(n, k).
5. Elliptic Curve VRF (ECVRF)
The Elliptic Curve Verifiable Random Function (ECVRF) is a VRF that,
for suitable parameter choices, satisfies the "full uniqueness",
"trusted collision resistance", and "full pseudorandomness"
properties defined in Section 3. If the validate_key parameter given
to ECVRF_verify is TRUE, then the ECVRF additionally satisfies "full
collision resistance" and "unpredictability under malicious key
generation". See Section 7 for further discussion. Formal security
proofs are provided in [PWHVNRG17].
Notation used:
Elliptic curve operations are written in additive notation, with
P+Q denoting point addition and x*P denoting scalar multiplication
of a point P by a scalar x
x^y: x raised to the power y
x*y: x multiplied by y
s || t: concatenation of octet strings s and t
0xMN (where M and N are hexadecimal digits): a single octet with
value M*16+N; equivalently, int_to_string(M*16+N, 1), where
int_to_string is as defined below
Fixed options (specified in Section 5.5):
F: finite field
fLen: length, in octets, of an element in F encoded as an octet
string
E: elliptic curve (EC) defined over F
ptLen: length, in octets, of a point on E encoded as an octet
string
G: subgroup of E of large prime order
q: prime order of group G
qLen: length of q, in octets, i.e., the smallest integer such
that 2^(8qLen) > q
cLen: length, in octets, of a challenge value used by the VRF
(note that in the typical case, cLen is qLen/2 or close to it)
cofactor: number of points on E divided by q
B: generator of group G
Hash: cryptographic hash function
hLen: output length, in octets, of Hash (hLen must be at least
cLen; in the typical case, it is at least qLen)
ECVRF_encode_to_curve: a function that hashes strings to points
on E
ECVRF_nonce_generation: a function that derives a pseudorandom
nonce from SK and the input as part of ECVRF proving
suite_string: an octet string specifying the ECVRF ciphersuite,
which determines the above options as well as type conversions
and parameter generation
Type conversions (specified in Section 5.5):
int_to_string(a, len): conversion of non-negative integer a to
octet string of length len
string_to_int(a_string): conversion of an octet string a_string
to a non-negative integer
point_to_string: conversion of a point on E to a ptLen-octet
string
string_to_point: conversion of a ptLen-octet string to a point on
E. string_to_point returns "INVALID" if the octet string does
not convert to a valid EC point on the curve E
Note that with certain software libraries (for big integer and
elliptic curve arithmetic), the int_to_string and point_to_string
conversions are not needed when the libraries encode integers and
EC points in the same way as required by the ciphersuites. For
example, in some implementations, EC point operations will take
octet strings as inputs and produce octet strings as outputs,
without introducing a separate elliptic curve point type.
Parameters used (the generation of these parameters is specified
in Section 5.5):
SK: VRF secret key
x: VRF secret scalar, an integer. Note: Depending on the
ciphersuite used, the VRF secret scalar may be equal to SK;
else it is derived from SK
Y = x*B: VRF public key, a point on E
PK_string = point_to_string(Y): VRF public key represented as an
octet string
encode_to_curve_salt: a public value used as a hash function salt
5.1. ECVRF Proving
ECVRF_prove(SK, alpha_string[, encode_to_curve_salt])
Input:
SK: VRF secret key
alpha_string: input alpha, an octet string
Optional input:
encode_to_curve_salt: a public salt value, an octet string; this
input is not used when encode_to_curve_salt is specified as
part of the ciphersuite
Output:
pi_string: VRF proof, an octet string of length ptLen+cLen+qLen
Steps:
1. Use SK to derive the VRF secret scalar x and the VRF public key Y
= x*B
(this derivation depends on the ciphersuite, as per Section 5.5;
these values can be cached, for example, after key generation,
and need not be rederived each time)
2. H = ECVRF_encode_to_curve(encode_to_curve_salt, alpha_string)
(see Section 5.4.1)
3. h_string = point_to_string(H)
4. Gamma = x*H
5. k = ECVRF_nonce_generation(SK, h_string) (see Section 5.4.2)
6. c = ECVRF_challenge_generation(Y, H, Gamma, k*B, k*H) (see
Section 5.4.3)
7. s = (k + c*x) mod q
8. pi_string = point_to_string(Gamma) || int_to_string(c, cLen) ||
int_to_string(s, qLen)
9. Output pi_string
5.2. ECVRF Proof to Hash
ECVRF_proof_to_hash(pi_string)
Input:
pi_string: VRF proof, an octet string of length ptLen+cLen+qLen
Output:
"INVALID", or
beta_string: VRF hash output, an octet string of length hLen
Important note:
ECVRF_proof_to_hash should be run only on a pi_string value that
is known to have been produced by ECVRF_prove, or from within
ECVRF_verify as specified in Section 5.3.
Steps:
1. D = ECVRF_decode_proof(pi_string) (see Section 5.4.4)
2. If D is "INVALID", output "INVALID" and stop
3. (Gamma, c, s) = D
4. proof_to_hash_domain_separator_front = 0x03
5. proof_to_hash_domain_separator_back = 0x00
6. beta_string = Hash(suite_string ||
proof_to_hash_domain_separator_front || point_to_string(cofactor
* Gamma) || proof_to_hash_domain_separator_back)
7. Output beta_string
5.3. ECVRF Verifying
ECVRF_verify(PK_string, alpha_string, pi_string[,
encode_to_curve_salt, validate_key])
Input:
PK_string: public key, an octet string
alpha_string: VRF input, an octet string
pi_string: VRF proof, an octet string of length ptLen+cLen+qLen
Optional input:
encode_to_curve_salt: a public salt value, an octet string; this
input is not used when encode_to_curve_salt is specified as
part of the ciphersuite
validate_key: a boolean. An implementation MAY support only the
option of validate_key = TRUE, or only the option of
validate_key = FALSE, in which case this input is not needed.
If an implementation supports only one option, it MUST specify
which option it supports
Output:
("VALID", beta_string), where beta_string is the VRF hash output,
an octet string of length hLen, or
"INVALID"
Steps:
1. Y = string_to_point(PK_string)
2. If Y is "INVALID", output "INVALID" and stop
3. If validate_key, run ECVRF_validate_key(Y) (Section 5.4.5); if
it outputs "INVALID", output "INVALID" and stop
4. D = ECVRF_decode_proof(pi_string) (see Section 5.4.4)
5. If D is "INVALID", output "INVALID" and stop
6. (Gamma, c, s) = D
7. H = ECVRF_encode_to_curve(encode_to_curve_salt, alpha_string)
(see Section 5.4.1)
8. U = s*B - c*Y
9. V = s*H - c*Gamma
10. c' = ECVRF_challenge_generation(Y, H, Gamma, U, V) (see
Section 5.4.3)
11. If c and c' are equal, output ("VALID",
ECVRF_proof_to_hash(pi_string)); else output "INVALID"
Note that the first three steps need to be performed only once for a
given public key.
5.4. ECVRF Auxiliary Functions
5.4.1. ECVRF Encode to Curve
The ECVRF_encode_to_curve algorithm takes a public salt (see
Section 7.9) and the VRF input alpha and converts it to H, an EC
point in G. This algorithm is the only place the VRF input alpha is
used for proving and verifying. See Section 7.7 for further
discussion.
This section specifies a number of such algorithms; these algorithms
are not compatible with each other and are intended for use with the
various ciphersuites specified in Section 5.5.
Input:
encode_to_curve_salt: public salt value, an octet string
alpha_string: value to be hashed, an octet string
Output:
H: hashed value, a point in G
5.4.1.1. ECVRF_encode_to_curve_try_and_increment
The ECVRF_encode_to_curve_try_and_increment(encode_to_curve_salt,
alpha_string) algorithm implements ECVRF_encode_to_curve in a simple
and generic way that works for any elliptic curve. To use this
algorithm, hLen MUST be at least fLen.
The running time of this algorithm depends on alpha_string. For the
ciphersuites specified in Section 5.5, this algorithm is expected to
find a valid curve point after approximately two attempts (i.e., when
ctr = 1) on average.
However, because the algorithm's running time depends on
alpha_string, this algorithm SHOULD be avoided in applications where
it is important that the VRF input alpha remain secret.
ECVRF_encode_to_curve_try_and_increment(encode_to_curve_salt,
alpha_string)
Fixed option (specified in Section 5.5):
interpret_hash_value_as_a_point: a function that attempts to
convert a cryptographic hash value to a point on E; may output
"INVALID"
Steps:
1. ctr = 0
2. encode_to_curve_domain_separator_front = 0x01
3. encode_to_curve_domain_separator_back = 0x00
4. H = "INVALID"
5. While H is "INVALID" or H is the identity element of the elliptic
curve group:
a. ctr_string = int_to_string(ctr, 1)
b. hash_string = Hash(suite_string ||
encode_to_curve_domain_separator_front ||
encode_to_curve_salt || alpha_string || ctr_string ||
encode_to_curve_domain_separator_back)
c. H = interpret_hash_value_as_a_point(hash_string)
d. If H is not "INVALID" and cofactor > 1, set H = cofactor * H
e. ctr = ctr + 1
6. Output H
Note that even though the loop is infinite as written and
int_to_string(ctr, 1) may fail when ctr reaches 256, each of the
options for the interpret_hash_value_as_a_point function specified in
Section 5.5 will succeed on roughly half hash_string values. Thus,
the loop is expected to stop after two iterations, and ctr is
overwhelmingly unlikely (probability about 2^-256) to reach 256.
5.4.1.2. ECVRF_encode_to_curve_h2c_suite
The ECVRF_encode_to_curve_h2c_suite(encode_to_curve_salt,
alpha_string) algorithm implements ECVRF_encode_to_curve using one of
the several hash-to-curve options defined in [RFC9380]. The specific
choice of the hash-to-curve option (called the Suite ID in [RFC9380])
is given by the h2c_suite_ID_string parameter.
ECVRF_encode_to_curve_h2c_suite(encode_to_curve_salt, alpha_string)
Fixed option (specified in Section 5.5):
h2c_suite_ID_string: a hash-to-curve Suite ID, encoded in ASCII
(see discussion below)
Steps:
1. string_to_be_hashed = encode_to_curve_salt || alpha_string
2. H = encode(string_to_be_hashed)
(the encode function is discussed below)
3. Output H
The encode function is provided by the hash-to-curve suite (as
specified in Section 8 of [RFC9380]) whose ID is h2c_suite_ID_string.
The domain separation tag DST, a parameter in the hash-to-curve
suite, SHALL be set to
"ECVRF_" || h2c_suite_ID_string || suite_string
where "ECVRF_" is represented as a 6-byte ASCII encoding (in
hexadecimal, octets 45 43 56 52 46 5F).
5.4.2. ECVRF Nonce Generation
The following algorithms generate the nonce value k in a
deterministic pseudorandom fashion. This section specifies a number
of such algorithms; these algorithms are not compatible with each
other. The choice of a particular algorithm from the options
specified in this section depends on the ciphersuite, as specified in
Section 5.5.
5.4.2.1. ECVRF Nonce Generation from RFC 6979
ECVRF_nonce_generation_RFC6979(SK, h_string)
Input:
SK: an ECVRF secret key
h_string: an octet string
Output:
k: an integer nonce between 1 and q-1
The ECVRF_nonce_generation function is implemented according to the
process specified in Section 3.2 of [RFC6979], where
* Input m is set equal to h_string.
* The "suitable for DSA or ECDSA" check in Step h.3 is omitted.
* The hash function H is Hash, and its output length hlen (in bits)
is set as hLen*8 (note that hlen is not to be confused with hLen,
which is used in this document to represent the length of the
output of Hash in octets).
* The secret key x is set equal to the VRF secret scalar x.
* The prime q is the same as in this specification.
* qlen is the binary length of q, i.e., the smallest integer such
that 2^qlen > q (this qlen is not to be confused with qLen, which
is used in this document to represent the length of q in octets).
* All the other values and primitives are as defined in [RFC6979].
5.4.2.2. ECVRF Nonce Generation from RFC 8032
The following is derived from Steps 2 and 3 in Section 5.1.6 of
[RFC8032]. To use this algorithm, hLen MUST be at least 64.
ECVRF_nonce_generation_RFC8032(SK, h_string)
Input:
SK: an ECVRF secret key
h_string: an octet string
Output:
k: an integer nonce between 0 and q-1
Steps:
1. hashed_sk_string = Hash(SK)
2. truncated_hashed_sk_string =
hashed_sk_string[32]...hashed_sk_string[63]
3. k_string = Hash(truncated_hashed_sk_string || h_string)
4. k = string_to_int(k_string) mod q
5.4.3. ECVRF Challenge Generation
ECVRF_challenge_generation(P1, P2, P3, P4, P5)
Input:
P1, P2, P3, P4, P5: EC points
Output:
c: challenge value, an integer between 0 and 2^(8*cLen)-1
Steps:
1. challenge_generation_domain_separator_front = 0x02
2. Initialize str = suite_string ||
challenge_generation_domain_separator_front
3. For PJ in [P1, P2, P3, P4, P5]:
str = str || point_to_string(PJ)
4. challenge_generation_domain_separator_back = 0x00
5. str = str || challenge_generation_domain_separator_back
6. c_string = Hash(str)
7. truncated_c_string = c_string[0]...c_string[cLen-1]
8. c = string_to_int(truncated_c_string)
9. Output c
5.4.4. ECVRF Decode Proof
ECVRF_decode_proof(pi_string)
Input:
pi_string: VRF proof, an octet string (ptLen+cLen+qLen octets)
Output:
"INVALID", or
Gamma: a point on E
c: an integer between 0 and 2^(8*cLen)-1
s: an integer between 0 and q-1
Steps:
1. gamma_string = pi_string[0]...pi_string[ptLen-1]
2. c_string = pi_string[ptLen]...pi_string[ptLen+cLen-1]
3. s_string = pi_string[ptLen+cLen]...pi_string[ptLen+cLen+qLen-1]
4. Gamma = string_to_point(gamma_string)
5. If Gamma = "INVALID", output "INVALID" and stop
6. c = string_to_int(c_string)
7. s = string_to_int(s_string)
8. If s >= q, output "INVALID" and stop
9. Output Gamma, c, and s
5.4.5. ECVRF Validate Key
ECVRF_validate_key(Y)
Input:
Y: public key, a point on E
Output:
"VALID" or "INVALID"
Important note:
The public key Y provided as input to this procedure MUST be a
valid point on E.
Steps:
1. Let Y' = cofactor*Y
2. If Y' is the identity element of the elliptic curve group, output
"INVALID" and stop
3. Output "VALID"
Note that if the cofactor = 1, then Step 1 simply sets Y'=Y. In
particular, for the P-256 curve, ECVRF_validate_key simply ensures
that Y is not the point at infinity.
Any algorithm with identical input-output behavior MAY be used in
place of the above steps. For example, if the total number of Y
values that could cause Step 2 to output "INVALID" is small, it may
be more efficient to simply check Y against a fixed list of such
values. For example, the following algorithm MAY be used for the
edwards25519 curve:
1. PK_string = point_to_string(Y)
2. oneTwentySeven_string = 0x7F
3. y_string[31] = y_string[31] & oneTwentySeven_string
(this step clears the high-order bit of octet 31)
4. bad_pk[0] = int_to_string(0, 32)
5. bad_pk[1] = int_to_string(1, 32)
6. bad_y2 = 2707385501144840649318225287225658788936804267575313519
463743609750303402022
7. bad_pk[2] = int_to_string(bad_y2, 32)
8. bad_pk[3] = int_to_string(p-bad_y2, 32)
9. bad_pk[4] = int_to_string(p-1, 32)
10. bad_pk[5] = int_to_string(p, 32)
11. bad_pk[6] = int_to_string(p+1, 32)
12. If y_string is in the list [bad_pk[0],...,bad_pk[6]], output
"INVALID" and stop
13. Output "VALID"
(This algorithm works for the following reason. Note that there are
eight bad points -- namely, the points whose order is 1, 2, 4, or 8
-- on the edwards25519 curve. Their y-coordinates happen to be 0
(two points of order 4), 1 (one point of order 1), bad_y2 (two points
of order 8), p-bad_y2 (two points of order 8), and p-1 (one point of
order 2). They can be obtained by converting the points specified in
[X25519] to Edwards coordinates. Thus, bad_pk[0] (of order 4),
bad_pk[2] (of order 8), and bad_pk[3] (of order 8) each match two bad
points, depending on the sign of the x-coordinate. This sign is
cleared in Step 3 in order to make sure that it does not affect the
comparison. bad_pk[1] (of order 1) and bad_pk[4] (of order 2) each
match one bad point, because the x-coordinate is 0 for these two
points. Note that the first five list elements cover the eight bad
points. However, to cover the case when the y-coordinate of the
public key Y has not been modular reduced by p, the list also
includes bad_pk[5] and bad_pk[6], which are simply bad_pk[0] and
bad_pk[1] shifted by p. There is no need to shift the other bad_pk
values by p (or any bad_pk values by a larger multiple of p), because
their y-coordinates would exceed 2^255, and the algorithm ensures
that y_string corresponds to an integer less than 2^255 in Step 3.)
5.5. ECVRF Ciphersuites
This document defines ECVRF-P256-SHA256-TAI as follows:
* suite_string = 0x01.
* The EC group G is the NIST P-256 elliptic curve, with the finite
field and curve parameters as specified in Section 3.2.1.3 of
[SP-800-186] and Section 2.6 of [RFC5114]. For this group, fLen =
qLen = 32 and cofactor = 1.
* cLen = 16.
* The key pair generation primitive is specified in Section 3.2.1 of
[SECG1] (q, B, SK, and Y in this document correspond to n, G, d,
and Q in Section 3.2.1 of [SECG1]). In this ciphersuite, the
secret scalar x is equal to the secret key SK.
* encode_to_curve_salt = PK_string.
* The ECVRF_nonce_generation function is as specified in
Section 5.4.2.1.
* The int_to_string function is the I2OSP function specified in
Section 4.1 of [RFC8017]. (This is big-endian representation.)
* The string_to_int function is the OS2IP function specified in
Section 4.2 of [RFC8017]. (This is big-endian representation.)
* The point_to_string function converts a point on E to an octet
string according to the encoding specified in Section 2.3.3 of
[SECG1] with point compression on. This implies that ptLen = fLen
+ 1 = 33. (Note that certain software implementations do not
introduce a separate elliptic curve point type and instead
directly treat the EC point as an octet string per the above
encoding. When using such an implementation, the point_to_string
function can be treated as the identity function.)
* The string_to_point function converts an octet string to a point
on E according to the encoding specified in Section 2.3.4 of
[SECG1]. This function MUST output "INVALID" if the octet string
does not decode to a point on the curve E.
* The hash function Hash is SHA-256 as specified in [RFC6234], with
hLen = 32.
* The ECVRF_encode_to_curve function is as specified in
Section 5.4.1.1, with interpret_hash_value_as_a_point(s) =
string_to_point(0x02 || s).
This document defines ECVRF-P256-SHA256-SSWU as identical to ECVRF-
P256-SHA256-TAI, except that
* suite_string = 0x02.
* The ECVRF_encode_to_curve function is as specified in
Section 5.4.1.2, with h2c_suite_ID_string = P256_XMD:SHA-
256_SSWU_NU_ (the suite is defined in Section 8.2 of [RFC9380]).
This document defines ECVRF-EDWARDS25519-SHA512-TAI as follows:
* suite_string = 0x03.
* The EC group G is the edwards25519 elliptic curve, with the finite
field and curve parameters as defined in Table 1 in Section 5.1 of
[RFC8032]. For this group, fLen = qLen = 32 and cofactor = 8.
* cLen = 16.
* The secret key and generation of the secret scalar and the public
key are specified in Section 5.1.5 of [RFC8032].
* encode_to_curve_salt = PK_string.
* The ECVRF_nonce_generation function is as specified in
Section 5.4.2.2.
* The int_to_string function is implemented as specified in the
first paragraph of Section 5.1.2 of [RFC8032]. (This is little-
endian representation.)
* The string_to_int function interprets the string as an integer in
little-endian representation.
* The point_to_string function converts a point on E to an octet
string according to the encoding specified in Section 5.1.2 of
[RFC8032]. This implies that ptLen = fLen = 32. (Note that
certain software implementations do not introduce a separate
elliptic curve point type and instead directly treat the EC point
as an octet string per the above encoding. When using such an
implementation, the point_to_string function can be treated as the
identity function.)
* The string_to_point function converts an octet string to a point
on E according to the encoding specified in Section 5.1.3 of
[RFC8032]. This function MUST output "INVALID" if the octet
string does not decode to a point on the curve E.
* The hash function Hash is SHA-512 as specified in [RFC6234], with
hLen = 64.
* The ECVRF_encode_to_curve function is as specified in
Section 5.4.1.1, with interpret_hash_value_as_a_point(s) =
string_to_point(s[0]...s[31]).
This document defines ECVRF-EDWARDS25519-SHA512-ELL2 as identical to
ECVRF-EDWARDS25519-SHA512-TAI, except that
* suite_string = 0x04.
* The ECVRF_encode_to_curve function is as specified in
Section 5.4.1.2, with h2c_suite_ID_string = edwards25519_XMD:SHA-
512_ELL2_NU_ (the suite is defined in Section 8.5 of [RFC9380]).
6. IANA Considerations
This document has no IANA actions.
7. Security Considerations
7.1. Key Generation
Implementations of the VRFs defined in this document MUST ensure that
they generate VRF keys correctly and use good randomness. However,
in some applications, keys may be generated by an adversary who does
not necessarily implement this document. We now discuss the
implications of this possibility.
7.1.1. Uniqueness and Collision Resistance under Malicious Key
Generation
See Section 3 for definitions of uniqueness and collision resistance
properties.
The RSA-FDH-VRF satisfies only the "trusted" variants of uniqueness
and collision resistance. Thus, for the RSA-FDH-VRF, uniqueness and
collision resistance may not hold if the keys are generated
adversarially (specifically, if the RSA function specified in the
public key is not bijective because the modulus n or the exponent e
are chosen without complying with [RFC8017]); thus, the RSA-FDH-VRF
as defined in this document does not have "full uniqueness" and "full
collision resistance". Therefore, if malicious key generation is a
concern, the RSA-FDH-VRF has to be enhanced by additional
cryptographic checks (such as zero-knowledge proofs) to ensure that
its public key has the right form. These enhancements are left for
future specifications.
For the ECVRF, the Verifier MUST obtain E and B from a trusted
source, such as a ciphersuite specification, rather than from the
Prover. If the Verifier does so, then the ECVRF satisfies "full
uniqueness", ensuring uniqueness even under malicious key generation.
The ECVRF also satisfies "trusted collision resistance". It
additionally satisfies "full collision resistance" if the
validate_key parameter given to ECVRF_verify is TRUE. This setting
of ECVRF_verify ensures collision resistance under malicious key
generation.
7.1.2. Pseudorandomness under Malicious Key Generation
Without good randomness, the "pseudorandomness" properties of the VRF
(defined in Section 3.4) may not hold. Note that it is not possible
to guarantee pseudorandomness in the face of adversarially generated
VRF keys. This is because an adversary can always use bad randomness
to generate the VRF keys, and thus the VRF output may not be
pseudorandom.
7.1.3. Unpredictability under Malicious Key Generation
Unpredictability under malicious key generation (defined in
Section 3.5) does not hold for the RSA-FDH-VRF. (Specifically, the
VRF output may be predictable if the RSA function specified in the
public key is far from bijective because the modulus n or the
exponent e are chosen without complying with [RFC8017].) If
unpredictability under malicious key generation is desired, the RSA-
FDH-VRF has to be enhanced by additional cryptographic checks (such
as zero-knowledge proofs) to ensure that its public key has the right
form. These enhancements are left for future specifications.
Unpredictability under malicious key generation holds for the ECVRF
if the validate_key parameter given to ECVRF_verify is TRUE.
7.2. Security Levels
As shown in [PWHVNRG17], the RSA-FDH-VRF satisfies the trusted
uniqueness property unconditionally. The security level of the RSA-
FDH-VRF, measured in bits, for the other two properties is as follows
(in the random oracle model for the functions MGF1 and Hash):
For trusted collision resistance: approximately 8*min(k/2, hLen/2)
(as shown in [PWHVNRG17]).
For selective pseudorandomness: approximately as strong as the
security, in bits, of the RSA problem for the key (n, e) (as shown
in [GNPRVZ15]).
As shown in [PWHVNRG17], the security level of the ECVRF, measured in
bits, is as follows (in the random oracle model for the functions
Hash and ECVRF_encode_to_curve):
For uniqueness (both trusted and full): approximately 8*min(qLen,
cLen).
For collision resistance (trusted or full, depending on whether
validation is performed as explained in Section 7.1.1):
approximately 8*min(qLen/2, hLen/2).
For selective pseudorandomness: approximately as strong as the
security, in bits, of the decisional Diffie-Hellman problem in the
group G (which is at most 8*qLen/2).
See Section 3 for the definitions of these security properties and
Section 7.3 for the discussion of full pseudorandomness.
7.3. Selective vs. Full Pseudorandomness
[PWHVNRG17] presents cryptographic reductions to an underlying hard
problem (namely, the RSA problem for the RSA-FDH-VRF and the
decisional Diffie-Hellman problem for the ECVRF) to prove that the
VRFs specified in this document possess not only selective
pseudorandomness but also full pseudorandomness (see Section 3.4 for
an explanation of these notions). However, the cryptographic
reductions are tighter for selective pseudorandomness than for full
pseudorandomness. Specifically, the approximate provable security
level, measured in bits, for full pseudorandomness may be obtained
from the provable security level for selective pseudorandomness
(given in Section 7.2) by subtracting the binary logarithm of the
number of proofs produced for a given secret key. This holds for
both the RSA-FDH-VRF and the ECVRF.
While no known attacks against full pseudorandomness are stronger
than similar attacks against selective pseudorandomness, some
applications may be concerned about tightness of cryptographic
reductions to ensure specific levels of provable security. Such
applications may consider the following three options:
* They may limit the number of proofs produced for a given secret
key, to reduce the loss in the provable security level.
* They may work to ensure that selective pseudorandomness is
sufficient for the application. That is, they may design the
application such that pseudorandomness of outputs matters only for
inputs that are chosen independently of the VRF key.
* They may increase security parameters to make up for lossy
security reductions. For the RSA-FDH-VRF, this means increasing
the RSA key length. For the ECVRF, this means increasing the
cryptographic strength of the EC group G by specifying a new
ciphersuite.
7.4. Proper Pseudorandom Nonce for the ECVRF
The security of the ECVRF defined in this document relies on the fact
that the nonce k used in the ECVRF_prove algorithm is chosen
uniformly and pseudorandomly modulo q and is unknown to the
adversary. Otherwise, an adversary may be able to recover the VRF
secret scalar x (and thus break pseudorandomness of the VRF) after
observing several valid VRF proofs pi, using, for example, techniques
described in [BreHen19]. The nonce generation methods specified in
the ECVRF ciphersuites of Section 5.5 are designed with this
requirement in mind.
7.5. Side-Channel Attacks
Side-channel attacks on cryptographic primitives are an important
issue. Implementers should take care to avoid side-channel attacks
that leak information about the VRF secret key SK (and the nonce k
used in the ECVRF), which is used in VRF_prove. In most
applications, the VRF_proof_to_hash and VRF_verify algorithms take
only inputs that are public, and thus side-channel attacks are
typically not a concern for these algorithms.
The VRF input alpha may also be a sensitive input to VRF_prove and
may need to be protected against side-channel attacks. Below, we
discuss one particular class of such attacks: timing attacks that can
be used to leak information about the VRF input alpha.
The ECVRF_encode_to_curve_try_and_increment algorithm (defined in
Section 5.4.1.1) SHOULD NOT be used in applications where the VRF
input alpha is secret and is hashed by the VRF on the fly. This is
because the algorithm's running time depends on the VRF input alpha
and thus creates a timing channel that can be used to learn
information about alpha. That said, for most inputs, the amount of
information obtained from such a timing attack is likely to be small
(1 bit, on average), since the algorithm is expected to find a valid
curve point after only two attempts. However, there might be inputs
that cause the algorithm to make many attempts before it finds a
valid curve point; for such inputs, the information leaked in a
timing attack will be more than 1 bit.
ECVRF-P256-SHA256-SSWU and ECVRF-EDWARDS25519-SHA512-ELL2 can be made
to run in time that is independent of alpha, following
recommendations in [RFC9380].
7.6. Proofs Provide No Secrecy for the VRF Input
The VRF proof pi is not designed to provide secrecy and, in general,
may reveal the VRF input alpha. Anyone who knows PK and pi is able
to perform an offline dictionary attack to search for alpha, by
verifying guesses for alpha using VRF_verify. This is in contrast to
the VRF hash output beta, which, without the proof, is pseudorandom
and thus is designed to reveal no information about alpha.
7.7. Prehashing
The VRFs specified in this document allow for read-once access to the
input alpha for both signing and verifying. Thus, additional
prehashing of alpha (as specified, for example, in [RFC8032] for
Edwards-curve Digital Signature Algorithm (EdDSA) signatures) is not
needed, even for applications that need to handle long alpha or to
support the Initialize-Update-Finalize (IUF) interface (in such an
interface, alpha is not supplied all at once, but rather in pieces by
a sequence of calls to Update). The ECVRF, in particular, uses alpha
only in ECVRF_encode_to_curve. The curve point H becomes the
representative of alpha thereafter.
7.8. Hash Function Domain Separation
Hashing is used for different purposes in the two VRFs.
Specifically, in the RSA-FDH-VRF, hashing is used in MGF1 and in
proof_to_hash; in the ECVRF, hashing is used in encode_to_curve,
nonce_generation, challenge_generation, and proof_to_hash. The
theoretical analysis treats each of these functions as a separate
hash function, modeled as a random oracle. This analysis still holds
even if the same hash function is used, as long as the inputs given
to the hash function for a given SK and alpha are overwhelmingly
unlikely to be equal to each other or to any inputs given to the hash
function for the same SK and different alpha. This is indeed the
case for the RSA-FDH-VRF defined in this document, because the second
octets of the inputs to the hash function used in MGF1 and in
proof_to_hash are different.
This is also the case for the ECVRF ciphersuites defined in this
document, because
* Inputs to the hash function used in nonce_generation are unlikely
to equal inputs used in encode_to_curve, proof_to_hash, and
challenge_generation. This follows, since nonce_generation inputs
a secret to the hash function that is not used by honest parties
as input to any other hash function and is not available to the
adversary.
* The second octets of the inputs to the hash function used in
proof_to_hash, challenge_generation, and
encode_to_curve_try_and_increment are all different.
* The last octet of the inputs to the hash function used in
proof_to_hash, challenge_generation, and
encode_to_curve_try_and_increment is always zero and is therefore
different from the last octet of the input to the hash function
used in ECVRF_encode_to_curve_h2c_suite, which is set equal to the
nonzero length of the domain separation tag per [RFC9380].
7.9. Hash Function Salting
If a hash collision is found, in order to make it more difficult for
the adversary to exploit such a collision, the MGF1 function for the
RSA-FDH-VRF and the ECVRF_encode_to_curve function for the ECVRF use
a public value in addition to alpha (as a so-called salt). This
value is determined by the ciphersuite. For the ciphersuites defined
in this document, it is set equal to the string representation of the
RSA modulus and EC public key, respectively. Implementations that do
not use one of the ciphersuites (see Section 7.10) MAY use a
different salt. For example, if a group of public keys shares the
same salt, then the hash of the VRF input alpha will be the same for
the entire group of public keys; this can be helpful for some
protocols that use the VRF.
7.10. Futureproofing
If future designs need to specify variants (e.g., additional
ciphersuites) of the RSA-FDH-VRF or the ECVRF as defined in this
document, then, to avoid the possibility that an adversary can obtain
a VRF output under one variant and then claim it was obtained under
another variant, they should specify a different suite_string
constant. The suite_string constants discussed in this document are
all single octets; if a future suite_string constant is longer than
one octet, then it should start with a different octet than the
suite_string constants discussed in this document. Then, for the
RSA-FDH-VRF, the inputs to the hash function used in MGF1 and
proof_to_hash will be different from other ciphersuites. For the
ECVRF, the inputs to the ECVRF_encode_to_curve hash function used in
producing H are then guaranteed to be different from other
ciphersuites; since all the other hashing done by the Prover depends
on H, inputs to all the hash functions used by the Prover will also
be different from other ciphersuites as long as ECVRF_encode_to_curve
is collision resistant.
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC5114] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
Groups for Use with IETF Standards", RFC 5114,
DOI 10.17487/RFC5114, January 2008,
<https://www.rfc-editor.org/info/rfc5114>.
[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", RFC 6234,
DOI 10.17487/RFC6234, May 2011,
<https://www.rfc-editor.org/info/rfc6234>.
[RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
2013, <https://www.rfc-editor.org/info/rfc6979>.
[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
"PKCS #1: RSA Cryptography Specifications Version 2.2",
RFC 8017, DOI 10.17487/RFC8017, November 2016,
<https://www.rfc-editor.org/info/rfc8017>.
[RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", RFC 8032,
DOI 10.17487/RFC8032, January 2017,
<https://www.rfc-editor.org/info/rfc8032>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC9380] Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R. S.,
and C. A. Wood, "Hashing to Elliptic Curves", RFC 9380,
DOI 10.17487/RFC9380, August 2023,
<https://www.rfc-editor.org/info/rfc9380>.
[SECG1] Standards for Efficient Cryptography Group (SECG), "SEC 1:
Elliptic Curve Cryptography", Version 2.0, May 2009,
<https://www.secg.org/sec1-v2.pdf>.
[SP-800-186]
National Institute for Standards and Technology (NIST),
"Recommendations for Discrete Logarithm-based
Cryptography: Elliptic Curve Domain Parameters", NIST SP
800-186, DOI 10.6028/NIST.SP.800-186, February 2023,
<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-186.pdf>.
8.2. Informative References
[ANSI.X9-62-2005]
American National Standards Institute (ANSI), "Public Key
Cryptography for the Financial Services Industry: the
Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI
X9.62, November 2005,
<https://standards.globalspec.com/std/1955141/
ANSI%20X9.62>.
[BreHen19] Breitner, J. and N. Heninger, "Biased Nonce Sense: Lattice
Attacks against Weak ECDSA Signatures in
Cryptocurrencies", Cryptology ePrint Archive, Paper
2019/023, April 2019, <https://eprint.iacr.org/2019/023>.
[DGKR18] David, B., Gaži, P., Kiayias, A., and A. Russell,
"Ouroboros Praos: An adaptively-secure, semi-synchronous
proof-of-stake blockchain", Cryptology ePrint Archive,
Paper 2017/573, April 2023,
<https://eprint.iacr.org/2017/573>.
[GHMVZ17] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and N.
Zeldovich, "Algorand: Scaling Byzantine Agreements for
Cryptocurrencies", Cryptology ePrint Archive, Paper
2017/454, September 2017,
<https://eprint.iacr.org/2017/454>.
[GNPRVZ15] Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L.,
Vasant, S., and A. Ziv, "NSEC5: Provably Preventing DNSSEC
Zone Enumeration", Cryptology ePrint Archive, Paper
2014/582, December 2014,
<https://eprint.iacr.org/2014/582>.
[MRV99] Micali, S., Rabin, M., and S. Vadhan, "Verifiable Random
Functions", FOCS '99: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, pp. 120-130,
DOI 10.1109/SFFCS.1999.814584, October 1999,
<https://dash.harvard.edu/handle/1/5028196>.
[PWHVNRG17]
Papadopoulos, D., Wessels, D., Huque, S., Naor, M.,
Včelák, J., Reyzin, L., and S. Goldberg, "Making NSEC5
Practical for DNSSEC", Cryptology ePrint Archive, Paper
2017/099, August 2022, <https://eprint.iacr.org/2017/099>.
[X25519] Bernstein, D.J., "How do I validate Curve25519 public
keys?", 2006, <https://cr.yp.to/ecdh.html#validate>.
Appendix A. Test Vectors for the RSA-FDH-VRF Ciphersuites
The test vectors in this section were generated using code provided
at <https://github.com/reyzin/rsa-fdh-vrf>.
There are three keys used in the nine examples below. First, we
provide the keys. They are shown in hexadecimal big-endian notation.
2048-bit key:
p = efb52a568fa3038fffb853e2183791c6bc81ceee86d20e8f9b6401dc79a8f1
f6248d3a25fdb3f99245fce41667da038f59745b87cc1aed8b4a9c1d74e7d5c16c
f7343f2b12f1b5055337369bf018fa07adc0d16f2164a516e80d2b4734f0c6563d
6ee6d4a9e1a54e300cfe9ee679afc3d14a152dfb49b6cfb208bbf921f764af
q = ecbca5ee88bbc635d8263aaba84f6502fdb2b4998a40f7c149133d840b6b1b
d9a972fe2a981c770272b78fda213f76a062dd865dd116d4c8980975ee9347fe0f
500567e51d78dbee4a34e626051cf018d7feb72f19189525d4f70b6467d0cef514
633ab08a9e7a9ec632064b7b5e3e82128fe563757a614092fc5cf624d10e1b
n = ddaba77202bafb796b85bcec98958aa58ae2d117cbc66a6e75c4c2af983985
a3064eaef93e2b03393256d94d75d6a6656b2956524ed8711898a0c3abae84371d
a0283bc5f433fc384d810a3c118ed302c0b03da16bee70b80ba3480e7acc1eb358
b3f20fbe90cc4c8a7e2ba9e28b2a3800a5efbaa3c264f79b231f7cdc9577818df1
bac60ef7a3f78a44f046fd29b0689556da7a7f61eefe67427f3f691aee0a4b1efe
2ee2e0e6091143ebb7d69254c9d8ab01ff5e0ad7329f566082f9251e64f436c547
e68de75351ea3a09746ceb7efed2d234121088aaed01696583c172ec88bc173a0d
4d8ec43f4dcc18ff8379317e83ef9685536283368c9c6deb783075
e = 010001
d = d5c5ceab929a841e2a654536de4788f7f0a2a086d44bbb245f8aab3df00db9
24e8d644c3b502820f4cce98adacf09e73bc0e9762b50ae2b697aaa24914fa08b5
1758f59c07cf827341bb2a0597e126f9c69db031d60692c9cadf62842444696f08
223154a1b0be752a325725748644e6d12935b1c66f983379773bcc8c65d06262e9
3b5bb774dd2784265c23e9a7fc5e8871eb6bcc9968a6bc360a98874b623ec59f41
af0a9ecec6af095cb7e5aca11472363950dcbbfcf678fe003358b4ff0060a391da
a45a1bd81c166b6221fb07e4f5da75e27d8d5fdbbf87ecbd7f5a4d804597070faa
ed22f197511b218788816689375245ddf7fa12337f3e7e898fb9d9
3072-bit key:
p = ee5adea28491084e6635bd73fd95649915a11da410d3f361c8eccc90a4b834
25146da7b9e9d3994fd37d5fad7fb759ae451eb99b1102d4671ead23a2925133d1
9df49cf9d7e9dcb69fd7555ca095338d0d2a84abb6825050eaf5fffaeff17ccb08
33c6079081dfcbd98ced36a593557d29d64b0e0253ce2ee4e07fe2a06269dfe5ca
230fad221a593a69d9534b2521c1b41d116cafdee02106228ff41433605453e237
777626953e79b46a84f50069e25b4f50496a928708abce30559eb183cf
q = fb585bbc12f5695951f70a25e27682dc568acf56115ad749709b2a6e915cdd
66dfa06db09b390c00b7c7ebeea00845f73c999d8ea9352b1128bdf10113c7500b
76a03f6b38d0920b5589961549be3d841ccc306f3edd600a53b4b9d4fa1249af87
af58dfb3ed694289477e853f7d062f58911f7bdb98033b001ee90f11b78f031cff
ac2b5a07e11b01a2a6c1cda059a728f8253a5ff87267623253fc022d3993b27e2f
344b99eb6072ff7c7ee160724f8fbca562be49247ffae42b55ea79dad5
n = ea055cef495dec2d8fb3aef519ca87bd1575fa0ae15dd433f4a5f6c40d34ed
6ba2388172ab7d2183ed970a669d427dc2774ced66a3f082b8e23e94e7de7532f4
f30bb4a5bbf2e1db2cba0752858a7c7a9bb892c5d6af7e90a7cee8f0097d14498c
8b482f86348640af61b66640538e834f23ba8f906048db0e57b6fdc162ba2a8a0e
aedd5423f23d8f89413223d89f473029cba11a211eb59e41fb8f0b8ddc651d115d
9f07ac30296485a9adbd71cc5d9e4a448bd6d70785e838a978b2e66513eb897c96
2e85f00a36cc0a3a613183d8bd1572f895901eb8155af9797dbd4aa14726f41571
2bf0eb29fa0a9e938cf5325def05d3af7e686227456d903233e316c8cc50341615
e59b665f0a4a2c32cfccbf9469bdf89564481fb7afc27a7127741f79424e0a35cd
c466dd33ef5a2067f75c86e06af9c03c68c6e78be5f1a4f49ea03569cd9f74c3a0
ff290ca4ce2c2fa5b770ef8032b26a517c257b7b1c424622c5c04cf20f2290a268
939e0cc79dfbac71842f94727b07bfafaded7db6c7f13b
e = 010001
d = 6e68e957dbfd7c1862dc1b87780b9dcf0ff9016770bc9c09873b66194941d7
6218bf2013c1e4df9326dd4402f5df110656d2ec8ea87a28b2a1cb74e590872aeb
765fe772ea21c57d6ab4ba0fad019189273f05c061719afd14af02277dd28d67c5
ef50b75b521ca51819b9bcb44cb7c82be66776a45f490050dc0171e77374f1ed00
d06f8beb09b711a9682107d8840d4a23edf6ac25441fdbf2b584dfa6a67cee21eb
51c484f09416e11914e774713f1a17600fb9e4e99fbbd83fdcba4b09145dd98094
49a1713777161c912d5d595362314b0ea9d1199e97780e8b3293a39af4019fcc74
6aaf78dbb7db06852c3358a9ed02ab1d15831a148b27b932c117445a4a6f5114ed
fa3ccc9a9862df714b78a5362aab5e30501b4a729af73e3cdcabe19aac4928b668
969780ad33d9df206d904b978a055f4abbc64987744526856e16ef55962453e3ed
7a8055b0d79d051c50c94584ec7501dbd4856d7a21e43f25d8749e683cca2f53f5
75af1d80f39d8e6932ffdf201d179cbf98314c4048c6c1
4096-bit key:
p = ac803464c8b2082153e15d5a0698d0a2990397fa01c1edd6171a5315e743c9
9feb7acd31c37529d4f83405e657c390488d19f7da9ef9d9f9cff4b460d2a26eb1
0f90cf4aaf55a19e21dc3bb697723a673e12bbc6580adc7bb72adaddf4682d656f
f5b992e62379bc7b0ac977f2bfbcfac634e04ed597ef302684be72c6bf7db10b80
f452d412d09e63e017acba378ccc6ea58e683e5641d1e72248f3201a5632f4af75
25e91f9e0733731d264fe36802f416cb3e182b21e67a12e3bfba9a9cf40a45ff32
addfae78063933120238ac61fbb995300a8602aa84f993bed375d6ccba86ad0c8e
fa5f0950aa2c92779febce9d05fa7a1f0d6e5c0d785de93c108297
q = feb39bb6ee78adfa524e9c0821f60c20d3cff74f8b49731d67ea27d218bcb2
0c87498d30dfd398bc23daff7b33dc330db93e6c0e5e6196e035446c6db7cfdb98
68b9518d94670b31f9c4d2109cf32c9cc8ac2fc4a6c2e1078510522c81610a81a7
07997933ee24030b572a76ee51aa683312ecaa51d8558b3b19cccf65fc867354ae
193fd5c4f5d5a7180c5ca1e90fcc42f6915dff69a3d1e49046f6c3ef841b262ba8
9ddcfde2ed3caeb5bd594181a76f6f1ce01fc65c6f925f6d5b77037c2cbf7b6047
e19f7b9c846c80238f1c8284c33bfd90c79de91381bb883b0de568aaf4b4a3c3f9
c98f92e9f6a51f010bcc1dacfd72bfdfda29f527d7f4913153bef7
n = aba03a8d8527bfc0cbea1cb9a100f4ee7870aedd74a6406f108f7a07f37433
6025357e256d655b342d73369102d03c7dcf3c14ed70aac7ebb62498c570068f71
f1f165e14527f96d946ba839412252eacea604e7d6fd47a0bb9de776679fa9ad64
85a076fda04a2015322626dcd2eb91d6b6248802e6d453eb4cbf5e1bfebed02d6a
b36cfe3dd1e8b9749d4853a029940a0bed3aa3128fd8e2e6cd1115db15405bb383
7012f56bdc5a6895ec5cc6bca52f7952cfe3c7d5d81d4d3d1c9a29a429eeedfbf5
8da0a5b17480875b8071f49eb568fc8d8c023c83b3ed870c3775aaf0578485d757
b4ab18d8e5fdb30c2b5586047e6203ab1636e376f1c7031f171e2807a2058ece89
0cc8fae29ba819df76b45ddb514caee63db1c5e7a3af7468febff82bfe2eb79e3c
5d1383b7ebee86f02e9cc1853f0f4486f7eb8fee23a2f794317ffd1c39471086df
bfc0e3c0f412f917225f5c551557f38c11f172eca257e4b5908a571e4daa7c7434
903701f21937df87d10de9b50ada97e65855d5e786db8f3f86248b55d999ec3153
8bd1a409f3e13de46dccc05325774e89016708f8a96240ae1c16641e8b12ab0725
7e88aa50d3546e7a91073d85ed601775a3c08e9b7c242d20664dfd4e70a05218d9
f2c7d760fab3cd772d9362527917cf5b51817e8c2aef51cb3b0dd8cb838097e513
537f1d9c3c4708f44ed270db963c7d72cf11b1
e = 010001
d = 1efd8dd524282b4deb04592f83cd226d353e53b5156d37d15652321ce16f28
1fc258487105b1f9a81054ef937bc89243bd7a01e56624d078d5a9021514c77a7b
7eceb230dd45fc9a36e4c1b9a4f347b9b29af3e3d14466fcb5242c398b389f70f9
e7cf33ed54564e38c597720909e513ae8bb149060d1c6612e506e13d78e087c2cb
b39e88c22cf73315c598dbd0ddf1276743ed04a943644c84949ef32d5e4702c805
81e54a7fb18879be28b21008dc63182b45f2c190f1b748cd322efc39f2807c64b4
d06023cb49583418e7b6ac0f447eb2abf48e2ad335583cbc8dff2760c2cce14623
46326708336f7e374253ed213e990044927c52d29591f414571e509afc2396a6af
9843303a19673bcdec1e3fc7c0d6c3f43b4bf88ce83e2bdcfb5e39069fe32800cf
3f6f6d9917b8083a66ce23a9ab5b0c95bbcc6dfc21d38dadecc20725b13ce2954b
a1bd45ec151a8877fed317cac60b2afaa96c826df6d1c48e7c10649dccc75bdf90
5c362c6934da06c3ce30f5befc1cf776d7fda673625147b1108ecb5473f7f58827
9533eb184d748230443694b9761b01532ba707563ffa4962321e44fdb710025e8a
6e00d29bf01ea040618ee111b5d79ac860083f91aa614777cc99d739458f7c53d6
3cea7155b118068e0b30b35ed6d0cfc75672f18d075157a3ed31bfa1ce2cea2343
57ec76117cc687c274636077abc437cb70a029
A.1. RSA-FDH-VRF-SHA256
Example 1, using the 2048-bit key above:
alpha = (the empty string)
EM = 092ea69ca4f5630d4bd1012805ad23528a5f44c040829b4a0208491913ee3
9711889bce5347765072efb0b7f8ad9798c830085d9babe10c29f1a649dbb9a64c
93a8cdaa325d37814faa15a1071ba81c39275f3cd66ce70fd21ee3acc7ac127c5d
e8f2a816b05aff19e4e63451cfe51fef059b2547302387449b4df1ab8eaa5bfc84
dbbc5edf3b07eb8fe3fe2a93858bd0d55d6f0686f2eb449ed4c609b3083de04b49
d409a425509d89d282de806a6ce66892edc30337f780b15c7695b26383516f1fc1
8f7eab52557c654467600e2e272ef41e7e4a060b42f7533bae603a7fa50f497a64
a1508b93826d99643a2001d1c958a7a06da0370668634d678a5de
pi = 14234ff8a9487e1b36a23086e258135b8a8a7ff2e23f19c0dfeca0c0a943f
119ebd336fdc292ef67b56e32ba06f9941893754a8b97c82f68974b2b34c17f6d4
3bfd55eb110cd7ea3452d59a24e4ddb8d4cdf040c814e22e3537ca09c2e2dc5dd8
ea281e6492ad335378f9f437eed30c51eeeee66ef14efb4000c75c802e9c5a6bb8
039c0258d4347981159d0ef6990b5e9c8ac2fb03915d7ff1ffa0626e2e11714a63
342e59124c1fcea8e2816c1d9a7751feaaa66cf6c82cd3c58ffde66460d98246ab
358cc33baefae4dfb0d191e9b6d6c0e3f92c35200408925dc8bef39b78d1259f81
63a5003a693555f05290ef2e68345f27c6e2a8847c5c919d92e7505
beta =
79f0615d4677fb72571889453644013f1a31b08d222e3cee349d64ce1c41045a
Example 2, using the 3072-bit key above:
alpha = 74657374 (4 bytes; ASCII "test")
EM = 20a059b7f7034d0d7696c63328cbbd4b40f7c656a632b4129915018fe6c5d
ee8b5bde68ec2a5a78b1ca8483386e3a1a0fa07b4d329ea55facc3145c663ca90d
f5ae46c903211a21bf908dc9a33bd09410cc09c7b4de5fbc79de3413bc80bccf2d
3aca2fc9c60c776619849ed3e704057ac3d5deacff845d5bc8084ac730c19a1466
8e53b5b8b90446b2272eaf59cdf985a7804c7b91cea1ce2582099b7b0f20163b11
d23110939dd62081b5aa46c62db76b2ac28473d2488970d480bdd8bef8cae9e812
74fe3f9925b012c1b55cba8c4291ec7433223cb872e422bb9e0d3775670d587e40
3660ff440a9c11a18a488abc716ae36840b2ef5b0db4a90d88f91d79536cef378b
f8e76d173288e26241df522a3cf6bece49c960e43a2d93e7bed10b90580c5b3aff
056507b4ef27368579832cb4aeecc99c2d8ba402117457df5ae0ed28068ef8b2e0
d4582f8edacfcad02c83bfab778460b979e9e984827bbefe2b544c0f3ed715dde6
dc1d7fc7c0f1f87d78aed8e148004b9f62e0321214c7c
pi = 69f6042d400dfad4bdb9974fb73d12ec7823c6632df6b0a97ebc14d8a443f
74e1eb1a99b37204ba5c7e53bdaf7e3e3fae9efe47cc01d0b061585c8d757ecf00
663b3e1bd447d55b6ebd066b814a8d9c4434b224e9cb053a1fd038a58f3bf6b0c7
5b6f48f3c8d1ca398a730c133f86f244655f24c445324fdacd291d6d907f93efb2
4b59e509f2f370392f5e262fc106292792352d93800f0a1e3a389786619a622f60
05cab78ea5f0b5b7ca91ad2a9c6c34fc4a3f9b0332b99e907ffa7f750cdc8342e1
2da78f13ad49953bae1751c983ce3cd3335288ac856f85057a7f05acba6465a1c6
901ba30bc65b79fb7a847c42a5b4942d600ef316030f2ccafbc6f2e1ff0b46fb5c
8517cd98c93f81acf370cfdab559bb4270d07db5466e2342d56c476089f4738404
34cbcdbd1853b487a6df346208d12c17a48fe50b73b96f640a9761f570a516f615
7432b83dd18a1d05cc27b6f283a02fcfda147cf1471772e469961004bde7fa1585
7e7bf97b5a83c33fddbd9f4b2e2488f4ed5f7463c93f30b
beta =
bfe966f3fabde6f38a2792ad59bc836bbca39de6eff64f15a42886deff6dfcc5
Example 3, using the 4096-bit key above:
alpha = 73616d706c65 (6 bytes; ASCII "sample")
EM = 17524fa1710b2f8a04e55da403b9b287b99a47afe9b81d3421482e3959b73
b4d4d4f4b52243ff2bfd2d29b1f030b521d0699065faa2b8903cca2b24cff42956
1234fcbd7bcccdac61b7dcb7bc61cd857287b4b42357adbd2fc83ecfc0d5bc199e
1f6e298b5e470bfc540bc85e933b02035792d65d861096dc03f048cae51c9adc6c
1ec09e7f5e595681b3d3976d94ba1a65c83c7e82503db5478d3d91b2e00a0f24e7
ffee1faed68aa62ad7ba4b2912ceb636064766f0535d3ca1369760d8edebc3c8d7
f5b4de784b644b59e44e24e436298cc33a3cd0f676d6fa0b76ca3b9b11aa68e078
9e83bd27b3af08518b9a5eb5f34f4953a79dc25c1285b20fa73e558dd99638eb51
bf89c80d7989f6e925d8ca5ed1d3f29cc1e1065400e4abbdbcf898791be12c5ae2
5661bf7de58a4cb6608c9a4dcc18150638068bb6452b25589ae0a943a67f024dd4
b5d9e7940c01886f798316156e5771c19457f9104618e271ae7863b65fd07f87fc
d7862690115ce2d963eeac60f78b47c037d6ed3000b43d8149cee08df10a97158e
e1daaf0a3963d23fb6ab0615891734e3039417d8ce03bfc18920c832a40385de95
d99b546b4bd24ecbfb2e75e9158ae1769bcff444990f54aa40e6a14e0aca52df00
062afbf81f6ce8193c53f8d26ac71324fc1db878379178abd695cf04a0fae3432d
1efffa73bba15b4e81fbaf598146a0c3edafc
pi = 745cc4b6cb75b925194374cdf91b498e8d687c5d9cae1eb5352446c554c2c
43ac4aa3e2db5cf5e366df635ce156a277ebdbe78c5598588c98257069253127e5
7c9735b498f2939f14e1d019795cbd74cee2693acda2666624f174e8f666494aa1
2641bce0677acd20e5552d2690117bddb38678a18acdc380bd9d93f3b10960f9be
0c141fc14f5f30da324ff14020cb5b8aed9fbca3fc44b4973d8e5527bd81f5ae5d
a67e5cc995abd1f7f9cdd3fa89b243fd4d5d5086ddb4eed77a2851fda1d4463f5e
e037a4015aa40c420c2e609d5d0da4ef4a1622131022bdd9c9dc26d177b392663e
a42050ef485fe9d53a8d28d84b82a21101bed5b213c82b578ce7c9c6f7c1bf9eca
3c248ace9f8835f3850158749111ce1a3bdf5766add72a95a47c8866a4817c42c5
cbd85d7bef52afab567e564f6625be9e04be6f7da012af68e6623ce4f29c692ba0
b5f7665bb435a2168bd3b88aae0c6168bb87ea6977f35bb5ad833d96dd14d340f2
a67b241b01fd8caf415842fd0a9dd5f4ccf4e70f15efdb85332e1df2bb186be15f
7195176435e01bfd00592710023c3a88ac0eea7189b32296f865a310375111a5f1
1b74d0c74b98dfe4c41ccbe695ea801ba47f37b878c1ed0fff8302705b63c89120
9ea63defa892969e015a86d97945189444524e5fb660f2b9d1dce337a12e0d003e
a6262ca3194515cc3aa10b1a03ac9dd6995b54d
beta =
b663c5f90da1c12cd5d0e6d049679459e6f79f9fe16bc8b8e7e4d64d66500bd9
A.2. RSA-FDH-VRF-SHA384
Example 4, using the 2048-bit key above:
alpha = (the empty string)
EM = 1fa5c0079423d46edb63a833abb2e6ecfd5f39d1f2bd68fc666274d9e8ed8
ea8a13411126861167a4ba1d014d5ae213372de6bb4227b12e68e16e13ce108536
acb25f7219c49388f757219716fcb74eb0245b826c7e47ca793864885684b7673e
2f8579f26e78d63a940eacb23bf7619290cb5cd20859482c410fbd6d83a61f8940
866f512be7ac041fc23c3ee71d918ec994f3efa62f4f1f44eaa29f5b37a1e93e24
73d8677fcbec312838379a3e05899ce44227c0c428fbd7d4f2d0b46cfde7254e39
67b220f8661f5dfbce7a3bf19364f522914478cead3eff0f0e02d166c251319bcf
86701af1c48436f49ceac990f52940f7da6ac6f5fdafa5c55dc77
pi = cffe6067bd9a1285dc1e8e543e8582c1250407cbfbcb2d01c4ddbc0d4ecb5
edeb721fb33147cf95f3084f7ce611f9877814770b14b8a671abc7ff085cf5cbe9
1e72d17f076d62db478d4758412a4e4b77a5591dc32b764a501d27e34e56189ba7
347a96f141ed1290f8ef7c4ce4009a9aba0715cbd0148721ea72bce00a22e59460
421a21e4d121fc0b4eda62479d93724afae7556abe66326487be38cfb795ac1968
c33a3890f2d8c0f7dfbe88bc76f16cbfd2b0f7ee8663abfd7b789caa5f6c77dd1c
a991c9a9cc532f7550ad6184c8ece12ca4bea7e67f32405416a1f83245b09d06e7
b4214157fb444be12a2eddc4381678f2b862fb240fcedd2da7ffcb3
beta = dc37e83f8de0e990abada5096a05ca74754cfe7fe8e46b831e241009194
15415dcd5a305f5fb8195713cebc78649c8d1
Example 5, using the 3072-bit key above:
alpha = 74657374 (4 bytes; ASCII "test")
EM = fa2fd7c735c961b43b01c005faefc4e39505ede3914076d4dee40d52acf72
7de1782386ad6e9e07faf7666c8f45fde93b024d97c40651b957cfcccc42b8596a
68a5495c02313ed9ecbb705ab0689c38b9e57af035189e377ad50b4704004c2a97
3d9f7554204b03e8b925a973d41a9c3432246eb2eab2f729f03d3a63c9c38c0cc2
baa440ed5e2d61644405e4b5c1acaac85d8de75a4de00419a478e6c44a97b3e898
75c318400ce8d75b84c416ffd501ba78dd3203f21c6610fcaa4d8fc94f45e80dc6
5b7e48967199e7acdb18d82413b7018192a6fa2da5d6838adb8e6139f8d12abcce
7d5fd20cfa031c4971e563d4863d498591dc652a937db5e0bfd68535e3c9db9611
8874287c2291a5d3b29aa142795e60f1ade2c8c4d627ee678b652f5fded61f9a60
d2fa9cf5fb5e6a7fd63d81c91ea2269388f0a96fae77da0957695779385c757489
56972ab1cb5e19ad3cc6a357b9ffd368ca985dd9c0e53dd42aff5985f7a234af96
ad9e34e459a958b808e858f6d7be2e964c33cefad9660
pi = 22c9278e7171183cf6a3ce108f0400e308a9177c39a171f77777c106c966e
b041824ce43fa56c5c77576646dd110e0b5d7f838bd5b1d1bf2c1feb1520397dd5
2d3cea6dbb49d786aa3bf3f5235e7692e583d290c7192102a6e0cb64f5229a326d
4d00267fd75aae9687167ea0d3d450b2d63519ad605e64c77438728a190a129b11
63939a5b7b0721b8d81efbf99a96944f63bf80ecc932fe40402d67c3e099a317cd
1d13ac6947096308050ea6dad18fdb0958ae565d07d29e619673798f52b8d1dfdb
f29b4641324ea6db5b9f35870acde7bf68e0829534d1c1f43ca9a16861efd82fb8
83e35d581f613d2dfbc89d01a84fdf081a3a850f2e865188cd995857222160c547
80dc310a6ec100b9bac30f3af92e641360cad8dc255b56fa28e88ffcbef8ebe6ba
8557e4ec44a7d0ebef882ade36db0d89be71ecaa2b35026c9d328d2384b54ae68d
e2ea70160ddde9aced5a8d896590fc185b408732cc04a249eff27501594902bf3a
f4a3743c4da50c5d62a74746007dedb8358ecfef78c75ab
beta = 5bdf742667ad10080f4ca573ec66f751e82e4077d0db1b281df421af68d
39412e70362dc5101b4b46e1e453eea7e0989
Example 6, using the 4096-bit key above:
alpha = 73616d706c65 (6 bytes; ASCII "sample")
EM = 1b1d2f330ee20b9b1754f5e6ee4126cf03ea2c7f4e8c52d96111da7f99509
042428ec2f2eafdf41716c04a9976a26df77b3d4cea8b10b216e7786fb49e923d9
84a2ee13ad82b95783b68fcf3444b65d1353619602ae06e392dc030be105d4cebc
6ff8a647b79115357833bd5312b9d3f0df1a307e782ff4db8de0eb16259d6bff2f
57b3dd60a57693d607c42013cbcfc140a77d4a651492854afbacca377ed6729d1c
be72999a62a96190fb630e5abc54d5cbe93254426df4e2315dbc777360ffb2401b
3dedbed1acacf4b3a63b5ff8e5ab6c0f8ffd9e2a34fffd68a8a593c64de2660dce
daaab13cd42ebf5720d49f3120b01f45f29d1f465e995b148c9266aa97793a9da2
f38831d00f95f9688b1c50b52a4cbcc14f8287db822381cdddf609c9c178286b1b
c2f94d7ef4d5ceb1293dd7b0fac16d1b3a8b2a7fcc454e52efd2de5a799397fd55
a909641fa775463f4808b520c3ebe0f94e2765f8538d91a4f53bb746e7d5eaf55b
3876503760f5c015f9e52bc54bdfc9632028db5e88b7dc0b1e9f1661d0a9b3574e
46311de8ef6278c4c14f68375763e5df0d4cf221a4c3e84493ed0c36984c172d87
b513857af4b6c10174dea9db6464e2bab210aa492987f0255d2c5588b1c79769da
03b62f691d5c4e5fac65505c317bf96b4f70e97c002aa0a032b02e48ee3aead570
3bde3186ce138f29ba36219fd3558af417945
pi = 89d801e364fd48c3b8672e7d7abd8a2a1e5bd36bb1e38af5aaefa2f01cde6
86fa2e33f88fdcc8eb3babcf1c66cbbf7dcddb614041813990787be5feabe86bbe
c373d2cbf7c080caa0e37a339d5de1d1455de28f9bef76cd72500c669e9cab4599
b55dc155d9dd5810174c170f646d3b0b459347c17347c0281eecf5055cf887d6bd
0a2c962c77d5ff9355a53cea64c34ea0888110ec4eb32da69022e293a8843d4c06
c9d6e020c594335720467a8337c6a939fb2c5d710f7bdab48a52f4e7483dae062c
1b9f66f7c9038ba9ceef3d61cb4cc004319c94a267a2425b5f042cd7f1a17922d6
596a88a6fefaef41fc87742f2badee7d7613179589b4d02611ac8fd7895d926f48
4f79542cdf7f034dd536c9596da2f588ac9840f6bb05875bd17107e7458cc5ea36
8a7699fd60c35b54253a718c26cf518712be9d86213b2c6bddd0b7dd169f9240e7
7bfc44223675454f9c5596ad2e6e607ea65011a721ecbfa993172ae372ae874377
9b33278d25e11ced77b14bc481fce60e4fc10a8a211d8b359906509d6830c653d9
1c1a86865219db43f62c70ac6780644d2bd73c5c256527a3eaefaebaf1f2207324
17e17dbf598636616f70f2088969ac796a853dc8a5f270a1c505797e83d1675e4f
40b59c150ca06c49bb0967a2e0c7e74eff9e182d0f7bb6f54f68fe788b89d2191c
87bbf7f3927978449c2174baa581dc64a9c58ed
beta = 8ec4d150788513c85eea3490d1a1ee1b7a397602d3f9c8b467527f09fab
5252e539f82e8002825608295ebbba19644dd
A.3. RSA-FDH-VRF-SHA512
Example 7, using the 2048-bit key above:
alpha = (the empty string)
EM = 7b08a7fff4e5d8fd4978ac5a0ddf48537a2bb3f952dcdc00affb25d747b40
85c29c68dddaa87378db32396219ce784acebe70699286318f42794927f546de5d
85bbefd80a02c3aa714fc17090baa0d0f7fb504e1af0b79ea02d41dc0bf576b8f2
1472dd4c55f96bd64772d3ebd0347abe74b9fdf35b754d0405e42ceb0e290fdd91
ef766a3e27ff59cd86572d15274f6fd49400ec4d126145f3cae200d67d5d108999
61658ece7dcbf41f1cca63f8b50399955416a1f55e0af116fac2a9fd1f2dc0085e
6ad6c1c4bc12d9308d9a030c3e2ea7f037d1c98beb23d43d67a97e5bf52382b8e8
90c5967ab42f2010cac985d3a52fe726045746d4ffef901127646
pi = a280db108df5ad6ac1bed67efbc5c6fc6da0d301b9c0b41d26e379cd223c6
13c59d52c987e4baaa6de4de2103284ddd56aa0b662dfe8faa8f6a503b83b7c81f
481e23a08761d49a151ada1d9daa132138bbd6f80204c7fa87716b120df957224f
92b32a3a0f96c3b209080c408618a92382ab5575f10a57c24ee0ffd01d6b822dc3
6b27600bf36aafadf0a01e65aa6a0f2fc1a9dcd207d9bf5181a9ca69120e154108
00a26efd3ce619349592eeff7b1851737bd033a83f88744ddd3d3e782efb6d2438
ffda22ddcaa32c821c6730a05d5bdab88c354809d615884744ff10276496bee70b
62feb6ed07a3948823e9ee2a453dbcd4450192c9de0128adfc7e147
beta = 808ca1f8f66a48118aacb011394bd4e5f0011c89ca913943d467b81cc5c
43086e588abdde061c3ee30f4c15b2a6b51ad0ada42c0737fd7b2206fb43d35c8e
d22
Example 8, using the 3072-bit key above:
alpha = 74657374 (4 bytes; ASCII "test")
EM = 803b6618f0ad47da2db309b1f57807a286500020c9e2b1427ebd9fff1104e
3aa8a69210441cd58344bd810c4900825c84b1e5e36825f1e397df54c4419f8525
d9a09a49e7fedc18b8d906cbd9ea831c55f2aaa0461e19ddd6ec9d14dafa1fcf49
b77458a65427b7f060bc7425538e5d3af1813752cb452d0b098514110399734d1f
55870c65ea3e799e6d9024a9e2fb95883e580578811a8c7d34b18f8fabc6c05fb9
697335fcf2cb1b7576ee7a39dcff129e1f142106c45f30a8ae62370f576d1d1d8c
6307fccfe25cb431f348dea81b6b7e6307bbefda2a0b23036653a612226392a573
b7d62e28f9fecc7f4be0bf0a3049ce8ed276b34130faa943aeeedf962b42a3fc6c
881bbf9a62039e9c0850f1393a2a02c6848d06c3520e086541d8af99ea3ef9f9da
2e3b2bd3172682a47e5965899bc576b66e29a0b8dcf06871202a1a4e7f2ff19bdd
9eac2241129a73d7d01303b80372ac62a0d5b6bfd1d7119e561ace229cd53d2c99
63d6127b9ade16dce4b07d1cd89247ffc438811dc8b3c
pi = 1aa828e0a751074fed2fa776fd29336a84987c064eeebcd3a8129fb688b47
eb7109987d01db0c3624ba7cc75e2f1ad60f5e204a250a329048bc34df34d41bfe
ea6651774d249ff9fc29aeabdf524400527aa1c4100b1af86b2dcc2e7aecc77f38
6b80f29ccd807cb705b5057431832dafe56733a1e7bfcba1d052a26d1a8512f297
b5abad5afd64fbcf21b57531a9b2c8217c0d9f1c875c196d998f61e8017f6b6ebe
7317545ed390e18305bc96abb1514ec271963d02bed91ccf029d022189f84bac8c
fa216da54e39919118348dfea6f4f6532b49da7820ee2a21f42b762e107722ad0a
bf62271e0640d6b1c4d1a39b94ebd74b4283de2d6550cbdb1f29cac51671e9c8fc
0ea0fdbb082a14a221e0531615f2bcfba0d70e99e4997cb00f81fcab2b95566322
0234a5e90f29bd08e6fa50dd92770d9e514e0f9eb27aee634877bcea681ffd7da2
b5be2f80c1dde1243b17ac726401cf961c5ce06640eb93352402c1ebc59c92188c
511b375d63124846b46017fe36dc13fc2d34dbd80b312e0
beta = 9202b6715b7921c5eb35572ed9ebb85848d3345efadd665049ce889be46
322586d4177864c9179468473518c6b6ac2e9c85ae5ee5fcd3c0d8e6d4d8f18be6
238
Example 9, using the 4096-bit key above:
alpha = 73616d706c65 (6 bytes; ASCII "sample")
EM = 289607894786ccf223b1e758232f3402aa50cd48bca3d2bd64b2ea9b4a69d
c91756a42b2c1feaaa777763b9b7c91888c580433ac85f5fbb360f129ecee739f6
9b560657687d38f7d43c84f6605005c38f56c91310eff27bae49b14d8a36542d69
b70efca8637b845be0f029c085a7b6aad6ca0eb65fffdf8d55d9538d3b54044ebb
c26e092b2f3ddaece7aa5b4b234ec848bfdc72a4ecdc10c66fb845cfc5ad39756e
7f26007cea0ebf1e878636f4e39308fe7a317a9b7e90051536ac028bc1a2ec200a
5dad0e3b74717bd9e7ea620919e315799e0fea7b0895fcbc0b95686b2495dc23e3
cd56a16652b0df0dbd3ca8a6c96b13973a0c31a5541e211229da8a56e588a616c7
21baab8e2d30313008c2374887f147598468b378bf8949ab1165b9348245d0a6a5
f795918fce05f0d072f81f78c7224e7f1c4684877d714f231d5775c88759086121
2eae2d174761158ac7d653b18f0d4b71362c0eb8a67bed1a48a4e7dc739b2b4469
4514cae7f192d236afb1ab2409f24dfa94a2d705d0087860d844ba04564bb6733c
a20089417d74eaed86d7e68ced681e9d88a9c3d7e6a33927592820cb9a38d45393
32e509296489e54cd6b8495f100c36debe1f719578b15e8a99cc8febc3212e8147
8aeca616a5230ae84e7079f52aefb2ec2a97157fb5d60e1ddcf03b134be2c93ffb
a41d5d068750adc8df07e5a264640f7e586bd
pi = 17d7635cac33b0b72ea1c0afb1f681d1a96c5073ed9f88ed8bb54eb428d7b
2db4ee3355eee512ddc7af50694b37fd389f990278e22095b2582c78c4ed6070b0
c7382b0308b6d546141a9b0d6ebb3af97abd93c16a5d34a2d805d8aa444fed2297
d017571a693d221fda094d40500ab9b203d397a7543e72b26b06e561d49696e01d
eebfed58b46611dd5a346e227d7519f8ffd1dc76a172c9f7f355c3e7e5ee7773ed
ab00a22af5c39367f3779da68ce6da9f8a594f5f6149012501181653572fe5549a
9c2bf36148b3bdc94feaedd600727fe5c11b7dcbfd73002ae08061cb4b84ba47f1
bf8c5d46bc2acb7cb4964a6dca7eedc396e663a64121d93dade8b83cea09d76653
cca1a8d20d6b7323a890651dc575025ba1be02d08c5946f50cde438339b06e8633
198da0d467d2cac7d98ae62dd71353f6fb19aa9daac851d0ce237b21db93b91e51
8d5c1ac36cdf874975deb7aab3942acc3980f221f33ad1254eb8ac3138e087d045
c4746e0b7eedcaf2a1a173559783eba8691555c1b0e468f8efe6501679b760038e
d6fc9ce6aa5ae24b3f1178713793c8e5ee96035a2f0ee02e2d10ac098613358d3c
ff10f4dff3437f2a48252c5d6805288fbd7ee05356f80db12aaeabf6638677abf5
b8eb2376fb76861cf1b817d5a0b878dae6beac44f078f37d982d941a77582a7778
4fabd632e28d664d9f705f31e24d1ca623dfac7
beta = 6026f6defaf534cc79ce7c1b0370fb53e4825d2d44f549f696e06d693c3
9e852e21a5e3b6ff093618dd277b40678957e1b90e8e6ca742efed30dc309b3b24
2b8
Appendix B. Test Vectors for the ECVRF Ciphersuites
The test vectors in this section were generated using code provided
at <https://github.com/reyzin/ecvrf>.
B.1. ECVRF-P256-SHA256-TAI
The example secret keys and messages in Examples 10 and 11 are taken
from Appendix A.2.5 of [RFC6979].
Example 10:
SK = x =
c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
PK =
0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
alpha = 73616d706c65 (6 bytes; ASCII "sample")
try_and_increment succeeded on ctr = 1
H =
0272a877532e9ac193aff4401234266f59900a4a9e3fc3cfc6a4b7e467a15d06d4
k =
0d90591273453d2dc67312d39914e3a93e194ab47a58cd598886897076986f77
U = k*B =
02bb6a034f67643c6183c10f8b41dc4babf88bff154b674e377d90bde009c21672
V = k*H =
02893ebee7af9a0faa6da810da8a91f9d50e1dc071240c9706726820ff919e8394
pi = 035b5c726e8c0e2c488a107c600578ee75cb702343c153cb1eb8dec77f4b5
071b4a53f0a46f018bc2c56e58d383f2305e0975972c26feea0eb122fe7893c15a
f376b33edf7de17c6ea056d4d82de6bc02f
beta =
a3ad7b0ef73d8fc6655053ea22f9bede8c743f08bbed3d38821f0e16474b505e
Example 11:
SK = x =
c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
PK =
0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
alpha = 74657374 (4 bytes; ASCII "test")
try_and_increment succeeded on ctr = 3
H =
02173119b4fff5e6f8afed4868a29fe8920f1b54c2cf89cc7b301d0d473de6b974
k =
5852353a868bdce26938cde1826723e58bf8cb06dd2fed475213ea6f3b12e961
U = k*B =
022779a2cafcb65414c4a04a4b4d2adf4c50395f57995e89e6de823250d91bc48e
V = k*H =
033b4a14731672e82339f03b45ff6b5b13dee7ada38c9bf1d6f8f61e2ce5921119
pi = 034dac60aba508ba0c01aa9be80377ebd7562c4a52d74722e0abae7dc3080
ddb56c19e067b15a8a8174905b13617804534214f935b94c2287f797e393eb0816
969d864f37625b443f30f1a5a33f2b3c854
beta =
a284f94ceec2ff4b3794629da7cbafa49121972671b466cab4ce170aa365f26d
The example secret key in Example 12 is taken from Appendix L.4.2 of
[ANSI.X9-62-2005].
Example 12:
SK = x =
2ca1411a41b17b24cc8c3b089cfd033f1920202a6c0de8abb97df1498d50d2c8
PK =
03596375e6ce57e0f20294fc46bdfcfd19a39f8161b58695b3ec5b3d16427c274d
alpha = 4578616d706c65207573696e67204543445341206b65792066726f6d20
417070656e646978204c2e342e32206f6620414e53492e58392d36322d32303035
(62 bytes; ASCII "Example using ECDSA key from Appendix L.4.2 of
ANSI.X9-62-2005")
try_and_increment succeeded on ctr = 1
H =
0258055c26c4b01d01c00fb57567955f7d39cd6f6e85fd37c58f696cc6b7aa761d
k =
5689e2e08e1110b4dda293ac21667eac6db5de4a46a519c73d533f69be2f4da3
U = k*B =
020f465cd0ec74d2e23af0abde4c07e866ae4e5138bded5dd1196b8843f380db84
V = k*H =
036cb6f811428fc4904370b86c488f60c280fa5b496d2f34ff8772f60ed24b2d1d
pi = 03d03398bf53aa23831d7d1b2937e005fb0062cbefa06796579f2a1fc7e7b
8c667d091c00b0f5c3619d10ecea44363b5a599cadc5b2957e223fec62e81f7b48
25fc799a771a3d7334b9186bdbee87316b1
beta =
90871e06da5caa39a3c61578ebb844de8635e27ac0b13e829997d0d95dd98c19
B.2. ECVRF-P256-SHA256-SSWU
The example secret keys and messages in Examples 13 and 14 are taken
from Appendix A.2.5 of [RFC6979].
Example 13:
SK = x =
c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
PK =
0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
alpha = 73616d706c65 (6 bytes; ASCII "sample")
In SSWU: uniform_bytes = 5024e98d6067dec313af09ff0cbe78218324a645c
2a4b0aae2453f6fe91aa3bd9471f7b4a5fbf128e4b53f0c59603f7e
In SSWU: u =
df565615a2372e8b31b8771f7503bafc144e48b05688b97958cc27ce29a8d810
In SSWU: x1 =
e7e39eb8a4c982426fcff629e55a3e13516cfeb62c02c369b1e750316f5e94eb
In SSWU: gx1 is a nonsquare
H =
02b31973e872d4a097e2cfae9f37af9f9d73428fde74ac537dda93b5f18dbc5842
k =
e92820035a0a8afe132826c6312662b6ea733fc1a0d33737945016de54d02dd8
U = k*B =
031490f49d0355ffcdf66e40df788bee93861917ee713acff79be40d20cc91a30a
V = k*H =
03701df0228138fa3d16612c0d720389326b3265151bc7ac696ea4d0591cd053e3
pi = 0331d984ca8fece9cbb9a144c0d53df3c4c7a33080c1e02ddb1a96a365394
c7888782fffde7b842c38c20c08de6ec6c2e7027a97000f2c9fa4425d5c03e639f
b48fde58114d755985498d7eb234cf4aed9
beta =
21e66dc9747430f17ed9efeda054cf4a264b097b9e8956a1787526ed00dc664b
Example 14:
SK = x =
c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
PK =
0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
alpha = 74657374 (4 bytes; ASCII "test")
In SSWU: uniform_bytes = 910cc66d84a57985a1d15843dad83fd9138a109af
b243b7fa5d64d766ec9ca3894fdcf46ebeb21a3972eb452a4232fd3
In SSWU: u =
d8b0107f7e7aa36390240d834852f8703a6dc407019d6196bda5861b8fc00181
In SSWU: x1 =
ccc747fa7318b9486ce4044adbbecaa084c27be6eda88eb7b7f3d688fd0968c7
In SSWU: gx1 is a square
H =
03ccc747fa7318b9486ce4044adbbecaa084c27be6eda88eb7b7f3d688fd0968c7
k =
febc3451ea7639fde2cf41ffd03f463124ecb3b5a79913db1ed069147c8a7dea
U = k*B =
031200f9900e96f811d1247d353573f47e0d9da601fc992566234fc1a5b37749ae
V = k*H =
02d3715dcfee136c7ae50e95ffca76f4ca6c29ddfb92a39c31a0d48e75c6605cd1
pi = 03f814c0455d32dbc75ad3aea08c7e2db31748e12802db23640203aebf1fa
8db2743aad348a3006dc1caad7da28687320740bf7dd78fe13c298867321ce3b36
b79ec3093b7083ac5e4daf3465f9f43c627
beta =
8e7185d2b420e4f4681f44ce313a26d05613323837da09a69f00491a83ad25dd
The example secret key in Example 15 is taken from Appendix L.4.2 of
[ANSI.X9-62-2005].
Example 15:
SK = x =
2ca1411a41b17b24cc8c3b089cfd033f1920202a6c0de8abb97df1498d50d2c8
PK =
03596375e6ce57e0f20294fc46bdfcfd19a39f8161b58695b3ec5b3d16427c274d
alpha = 4578616d706c65207573696e67204543445341206b65792066726f6d20
417070656e646978204c2e342e32206f6620414e53492e58392d36322d32303035
(62 bytes; ASCII "Example using ECDSA key from Appendix L.4.2 of
ANSI.X9-62-2005")
In SSWU: uniform_bytes = 9b81d55a242d3e8438d3bcfb1bee985a87fd14480
2c9268cf9adeee160e6e9ff765569797a0f701cb4316018de2e7dd4
In SSWU: u =
e43c98c2ae06d13839fedb0303e5ee815896beda39be83fb11325b97976efdce
In SSWU: x1 =
be9e195a50f175d3563aed8dc2d9f513a5536c1e9aee1757d86c08d32d582a86
In SSWU: gx1 is a nonsquare
H =
022dd5150e5a2a24c66feab2f68532be1486e28e07f1b9a055cf38ccc16f6595ff
k =
8e29221f33564f3f66f858ba2b0c14766e1057adbd422c3e7d0d99d5e142b613
U = k*B =
03a8823ff9fd16bf879261c740b9c7792b77fee0830f21314117e441784667958d
V = k*H =
02d48fbb45921c755b73b25be2f23379e3ce69294f6cee9279815f57f4b422659d
pi = 039f8d9cdc162c89be2871cbcb1435144739431db7fab437ab7bc4e2651a9
e99d5488405a11a6c7fc8defddd9e1573a563b7333aab4effe73ae9803274174c6
59269fd39b53e133dcd9e0d24f01288de9a
beta =
4fbadf33b42a5f42f23a6f89952d2e634a6e3810f15878b46ef1bb85a04fe95a
B.3. ECVRF-EDWARDS25519-SHA512-TAI
The example secret keys and messages in Examples 16, 17, and 18 are
taken from Section 7.1 of [RFC8032].
Example 16:
SK =
9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60
PK =
d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a
alpha = (the empty string)
x =
307c83864f2833cb427a2ef1c00a013cfdff2768d980c0a3a520f006904de94f
try_and_increment succeeded on ctr = 0
H =
91bbed02a99461df1ad4c6564a5f5d829d0b90cfc7903e7a5797bd658abf3318
k_string = 7100f3d9eadb6dc4743b029736ff283f5be494128df128df2817106
f345b8594b6d6da2d6fb0b4c0257eb337675d96eab49cf39e66cc2c9547c2bf8b2
a6afae4
k =
8a49edbd1492a8ee09766befe50a7d563051bf3406cbffc20a88def030730f0f
U = k*B =
aef27c725be964c6a9bf4c45ca8e35df258c1878b838f37d9975523f09034071
V = k*H =
5016572f71466c646c119443455d6cb9b952f07d060ec8286d678615d55f954f
pi = 8657106690b5526245a92b003bb079ccd1a92130477671f6fc01ad16f26f7
23f26f8a57ccaed74ee1b190bed1f479d9727d2d0f9b005a6e456a35d4fb0daab1
268a1b0db10836d9826a528ca76567805
beta = 90cf1df3b703cce59e2a35b925d411164068269d7b2d29f3301c03dd757
876ff66b71dda49d2de59d03450451af026798e8f81cd2e333de5cdf4f3e140fdd
8ae
Example 17:
SK =
4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb
PK =
3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c
alpha = 72 (1 byte)
x =
68bd9ed75882d52815a97585caf4790a7f6c6b3b7f821c5e259a24b02e502e51
try_and_increment succeeded on ctr = 1
H =
5b659fc3d4e9263fd9a4ed1d022d75eaacc20df5e09f9ea937502396598dc551
k_string = 42589bbf0c485c3c91c1621bb4bfe04aed7be76ee48f9b00793b234
2acb9c167cab856f9f9d4febc311330c20b0a8afd3743d05433e8be8d32522ecdc
16cc5ce
k =
d8c3a66921444cb3427d5d989f9b315aa8ca3375e9ec4d52207711a1fdb44107
U = k*B =
1dcb0a4821a2c48bf53548228b7f170962988f6d12f5439f31987ef41f034ab3
V = k*H =
fd03c0bf498c752161bae4719105a074630a2aa5f200ff7b3995f7bfb1513423
pi = f3141cd382dc42909d19ec5110469e4feae18300e94f304590abdced48aed
5933bf0864a62558b3ed7f2fea45c92a465301b3bbf5e3e54ddf2d935be3b67926
da3ef39226bbc355bdc9850112c8f4b02
beta = eb4440665d3891d668e7e0fcaf587f1b4bd7fbfe99d0eb2211ccec90496
310eb5e33821bc613efb94db5e5b54c70a848a0bef4553a41befc57663b56373a5
031
Example 18:
SK =
c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7
PK =
fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025
alpha = af82 (2 bytes)
x =
909a8b755ed902849023a55b15c23d11ba4d7f4ec5c2f51b1325a181991ea95c
try_and_increment succeeded on ctr = 0
H =
bf4339376f5542811de615e3313d2b36f6f53c0acfebb482159711201192576a
k_string = 38b868c335ccda94a088428cbf3ec8bc7955bfaffe1f3bd2aa2c59f
c31a0febc59d0e1af3715773ce11b3bbdd7aba8e3505d4b9de6f7e4a96e67e0d6b
b6d6c3a
k =
5ffdbc72135d936014e8ab708585fda379405542b07e3bd2c0bd48437fbac60a
U = k*B =
2bae73e15a64042fcebf062abe7e432b2eca6744f3e8265bc38e009cd577ecd5
V = k*H =
88cba1cb0d4f9b649d9a86026b69de076724a93a65c349c988954f0961c5d506
pi = 9bc0f79119cc5604bf02d23b4caede71393cedfbb191434dd016d30177ccb
f8096bb474e53895c362d8628ee9f9ea3c0e52c7a5c691b6c18c9979866568add7
a2d41b00b05081ed0f58ee5e31b3a970e
beta = 645427e5d00c62a23fb703732fa5d892940935942101e456ecca7bb217c
61c452118fec1219202a0edcf038bb6373241578be7217ba85a2687f7a0310b2df
19f
B.4. ECVRF-EDWARDS25519-SHA512-ELL2
The example secret keys and messages in Examples 19, 20, and 21 are
taken from Section 7.1 of [RFC8032].
Example 19:
SK =
9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60
PK =
d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a
alpha = (the empty string)
x =
307c83864f2833cb427a2ef1c00a013cfdff2768d980c0a3a520f006904de94f
In Elligator2: uniform_bytes = d620782a206d9de584b74e23ae5ee1db5ca
5298b3fc527c4867f049dee6dd419b3674967bd614890f621c128d72269ae
In Elligator2: u =
30f037b9745a57a9a2b8a68da81f397c39d46dee9d047f86c427c53f8b29a55c
In Elligator2: gx1 =
8cb66318fb2cea01672d6c27a5ab662ae33220961607f69276080a56477b4a08
In Elligator2: gx1 is a square
H =
b8066ebbb706c72b64390324e4a3276f129569eab100c26b9f05011200c1bad9
k_string = b5682049fee54fe2d519c9afff73bbfad724e69a82d5051496a4245
8f817bed7a386f96b1a78e5736756192aeb1818a20efb336a205ffede351cfe88d
ab8d41c
k =
55cbb247af9b8372259a97b2cfec656d78868deb33b203d51b9961c364522400
U = k*B =
762f5c178b68f0cddcc1157918edf45ec334ac8e8286601a3256c3bbf858edd9
V = k*H =
4652eba1c4612e6fce762977a59420b451e12964adbe4fbecd58a7aeff5860af
pi = 7d9c633ffeee27349264cf5c667579fc583b4bda63ab71d001f89c10003ab
46f14adf9a3cd8b8412d9038531e865c341cafa73589b023d14311c331a9ad15ff
2fb37831e00f0acaa6d73bc9997b06501
beta = 9d574bf9b8302ec0fc1e21c3ec5368269527b87b462ce36dab2d14ccf80
c53cccf6758f058c5b1c856b116388152bbe509ee3b9ecfe63d93c3b4346c1fbc6
c54
Example 20:
SK =
4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb
PK =
3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c
alpha = 72 (1 byte)
x =
68bd9ed75882d52815a97585caf4790a7f6c6b3b7f821c5e259a24b02e502e51
In Elligator2: uniform_bytes = 04ae20a9ad2a2330fb33318e376a2448bd7
7bb99e81d126f47952b156590444a9225b84128b66a2f15b41294fa2f2f6d
In Elligator2: u =
3092f033b16d4d5f74a3f7dc7091fe434b449065152b95476f121de899bb773d
In Elligator2: gx1 =
25d7fe7f82456e7078e99fdb24ef2582b4608357cdba9c39a8d535a3fd98464d
In Elligator2: gx1 is a nonsquare
H =
76ac3ccb86158a9104dff819b1ca293426d305fd76b39b13c9356d9b58c08e57
k_string = 88bf479281fd29a6cbdffd67e2c5ec0024d92f14eaed58f43f22f37
c4c37f1d41e65c036fbf01f9fba11d554c07494d0c02e7e5c9d64be88ef78cab75
44e444d
k =
9565956daeedf376cad61b829b2a4d21ba1b52e9b3e2457477a64630a9711003
U = k*B =
8ec26e77b8cb3114dd2265fe1564a4efb40d109aa3312536d93dfe3d8d80a061
V = k*H =
fe799eb5770b4e3a5a27d22518bb631db183c8316bb552155f442c62a47d1c8b
pi = 47b327393ff2dd81336f8a2ef10339112401253b3c714eeda879f12c50907
2ef055b48372bb82efbdce8e10c8cb9a2f9d60e93908f93df1623ad78a86a028d6
bc064dbfc75a6a57379ef855dc6733801
beta = 38561d6b77b71d30eb97a062168ae12b667ce5c28caccdf76bc88e093e4
635987cd96814ce55b4689b3dd2947f80e59aac7b7675f8083865b46c89b2ce9cc
735
Example 21:
SK =
c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7
PK =
fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025
alpha = af82 (2 bytes)
x =
909a8b755ed902849023a55b15c23d11ba4d7f4ec5c2f51b1325a181991ea95c
In Elligator2: uniform_bytes = be0aed556e36cdfddf8f1eeddbb7356a24f
ad64cf95a922a098038f215588b216beabbfe6acf20256188e883292b7a3a
In Elligator2: u =
f6675dc6d17fc790d4b3f1c6acf689a13d8b5815f23880092a925af94cd6fa24
In Elligator2: gx1 =
a63d48e3247c903e22fdfb88fd9295e396712a5fe576af335dbe16f99f0af26c
In Elligator2: gx1 is a square
H = 13d2a8b5ca32db7e98094a61f656a08c6c964344e058879a386a947a4e189ed1
k_string = a7ddd74a3a7d165d511b02fa268710ddbb3b939282d276fa2efcfa5
aaf79cf576087299ca9234aacd7cd674d912deba00f4e291733ef189a51e36c861
b3d683b
k =
1fda4077f737098b3f361c33a36cccafd7e9e9b720e1f84011254e25f37eed02
U = k*B =
a012f35433df219a88ab0f9481f4e0065d00422c3285f3d34a8b0202f20bac60
V = k*H =
fb613986d171b3e98319c7ca4dc44c5dd8314a6e5616c1a4f16ce72bd7a0c25a
pi = 926e895d308f5e328e7aa159c06eddbe56d06846abf5d98c2512235eaa57f
dce35b46edfc655bc828d44ad09d1150f31374e7ef73027e14760d42e77341fe05
467bb286cc2c9d7fde29120a0b2320d04
beta = 121b7f9b9aaaa29099fc04a94ba52784d44eac976dd1a3cca458733be5c
d090a7b5fbd148444f17f8daf1fb55cb04b1ae85a626e30a54b4b0f8abf4a43314
a58
Contributors
This document would not be possible without the work of Moni Naor,
Sachin Vasant, and Asaf Ziv. Chloe Martindale provided a thorough
cryptographer's review. Liliya Akhmetzyanova, Tony Arcieri, Gary
Belvin, Mario Cao Cueto, Brian Chen, Sergey Gorbunov, Shumon Huque,
Gorka Irazoqui Apecechea, Marek Jankowski, Burt Kaliski, Mallory
Knodel, David C. Lawrence, Derek Ting-Haye Leung, Antonio Marcedone,
Piotr Nojszewski, Chris Peikert, Colin Perkins, Trevor Perrin, Sam
Scott, Stanislav Smyshlyaev, Adam Suhl, Nick Sullivan, Christopher
Wood, Jiayu Xu, and Annie Yousar provided valuable input to this
document. Christopher Wood, Malte Thomsen, Marcus Rasmussen, and
Tobias Vestergaard provided independent verification of the test
vectors. Riad Wahby helped this document align with [RFC9380].
Authors' Addresses
Sharon Goldberg
Boston University
665 Commonwealth Avenue
Boston, MA 02215
United States of America
Email: goldbe@cs.bu.edu
Leonid Reyzin
Boston University and Algorand
665 Commonwealth Avenue
Boston, MA 02215
United States of America
Email: reyzin@bu.edu
Dimitrios Papadopoulos
Hong Kong University of Science and Technology
Clearwater Bay
Hong Kong
Email: dipapado@cse.ust.hk
Jan Včelák
NS1
Email: jvcelak@ns1.com
|