summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc9582.txt
blob: d6e0ed8e32154360015420b40a98dc5193668987 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
Internet Engineering Task Force (IETF)                       J. Snijders
Request for Comments: 9582                                        Fastly
Obsoletes: 6482                                              B. Maddison
Category: Standards Track                                     Workonline
ISSN: 2070-1721                                              M. Lepinski
                                                        Carleton College
                                                                 D. Kong
                                                                Raytheon
                                                                 S. Kent
                                                             Independent
                                                                May 2024


            A Profile for Route Origin Authorizations (ROAs)

Abstract

   This document defines a standard profile for Route Origin
   Authorizations (ROAs).  A ROA is a digitally signed object that
   provides a means of verifying that an IP address block holder has
   authorized an Autonomous System (AS) to originate routes to one or
   more prefixes within the address block.  This document obsoletes RFC
   6482.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc9582.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Revised BSD License text as described in Section 4.e of the
   Trust Legal Provisions and are provided without warranty as described
   in the Revised BSD License.

Table of Contents

   1.  Introduction
     1.1.  Requirements Language
     1.2.  Changes from RFC 6482
   2.  Related Work
   3.  The ROA Content Type
   4.  The ROA eContent
     4.1.  The version Element
     4.2.  The asID Element
     4.3.  The ipAddrBlocks Element
       4.3.1.  Type ROAIPAddressFamily
       4.3.2.  Type ROAIPAddress
       4.3.3.  Canonical Form for ipAddrBlocks
   5.  ROA Validation
   6.  Security Considerations
   7.  IANA Considerations
     7.1.  SMI Security for S/MIME CMS Content Type
           (1.2.840.113549.1.9.16.1)
     7.2.  RPKI Signed Objects Registry
     7.3.  File Extension
     7.4.  SMI Security for S/MIME Module Identifier
           (1.2.840.113549.1.9.16.0)
     7.5.  Media Type
   8.  References
     8.1.  Normative References
     8.2.  Informative References
   Appendix A.  Example ROA eContent Payload
   Acknowledgements
   Authors' Addresses

1.  Introduction

   The primary purpose of the Resource Public Key Infrastructure (RPKI)
   is to improve routing security.  (See [RFC6480] for more
   information.)  As part of this system, a mechanism is needed to allow
   entities to verify that an Autonomous System (AS) has been given
   permission by an IP address block holder to advertise routes to one
   or more prefixes within that block.  A Route Origin Authorization
   (ROA) provides this function.

   The ROA makes use of the template for RPKI digitally signed objects
   [RFC6488], which defines a Cryptographic Message Syntax (CMS) wrapper
   [RFC5652] for the ROA content as well as a generic validation
   procedure for RPKI signed objects.  Therefore, to complete the
   specification of the ROA (see Section 4 of [RFC6488]), this document
   defines:

   *  The OID that identifies the signed object as being a ROA.  (This
      OID appears within the eContentType in the encapContentInfo object
      as well as the content-type signed attribute in the signerInfo
      object.)

   *  The ASN.1 syntax for the ROA eContent.  (This is the payload that
      specifies the AS being authorized to originate routes as well as
      the prefixes to which the AS may originate routes.)  The ROA
      eContent is ASN.1 encoded using the Distinguished Encoding Rules
      (DER) [X.690].

   *  Additional steps required to validate ROAs (in addition to the
      validation steps specified in [RFC6488]).

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

1.2.  Changes from RFC 6482

   This section summarizes the significant changes between [RFC6482] and
   the profile described in this document.

   *  Clarified the requirements for the IP address and AS identifier
      X.509 certificate extensions.

   *  Strengthened the ASN.1 formal notation and definitions.

   *  Incorporated errata for RFC 6482.

   *  Added an example ROA eContent payload, and a complete ROA
      (Appendix A).

   *  Specified a canonicalization procedure for the content of
      ipAddrBlocks.

2.  Related Work

   It is assumed that the reader is familiar with the terms and concepts
   described in "Internet X.509 Public Key Infrastructure Certificate
   and Certificate Revocation List (CRL) Profile" [RFC5280] and "X.509
   Extensions for IP Addresses and AS Identifiers" [RFC3779].

   Additionally, this document makes use of the RPKI signed object
   profile [RFC6488]; thus, familiarity with that document is assumed.
   Note that the RPKI signed object profile makes use of certificates
   adhering to the RPKI resource certificate profile [RFC6487]; thus,
   familiarity with that profile is also assumed.

3.  The ROA Content Type

   The content-type for a ROA is defined as id-ct-routeOriginAuthz and
   has the numerical value 1.2.840.113549.1.9.16.1.24.

   This OID MUST appear within both the eContentType in the
   encapContentInfo object and the content-type signed attribute in the
   signerInfo object (see [RFC6488]).

4.  The ROA eContent

   The content of a ROA identifies a single AS that has been authorized
   by the address space holder to originate routes and a list of one or
   more IP address prefixes that will be advertised.  If the address
   space holder needs to authorize multiple ASes to advertise the same
   set of address prefixes, the holder issues multiple ROAs, one per AS
   number.  A ROA is formally defined as:

   RPKI-ROA-2023
     { iso(1) member-body(2) us(840) rsadsi(113549)
     pkcs(1) pkcs9(9) smime(16) mod(0)
     id-mod-rpkiROA-2023(75) }

   DEFINITIONS EXPLICIT TAGS ::=
   BEGIN

   IMPORTS
     CONTENT-TYPE
     FROM CryptographicMessageSyntax-2010 -- in [RFC6268]
       { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) } ;

   ct-routeOriginAttestation CONTENT-TYPE ::=
     { TYPE RouteOriginAttestation
       IDENTIFIED BY id-ct-routeOriginAuthz }

   id-ct-routeOriginAuthz OBJECT IDENTIFIER ::=
     { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
       pkcs-9(9) id-smime(16) id-ct(1) routeOriginAuthz(24) }

   RouteOriginAttestation ::= SEQUENCE {
     version [0]   INTEGER DEFAULT 0,
     asID          ASID,
     ipAddrBlocks  SEQUENCE (SIZE(1..2)) OF ROAIPAddressFamily }

   ASID ::= INTEGER (0..4294967295)

   ROAIPAddressFamily ::= SEQUENCE {
     addressFamily ADDRESS-FAMILY.&afi ({AddressFamilySet}),
     addresses     ADDRESS-FAMILY.&Addresses
                                  ({AddressFamilySet}{@addressFamily}) }

   ADDRESS-FAMILY ::= CLASS {
     &afi          OCTET STRING (SIZE(2)) UNIQUE,
     &Addresses
   } WITH SYNTAX { AFI &afi ADDRESSES &Addresses }

   AddressFamilySet ADDRESS-FAMILY ::=
     { addressFamilyIPv4 | addressFamilyIPv6 }

   addressFamilyIPv4 ADDRESS-FAMILY ::=
     { AFI afi-IPv4 ADDRESSES ROAAddressesIPv4 }
   addressFamilyIPv6 ADDRESS-FAMILY ::=
     { AFI afi-IPv6 ADDRESSES ROAAddressesIPv6 }

   afi-IPv4 OCTET STRING ::= '0001'H
   afi-IPv6 OCTET STRING ::= '0002'H

   ROAAddressesIPv4 ::= SEQUENCE (SIZE(1..MAX)) OF ROAIPAddress{ub-IPv4}
   ROAAddressesIPv6 ::= SEQUENCE (SIZE(1..MAX)) OF ROAIPAddress{ub-IPv6}

   ub-IPv4 INTEGER ::= 32
   ub-IPv6 INTEGER ::= 128

   ROAIPAddress {INTEGER: ub} ::= SEQUENCE {
     address       BIT STRING (SIZE(0..ub)),
     maxLength     INTEGER (0..ub) OPTIONAL }

   END

4.1.  The version Element

   The version number of the RouteOriginAttestation entry MUST be 0.

4.2.  The asID Element

   The asID element contains the AS number that is authorized to
   originate routes to the given IP address prefixes.

4.3.  The ipAddrBlocks Element

   The ipAddrBlocks element encodes the set of IP address prefixes to
   which the AS is authorized to originate routes.  Note that the syntax
   here is more restrictive than that used in the IP address delegation
   extension defined in [RFC3779].  That extension can represent
   arbitrary address ranges, whereas ROAs need to represent only IP
   prefixes.

4.3.1.  Type ROAIPAddressFamily

   Within the ROAIPAddressFamily structure, the addressFamily element
   contains the Address Family Identifier (AFI) of an IP address family.
   This specification only supports IPv4 and IPv6; therefore,
   addressFamily MUST be either 0001 or 0002.  IPv4 prefixes MUST NOT
   appear as IPv4-mapped IPv6 addresses (Section 2.5.5.2 of [RFC4291]).

   There MUST be only one instance of ROAIPAddressFamily per unique AFI
   in the ROA.  Thus, the ROAIPAddressFamily structure MUST NOT appear
   more than twice.

   The addresses field contains IP prefixes as a sequence of type
   ROAIPAddress.

4.3.2.  Type ROAIPAddress

   A ROAIPAddress structure is a sequence containing an address element
   of type BIT STRING and an optional maxLength element of type INTEGER.

4.3.2.1.  The address Element

   The address element is of type BIT STRING and represents a single IP
   address prefix.  This field uses the same representation of an IP
   address prefix as a BIT STRING as the IPAddress type defined in
   Section 2.2.3.8 of [RFC3779].

4.3.2.2.  The maxLength Element

   When present, the maxLength element specifies the maximum length of
   the IP address prefix that the AS is authorized to advertise.  The
   maxLength element SHOULD NOT be encoded if the maximum length is
   equal to the prefix length.  Certification Authorities SHOULD
   anticipate that future Relying Parties will become increasingly
   stringent in considering the presence of superfluous maxLength
   elements an encoding error.

   If present, the maxLength element MUST be:

   *  an integer greater than or equal to the length of the accompanying
      prefix, and

   *  less than or equal to the maximum length (in bits) of an IP
      address in the applicable address family: 32 in the case of IPv4
      and 128 in the case of IPv6.

   For example, if the IP address prefix is 203.0.113.0/24 and maxLength
   is 26, the AS is authorized to advertise any more-specific prefix
   with a maximum length of 26.  In this example, the AS would be
   authorized to advertise 203.0.113.0/24, 203.0.113.128/25, or
   203.0.113.192/26, but not 203.0.113.0/27.  See [RFC9319] for more
   information on the use of maxLength.

   When the maxLength element is not present, the AS is only authorized
   to advertise the exact prefix specified in the ROAIPAddress
   structure's address element.

4.3.2.3.  Note on Overlapping or Superfluous Information Encoding

   Note that a valid ROA may contain an IP address prefix (within a
   ROAIPAddress element) that is encompassed by another IP address
   prefix (within a separate ROAIPAddress element).  For example, a ROA
   may contain the prefix 203.0.113.0/24 with maxLength 26, as well as
   the prefix 203.0.113.0/28 with maxLength 28.  This ROA would
   authorize the indicated AS to advertise any prefix beginning with
   203.0.113 with a minimum length of 24 and a maximum length of 26, as
   well as the specific prefix 203.0.113.0/28.

   Additionally, a ROA MAY contain two ROAIPAddress elements, where the
   IP address prefix is identical in both cases.  However, this is NOT
   RECOMMENDED, because in such a case, the ROAIPAddress element with
   the shorter maxLength grants no additional privileges to the
   indicated AS and thus can be omitted without changing the meaning of
   the ROA.

4.3.3.  Canonical Form for ipAddrBlocks

   As the data structure described by the ROA ASN.1 module allows for
   many different ways to represent the same set of IP address
   information, a canonical form is defined such that every set of IP
   address information has a unique representation.  In order to produce
   and verify this canonical form, the process described in this section
   SHOULD be used to ensure that information elements are unique with
   respect to one another and sorted in ascending order.  Certification
   Authorities SHOULD anticipate that future Relying Parties will impose
   a strict requirement for the ipAddrBlocks field to be in this
   canonical form.  This canonicalization procedure builds upon the
   canonicalization procedure specified in Section 2.2.3.6 of [RFC3779].

   In order to semantically compare, sort, and deduplicate the contents
   of the ipAddrBlocks field, each ROAIPAddress element is mapped to an
   abstract data element composed of four integer values:

   afi  The AFI value appearing in the addressFamily field of the
      containing ROAIPAddressFamily as an integer.

   addr  The first IP address of the IP prefix appearing in the
      ROAIPAddress address field, as a 32-bit (IPv4) or 128-bit (IPv6)
      integer value.

   plen  The length of the IP prefix appearing in the ROAIPAddress
      address field as an integer value.

   mlen  The value appearing in the maxLength field of the ROAIPAddress
      element, if present; otherwise, the above prefix length value.

   Thus, the equality or relative order of two ROAIPAddress elements can
   be tested by comparing their abstract representations.

4.3.3.1.  Comparator

   The set of ipAddrBlocks is totally ordered.  The order of two
   ipAddrBlocks is determined by the first non-equal comparison in the
   following list.

   1.  Data elements with a lower afi value precede data elements with a
       higher afi value.

   2.  Data elements with a lower addr value precede data elements with
       a higher addr value.

   3.  Data elements with a lower plen value precede data elements with
       a higher plen value.

   4.  Data elements with a lower mlen value precede data elements with
       a higher mlen value.

   Data elements for which all four values compare equal are duplicates
   of one another.

4.3.3.2.  Example Implementations

   *  A sorting implementation [roasort-c] in ISO/IEC 9899:1999
      ("ANSI C99").

   *  A sorting implementation [roasort-rs] in the Rust 2021 Edition.

5.  ROA Validation

   Before a Relying Party can use a ROA to validate a routing
   announcement, the Relying Party MUST first validate the ROA.  To
   validate a ROA, the Relying Party MUST perform all the validation
   checks specified in [RFC6488] as well as the following additional
   ROA-specific validation steps:

   *  The IP address delegation extension [RFC3779] is present in the
      end-entity (EE) certificate (contained within the ROA), and every
      IP address prefix in the ROA payload is contained within the set
      of IP addresses specified by the EE certificate's IP address
      delegation extension.

   *  The EE certificate's IP address delegation extension MUST NOT
      contain "inherit" elements as described in [RFC3779].

   *  The Autonomous System identifier delegation extension described in
      [RFC3779] is not used in ROAs and MUST NOT be present in the EE
      certificate.

   *  The ROA content fully conforms with all requirements specified in
      Sections 3 and 4.

   If any of the above checks fail, the ROA in its entirety MUST be
   considered invalid and an error SHOULD be logged.

6.  Security Considerations

   There is no assumption of confidentiality for the data in a ROA; it
   is anticipated that ROAs will be stored in repositories that are
   accessible to all ISPs, and perhaps to all Internet users.  There is
   no explicit authentication associated with a ROA, since the PKI used
   for ROA validation provides authorization but not authentication.
   Although the ROA is a signed, application-layer object, there is no
   intent to convey non-repudiation via a ROA.

   The purpose of a ROA is to convey authorization for an AS to
   originate a route to the prefix or prefixes in the ROA.  Thus, the
   integrity of a ROA MUST be established.  This ROA specification makes
   use of the RPKI signed object format; thus, all security
   considerations discussed in [RFC6488] also apply to ROAs.
   Additionally, the signed object profile uses the CMS signed message
   format for integrity; thus, ROAs inherit all security considerations
   associated with that data structure.

   The right of the ROA signer to authorize the target AS to originate
   routes to the prefix or prefixes is established through the use of
   the address space and AS number PKI as described in [RFC6480].
   Specifically, one MUST verify the signature on the ROA using an X.509
   certificate issued under this PKI and check that the prefix or
   prefixes in the ROA are contained within those in the certificate's
   IP address delegation extension.

7.  IANA Considerations

7.1.  SMI Security for S/MIME CMS Content Type (1.2.840.113549.1.9.16.1)

   IANA has updated the id-ct-routeOriginAuthz entry in the "SMI
   Security for S/MIME CMS Content Type (1.2.840.113549.1.9.16.1)"
   registry as follows:

             +=========+========================+============+
             | Decimal | Description            | References |
             +=========+========================+============+
             | 24      | id-ct-routeOriginAuthz | RFC 9582   |
             +---------+------------------------+------------+

                                  Table 1

7.2.  RPKI Signed Objects Registry

   IANA has updated the Route Origination Authorization entry in the
   "RPKI Signed Objects" registry created by [RFC6488] as follows:

      +===================+============================+===========+
      | Name              | OID                        | Reference |
      +===================+============================+===========+
      | Route Origination | 1.2.840.113549.1.9.16.1.24 | RFC 9582  |
      | Authorization     |                            |           |
      +-------------------+----------------------------+-----------+

                                 Table 2

7.3.  File Extension

   IANA has updated the entry for the ROA file extension in the "RPKI
   Repository Name Schemes" registry created by [RFC6481] as follows:

   +====================+=================================+===========+
   | Filename Extension | RPKI Object                     | Reference |
   +====================+=================================+===========+
   | .roa               | Route Origination Authorization | RFC 9582  |
   +--------------------+---------------------------------+-----------+

                                 Table 3

7.4.  SMI Security for S/MIME Module Identifier
      (1.2.840.113549.1.9.16.0)

   IANA has allocated the following entry in the "SMI Security for
   S/MIME Module Identifier (1.2.840.113549.1.9.16.0)" registry:

              +=========+=====================+============+
              | Decimal | Description         | References |
              +=========+=====================+============+
              | 75      | id-mod-rpkiROA-2023 | RFC 9582   |
              +---------+---------------------+------------+

                                 Table 4

7.5.  Media Type

   IANA has updated the media type application/rpki-roa in the "Media
   Types" registry as follows:

   Type name:  application

   Subtype name:  rpki-roa

   Required parameters:  N/A

   Optional parameters:  N/A

   Encoding considerations:  binary

   Security considerations:  Carries an RPKI ROA (RFC 9582).  This media
      type contains no active content.  See Section 6 of RFC 9582 for
      further information.

   Interoperability considerations:  None

   Published specification:  RFC 9582

   Applications that use this media type:  RPKI operators

   Additional information:

      Content:  This media type is a signed object, as defined in
         [RFC6488], which contains a payload of a list of prefixes and
         an AS identifier as defined in RFC 9582.
      Magic number(s):  None
      File extension(s):  .roa
      Macintosh file type code(s):  None

   Person & email address to contact for further information:
      Job Snijders <job@fastly.com>

   Intended usage:  COMMON

   Restrictions on usage:  None

   Change controller:  IETF

8.  References

8.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3779]  Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
              Addresses and AS Identifiers", RFC 3779,
              DOI 10.17487/RFC3779, June 2004,
              <https://www.rfc-editor.org/info/rfc3779>.

   [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing
              Architecture", RFC 4291, DOI 10.17487/RFC4291, February
              2006, <https://www.rfc-editor.org/info/rfc4291>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [RFC6268]  Schaad, J. and S. Turner, "Additional New ASN.1 Modules
              for the Cryptographic Message Syntax (CMS) and the Public
              Key Infrastructure Using X.509 (PKIX)", RFC 6268,
              DOI 10.17487/RFC6268, July 2011,
              <https://www.rfc-editor.org/info/rfc6268>.

   [RFC6481]  Huston, G., Loomans, R., and G. Michaelson, "A Profile for
              Resource Certificate Repository Structure", RFC 6481,
              DOI 10.17487/RFC6481, February 2012,
              <https://www.rfc-editor.org/info/rfc6481>.

   [RFC6482]  Lepinski, M., Kent, S., and D. Kong, "A Profile for Route
              Origin Authorizations (ROAs)", RFC 6482,
              DOI 10.17487/RFC6482, February 2012,
              <https://www.rfc-editor.org/info/rfc6482>.

   [RFC6487]  Huston, G., Michaelson, G., and R. Loomans, "A Profile for
              X.509 PKIX Resource Certificates", RFC 6487,
              DOI 10.17487/RFC6487, February 2012,
              <https://www.rfc-editor.org/info/rfc6487>.

   [RFC6488]  Lepinski, M., Chi, A., and S. Kent, "Signed Object
              Template for the Resource Public Key Infrastructure
              (RPKI)", RFC 6488, DOI 10.17487/RFC6488, February 2012,
              <https://www.rfc-editor.org/info/rfc6488>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [X.690]    ITU-T, "Information Technology - ASN.1 encoding rules:
              Specification of Basic Encoding Rules (BER), Canonical
              Encoding Rules (CER) and Distinguished Encoding Rules
              (DER)", ITU-T Recommendation X.690, February 2021.

8.2.  Informative References

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/info/rfc4648>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.

   [RFC6480]  Lepinski, M. and S. Kent, "An Infrastructure to Support
              Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,
              February 2012, <https://www.rfc-editor.org/info/rfc6480>.

   [RFC9319]  Gilad, Y., Goldberg, S., Sriram, K., Snijders, J., and B.
              Maddison, "The Use of maxLength in the Resource Public Key
              Infrastructure (RPKI)", BCP 185, RFC 9319,
              DOI 10.17487/RFC9319, October 2022,
              <https://www.rfc-editor.org/info/rfc9319>.

   [roasort-c]
              Snijders, J., "ROA sorter in C", commit 68969ea, July
              2023, <https://github.com/job/roasort>.

   [roasort-rs]
              Maddison, B., "ROA sorter in Rust", commit 023e756, August
              2023, <https://github.com/benmaddison/roasort>.

Appendix A.  Example ROA eContent Payload

   An example of a DER-encoded ROA eContent is provided below, with
   annotation following the "#" character.

   $ echo 16i 301802030100003011300F040200023009300703050020010DB8 P \
     | dc | openssl asn1parse -inform DER -i -dump
    0:d=0  hl=2 l=  24 cons: SEQUENCE           # RouteOriginAttestation
    2:d=1  hl=2 l=   3 prim:  INTEGER  :010000  #  asID 65536
    7:d=1  hl=2 l=  17 cons:  SEQUENCE          #  ipAddrBlocks
    9:d=2  hl=2 l=  15 cons:   SEQUENCE         #   ROAIPAddressFamily
   11:d=3  hl=2 l=   2 prim:    OCTET STRING    #    addressFamily
      0000 - 00 02                              #     IPv6
   15:d=3  hl=2 l=   9 cons:    SEQUENCE        #    addresses
   17:d=4  hl=2 l=   7 cons:     SEQUENCE       #     ROAIPAddress
   19:d=5  hl=2 l=   5 prim:      BIT STRING    #      2001:db8::/32
       0000 - 00 20 01 0d b8

   Below is a complete RPKI ROA signed object, Base64 encoded per
   [RFC4648].

   MIIGgAYJKoZIhvcNAQcCoIIGcTCCBm0CAQMxDTALBglghkgBZQMEAgEwKwYLKoZI
   hvcNAQkQARigHAQaMBgCAwEAADARMA8EAgACMAkwBwMFACABDbigggR8MIIEeDCC
   A2CgAwIBAgIBAzANBgkqhkiG9w0BAQsFADAvMS0wKwYDVQQDEyQ4NjUyNWNkNS00
   NGQ3LTRkZjktODA3OS00YTlkY2RmMjY5NDQwHhcNMjQwNTAxMDAzNDEzWhcNMjUw
   NTAxMDAzNDEzWjAvMS0wKwYDVQQDEyRlYjg3NmJmMC1lYTlkLTRiMjItYTExZS0y
   YmNhZDA4MzliMTMwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCsPSYD
   JnGOFRSHUZuVxibx2TQfWWoPIHNKgQAwYn1Kz88HaGgVf63G1mJd/cxBNMj5AfNQ
   m2zKSAb83UAp97DUXf+lvoKj4F+lxCCjFaBpBeehc7X0XPDpbcbqo1YrzIzxxqou
   GijEwZ4k+BaM2avEFYMBszqWA+ZdneBSuZ3YbHPKp2royn4pJ9a1I5fYdqFQi0eo
   VZbAc8pZmwRVOuedYYqQiy9CSRGsbiGlB0fKt2m/zSsuvl4Zit7+NyGL3wAZecjZ
   XEInsTtQsjQuy5PeJjLDyfWi/ZFi0qPsNlK0M2lMsi5B7QKaagA1RbRVHZyrkWoe
   20l5rfk1bIGMv/plAgMBAAGjggGdMIIBmTAOBgNVHQ8BAf8EBAMCB4AwHQYDVR0O
   BBYEFN4UWxk/syCyWnRDVSmMi/fCUj0iMB8GA1UdIwQYMBaAFNZyCOpHDp1t1mVA
   IvVTrcE4mrQ0MBgGA1UdIAEB/wQOMAwwCgYIKwYBBQUHDgIwWgYIKwYBBQUHAQEE
   TjBMMEoGCCsGAQUFBzAChj5yc3luYzovL3Jwa2kuZXhhbXBsZS5uZXQvcmVwby8x
   bklJNmtjT25XM1daVUFpOVZPdHdUaWF0RFNnLmNlcjBRBgNVHR8ESjBIMEagRKBC
   hkByc3luYzovL3Jwa2kuZXhhbXBsZS5uZXQvcmVwby9BLzFuSUk2a2NPblczV1pV
   QWk5Vk90d1RpYXREU2cuY3JsMFwGCCsGAQUFBwELBFAwTjBMBggrBgEFBQcwC4ZA
   cnN5bmM6Ly9ycGtpLmV4YW1wbGUubmV0L3JlcG8vQS8zaFJiR1QteklMSmFkRU5W
   S1l5TDk4SlNQU0tnLnJvYTAgBggrBgEFBQcBBwEB/wQRMA8wDQQCAAIwBwMFACAB
   DbgwDQYJKoZIhvcNAQELBQADggEBAKFoMax1Gdxb9mvSfKE2Jo+DudqCGjWF3mGv
   rkhag8CQYi2CBJZLrkpCRha8doBW4PbrL36waWG55A/TdLKvWzAf66/v3iL5QcXo
   Krb0+fp1pu/YVK4xFxwYJhbX4OnL4Gqh9+t4fFXhEDj2QemlgjWZyxvgx2Sra/iK
   fOt6gxUhie3oIT+FiYjqF//WIUBP/HjTf+E4IRGN8tCr3NDhMZG6c0njq2keW7w4
   wnw1+GqSyDhqu0Rsr0m3XUbivkc+h0ZZBBS9SxPM+GfgdzEDV51VcK1SeMa3G3Ca
   j0cJA99eTM+j52tkNVupftv1Y+4Wt0XGLKmRNKw26XDaphzw3B8xggGqMIIBpgIB
   A4AU3hRbGT+zILJadENVKYyL98JSPSIwCwYJYIZIAWUDBAIBoGswGgYJKoZIhvcN
   AQkDMQ0GCyqGSIb3DQEJEAEYMBwGCSqGSIb3DQEJBTEPFw0yNDA1MDEwMDM0MTNa
   MC8GCSqGSIb3DQEJBDEiBCBlz4HExs5A69pxkJqTCbUvc2iTS7C4eDd3aJD4hYJS
   wjANBgkqhkiG9w0BAQEFAASCAQBa2wmuDHbcvfnMRIaOJ6m30zpCZtJVBLDELoA0
   2kLb18TfFbxQhUi/jZ9g0hNYksV0n4vOJnCQ3qP6IIfm0ZsKzRnyzZf3f2xegw2p
   Wzi9Z8QYlc//eY3+XA3bQ37h+s0r7OZkQH7+KmIwDOCYaLh/YB37wp/7giC7bpvi
   c2Fv2illQmctrK7tYDHsNGq+svULTjemUaklqfcRAAJnQTRzTz8So9wKY9SR2VVZ
   68DDItTBUx8jPYeNQtvxxoVA6HuW9wyurlYQ9m/cF8CzlizVmsHgxzjO9ifmYJj9
   YZWMLtjF7Xw1fQZLYMrD5DCZzUw3nv4GyyHxckm2kLF38mze

   The object in this appendix has the following properties:

   Object size: 1668 octets
   Object SHA256 message digest:
        3a39e0b652e79ddf6efdd178ad5e3b29e0121b1e593b89f1e0ac18f3ba60d5e7

   CMS signing time: Wed 01 May 2024 00:34:13 +0000

   X.509 end-entity certificate
   Subject key id: DE145B193FB320B25A744355298C8BF7C2523D22
   Authority key id: D67208EA470E9D6DD6654022F553ADC1389AB434
   Issuer: CN=86525cd5-44d7-4df9-8079-4a9dcdf26944
   Serial: 3
   Not before: Wed 01 May 2024 00:34:13 +0000
   Not after: Thu 01 May 2025 00:34:13 +0000
   IP address delegation: 2001:db8::/32

   ROA eContent
   asID: 65536
   addresses: 2001:db8::/32

Acknowledgements

   The authors wish to thank Theo Buehler, Ties de Kock, Martin
   Hoffmann, Charles Gardiner, Russ Housley, Jeffrey Haas, Bob Beck, and
   Tom Harrison for their help and contributions.  Additionally, the
   authors thank Jim Fenton, Vijay Gurbani, Haoyu Song, Rob Austein,
   Roque Gagliano, Danny McPherson, Sam Weiler, Jasdip Singh, and Murray
   S. Kucherawy for their careful reviews and helpful comments.

Authors' Addresses

   Job Snijders
   Fastly
   Amsterdam
   The Netherlands
   Email: job@fastly.com


   Ben Maddison
   Workonline
   Cape Town
   South Africa
   Email: benm@workonline.africa


   Matthew Lepinski
   Carleton College
   Email: mlepinski@carleton.edu


   Derrick Kong
   Raytheon
   Email: derrick.kong@raytheon.com


   Stephen Kent
   Independent
   Email: kent@alum.mit.edu