1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
|
Internet Engineering Task Force (IETF) E. Omara
Request for Comments: 9605 Apple
Category: Standards Track J. Uberti
ISSN: 2070-1721 Fixie.ai
S. G. Murillo
CoSMo Software
R. Barnes, Ed.
Cisco
Y. Fablet
Apple
August 2024
Secure Frame (SFrame): Lightweight Authenticated Encryption for
Real-Time Media
Abstract
This document describes the Secure Frame (SFrame) end-to-end
encryption and authentication mechanism for media frames in a
multiparty conference call, in which central media servers (Selective
Forwarding Units or SFUs) can access the media metadata needed to
make forwarding decisions without having access to the actual media.
This mechanism differs from the Secure Real-Time Protocol (SRTP) in
that it is independent of RTP (thus compatible with non-RTP media
transport) and can be applied to whole media frames in order to be
more bandwidth efficient.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9605.
Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
2. Terminology
3. Goals
4. SFrame
4.1. Application Context
4.2. SFrame Ciphertext
4.3. SFrame Header
4.4. Encryption Schema
4.4.1. Key Selection
4.4.2. Key Derivation
4.4.3. Encryption
4.4.4. Decryption
4.5. Cipher Suites
4.5.1. AES-CTR with SHA2
5. Key Management
5.1. Sender Keys
5.2. MLS
6. Media Considerations
6.1. Selective Forwarding Units
6.1.1. RTP Stream Reuse
6.1.2. Simulcast
6.1.3. Scalable Video Coding (SVC)
6.2. Video Key Frames
6.3. Partial Decoding
7. Security Considerations
7.1. No Header Confidentiality
7.2. No Per-Sender Authentication
7.3. Key Management
7.4. Replay
7.5. Risks Due to Short Tags
8. IANA Considerations
8.1. SFrame Cipher Suites
9. Application Responsibilities
9.1. Header Value Uniqueness
9.2. Key Management Framework
9.3. Anti-Replay
9.4. Metadata
10. References
10.1. Normative References
10.2. Informative References
Appendix A. Example API
Appendix B. Overhead Analysis
B.1. Assumptions
B.2. Audio
B.3. Video
B.4. Conferences
B.5. SFrame over RTP
Appendix C. Test Vectors
C.1. Header Encoding/Decoding
C.2. AEAD Encryption/Decryption Using AES-CTR and HMAC
C.3. SFrame Encryption/Decryption
Acknowledgements
Contributors
Authors' Addresses
1. Introduction
Modern multiparty video call systems use Selective Forwarding Unit
(SFU) servers to efficiently route media streams to call endpoints
based on factors such as available bandwidth, desired video size,
codec support, and other factors. An SFU typically does not need
access to the media content of the conference, which allows the media
to be encrypted "end to end" so that it cannot be decrypted by the
SFU. In order for the SFU to work properly, though, it usually needs
to be able to access RTP metadata and RTCP feedback messages, which
is not possible if all RTP/RTCP traffic is end-to-end encrypted.
As such, two layers of encryption and authentication are required:
1. Hop-by-hop (HBH) encryption of media, metadata, and feedback
messages between the endpoints and SFU
2. End-to-end (E2E) encryption (E2EE) of media between the endpoints
The Secure Real-Time Protocol (SRTP) is already widely used for HBH
encryption [RFC3711]. The SRTP "double encryption" scheme defines a
way to do E2E encryption in SRTP [RFC8723]. Unfortunately, this
scheme has poor efficiency and high complexity, and its entanglement
with RTP makes it unworkable in several realistic SFU scenarios.
This document proposes a new E2EE protection scheme known as SFrame,
specifically designed to work in group conference calls with SFUs.
SFrame is a general encryption framing that can be used to protect
media payloads, agnostic of transport.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
MAC: Message Authentication Code
E2EE: End-to-End Encryption
HBH: Hop-by-Hop
We use "Selective Forwarding Unit (SFU)" and "media stream" in a less
formal sense than in [RFC7656]. An SFU is a selective switching
function for media payloads, and a media stream is a sequence of
media payloads, regardless of whether those media payloads are
transported over RTP or some other protocol.
3. Goals
SFrame is designed to be a suitable E2EE protection scheme for
conference call media in a broad range of scenarios, as outlined by
the following goals:
1. Provide a secure E2EE mechanism for audio and video in conference
calls that can be used with arbitrary SFU servers.
2. Decouple media encryption from key management to allow SFrame to
be used with an arbitrary key management system.
3. Minimize packet expansion to allow successful conferencing in as
many network conditions as possible.
4. Decouple the media encryption framework from the underlying
transport, allowing use in non-RTP scenarios, e.g., WebTransport
[WEBTRANSPORT].
5. When used with RTP and its associated error-resilience
mechanisms, i.e., RTX and Forward Error Correction (FEC), require
no special handling for RTX and FEC packets.
6. Minimize the changes needed in SFU servers.
7. Minimize the changes needed in endpoints.
8. Work with the most popular audio and video codecs used in
conferencing scenarios.
4. SFrame
This document defines an encryption mechanism that provides effective
E2EE, is simple to implement, has no dependencies on RTP, and
minimizes encryption bandwidth overhead. This section describes how
the mechanism works and includes details of how applications utilize
SFrame for media protection as well as the actual mechanics of E2EE
for protecting media.
4.1. Application Context
SFrame is a general encryption framing, intended to be used as an
E2EE layer over an underlying HBH-encrypted transport such as SRTP or
QUIC [RFC3711][MOQ-TRANSPORT].
The scale at which SFrame encryption is applied to media determines
the overall amount of overhead that SFrame adds to the media stream
as well as the engineering complexity involved in integrating SFrame
into a particular environment. Two patterns are common: using SFrame
to encrypt either whole media frames (per frame) or individual
transport-level media payloads (per packet).
For example, Figure 1 shows a typical media sender stack that takes
media from some source, encodes it into frames, divides those frames
into media packets, and then sends those payloads in SRTP packets.
The receiver stack performs the reverse operations, reassembling
frames from SRTP packets and decoding. Arrows indicate two different
ways that SFrame protection could be integrated into this media
stack: to encrypt whole frames or individual media packets.
Applying SFrame per frame in this system offers higher efficiency but
may require a more complex integration in environments where
depacketization relies on the content of media packets. Applying
SFrame per packet avoids this complexity at the cost of higher
bandwidth consumption. Some quantitative discussion of these trade-
offs is provided in Appendix B.
As noted above, however, SFrame is a general media encapsulation and
can be applied in other scenarios. The important thing is that the
sender and receivers of an SFrame-encrypted object agree on that
object's semantics. SFrame does not provide this agreement; it must
be arranged by the application.
+------------------------------------------------------+
| |
| +--------+ +-------------+ +-----------+ |
.-. | | | | | | HBH | |
| | | | Encode |----->| Packetize |----->| Protect |----------+
'+' | | | ^ | | ^ | | | |
/|\ | +--------+ | +-------------+ | +-----------+ | |
/ + \ | | | ^ | |
/ \ | SFrame SFrame | | |
/ \ | Protect Protect | | |
Alice | (per frame) (per packet) | | |
| ^ ^ | | |
| | | | | |
+---------------|-------------------|---------|--------+ |
| | | v
| | | +------+-+
| E2E Key | HBH Key | Media |
+---- Management ---+ Management | Server |
| | | +------+-+
| | | |
+---------------|-------------------|---------|--------+ |
| | | | | |
| V V | | |
.-. | SFrame SFrame | | |
| | | Unprotect Unprotect | | |
'+' | (per frame) (per packet) | | |
/|\ | | | V | |
/ + \ | +--------+ | +-------------+ | +-----------+ | |
/ \ | | | V | | V | HBH | | |
/ \ | | Decode |<-----| Depacketize |<-----| Unprotect |<---------+
Bob | | | | | | | |
| +--------+ +-------------+ +-----------+ |
| |
+------------------------------------------------------+
Figure 1: Two Options for Integrating SFrame in a Typical Media Stack
Like SRTP, SFrame does not define how the keys used for SFrame are
exchanged by the parties in the conference. Keys for SFrame might be
distributed over an existing E2E-secure channel (see Section 5.1) or
derived from an E2E-secure shared secret (see Section 5.2). The key
management system MUST ensure that each key used for encrypting media
is used by exactly one media sender in order to avoid reuse of
nonces.
4.2. SFrame Ciphertext
An SFrame ciphertext comprises an SFrame header followed by the
output of an Authenticated Encryption with Associated Data (AEAD)
encryption of the plaintext [RFC5116], with the header provided as
additional authenticated data (AAD).
The SFrame header is a variable-length structure described in detail
in Section 4.3. The structure of the encrypted data and
authentication tag are determined by the AEAD algorithm in use.
+-+----+-+----+--------------------+--------------------+<-+
|K|KLEN|C|CLEN| Key ID | Counter | |
+->+-+----+-+----+--------------------+--------------------+ |
| | | |
| | | |
| | | |
| | | |
| | Encrypted Data | |
| | | |
| | | |
| | | |
| | | |
+->+-------------------------------------------------------+<-+
| | Authentication Tag | |
| +-------------------------------------------------------+ |
| |
| |
+--- Encrypted Portion Authenticated Portion ---+
Figure 2: Structure of an SFrame Ciphertext
When SFrame is applied per packet, the payload of each packet will be
an SFrame ciphertext. When SFrame is applied per frame, the SFrame
ciphertext representing an encrypted frame will span several packets,
with the header appearing in the first packet and the authentication
tag in the last packet. It is the responsibility of the application
to reassemble an encrypted frame from individual packets, accounting
for packet loss and reordering as necessary.
4.3. SFrame Header
The SFrame header specifies two values from which encryption
parameters are derived:
* A Key ID (KID) that determines which encryption key should be used
* A Counter (CTR) that is used to construct the nonce for the
encryption
Applications MUST ensure that each (KID, CTR) combination is used for
exactly one SFrame encryption operation. A typical approach to
achieve this guarantee is outlined in Section 9.1.
Config Byte
|
.-----' '-----.
| |
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+------------+------------+
|X| K |Y| C | KID... | CTR... |
+-+-+-+-+-+-+-+-+------------+------------+
Figure 3: SFrame Header
The SFrame header has the overall structure shown in Figure 3. The
first byte is a "config byte", with the following fields:
Extended KID Flag (X, 1 bit): Indicates if the K field contains the
KID or the KID length.
KID or KID Length (K, 3 bits): If the X flag is set to 0, this field
contains the KID. If the X flag is set to 1, then it contains the
length of the KID, minus one.
Extended CTR Flag (Y, 1 bit): Indicates if the C field contains the
CTR or the CTR length.
CTR or CTR Length (C, 3 bits): This field contains the CTR if the Y
flag is set to 0, or the CTR length, minus one, if set to 1.
The KID and CTR fields are encoded as compact unsigned integers in
network (big-endian) byte order. If the value of one of these fields
is in the range 0-7, then the value is carried in the corresponding
bits of the config byte (K or C) and the corresponding flag (X or Y)
is set to zero. Otherwise, the value MUST be encoded with the
minimum number of bytes required and appended after the config byte,
with the KID first and CTR second. The header field (K or C) is set
to the number of bytes in the encoded value, minus one. The value
000 represents a length of 1, 001 a length of 2, etc. This allows a
3-bit length field to represent the value lengths 1-8.
The SFrame header can thus take one of the four forms shown in
Figure 4, depending on which of the X and Y flags are set.
KID < 8, CTR < 8:
+-+-----+-+-----+
|0| KID |0| CTR |
+-+-----+-+-----+
KID < 8, CTR >= 8:
+-+-----+-+-----+------------------------+
|0| KID |1|CLEN | CTR... (length=CLEN) |
+-+-----+-+-----+------------------------+
KID >= 8, CTR < 8:
+-+-----+-+-----+------------------------+
|1|KLEN |0| CTR | KID... (length=KLEN) |
+-+-----+-+-----+------------------------+
KID >= 8, CTR >= 8:
+-+-----+-+-----+------------------------+------------------------+
|1|KLEN |1|CLEN | KID... (length=KLEN) | CTR... (length=CLEN) |
+-+-----+-+-----+------------------------+------------------------+
Figure 4: Forms of Encoded SFrame Header
4.4. Encryption Schema
SFrame encryption uses an AEAD encryption algorithm and hash function
defined by the cipher suite in use (see Section 4.5). We will refer
to the following aspects of the AEAD and the hash algorithm below:
* AEAD.Encrypt and AEAD.Decrypt - The encryption and decryption
functions for the AEAD. We follow the convention of RFC 5116
[RFC5116] and consider the authentication tag part of the
ciphertext produced by AEAD.Encrypt (as opposed to a separate
field as in SRTP [RFC3711]).
* AEAD.Nk - The size in bytes of a key for the encryption algorithm
* AEAD.Nn - The size in bytes of a nonce for the encryption
algorithm
* AEAD.Nt - The overhead in bytes of the encryption algorithm
(typically the size of a "tag" that is added to the plaintext)
* AEAD.Nka - For cipher suites using the compound AEAD described in
Section 4.5.1, the size in bytes of a key for the underlying
encryption algorithm
* Hash.Nh - The size in bytes of the output of the hash function
4.4.1. Key Selection
Each SFrame encryption or decryption operation is premised on a
single secret base_key, which is labeled with an integer KID value
signaled in the SFrame header.
The sender and receivers need to agree on which base_key should be
used for a given KID. Moreover, senders and receivers need to agree
on whether a base_key will be used for encryption or decryption only.
The process for provisioning base_key values and their KID values is
beyond the scope of this specification, but its security properties
will bound the assurances that SFrame provides. For example, if
SFrame is used to provide E2E security against intermediary media
nodes, then SFrame keys need to be negotiated in a way that does not
make them accessible to these intermediaries.
For each known KID value, the client stores the corresponding
symmetric key base_key. For keys that can be used for encryption,
the client also stores the next CTR value to be used when encrypting
(initially 0).
When encrypting a plaintext, the application specifies which KID is
to be used, and the CTR value is incremented after successful
encryption. When decrypting, the base_key for decryption is selected
from the available keys using the KID value in the SFrame header.
A given base_key MUST NOT be used for encryption by multiple senders.
Such reuse would result in multiple encrypted frames being generated
with the same (key, nonce) pair, which harms the protections provided
by many AEAD algorithms. Implementations MUST mark each base_key as
usable for encryption or decryption, never both.
Note that the set of available keys might change over the lifetime of
a real-time session. In such cases, the client will need to manage
key usage to avoid media loss due to a key being used to encrypt
before all receivers are able to use it to decrypt. For example, an
application may make decryption-only keys available immediately, but
delay the use of keys for encryption until (a) all receivers have
acknowledged receipt of the new key, or (b) a timeout expires.
4.4.2. Key Derivation
SFrame encryption and decryption use a key and salt derived from the
base_key associated with a KID. Given a base_key value, the key and
salt are derived using HMAC-based Key Derivation Function (HKDF)
[RFC5869] as follows:
def derive_key_salt(KID, base_key):
sframe_secret = HKDF-Extract("", base_key)
sframe_key_label = "SFrame 1.0 Secret key " + KID + cipher_suite
sframe_key =
HKDF-Expand(sframe_secret, sframe_key_label, AEAD.Nk)
sframe_salt_label = "SFrame 1.0 Secret salt " + KID + cipher_suite
sframe_salt =
HKDF-Expand(sframe_secret, sframe_salt_label, AEAD.Nn)
return sframe_key, sframe_salt
In the derivation of sframe_secret:
* The + operator represents concatenation of byte strings.
* The KID value is encoded as an 8-byte big-endian integer, not the
compressed form used in the SFrame header.
* The cipher_suite value is a 2-byte big-endian integer representing
the cipher suite in use (see Section 8.1).
The hash function used for HKDF is determined by the cipher suite in
use.
4.4.3. Encryption
SFrame encryption uses the AEAD encryption algorithm for the cipher
suite in use. The key for the encryption is the sframe_key. The
nonce is formed by first XORing the sframe_salt with the current CTR
value, and then encoding the result as a big-endian integer of length
AEAD.Nn.
The encryptor forms an SFrame header using the CTR and KID values
provided. The encoded header is provided as AAD to the AEAD
encryption operation, together with application-provided metadata
about the encrypted media (see Section 9.4).
def encrypt(CTR, KID, metadata, plaintext):
sframe_key, sframe_salt = key_store[KID]
# encode_big_endian(x, n) produces an n-byte string encoding the
# integer x in big-endian byte order.
ctr = encode_big_endian(CTR, AEAD.Nn)
nonce = xor(sframe_salt, CTR)
# encode_sframe_header produces a byte string encoding the
# provided KID and CTR values into an SFrame header.
header = encode_sframe_header(CTR, KID)
aad = header + metadata
ciphertext = AEAD.Encrypt(sframe_key, nonce, aad, plaintext)
return header + ciphertext
For example, the metadata input to encryption allows for frame
metadata to be authenticated when SFrame is applied per frame. After
encoding the frame and before packetizing it, the necessary media
metadata will be moved out of the encoded frame buffer to be sent in
some channel visible to the SFU (e.g., an RTP header extension).
+---------------+
| |
| |
| plaintext |
| |
| |
+-------+-------+
|
.- +-----+ |
| | +--+--> sframe_key ----->| Key
Header | | KID | | |
| | | +--> sframe_salt --+ |
+--+ +-----+ | |
| | | +---------------------+->| Nonce
| | | CTR | |
| | | | |
| '- +-----+ |
| |
| +----------------+ |
| | metadata | |
| +-------+--------+ |
| | |
+------------------+----------------->| AAD
| |
| AEAD.Encrypt
| |
| SFrame Ciphertext |
| +---------------+ |
+-------------->| SFrame Header | |
+---------------+ |
| | |
| |<----+
| ciphertext |
| |
| |
+---------------+
Figure 5: Encrypting an SFrame Ciphertext
4.4.4. Decryption
Before decrypting, a receiver needs to assemble a full SFrame
ciphertext. When an SFrame ciphertext is fragmented into multiple
parts for transport (e.g., a whole encrypted frame sent in multiple
SRTP packets), the receiving client collects all the fragments of the
ciphertext, using appropriate sequencing and start/end markers in the
transport. Once all of the required fragments are available, the
client reassembles them into the SFrame ciphertext and passes the
ciphertext to SFrame for decryption.
The KID field in the SFrame header is used to find the right key and
salt for the encrypted frame, and the CTR field is used to construct
the nonce. The SFrame decryption procedure is as follows:
def decrypt(metadata, sframe_ciphertext):
KID, CTR, header, ciphertext = parse_ciphertext(sframe_ciphertext)
sframe_key, sframe_salt = key_store[KID]
ctr = encode_big_endian(CTR, AEAD.Nn)
nonce = xor(sframe_salt, ctr)
aad = header + metadata
return AEAD.Decrypt(sframe_key, nonce, aad, ciphertext)
If a ciphertext fails to decrypt because there is no key available
for the KID in the SFrame header, the client MAY buffer the
ciphertext and retry decryption once a key with that KID is received.
If a ciphertext fails to decrypt for any other reason, the client
MUST discard the ciphertext. Invalid ciphertexts SHOULD be discarded
in a way that is indistinguishable (to an external observer) from
having processed a valid ciphertext. In other words, the SFrame
decrypt operation should take the same amount of time regardless of
whether decryption succeeds or fails.
SFrame Ciphertext
+---------------+
+---------------| SFrame Header |
| +---------------+
| | |
| | |-----+
| | ciphertext | |
| | | |
| | | |
| +---------------+ |
| |
| .- +-----+ |
| | | +--+--> sframe_key ----->| Key
| | | KID | | |
| | | | +--> sframe_salt --+ |
+->+ +-----+ | |
| | | +---------------------+->| Nonce
| | | CTR | |
| | | | |
| '- +-----+ |
| |
| +----------------+ |
| | metadata | |
| +-------+--------+ |
| | |
+------------------+----------------->| AAD
|
AEAD.Decrypt
|
V
+---------------+
| |
| |
| plaintext |
| |
| |
+---------------+
Figure 6: Decrypting an SFrame Ciphertext
4.5. Cipher Suites
Each SFrame session uses a single cipher suite that specifies the
following primitives:
* A hash function used for key derivation
* An AEAD encryption algorithm [RFC5116] used for frame encryption,
optionally with a truncated authentication tag
This document defines the following cipher suites, with the constants
defined in Section 4.4:
+============================+====+=====+====+====+====+
| Name | Nh | Nka | Nk | Nn | Nt |
+============================+====+=====+====+====+====+
| AES_128_CTR_HMAC_SHA256_80 | 32 | 16 | 48 | 12 | 10 |
+----------------------------+----+-----+----+----+----+
| AES_128_CTR_HMAC_SHA256_64 | 32 | 16 | 48 | 12 | 8 |
+----------------------------+----+-----+----+----+----+
| AES_128_CTR_HMAC_SHA256_32 | 32 | 16 | 48 | 12 | 4 |
+----------------------------+----+-----+----+----+----+
| AES_128_GCM_SHA256_128 | 32 | n/a | 16 | 12 | 16 |
+----------------------------+----+-----+----+----+----+
| AES_256_GCM_SHA512_128 | 64 | n/a | 32 | 12 | 16 |
+----------------------------+----+-----+----+----+----+
Table 1: SFrame Cipher Suite Constants
Numeric identifiers for these cipher suites are defined in the IANA
registry created in Section 8.1.
In the suite names, the length of the authentication tag is indicated
by the last value: "_128" indicates a 128-bit tag, "_80" indicates an
80-bit tag, "_64" indicates a 64-bit tag, and "_32" indicates a
32-bit tag.
In a session that uses multiple media streams, different cipher
suites might be configured for different media streams. For example,
in order to conserve bandwidth, a session might use a cipher suite
with 80-bit tags for video frames and another cipher suite with
32-bit tags for audio frames.
4.5.1. AES-CTR with SHA2
In order to allow very short tag sizes, we define a synthetic AEAD
function using the authenticated counter mode of AES together with
HMAC for authentication. We use an encrypt-then-MAC approach, as in
SRTP [RFC3711].
Before encryption or decryption, encryption and authentication
subkeys are derived from the single AEAD key. The overall length of
the AEAD key is Nka + Nh, where Nka represents the key size for the
AES block cipher in use and Nh represents the output size of the hash
function (as in Section 4.4). The encryption subkey comprises the
first Nka bytes and the authentication subkey comprises the remaining
Nh bytes.
def derive_subkeys(sframe_key):
# The encryption key comprises the first Nka bytes
enc_key = sframe_key[..Nka]
# The authentication key comprises Nh remaining bytes
auth_key = sframe_key[Nka..]
return enc_key, auth_key
The AEAD encryption and decryption functions are then composed of
individual calls to the CTR encrypt function and HMAC. The resulting
MAC value is truncated to a number of bytes Nt fixed by the cipher
suite.
def truncate(tag, n):
# Take the first `n` bytes of `tag`
return tag[..n]
def compute_tag(auth_key, nonce, aad, ct):
aad_len = encode_big_endian(len(aad), 8)
ct_len = encode_big_endian(len(ct), 8)
tag_len = encode_big_endian(Nt, 8)
auth_data = aad_len + ct_len + tag_len + nonce + aad + ct
tag = HMAC(auth_key, auth_data)
return truncate(tag, Nt)
def AEAD.Encrypt(key, nonce, aad, pt):
enc_key, auth_key = derive_subkeys(key)
initial_counter = nonce + 0x00000000 # append four zero bytes
ct = AES-CTR.Encrypt(enc_key, initial_counter, pt)
tag = compute_tag(auth_key, nonce, aad, ct)
return ct + tag
def AEAD.Decrypt(key, nonce, aad, ct):
inner_ct, tag = split_ct(ct, tag_len)
enc_key, auth_key = derive_subkeys(key)
candidate_tag = compute_tag(auth_key, nonce, aad, inner_ct)
if !constant_time_equal(tag, candidate_tag):
raise Exception("Authentication Failure")
initial_counter = nonce + 0x00000000 # append four zero bytes
return AES-CTR.Decrypt(enc_key, initial_counter, inner_ct)
5. Key Management
SFrame must be integrated with an E2E key management framework to
exchange and rotate the keys used for SFrame encryption. The key
management framework provides the following functions:
* Provisioning KID / base_key mappings to participating clients
* Updating the above data as clients join or leave
It is the responsibility of the application to provide the key
management framework, as described in Section 9.2.
5.1. Sender Keys
If the participants in a call have a preexisting E2E-secure channel,
they can use it to distribute SFrame keys. Each client participating
in a call generates a fresh base_key value that it will use to
encrypt media. The client then uses the E2E-secure channel to send
their encryption key to the other participants.
In this scheme, it is assumed that receivers have a signal outside of
SFrame for which client has sent a given frame (e.g., an RTP
synchronization source (SSRC)). SFrame KID values are then used to
distinguish between versions of the sender's base_key.
KID values in this scheme have two parts: a "key generation" and a
"ratchet step". Both are unsigned integers that begin at zero. The
key generation increments each time the sender distributes a new key
to receivers. The ratchet step is incremented each time the sender
ratchets their key forward for forward secrecy:
base_key[i+1] = HKDF-Expand(
HKDF-Extract("", base_key[i]),
"SFrame 1.0 Ratchet", CipherSuite.Nh)
For compactness, we do not send the whole ratchet step. Instead, we
send only its low-order R bits, where R is a value set by the
application. Different senders may use different values of R, but
each receiver of a given sender needs to know what value of R is used
by the sender so that they can recognize when they need to ratchet
(vs. expecting a new key). R effectively defines a reordering
window, since no more than 2^R ratchet steps can be active at a given
time. The key generation is sent in the remaining 64 - R bits of the
KID.
KID = (key_generation << R) + (ratchet_step % (1 << R))
64-R bits R bits
<---------------> <------------>
+-----------------+--------------+
| Key Generation | Ratchet Step |
+-----------------+--------------+
Figure 7: Structure of a KID in the Sender Keys Scheme
The sender signals such a ratchet step update by sending with a KID
value in which the ratchet step has been incremented. A receiver who
receives from a sender with a new KID computes the new key as above.
The old key may be kept for some time to allow for out-of-order
delivery, but should be deleted promptly.
If a new participant joins in the middle of a session, they will need
to receive from each sender (a) the current sender key for that
sender and (b) the current KID value for the sender. Evicting a
participant requires each sender to send a fresh sender key to all
receivers.
It is the application's responsibility to decide when sender keys are
updated. A sender key may be updated by sending a new base_key
(updating the key generation) or by hashing the current base_key
(updating the ratchet step). Ratcheting the key forward is useful
when adding new receivers to an SFrame-based interaction, since it
ensures that the new receivers can't decrypt any media encrypted
before they were added. If a sender wishes to assure the opposite
property when removing a receiver (i.e., ensuring that the receiver
can't decrypt media after they are removed), then the sender will
need to distribute a new sender key.
5.2. MLS
The Messaging Layer Security (MLS) protocol provides group
authenticated key exchange [MLS-ARCH] [MLS-PROTO]. In principle, it
could be used to instantiate the sender key scheme above, but it can
also be used more efficiently directly.
MLS creates a linear sequence of keys, each of which is shared among
the members of a group at a given point in time. When a member joins
or leaves the group, a new key is produced that is known only to the
augmented or reduced group. Each step in the lifetime of the group
is known as an "epoch", and each member of the group is assigned an
"index" that is constant for the time they are in the group.
To generate keys and nonces for SFrame, we use the MLS exporter
function to generate a base_key value for each MLS epoch. Each
member of the group is assigned a set of KID values so that each
member has a unique sframe_key and sframe_salt that it uses to
encrypt with. Senders may choose any KID value within their assigned
set of KID values, e.g., to allow a single sender to send multiple,
uncoordinated outbound media streams.
base_key = MLS-Exporter("SFrame 1.0 Base Key", "", AEAD.Nk)
For compactness, we do not send the whole epoch number. Instead, we
send only its low-order E bits, where E is a value set by the
application. E effectively defines a reordering window, since no
more than 2^E epochs can be active at a given time. To handle
rollover of the epoch counter, receivers MUST remove an old epoch
when a new epoch with the same low-order E bits is introduced.
Let S be the number of bits required to encode a member index in the
group, i.e., the smallest value such that group_size <= (1 << S).
The sender index is encoded in the S bits above the epoch. The
remaining 64 - S - E bits of the KID value are a context value chosen
by the sender (context value 0 will produce the shortest encoded
KID).
KID = (context << (S + E)) + (sender_index << E) + (epoch % (1 << E))
64-S-E bits S bits E bits
<-----------> <------> <------>
+-------------+--------+-------+
| Context ID | Index | Epoch |
+-------------+--------+-------+
Figure 8: Structure of a KID for an MLS Sender
Once an SFrame stack has been provisioned with the
sframe_epoch_secret for an epoch, it can compute the required KID
values on demand (as well as the resulting SFrame keys/nonces derived
from the base_key and KID) as it needs to encrypt or decrypt for a
given member.
...
|
|
Epoch 14 +--+-- index=3 ---> KID = 0x3e
| |
| +-- index=7 ---> KID = 0x7e
| |
| +-- index=20 --> KID = 0x14e
|
|
Epoch 15 +--+-- index=3 ---> KID = 0x3f
| |
| +-- index=5 ---> KID = 0x5f
|
|
Epoch 16 +----- index=2 --+--> context = 2 --> KID = 0x820
| |
| +--> context = 3 --> KID = 0xc20
|
|
Epoch 17 +--+-- index=33 --> KID = 0x211
| |
| +-- index=51 --> KID = 0x331
|
|
...
Figure 9: An Example Sequence of KIDs for an MLS-based SFrame
Session (E=4; S=6, Allowing for 64 Group Members)
6. Media Considerations
6.1. Selective Forwarding Units
SFUs (e.g., those described in Section 3.7 of [RFC7667]) receive the
media streams from each participant and select which ones should be
forwarded to each of the other participants. There are several
approaches for stream selection, but in general, the SFU needs to
access metadata associated with each frame and modify the RTP
information of the incoming packets when they are transmitted to the
received participants.
This section describes how these normal SFU modes of operation
interact with the E2EE provided by SFrame.
6.1.1. RTP Stream Reuse
The SFU may choose to send only a certain number of streams based on
the voice activity of the participants. To avoid the overhead
involved in establishing new transport streams, the SFU may decide to
reuse previously existing streams or even pre-allocate a predefined
number of streams and choose in each moment in time which participant
media will be sent through it.
This means that the same transport-level stream (e.g., an RTP stream
defined by either SSRC or Media Identification (MID)) may carry media
from different streams of different participants. Because each
participant uses a different key to encrypt their media, the receiver
will be able to verify the sender of the media within the RTP stream
at any given point in time. Thus the receiver will correctly
associate the media with the sender indicated by the authenticated
SFrame KID value, irrespective of how the SFU transmits the media to
the client.
Note that in order to prevent impersonation by a malicious
participant (not the SFU), a mechanism based on digital signature
would be required. SFrame does not protect against such attacks.
6.1.2. Simulcast
When using simulcast, the same input image will produce N different
encoded frames (one per simulcast layer), which would be processed
independently by the frame encryptor and assigned an unique CTR value
for each.
6.1.3. Scalable Video Coding (SVC)
In both temporal and spatial scalability, the SFU may choose to drop
layers in order to match a certain bitrate or to forward specific
media sizes or frames per second. In order to support the SFU
selectively removing layers, the sender MUST encapsulate each layer
in a different SFrame ciphertext.
6.2. Video Key Frames
Forward security and post-compromise security require that the E2EE
keys (base keys) are updated any time a participant joins or leaves
the call.
The key exchange happens asynchronously and on a different path than
the SFU signaling and media. So it may happen that when a new
participant joins the call and the SFU side requests a key frame, the
sender generates the E2EE frame with a key that is not known by the
receiver, so it will be discarded. When the sender updates his
sending key with the new key, it will send it in a non-key frame, so
the receiver will be able to decrypt it, but not decode it.
The new receiver will then re-request a key frame, but due to sender
and SFU policies, that new key frame could take some time to be
generated.
If the sender sends a key frame after the new E2EE key is in use, the
time required for the new participant to display the video is
minimized.
Note that this issue does not arise for media streams that do not
have dependencies among frames, e.g., audio streams. In these
streams, each frame is independently decodable, so a frame never
depends on another frame that might be on the other side of a key
rotation.
6.3. Partial Decoding
Some codecs support partial decoding, where individual packets can be
decoded without waiting for the full frame to arrive. When SFrame is
applied per frame, partial decoding is not possible because the
decoder cannot access data until an entire frame has arrived and has
been decrypted.
7. Security Considerations
7.1. No Header Confidentiality
SFrame provides integrity protection to the SFrame header (the KID
and CTR values), but it does not provide confidentiality protection.
Parties that can observe the SFrame header may learn, for example,
which parties are sending SFrame payloads (from KID values) and at
what rates (from CTR values). In cases where SFrame is used for end-
to-end security on top of hop-by-hop protections (e.g., running over
SRTP as described in Appendix B.5), the hop-by-hop security
mechanisms provide confidentiality protection of the SFrame header
between hops.
7.2. No Per-Sender Authentication
SFrame does not provide per-sender authentication of media data. Any
sender in a session can send media that will be associated with any
other sender. This is because SFrame uses symmetric encryption to
protect media data, so that any receiver also has the keys required
to encrypt packets for the sender.
7.3. Key Management
The specifics of key management are beyond the scope of this
document. However, every client SHOULD change their keys when new
clients join or leave the call for forward secrecy and post-
compromise security.
7.4. Replay
The handling of replay is out of the scope of this document.
However, senders MUST reject requests to encrypt multiple times with
the same key and nonce since several AEAD algorithms fail badly in
such cases (see, e.g., Section 5.1.1 of [RFC5116]).
7.5. Risks Due to Short Tags
The SFrame cipher suites based on AES-CTR allow for the use of short
authentication tags, which bring a higher risk that an attacker will
be able to cause an SFrame receiver to accept an SFrame ciphertext of
the attacker's choosing.
Assuming that the authentication properties of the cipher suite are
robust, the only attack that an attacker can mount is an attempt to
find an acceptable (ciphertext, tag) combination through brute force.
Such a brute-force attack will have an expected success rate of the
following form:
attacker_success_rate = attempts_per_second / 2^(8*Nt)
For example, a gigabit Ethernet connection is able to transmit
roughly 2^20 packets per second. If an attacker saturated such a
link with guesses against a 32-bit authentication tag (Nt=4), then
the attacker would succeed on average roughly once every 2^12
seconds, or about once an hour.
In a typical SFrame usage in a real-time media application, there are
a few approaches to mitigating this risk:
* Receivers only accept SFrame ciphertexts over HBH-secure channels
(e.g., SRTP security associations or QUIC connections). If this
is the case, only an entity that is part of such a channel can
mount the above attack.
* The expected packet rate for a media stream is very predictable
(and typically far lower than the above example). On the one
hand, attacks at this rate will succeed even less often than the
high-rate attack described above. On the other hand, the
application may use an elevated packet arrival rate as a signal of
a brute-force attack. This latter approach is common in other
settings, e.g., mitigating brute-force attacks on passwords.
* Media applications typically do not provide feedback to media
senders as to which media packets failed to decrypt. When media-
quality feedback mechanisms are used, decryption failures will
typically appear as packet losses, but only at an aggregate level.
* Anti-replay mechanisms (see Section 7.4) prevent the attacker from
reusing valid ciphertexts (either observed or guessed by the
attacker). A receiver applying anti-replay controls will only
accept one valid plaintext per CTR value. Since the CTR value is
covered by SFrame authentication, an attacker has to do a fresh
search for a valid tag for every forged ciphertext, even if the
encrypted content is unchanged. In other words, when the above
brute-force attack succeeds, it only allows the attacker to send a
single SFrame ciphertext; the ciphertext cannot be reused because
either it will have the same CTR value and be discarded as a
replay, or else it will have a different CTR value and its tag
will no longer be valid.
Nonetheless, without these mitigations, an application that makes use
of short tags will be at heightened risk of forgery attacks. In many
cases, it is simpler to use full-size tags and tolerate slightly
higher bandwidth usage rather than to add the additional defenses
necessary to safely use short tags.
8. IANA Considerations
IANA has created a new registry called "SFrame Cipher Suites"
(Section 8.1) under the "SFrame" group registry heading.
8.1. SFrame Cipher Suites
The "SFrame Cipher Suites" registry lists identifiers for SFrame
cipher suites as defined in Section 4.5. The cipher suite field is
two bytes wide, so the valid cipher suites are in the range 0x0000 to
0xFFFF. Except as noted below, assignments are made via the
Specification Required policy [RFC8126].
The registration template is as follows:
* Value: The numeric value of the cipher suite
* Name: The name of the cipher suite
* Recommended: Whether support for this cipher suite is recommended
by the IETF. Valid values are "Y", "N", and "D" as described in
Section 17.1 of [MLS-PROTO]. The default value of the
"Recommended" column is "N". Setting the Recommended item to "Y"
or "D", or changing an item whose current value is "Y" or "D",
requires Standards Action [RFC8126].
* Reference: The document where this cipher suite is defined
* Change Controller: Who is authorized to update the row in the
registry
Initial contents:
+========+============================+===+===========+============+
| Value | Name | R | Reference | Change |
| | | | | Controller |
+========+============================+===+===========+============+
| 0x0000 | Reserved | - | RFC 9605 | IETF |
+--------+----------------------------+---+-----------+------------+
| 0x0001 | AES_128_CTR_HMAC_SHA256_80 | Y | RFC 9605 | IETF |
+--------+----------------------------+---+-----------+------------+
| 0x0002 | AES_128_CTR_HMAC_SHA256_64 | Y | RFC 9605 | IETF |
+--------+----------------------------+---+-----------+------------+
| 0x0003 | AES_128_CTR_HMAC_SHA256_32 | Y | RFC 9605 | IETF |
+--------+----------------------------+---+-----------+------------+
| 0x0004 | AES_128_GCM_SHA256_128 | Y | RFC 9605 | IETF |
+--------+----------------------------+---+-----------+------------+
| 0x0005 | AES_256_GCM_SHA512_128 | Y | RFC 9605 | IETF |
+--------+----------------------------+---+-----------+------------+
| 0xF000 | Reserved for Private Use | - | RFC 9605 | IETF |
| - | | | | |
| 0xFFFF | | | | |
+--------+----------------------------+---+-----------+------------+
Table 2: SFrame Cipher Suites
9. Application Responsibilities
To use SFrame, an application needs to define the inputs to the
SFrame encryption and decryption operations, and how SFrame
ciphertexts are delivered from sender to receiver (including any
fragmentation and reassembly). In this section, we lay out
additional requirements that an application must meet in order for
SFrame to operate securely.
In general, an application using SFrame is responsible for
configuring SFrame. The application must first define when SFrame is
applied at all. When SFrame is applied, the application must define
which cipher suite is to be used. If new versions of SFrame are
defined in the future, it will be the application's responsibility to
determine which version should be used.
This division of responsibilities is similar to the way other media
parameters (e.g., codecs) are typically handled in media
applications, in the sense that they are set up in some signaling
protocol and not described in the media. Applications might find it
useful to extend the protocols used for negotiating other media
parameters (e.g., Session Description Protocol (SDP) [RFC8866]) to
also negotiate parameters for SFrame.
9.1. Header Value Uniqueness
Applications MUST ensure that each (base_key, KID, CTR) combination
is used for at most one SFrame encryption operation. This ensures
that the (key, nonce) pairs used by the underlying AEAD algorithm are
never reused. Typically this is done by assigning each sender a KID
or set of KIDs, then having each sender use the CTR field as a
monotonic counter, incrementing for each plaintext that is encrypted.
In addition to its simplicity, this scheme minimizes overhead by
keeping CTR values as small as possible.
In applications where an SFrame context might be written to
persistent storage, this context needs to include the last-used CTR
value. When the context is used later, the application should use
the stored CTR value to determine the next CTR value to be used in an
encryption operation, and then write the next CTR value back to
storage before using the CTR value for encryption. Storing the CTR
value before usage (vs. after) helps ensure that a storage failure
will not cause reuse of the same (base_key, KID, CTR) combination.
9.2. Key Management Framework
The application is responsible for provisioning SFrame with a mapping
of KID values to base_key values and the resulting keys and salts.
More importantly, the application specifies which KID values are used
for which purposes (e.g., by which senders). An application's KID
assignment strategy MUST be structured to assure the non-reuse
properties discussed in Section 9.1.
The application is also responsible for defining a rotation schedule
for keys. For example, one application might have an ephemeral group
for every call and keep rotating keys when endpoints join or leave
the call, while another application could have a persistent group
that can be used for multiple calls and simply derives ephemeral
symmetric keys for a specific call.
It should be noted that KID values are not encrypted by SFrame and
are thus visible to any application-layer intermediaries that might
handle an SFrame ciphertext. If there are application semantics
included in KID values, then this information would be exposed to
intermediaries. For example, in the scheme of Section 5.1, the
number of ratchet steps per sender is exposed, and in the scheme of
Section 5.2, the number of epochs and the MLS sender ID of the SFrame
sender are exposed.
9.3. Anti-Replay
It is the responsibility of the application to handle anti-replay.
Replay by network attackers is assumed to be prevented by network-
layer facilities (e.g., TLS, SRTP). As mentioned in Section 7.4,
senders MUST reject requests to encrypt multiple times with the same
key and nonce.
It is not mandatory to implement anti-replay on the receiver side.
Receivers MAY apply time- or counter-based anti-replay mitigations.
For example, Section 3.3.2 of [RFC3711] specifies a counter-based
anti-replay mitigation, which could be adapted to use with SFrame,
using the CTR field as the counter.
9.4. Metadata
The metadata input to SFrame operations is an opaque byte string
specified by the application. As such, the application needs to
define what information should go in the metadata input and ensure
that it is provided to the encryption and decryption functions at the
appropriate points. A receiver MUST NOT use SFrame-authenticated
metadata until after the SFrame decrypt function has authenticated
it, unless the purpose of such usage is to prepare an SFrame
ciphertext for SFrame decryption. Essentially, metadata may be used
"upstream of SFrame" in a processing pipeline, but only to prepare
for SFrame decryption.
For example, consider an application where SFrame is used to encrypt
audio frames that are sent over SRTP, with some application data
included in the RTP header extension. Suppose the application also
includes this application data in the SFrame metadata, so that the
SFU is allowed to read, but not modify, the application data. A
receiver can use the application data in the RTP header extension as
part of the standard SRTP decryption process since this is required
to recover the SFrame ciphertext carried in the SRTP payload.
However, the receiver MUST NOT use the application data for other
purposes before SFrame decryption has authenticated the application
data.
10. References
10.1. Normative References
[MLS-PROTO]
Barnes, R., Beurdouche, B., Robert, R., Millican, J.,
Omara, E., and K. Cohn-Gordon, "The Messaging Layer
Security (MLS) Protocol", RFC 9420, DOI 10.17487/RFC9420,
July 2023, <https://www.rfc-editor.org/info/rfc9420>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
<https://www.rfc-editor.org/info/rfc5116>.
[RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
Key Derivation Function (HKDF)", RFC 5869,
DOI 10.17487/RFC5869, May 2010,
<https://www.rfc-editor.org/info/rfc5869>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
10.2. Informative References
[MLS-ARCH] Beurdouche, B., Rescorla, E., Omara, E., Inguva, S., and
A. Duric, "The Messaging Layer Security (MLS)
Architecture", Work in Progress, Internet-Draft, draft-
ietf-mls-architecture-15, 3 August 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-mls-
architecture-15>.
[MOQ-TRANSPORT]
Curley, L., Pugin, K., Nandakumar, S., Vasiliev, V., and
I. Swett, Ed., "Media over QUIC Transport", Work in
Progress, Internet-Draft, draft-ietf-moq-transport-05, 8
July 2024, <https://datatracker.ietf.org/doc/html/draft-
ietf-moq-transport-05>.
[RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)",
RFC 3711, DOI 10.17487/RFC3711, March 2004,
<https://www.rfc-editor.org/info/rfc3711>.
[RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,
September 2012, <https://www.rfc-editor.org/info/rfc6716>.
[RFC7656] Lennox, J., Gross, K., Nandakumar, S., Salgueiro, G., and
B. Burman, Ed., "A Taxonomy of Semantics and Mechanisms
for Real-Time Transport Protocol (RTP) Sources", RFC 7656,
DOI 10.17487/RFC7656, November 2015,
<https://www.rfc-editor.org/info/rfc7656>.
[RFC7667] Westerlund, M. and S. Wenger, "RTP Topologies", RFC 7667,
DOI 10.17487/RFC7667, November 2015,
<https://www.rfc-editor.org/info/rfc7667>.
[RFC8723] Jennings, C., Jones, P., Barnes, R., and A.B. Roach,
"Double Encryption Procedures for the Secure Real-Time
Transport Protocol (SRTP)", RFC 8723,
DOI 10.17487/RFC8723, April 2020,
<https://www.rfc-editor.org/info/rfc8723>.
[RFC8866] Begen, A., Kyzivat, P., Perkins, C., and M. Handley, "SDP:
Session Description Protocol", RFC 8866,
DOI 10.17487/RFC8866, January 2021,
<https://www.rfc-editor.org/info/rfc8866>.
[RTP-PAYLOAD]
Murillo, S. G., Fablet, Y., and A. Gouaillard, "Codec
agnostic RTP payload format for video", Work in Progress,
Internet-Draft, draft-gouaillard-avtcore-codec-agn-rtp-
payload-01, 9 March 2021,
<https://datatracker.ietf.org/doc/html/draft-gouaillard-
avtcore-codec-agn-rtp-payload-01>.
[TestVectors]
"SFrame Test Vectors", commit 025d568, September 2023,
<https://github.com/sframe-wg/sframe/blob/025d568/test-
vectors/test-vectors.json>.
[WEBTRANSPORT]
Vasiliev, V., "The WebTransport Protocol Framework", Work
in Progress, Internet-Draft, draft-ietf-webtrans-overview-
08, 25 August 2024,
<https://datatracker.ietf.org/api/v1/doc/document/draft-
ietf-webtrans-overview/>.
Appendix A. Example API
*This section is not normative.*
This section describes a notional API that an SFrame implementation
might expose. The core concept is an "SFrame context", within which
KID values are meaningful. In the key management scheme described in
Section 5.1, each sender has a different context; in the scheme
described in Section 5.2, all senders share the same context.
An SFrame context stores mappings from KID values to "key contexts",
which are different depending on whether the KID is to be used for
sending or receiving (an SFrame key should never be used for both
operations). A key context tracks the key and salt associated to the
KID, and the current CTR value. A key context to be used for sending
also tracks the next CTR value to be used.
The primary operations on an SFrame context are as follows:
* *Create an SFrame context:* The context is initialized with a
cipher suite and no KID mappings.
* *Add a key for sending:* The key and salt are derived from the
base key and used to initialize a send context, together with a
zero CTR value.
* *Add a key for receiving:* The key and salt are derived from the
base key and used to initialize a send context.
* *Encrypt a plaintext:* Encrypt a given plaintext using the key for
a given KID, including the specified metadata.
* *Decrypt an SFrame ciphertext:* Decrypt an SFrame ciphertext with
the KID and CTR values specified in the SFrame header, and the
provided metadata.
Figure 10 shows an example of the types of structures and methods
that could be used to create an SFrame API in Rust.
type KeyId = u64;
type Counter = u64;
type CipherSuite = u16;
struct SendKeyContext {
key: Vec<u8>,
salt: Vec<u8>,
next_counter: Counter,
}
struct RecvKeyContext {
key: Vec<u8>,
salt: Vec<u8>,
}
struct SFrameContext {
cipher_suite: CipherSuite,
send_keys: HashMap<KeyId, SendKeyContext>,
recv_keys: HashMap<KeyId, RecvKeyContext>,
}
trait SFrameContextMethods {
fn create(cipher_suite: CipherSuite) -> Self;
fn add_send_key(&self, kid: KeyId, base_key: &[u8]);
fn add_recv_key(&self, kid: KeyId, base_key: &[u8]);
fn encrypt(&mut self, kid: KeyId, metadata: &[u8],
plaintext: &[u8]) -> Vec<u8>;
fn decrypt(&self, metadata: &[u8], ciphertext: &[u8]) -> Vec<u8>;
}
Figure 10: An Example SFrame API
Appendix B. Overhead Analysis
Any use of SFrame will impose overhead in terms of the amount of
bandwidth necessary to transmit a given media stream. Exactly how
much overhead will be added depends on several factors:
* The number of senders involved in a conference (length of KID)
* The duration of the conference (length of CTR)
* The cipher suite in use (length of authentication tag)
* Whether SFrame is used to encrypt packets, whole frames, or some
other unit
Overall, the overhead rate in kilobits per second can be estimated
as:
OverheadKbps = (1 + |CTR| + |KID| + |TAG|) * 8 * CTPerSecond / 1024
Here the constant value 1 reflects the fixed SFrame header; |CTR|
and |KID| reflect the lengths of those fields; |TAG| reflects the
cipher overhead; and CTPerSecond reflects the number of SFrame
ciphertexts sent per second (e.g., packets or frames per second).
In the remainder of this section, we compute overhead estimates for a
collection of common scenarios.
B.1. Assumptions
In the below calculations, we make conservative assumptions about
SFrame overhead so that the overhead amounts we compute here are
likely to be an upper bound of those seen in practice.
+==============+=======+============================+
| Field | Bytes | Explanation |
+==============+=======+============================+
| Config byte | 1 | Fixed |
+--------------+-------+----------------------------+
| Key ID (KID) | 2 | >255 senders; or MLS epoch |
| | | (E=4) and >16 senders |
+--------------+-------+----------------------------+
| Counter | 3 | More than 24 hours of |
| (CTR) | | media in common cases |
+--------------+-------+----------------------------+
| Cipher | 16 | Full authentication tag |
| overhead | | (longest defined here) |
+--------------+-------+----------------------------+
Table 3: Overhead Analysis Assumptions
In total, then, we assume that each SFrame encryption will add 22
bytes of overhead.
We consider two scenarios: applying SFrame per frame and per packet.
In each scenario, we compute the SFrame overhead in absolute terms
(kbps) and as a percentage of the base bandwidth.
B.2. Audio
In audio streams, there is typically a one-to-one relationship
between frames and packets, so the overhead is the same whether one
uses SFrame at a per-packet or per-frame level.
Table 4 considers three scenarios that are based on recommended
configurations of the Opus codec [RFC6716] (where "fps" stands for
"frames per second"):
+==============+==============+=====+======+==========+==========+
| Scenario | Frame length | fps | Base | Overhead | Overhead |
| | | | kbps | kbps | % |
+==============+==============+=====+======+==========+==========+
| Narrow-band | 120 ms | 8.3 | 8 | 1.4 | 17.9% |
| speech | | | | | |
+--------------+--------------+-----+------+----------+----------+
| Full-band | 20 ms | 50 | 32 | 8.6 | 26.9% |
| speech | | | | | |
+--------------+--------------+-----+------+----------+----------+
| Full-band | 10 ms | 100 | 128 | 17.2 | 13.4% |
| stereo music | | | | | |
+--------------+--------------+-----+------+----------+----------+
Table 4: SFrame Overhead for Audio Streams
B.3. Video
Video frames can be larger than an MTU and thus are commonly split
across multiple frames. Tables 5 and 6 show the estimated overhead
of encrypting a video stream, where SFrame is applied per frame and
per packet, respectively. The choices of resolution, frames per
second, and bandwidth roughly reflect the capabilities of modern
video codecs across a range from very low to very high quality.
+=============+=====+===========+===============+============+
| Scenario | fps | Base kbps | Overhead kbps | Overhead % |
+=============+=====+===========+===============+============+
| 426 x 240 | 7.5 | 45 | 1.3 | 2.9% |
+-------------+-----+-----------+---------------+------------+
| 640 x 360 | 15 | 200 | 2.6 | 1.3% |
+-------------+-----+-----------+---------------+------------+
| 640 x 360 | 30 | 400 | 5.2 | 1.3% |
+-------------+-----+-----------+---------------+------------+
| 1280 x 720 | 30 | 1500 | 5.2 | 0.3% |
+-------------+-----+-----------+---------------+------------+
| 1920 x 1080 | 60 | 7200 | 10.3 | 0.1% |
+-------------+-----+-----------+---------------+------------+
Table 5: SFrame Overhead for a Video Stream Encrypted per
Frame
+==========+=====+==============+======+==========+==========+
| Scenario | fps | Packets per | Base | Overhead | Overhead |
| | | Second (pps) | kbps | kbps | % |
+==========+=====+==============+======+==========+==========+
| 426 x | 7.5 | 7.5 | 45 | 1.3 | 2.9% |
| 240 | | | | | |
+----------+-----+--------------+------+----------+----------+
| 640 x | 15 | 30 | 200 | 5.2 | 2.6% |
| 360 | | | | | |
+----------+-----+--------------+------+----------+----------+
| 640 x | 30 | 60 | 400 | 10.3 | 2.6% |
| 360 | | | | | |
+----------+-----+--------------+------+----------+----------+
| 1280 x | 30 | 180 | 1500 | 30.9 | 2.1% |
| 720 | | | | | |
+----------+-----+--------------+------+----------+----------+
| 1920 x | 60 | 780 | 7200 | 134.1 | 1.9% |
| 1080 | | | | | |
+----------+-----+--------------+------+----------+----------+
Table 6: SFrame Overhead for a Video Stream Encrypted per
Packet
In the per-frame case, the SFrame percentage overhead approaches zero
as the quality of the video improves since bandwidth is driven more
by picture size than frame rate. In the per-packet case, the SFrame
percentage overhead approaches the ratio between the SFrame overhead
per packet and the MTU (here 22 bytes of SFrame overhead divided by
an assumed 1200-byte MTU, or about 1.8%).
B.4. Conferences
Real conferences usually involve several audio and video streams.
The overhead of SFrame in such a conference is the aggregate of the
overhead across all the individual streams. Thus, while SFrame
incurs a large percentage overhead on an audio stream, if the
conference also involves a video stream, then the audio overhead is
likely negligible relative to the overall bandwidth of the
conference.
For example, Table 7 shows the overhead estimates for a two-person
conference where one person is sending low-quality media and the
other is sending high-quality media. (And we assume that SFrame is
applied per frame.) The video streams dominate the bandwidth at the
SFU, so the total bandwidth overhead is only around 1%.
+=====================+===========+===============+============+
| Stream | Base Kbps | Overhead Kbps | Overhead % |
+=====================+===========+===============+============+
| Participant 1 audio | 8 | 1.4 | 17.9% |
+---------------------+-----------+---------------+------------+
| Participant 1 video | 45 | 1.3 | 2.9% |
+---------------------+-----------+---------------+------------+
| Participant 2 audio | 32 | 9 | 26.9% |
+---------------------+-----------+---------------+------------+
| Participant 2 video | 1500 | 5 | 0.3% |
+---------------------+-----------+---------------+------------+
| Total at SFU | 1585 | 16.5 | 1.0% |
+---------------------+-----------+---------------+------------+
Table 7: SFrame Overhead for a Two-Person Conference
B.5. SFrame over RTP
SFrame is a generic encapsulation format, but many of the
applications in which it is likely to be integrated are based on RTP.
This section discusses how an integration between SFrame and RTP
could be done, and some of the challenges that would need to be
overcome.
As discussed in Section 4.1, there are two natural patterns for
integrating SFrame into an application: applying SFrame per frame or
per packet. In RTP-based applications, applying SFrame per packet
means that the payload of each RTP packet will be an SFrame
ciphertext, starting with an SFrame header, as shown in Figure 11.
Applying SFrame per frame means that different RTP payloads will have
different formats: The first payload of a frame will contain the
SFrame headers, and subsequent payloads will contain further chunks
of the ciphertext, as shown in Figure 12.
In order for these media payloads to be properly interpreted by
receivers, receivers will need to be configured to know which of the
above schemes the sender has applied to a given sequence of RTP
packets. SFrame does not provide a mechanism for distributing this
configuration information. In applications that use SDP for
negotiating RTP media streams [RFC8866], an appropriate extension to
SDP could provide this function.
Applying SFrame per frame also requires that packetization and
depacketization be done in a generic manner that does not depend on
the media content of the packets, since the content being packetized
or depacketized will be opaque ciphertext (except for the SFrame
header). In order for such a generic packetization scheme to work
interoperably, one would have to be defined, e.g., as proposed in
[RTP-PAYLOAD].
+---+-+-+-------+-+-----------+------------------------------+<-+
|V=2|P|X| CC |M| PT | sequence number | |
+---+-+-+-------+-+-----------+------------------------------+ |
| timestamp | |
+------------------------------------------------------------+ |
| synchronization source (SSRC) identifier | |
+============================================================+ |
| contributing source (CSRC) identifiers | |
| .... | |
+------------------------------------------------------------+ |
| RTP extension(s) (OPTIONAL) | |
+->+-------------------+----------------------------------------+ |
| | SFrame header | | |
| +-------------------+ | |
| | | |
| | SFrame encrypted and authenticated payload | |
| | | |
+->+------------------------------------------------------------+<-+
| | SRTP authentication tag | |
| +------------------------------------------------------------+ |
| |
+--- SRTP Encrypted Portion SRTP Authenticated Portion ---+
Figure 11: SRTP Packet with SFrame-Protected Payload
+----------------+ +---------------+
| frame metadata | | |
+-------+--------+ | |
| | frame |
| | |
| | |
| +-------+-------+
| |
| |
V V
+--------------------------------------+
| SFrame Encrypt |
+--------------------------------------+
| |
| |
| V
| +-------+-------+
| | |
| | |
| | encrypted |
| | frame |
| | |
| | |
| +-------+-------+
| |
| generic RTP packetize
| |
| +----------------------+--------.....--------+
| | | |
V V V V
+---------------+ +---------------+ +---------------+
| SFrame header | | | | |
+---------------+ | | | |
| | | payload 2/N | ... | payload N/N |
| payload 1/N | | | | |
| | | | | |
+---------------+ +---------------+ +---------------+
Figure 12: Encryption Flow with per-Frame Encryption for RTP
Appendix C. Test Vectors
This section provides a set of test vectors that implementations can
use to verify that they correctly implement SFrame encryption and
decryption. In addition to test vectors for the overall process of
SFrame encryption/decryption, we also provide test vectors for header
encoding/decoding, and for AEAD encryption/decryption using the AES-
CTR construction defined in Section 4.5.1.
All values are either numeric or byte strings. Numeric values are
represented as hex values, prefixed with 0x. Byte strings are
represented in hex encoding.
Line breaks and whitespace within values are inserted to conform to
the width requirements of the RFC format. They should be removed
before use.
These test vectors are also available in JSON format at
[TestVectors]. In the JSON test vectors, numeric values are JSON
numbers and byte string values are JSON strings containing the hex
encoding of the byte strings.
C.1. Header Encoding/Decoding
For each case, we provide:
* kid: A KID value
* ctr: A CTR value
* header: An encoded SFrame header
An implementation should verify that:
* Encoding a header with the KID and CTR results in the provided
header value
* Decoding the provided header value results in the provided KID and
CTR values
kid: 0x0000000000000000
ctr: 0x0000000000000000
header: 00
kid: 0x0000000000000000
ctr: 0x0000000000000001
header: 01
kid: 0x0000000000000000
ctr: 0x00000000000000ff
header: 08ff
kid: 0x0000000000000000
ctr: 0x0000000000000100
header: 090100
kid: 0x0000000000000000
ctr: 0x000000000000ffff
header: 09ffff
kid: 0x0000000000000000
ctr: 0x0000000000010000
header: 0a010000
kid: 0x0000000000000000
ctr: 0x0000000000ffffff
header: 0affffff
kid: 0x0000000000000000
ctr: 0x0000000001000000
header: 0b01000000
kid: 0x0000000000000000
ctr: 0x00000000ffffffff
header: 0bffffffff
kid: 0x0000000000000000
ctr: 0x0000000100000000
header: 0c0100000000
kid: 0x0000000000000000
ctr: 0x000000ffffffffff
header: 0cffffffffff
kid: 0x0000000000000000
ctr: 0x0000010000000000
header: 0d010000000000
kid: 0x0000000000000000
ctr: 0x0000ffffffffffff
header: 0dffffffffffff
kid: 0x0000000000000000
ctr: 0x0001000000000000
header: 0e01000000000000
kid: 0x0000000000000000
ctr: 0x00ffffffffffffff
header: 0effffffffffffff
kid: 0x0000000000000000
ctr: 0x0100000000000000
header: 0f0100000000000000
kid: 0x0000000000000000
ctr: 0xffffffffffffffff
header: 0fffffffffffffffff
kid: 0x0000000000000001
ctr: 0x0000000000000000
header: 10
kid: 0x0000000000000001
ctr: 0x0000000000000001
header: 11
kid: 0x0000000000000001
ctr: 0x00000000000000ff
header: 18ff
kid: 0x0000000000000001
ctr: 0x0000000000000100
header: 190100
kid: 0x0000000000000001
ctr: 0x000000000000ffff
header: 19ffff
kid: 0x0000000000000001
ctr: 0x0000000000010000
header: 1a010000
kid: 0x0000000000000001
ctr: 0x0000000000ffffff
header: 1affffff
kid: 0x0000000000000001
ctr: 0x0000000001000000
header: 1b01000000
kid: 0x0000000000000001
ctr: 0x00000000ffffffff
header: 1bffffffff
kid: 0x0000000000000001
ctr: 0x0000000100000000
header: 1c0100000000
kid: 0x0000000000000001
ctr: 0x000000ffffffffff
header: 1cffffffffff
kid: 0x0000000000000001
ctr: 0x0000010000000000
header: 1d010000000000
kid: 0x0000000000000001
ctr: 0x0000ffffffffffff
header: 1dffffffffffff
kid: 0x0000000000000001
ctr: 0x0001000000000000
header: 1e01000000000000
kid: 0x0000000000000001
ctr: 0x00ffffffffffffff
header: 1effffffffffffff
kid: 0x0000000000000001
ctr: 0x0100000000000000
header: 1f0100000000000000
kid: 0x0000000000000001
ctr: 0xffffffffffffffff
header: 1fffffffffffffffff
kid: 0x00000000000000ff
ctr: 0x0000000000000000
header: 80ff
kid: 0x00000000000000ff
ctr: 0x0000000000000001
header: 81ff
kid: 0x00000000000000ff
ctr: 0x00000000000000ff
header: 88ffff
kid: 0x00000000000000ff
ctr: 0x0000000000000100
header: 89ff0100
kid: 0x00000000000000ff
ctr: 0x000000000000ffff
header: 89ffffff
kid: 0x00000000000000ff
ctr: 0x0000000000010000
header: 8aff010000
kid: 0x00000000000000ff
ctr: 0x0000000000ffffff
header: 8affffffff
kid: 0x00000000000000ff
ctr: 0x0000000001000000
header: 8bff01000000
kid: 0x00000000000000ff
ctr: 0x00000000ffffffff
header: 8bffffffffff
kid: 0x00000000000000ff
ctr: 0x0000000100000000
header: 8cff0100000000
kid: 0x00000000000000ff
ctr: 0x000000ffffffffff
header: 8cffffffffffff
kid: 0x00000000000000ff
ctr: 0x0000010000000000
header: 8dff010000000000
kid: 0x00000000000000ff
ctr: 0x0000ffffffffffff
header: 8dffffffffffffff
kid: 0x00000000000000ff
ctr: 0x0001000000000000
header: 8eff01000000000000
kid: 0x00000000000000ff
ctr: 0x00ffffffffffffff
header: 8effffffffffffffff
kid: 0x00000000000000ff
ctr: 0x0100000000000000
header: 8fff0100000000000000
kid: 0x00000000000000ff
ctr: 0xffffffffffffffff
header: 8fffffffffffffffffff
kid: 0x0000000000000100
ctr: 0x0000000000000000
header: 900100
kid: 0x0000000000000100
ctr: 0x0000000000000001
header: 910100
kid: 0x0000000000000100
ctr: 0x00000000000000ff
header: 980100ff
kid: 0x0000000000000100
ctr: 0x0000000000000100
header: 9901000100
kid: 0x0000000000000100
ctr: 0x000000000000ffff
header: 990100ffff
kid: 0x0000000000000100
ctr: 0x0000000000010000
header: 9a0100010000
kid: 0x0000000000000100
ctr: 0x0000000000ffffff
header: 9a0100ffffff
kid: 0x0000000000000100
ctr: 0x0000000001000000
header: 9b010001000000
kid: 0x0000000000000100
ctr: 0x00000000ffffffff
header: 9b0100ffffffff
kid: 0x0000000000000100
ctr: 0x0000000100000000
header: 9c01000100000000
kid: 0x0000000000000100
ctr: 0x000000ffffffffff
header: 9c0100ffffffffff
kid: 0x0000000000000100
ctr: 0x0000010000000000
header: 9d0100010000000000
kid: 0x0000000000000100
ctr: 0x0000ffffffffffff
header: 9d0100ffffffffffff
kid: 0x0000000000000100
ctr: 0x0001000000000000
header: 9e010001000000000000
kid: 0x0000000000000100
ctr: 0x00ffffffffffffff
header: 9e0100ffffffffffffff
kid: 0x0000000000000100
ctr: 0x0100000000000000
header: 9f01000100000000000000
kid: 0x0000000000000100
ctr: 0xffffffffffffffff
header: 9f0100ffffffffffffffff
kid: 0x000000000000ffff
ctr: 0x0000000000000000
header: 90ffff
kid: 0x000000000000ffff
ctr: 0x0000000000000001
header: 91ffff
kid: 0x000000000000ffff
ctr: 0x00000000000000ff
header: 98ffffff
kid: 0x000000000000ffff
ctr: 0x0000000000000100
header: 99ffff0100
kid: 0x000000000000ffff
ctr: 0x000000000000ffff
header: 99ffffffff
kid: 0x000000000000ffff
ctr: 0x0000000000010000
header: 9affff010000
kid: 0x000000000000ffff
ctr: 0x0000000000ffffff
header: 9affffffffff
kid: 0x000000000000ffff
ctr: 0x0000000001000000
header: 9bffff01000000
kid: 0x000000000000ffff
ctr: 0x00000000ffffffff
header: 9bffffffffffff
kid: 0x000000000000ffff
ctr: 0x0000000100000000
header: 9cffff0100000000
kid: 0x000000000000ffff
ctr: 0x000000ffffffffff
header: 9cffffffffffffff
kid: 0x000000000000ffff
ctr: 0x0000010000000000
header: 9dffff010000000000
kid: 0x000000000000ffff
ctr: 0x0000ffffffffffff
header: 9dffffffffffffffff
kid: 0x000000000000ffff
ctr: 0x0001000000000000
header: 9effff01000000000000
kid: 0x000000000000ffff
ctr: 0x00ffffffffffffff
header: 9effffffffffffffffff
kid: 0x000000000000ffff
ctr: 0x0100000000000000
header: 9fffff0100000000000000
kid: 0x000000000000ffff
ctr: 0xffffffffffffffff
header: 9fffffffffffffffffffff
kid: 0x0000000000010000
ctr: 0x0000000000000000
header: a0010000
kid: 0x0000000000010000
ctr: 0x0000000000000001
header: a1010000
kid: 0x0000000000010000
ctr: 0x00000000000000ff
header: a8010000ff
kid: 0x0000000000010000
ctr: 0x0000000000000100
header: a90100000100
kid: 0x0000000000010000
ctr: 0x000000000000ffff
header: a9010000ffff
kid: 0x0000000000010000
ctr: 0x0000000000010000
header: aa010000010000
kid: 0x0000000000010000
ctr: 0x0000000000ffffff
header: aa010000ffffff
kid: 0x0000000000010000
ctr: 0x0000000001000000
header: ab01000001000000
kid: 0x0000000000010000
ctr: 0x00000000ffffffff
header: ab010000ffffffff
kid: 0x0000000000010000
ctr: 0x0000000100000000
header: ac0100000100000000
kid: 0x0000000000010000
ctr: 0x000000ffffffffff
header: ac010000ffffffffff
kid: 0x0000000000010000
ctr: 0x0000010000000000
header: ad010000010000000000
kid: 0x0000000000010000
ctr: 0x0000ffffffffffff
header: ad010000ffffffffffff
kid: 0x0000000000010000
ctr: 0x0001000000000000
header: ae01000001000000000000
kid: 0x0000000000010000
ctr: 0x00ffffffffffffff
header: ae010000ffffffffffffff
kid: 0x0000000000010000
ctr: 0x0100000000000000
header: af0100000100000000000000
kid: 0x0000000000010000
ctr: 0xffffffffffffffff
header: af010000ffffffffffffffff
kid: 0x0000000000ffffff
ctr: 0x0000000000000000
header: a0ffffff
kid: 0x0000000000ffffff
ctr: 0x0000000000000001
header: a1ffffff
kid: 0x0000000000ffffff
ctr: 0x00000000000000ff
header: a8ffffffff
kid: 0x0000000000ffffff
ctr: 0x0000000000000100
header: a9ffffff0100
kid: 0x0000000000ffffff
ctr: 0x000000000000ffff
header: a9ffffffffff
kid: 0x0000000000ffffff
ctr: 0x0000000000010000
header: aaffffff010000
kid: 0x0000000000ffffff
ctr: 0x0000000000ffffff
header: aaffffffffffff
kid: 0x0000000000ffffff
ctr: 0x0000000001000000
header: abffffff01000000
kid: 0x0000000000ffffff
ctr: 0x00000000ffffffff
header: abffffffffffffff
kid: 0x0000000000ffffff
ctr: 0x0000000100000000
header: acffffff0100000000
kid: 0x0000000000ffffff
ctr: 0x000000ffffffffff
header: acffffffffffffffff
kid: 0x0000000000ffffff
ctr: 0x0000010000000000
header: adffffff010000000000
kid: 0x0000000000ffffff
ctr: 0x0000ffffffffffff
header: adffffffffffffffffff
kid: 0x0000000000ffffff
ctr: 0x0001000000000000
header: aeffffff01000000000000
kid: 0x0000000000ffffff
ctr: 0x00ffffffffffffff
header: aeffffffffffffffffffff
kid: 0x0000000000ffffff
ctr: 0x0100000000000000
header: afffffff0100000000000000
kid: 0x0000000000ffffff
ctr: 0xffffffffffffffff
header: afffffffffffffffffffffff
kid: 0x0000000001000000
ctr: 0x0000000000000000
header: b001000000
kid: 0x0000000001000000
ctr: 0x0000000000000001
header: b101000000
kid: 0x0000000001000000
ctr: 0x00000000000000ff
header: b801000000ff
kid: 0x0000000001000000
ctr: 0x0000000000000100
header: b9010000000100
kid: 0x0000000001000000
ctr: 0x000000000000ffff
header: b901000000ffff
kid: 0x0000000001000000
ctr: 0x0000000000010000
header: ba01000000010000
kid: 0x0000000001000000
ctr: 0x0000000000ffffff
header: ba01000000ffffff
kid: 0x0000000001000000
ctr: 0x0000000001000000
header: bb0100000001000000
kid: 0x0000000001000000
ctr: 0x00000000ffffffff
header: bb01000000ffffffff
kid: 0x0000000001000000
ctr: 0x0000000100000000
header: bc010000000100000000
kid: 0x0000000001000000
ctr: 0x000000ffffffffff
header: bc01000000ffffffffff
kid: 0x0000000001000000
ctr: 0x0000010000000000
header: bd01000000010000000000
kid: 0x0000000001000000
ctr: 0x0000ffffffffffff
header: bd01000000ffffffffffff
kid: 0x0000000001000000
ctr: 0x0001000000000000
header: be0100000001000000000000
kid: 0x0000000001000000
ctr: 0x00ffffffffffffff
header: be01000000ffffffffffffff
kid: 0x0000000001000000
ctr: 0x0100000000000000
header: bf010000000100000000000000
kid: 0x0000000001000000
ctr: 0xffffffffffffffff
header: bf01000000ffffffffffffffff
kid: 0x00000000ffffffff
ctr: 0x0000000000000000
header: b0ffffffff
kid: 0x00000000ffffffff
ctr: 0x0000000000000001
header: b1ffffffff
kid: 0x00000000ffffffff
ctr: 0x00000000000000ff
header: b8ffffffffff
kid: 0x00000000ffffffff
ctr: 0x0000000000000100
header: b9ffffffff0100
kid: 0x00000000ffffffff
ctr: 0x000000000000ffff
header: b9ffffffffffff
kid: 0x00000000ffffffff
ctr: 0x0000000000010000
header: baffffffff010000
kid: 0x00000000ffffffff
ctr: 0x0000000000ffffff
header: baffffffffffffff
kid: 0x00000000ffffffff
ctr: 0x0000000001000000
header: bbffffffff01000000
kid: 0x00000000ffffffff
ctr: 0x00000000ffffffff
header: bbffffffffffffffff
kid: 0x00000000ffffffff
ctr: 0x0000000100000000
header: bcffffffff0100000000
kid: 0x00000000ffffffff
ctr: 0x000000ffffffffff
header: bcffffffffffffffffff
kid: 0x00000000ffffffff
ctr: 0x0000010000000000
header: bdffffffff010000000000
kid: 0x00000000ffffffff
ctr: 0x0000ffffffffffff
header: bdffffffffffffffffffff
kid: 0x00000000ffffffff
ctr: 0x0001000000000000
header: beffffffff01000000000000
kid: 0x00000000ffffffff
ctr: 0x00ffffffffffffff
header: beffffffffffffffffffffff
kid: 0x00000000ffffffff
ctr: 0x0100000000000000
header: bfffffffff0100000000000000
kid: 0x00000000ffffffff
ctr: 0xffffffffffffffff
header: bfffffffffffffffffffffffff
kid: 0x0000000100000000
ctr: 0x0000000000000000
header: c00100000000
kid: 0x0000000100000000
ctr: 0x0000000000000001
header: c10100000000
kid: 0x0000000100000000
ctr: 0x00000000000000ff
header: c80100000000ff
kid: 0x0000000100000000
ctr: 0x0000000000000100
header: c901000000000100
kid: 0x0000000100000000
ctr: 0x000000000000ffff
header: c90100000000ffff
kid: 0x0000000100000000
ctr: 0x0000000000010000
header: ca0100000000010000
kid: 0x0000000100000000
ctr: 0x0000000000ffffff
header: ca0100000000ffffff
kid: 0x0000000100000000
ctr: 0x0000000001000000
header: cb010000000001000000
kid: 0x0000000100000000
ctr: 0x00000000ffffffff
header: cb0100000000ffffffff
kid: 0x0000000100000000
ctr: 0x0000000100000000
header: cc01000000000100000000
kid: 0x0000000100000000
ctr: 0x000000ffffffffff
header: cc0100000000ffffffffff
kid: 0x0000000100000000
ctr: 0x0000010000000000
header: cd0100000000010000000000
kid: 0x0000000100000000
ctr: 0x0000ffffffffffff
header: cd0100000000ffffffffffff
kid: 0x0000000100000000
ctr: 0x0001000000000000
header: ce010000000001000000000000
kid: 0x0000000100000000
ctr: 0x00ffffffffffffff
header: ce0100000000ffffffffffffff
kid: 0x0000000100000000
ctr: 0x0100000000000000
header: cf01000000000100000000000000
kid: 0x0000000100000000
ctr: 0xffffffffffffffff
header: cf0100000000ffffffffffffffff
kid: 0x000000ffffffffff
ctr: 0x0000000000000000
header: c0ffffffffff
kid: 0x000000ffffffffff
ctr: 0x0000000000000001
header: c1ffffffffff
kid: 0x000000ffffffffff
ctr: 0x00000000000000ff
header: c8ffffffffffff
kid: 0x000000ffffffffff
ctr: 0x0000000000000100
header: c9ffffffffff0100
kid: 0x000000ffffffffff
ctr: 0x000000000000ffff
header: c9ffffffffffffff
kid: 0x000000ffffffffff
ctr: 0x0000000000010000
header: caffffffffff010000
kid: 0x000000ffffffffff
ctr: 0x0000000000ffffff
header: caffffffffffffffff
kid: 0x000000ffffffffff
ctr: 0x0000000001000000
header: cbffffffffff01000000
kid: 0x000000ffffffffff
ctr: 0x00000000ffffffff
header: cbffffffffffffffffff
kid: 0x000000ffffffffff
ctr: 0x0000000100000000
header: ccffffffffff0100000000
kid: 0x000000ffffffffff
ctr: 0x000000ffffffffff
header: ccffffffffffffffffffff
kid: 0x000000ffffffffff
ctr: 0x0000010000000000
header: cdffffffffff010000000000
kid: 0x000000ffffffffff
ctr: 0x0000ffffffffffff
header: cdffffffffffffffffffffff
kid: 0x000000ffffffffff
ctr: 0x0001000000000000
header: ceffffffffff01000000000000
kid: 0x000000ffffffffff
ctr: 0x00ffffffffffffff
header: ceffffffffffffffffffffffff
kid: 0x000000ffffffffff
ctr: 0x0100000000000000
header: cfffffffffff0100000000000000
kid: 0x000000ffffffffff
ctr: 0xffffffffffffffff
header: cfffffffffffffffffffffffffff
kid: 0x0000010000000000
ctr: 0x0000000000000000
header: d0010000000000
kid: 0x0000010000000000
ctr: 0x0000000000000001
header: d1010000000000
kid: 0x0000010000000000
ctr: 0x00000000000000ff
header: d8010000000000ff
kid: 0x0000010000000000
ctr: 0x0000000000000100
header: d90100000000000100
kid: 0x0000010000000000
ctr: 0x000000000000ffff
header: d9010000000000ffff
kid: 0x0000010000000000
ctr: 0x0000000000010000
header: da010000000000010000
kid: 0x0000010000000000
ctr: 0x0000000000ffffff
header: da010000000000ffffff
kid: 0x0000010000000000
ctr: 0x0000000001000000
header: db01000000000001000000
kid: 0x0000010000000000
ctr: 0x00000000ffffffff
header: db010000000000ffffffff
kid: 0x0000010000000000
ctr: 0x0000000100000000
header: dc0100000000000100000000
kid: 0x0000010000000000
ctr: 0x000000ffffffffff
header: dc010000000000ffffffffff
kid: 0x0000010000000000
ctr: 0x0000010000000000
header: dd010000000000010000000000
kid: 0x0000010000000000
ctr: 0x0000ffffffffffff
header: dd010000000000ffffffffffff
kid: 0x0000010000000000
ctr: 0x0001000000000000
header: de01000000000001000000000000
kid: 0x0000010000000000
ctr: 0x00ffffffffffffff
header: de010000000000ffffffffffffff
kid: 0x0000010000000000
ctr: 0x0100000000000000
header: df0100000000000100000000000000
kid: 0x0000010000000000
ctr: 0xffffffffffffffff
header: df010000000000ffffffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0000000000000000
header: d0ffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0000000000000001
header: d1ffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x00000000000000ff
header: d8ffffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0000000000000100
header: d9ffffffffffff0100
kid: 0x0000ffffffffffff
ctr: 0x000000000000ffff
header: d9ffffffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0000000000010000
header: daffffffffffff010000
kid: 0x0000ffffffffffff
ctr: 0x0000000000ffffff
header: daffffffffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0000000001000000
header: dbffffffffffff01000000
kid: 0x0000ffffffffffff
ctr: 0x00000000ffffffff
header: dbffffffffffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0000000100000000
header: dcffffffffffff0100000000
kid: 0x0000ffffffffffff
ctr: 0x000000ffffffffff
header: dcffffffffffffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0000010000000000
header: ddffffffffffff010000000000
kid: 0x0000ffffffffffff
ctr: 0x0000ffffffffffff
header: ddffffffffffffffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0001000000000000
header: deffffffffffff01000000000000
kid: 0x0000ffffffffffff
ctr: 0x00ffffffffffffff
header: deffffffffffffffffffffffffff
kid: 0x0000ffffffffffff
ctr: 0x0100000000000000
header: dfffffffffffff0100000000000000
kid: 0x0000ffffffffffff
ctr: 0xffffffffffffffff
header: dfffffffffffffffffffffffffffff
kid: 0x0001000000000000
ctr: 0x0000000000000000
header: e001000000000000
kid: 0x0001000000000000
ctr: 0x0000000000000001
header: e101000000000000
kid: 0x0001000000000000
ctr: 0x00000000000000ff
header: e801000000000000ff
kid: 0x0001000000000000
ctr: 0x0000000000000100
header: e9010000000000000100
kid: 0x0001000000000000
ctr: 0x000000000000ffff
header: e901000000000000ffff
kid: 0x0001000000000000
ctr: 0x0000000000010000
header: ea01000000000000010000
kid: 0x0001000000000000
ctr: 0x0000000000ffffff
header: ea01000000000000ffffff
kid: 0x0001000000000000
ctr: 0x0000000001000000
header: eb0100000000000001000000
kid: 0x0001000000000000
ctr: 0x00000000ffffffff
header: eb01000000000000ffffffff
kid: 0x0001000000000000
ctr: 0x0000000100000000
header: ec010000000000000100000000
kid: 0x0001000000000000
ctr: 0x000000ffffffffff
header: ec01000000000000ffffffffff
kid: 0x0001000000000000
ctr: 0x0000010000000000
header: ed01000000000000010000000000
kid: 0x0001000000000000
ctr: 0x0000ffffffffffff
header: ed01000000000000ffffffffffff
kid: 0x0001000000000000
ctr: 0x0001000000000000
header: ee0100000000000001000000000000
kid: 0x0001000000000000
ctr: 0x00ffffffffffffff
header: ee01000000000000ffffffffffffff
kid: 0x0001000000000000
ctr: 0x0100000000000000
header: ef010000000000000100000000000000
kid: 0x0001000000000000
ctr: 0xffffffffffffffff
header: ef01000000000000ffffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0000000000000000
header: e0ffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0000000000000001
header: e1ffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x00000000000000ff
header: e8ffffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0000000000000100
header: e9ffffffffffffff0100
kid: 0x00ffffffffffffff
ctr: 0x000000000000ffff
header: e9ffffffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0000000000010000
header: eaffffffffffffff010000
kid: 0x00ffffffffffffff
ctr: 0x0000000000ffffff
header: eaffffffffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0000000001000000
header: ebffffffffffffff01000000
kid: 0x00ffffffffffffff
ctr: 0x00000000ffffffff
header: ebffffffffffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0000000100000000
header: ecffffffffffffff0100000000
kid: 0x00ffffffffffffff
ctr: 0x000000ffffffffff
header: ecffffffffffffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0000010000000000
header: edffffffffffffff010000000000
kid: 0x00ffffffffffffff
ctr: 0x0000ffffffffffff
header: edffffffffffffffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0001000000000000
header: eeffffffffffffff01000000000000
kid: 0x00ffffffffffffff
ctr: 0x00ffffffffffffff
header: eeffffffffffffffffffffffffffff
kid: 0x00ffffffffffffff
ctr: 0x0100000000000000
header: efffffffffffffff0100000000000000
kid: 0x00ffffffffffffff
ctr: 0xffffffffffffffff
header: efffffffffffffffffffffffffffffff
kid: 0x0100000000000000
ctr: 0x0000000000000000
header: f00100000000000000
kid: 0x0100000000000000
ctr: 0x0000000000000001
header: f10100000000000000
kid: 0x0100000000000000
ctr: 0x00000000000000ff
header: f80100000000000000ff
kid: 0x0100000000000000
ctr: 0x0000000000000100
header: f901000000000000000100
kid: 0x0100000000000000
ctr: 0x000000000000ffff
header: f90100000000000000ffff
kid: 0x0100000000000000
ctr: 0x0000000000010000
header: fa0100000000000000010000
kid: 0x0100000000000000
ctr: 0x0000000000ffffff
header: fa0100000000000000ffffff
kid: 0x0100000000000000
ctr: 0x0000000001000000
header: fb010000000000000001000000
kid: 0x0100000000000000
ctr: 0x00000000ffffffff
header: fb0100000000000000ffffffff
kid: 0x0100000000000000
ctr: 0x0000000100000000
header: fc01000000000000000100000000
kid: 0x0100000000000000
ctr: 0x000000ffffffffff
header: fc0100000000000000ffffffffff
kid: 0x0100000000000000
ctr: 0x0000010000000000
header: fd0100000000000000010000000000
kid: 0x0100000000000000
ctr: 0x0000ffffffffffff
header: fd0100000000000000ffffffffffff
kid: 0x0100000000000000
ctr: 0x0001000000000000
header: fe010000000000000001000000000000
kid: 0x0100000000000000
ctr: 0x00ffffffffffffff
header: fe0100000000000000ffffffffffffff
kid: 0x0100000000000000
ctr: 0x0100000000000000
header: ff010000000000000001000000000000
00
kid: 0x0100000000000000
ctr: 0xffffffffffffffff
header: ff0100000000000000ffffffffffffff
ff
kid: 0xffffffffffffffff
ctr: 0x0000000000000000
header: f0ffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x0000000000000001
header: f1ffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x00000000000000ff
header: f8ffffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x0000000000000100
header: f9ffffffffffffffff0100
kid: 0xffffffffffffffff
ctr: 0x000000000000ffff
header: f9ffffffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x0000000000010000
header: faffffffffffffffff010000
kid: 0xffffffffffffffff
ctr: 0x0000000000ffffff
header: faffffffffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x0000000001000000
header: fbffffffffffffffff01000000
kid: 0xffffffffffffffff
ctr: 0x00000000ffffffff
header: fbffffffffffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x0000000100000000
header: fcffffffffffffffff0100000000
kid: 0xffffffffffffffff
ctr: 0x000000ffffffffff
header: fcffffffffffffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x0000010000000000
header: fdffffffffffffffff010000000000
kid: 0xffffffffffffffff
ctr: 0x0000ffffffffffff
header: fdffffffffffffffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x0001000000000000
header: feffffffffffffffff01000000000000
kid: 0xffffffffffffffff
ctr: 0x00ffffffffffffff
header: feffffffffffffffffffffffffffffff
kid: 0xffffffffffffffff
ctr: 0x0100000000000000
header: ffffffffffffffffff01000000000000
00
kid: 0xffffffffffffffff
ctr: 0xffffffffffffffff
header: ffffffffffffffffffffffffffffffff
ff
C.2. AEAD Encryption/Decryption Using AES-CTR and HMAC
For each case, we provide:
* cipher_suite: The index of the cipher suite in use (see
Section 8.1)
* key: The key input to encryption/decryption
* enc_key: The encryption subkey produced by the derive_subkeys()
algorithm
* auth_key: The encryption subkey produced by the derive_subkeys()
algorithm
* nonce: The nonce input to encryption/decryption
* aad: The aad input to encryption/decryption
* pt: The plaintext
* ct: The ciphertext
An implementation should verify that the following are true, where
AEAD.Encrypt and AEAD.Decrypt are as defined in Section 4.5.1:
* AEAD.Encrypt(key, nonce, aad, pt) == ct
* AEAD.Decrypt(key, nonce, aad, ct) == pt
The other values in the test vector are intermediate values provided
to facilitate debugging of test failures.
cipher_suite: 0x0001
key: 000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f
202122232425262728292a2b2c2d2e2f
enc_key: 000102030405060708090a0b0c0d0e0f
auth_key: 101112131415161718191a1b1c1d1e1f
202122232425262728292a2b2c2d2e2f
nonce: 101112131415161718191a1b
aad: 4945544620534672616d65205747
pt: 64726166742d696574662d736672616d
652d656e63
ct: 6339af04ada1d064688a442b8dc69d5b
6bfa40f4bef0583e8081069cc60705
cipher_suite: 0x0002
key: 000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f
202122232425262728292a2b2c2d2e2f
enc_key: 000102030405060708090a0b0c0d0e0f
auth_key: 101112131415161718191a1b1c1d1e1f
202122232425262728292a2b2c2d2e2f
nonce: 101112131415161718191a1b
aad: 4945544620534672616d65205747
pt: 64726166742d696574662d736672616d
652d656e63
ct: 6339af04ada1d064688a442b8dc69d5b
6bfa40f4be6e93b7da076927bb
cipher_suite: 0x0003
key: 000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f
202122232425262728292a2b2c2d2e2f
enc_key: 000102030405060708090a0b0c0d0e0f
auth_key: 101112131415161718191a1b1c1d1e1f
202122232425262728292a2b2c2d2e2f
nonce: 101112131415161718191a1b
aad: 4945544620534672616d65205747
pt: 64726166742d696574662d736672616d
652d656e63
ct: 6339af04ada1d064688a442b8dc69d5b
6bfa40f4be09480509
C.3. SFrame Encryption/Decryption
For each case, we provide:
* cipher_suite: The index of the cipher suite in use (see
Section 8.1)
* kid: A KID value
* ctr: A CTR value
* base_key: The base_key input to the derive_key_salt algorithm
* sframe_key_label: The label used to derive sframe_key in the
derive_key_salt algorithm
* sframe_salt_label: The label used to derive sframe_salt in the
derive_key_salt algorithm
* sframe_secret: The sframe_secret variable in the derive_key_salt
algorithm
* sframe_key: The sframe_key value produced by the derive_key_salt
algorithm
* sframe_salt: The sframe_salt value produced by the derive_key_salt
algorithm
* metadata: The metadata input to the SFrame encrypt algorithm
* pt: The plaintext
* ct: The SFrame ciphertext
An implementation should verify that the following are true, where
encrypt and decrypt are as defined in Section 4.4, using an SFrame
context initialized with base_key assigned to kid:
* encrypt(ctr, kid, metadata, plaintext) == ct
* decrypt(metadata, ct) == pt
The other values in the test vector are intermediate values provided
to facilitate debugging of test failures.
cipher_suite: 0x0001
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
74206b65792000000000000001230001
sframe_salt_label: 534672616d6520312e30205365637265
742073616c7420000000000000012300
01
sframe_secret: d926952ca8b7ec4a95941d1ada3a5203
ceff8cceee34f574d23909eb314c40c0
sframe_key: 3f7d9a7c83ae8e1c8a11ae695ab59314
b367e359fadac7b9c46b2bc6f81f46e1
6b96f0811868d59402b7e870102720b3
sframe_salt: 50b29329a04dc0f184ac3168
metadata: 4945544620534672616d65205747
nonce: 50b29329a04dc0f184ac740f
aad: 99012345674945544620534672616d65
205747
pt: 64726166742d696574662d736672616d
652d656e63
ct: 9901234567449408b6f490086165b9d6
f62b24ae1a59a56486b4ae8ed036b889
12e24f11
cipher_suite: 0x0002
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
74206b65792000000000000001230002
sframe_salt_label: 534672616d6520312e30205365637265
742073616c7420000000000000012300
02
sframe_secret: d926952ca8b7ec4a95941d1ada3a5203
ceff8cceee34f574d23909eb314c40c0
sframe_key: e2ec5c797540310483b16bf6e7a570d2
a27d192fe869c7ccd8584a8d9dab9154
9fbe553f5113461ec6aa83bf3865553e
sframe_salt: e68ac8dd3d02fbcd368c5577
metadata: 4945544620534672616d65205747
nonce: e68ac8dd3d02fbcd368c1010
aad: 99012345674945544620534672616d65
205747
pt: 64726166742d696574662d736672616d
652d656e63
ct: 99012345673f31438db4d09434e43afa
0f8a2f00867a2be085046a9f5cb4f101
d607
cipher_suite: 0x0003
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
74206b65792000000000000001230003
sframe_salt_label: 534672616d6520312e30205365637265
742073616c7420000000000000012300
03
sframe_secret: d926952ca8b7ec4a95941d1ada3a5203
ceff8cceee34f574d23909eb314c40c0
sframe_key: 2c5703089cbb8c583475e4fc461d97d1
8809df79b6d550f78eb6d50ffa80d892
11d57909934f46f5405e38cd583c69fe
sframe_salt: 38c16e4f5159700c00c7f350
metadata: 4945544620534672616d65205747
nonce: 38c16e4f5159700c00c7b637
aad: 99012345674945544620534672616d65
205747
pt: 64726166742d696574662d736672616d
652d656e63
ct: 990123456717fc8af28a5a695afcfc6c
8df6358a17e26b2fcb3bae32e443
cipher_suite: 0x0004
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
74206b65792000000000000001230004
sframe_salt_label: 534672616d6520312e30205365637265
742073616c7420000000000000012300
04
sframe_secret: d926952ca8b7ec4a95941d1ada3a5203
ceff8cceee34f574d23909eb314c40c0
sframe_key: d34f547f4ca4f9a7447006fe7fcbf768
sframe_salt: 75234edefe07819026751816
metadata: 4945544620534672616d65205747
nonce: 75234edefe07819026755d71
aad: 99012345674945544620534672616d65
205747
pt: 64726166742d696574662d736672616d
652d656e63
ct: 9901234567b7412c2513a1b66dbb4884
1bbaf17f598751176ad847681a69c6d0
b091c07018ce4adb34eb
cipher_suite: 0x0005
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
74206b65792000000000000001230005
sframe_salt_label: 534672616d6520312e30205365637265
742073616c7420000000000000012300
05
sframe_secret: 0fc3ea6de6aac97a35f194cf9bed94d4
b5230f1cb45a785c9fe5dce9c188938a
b6ba005bc4c0a19181599e9d1bcf7b74
aca48b60bf5e254e546d809313e083a3
sframe_key: d3e27b0d4a5ae9e55df01a70e6d4d28d
969b246e2936f4b7a5d9b494da6b9633
sframe_salt: 84991c167b8cd23c93708ec7
metadata: 4945544620534672616d65205747
nonce: 84991c167b8cd23c9370cba0
aad: 99012345674945544620534672616d65
205747
pt: 64726166742d696574662d736672616d
652d656e63
ct: 990123456794f509d36e9beacb0e261d
99c7d1e972f1fed787d4049f17ca2135
3c1cc24d56ceabced279
Acknowledgements
The authors wish to specially thank Dr. Alex Gouaillard as one of the
early contributors to the document. His passion and energy were key
to the design and development of SFrame.
Contributors
Frédéric Jacobs
Apple
Email: frederic.jacobs@apple.com
Marta Mularczyk
Amazon
Email: mulmarta@amazon.com
Suhas Nandakumar
Cisco
Email: snandaku@cisco.com
Tomas Rigaux
Cisco
Email: trigaux@cisco.com
Raphael Robert
Phoenix R&D
Email: ietf@raphaelrobert.com
Authors' Addresses
Emad Omara
Apple
Email: eomara@apple.com
Justin Uberti
Fixie.ai
Email: justin@fixie.ai
Sergio Garcia Murillo
CoSMo Software
Email: sergio.garcia.murillo@cosmosoftware.io
Richard Barnes (editor)
Cisco
Email: rlb@ipv.sx
Youenn Fablet
Apple
Email: youenn@apple.com
|