aboutsummaryrefslogtreecommitdiff
path: root/vendor/gmp-6.3.0/mpz/millerrabin.c
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/gmp-6.3.0/mpz/millerrabin.c')
-rw-r--r--vendor/gmp-6.3.0/mpz/millerrabin.c216
1 files changed, 216 insertions, 0 deletions
diff --git a/vendor/gmp-6.3.0/mpz/millerrabin.c b/vendor/gmp-6.3.0/mpz/millerrabin.c
new file mode 100644
index 0000000..98c4d6a
--- /dev/null
+++ b/vendor/gmp-6.3.0/mpz/millerrabin.c
@@ -0,0 +1,216 @@
+/* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality
+ test found in Knuth's Seminumerical Algorithms book. If the function
+ mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is
+ 'probably' prime. The probability of a false positive is (1/4)**reps, where
+ reps is the number of internal passes of the probabilistic algorithm. Knuth
+ indicates that 25 passes are reasonable.
+
+ With the current implementation, the first 24 MR-tests are substituted by a
+ Baillie-PSW probable prime test.
+
+ This implementation of the Baillie-PSW test was checked up to 2463*10^12,
+ for smaller values no MR-test is performed, regardless of reps, and
+ 2 ("surely prime") is returned if the number was not proved composite.
+
+ If GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS is defined as non-zero,
+ the code assumes that the Baillie-PSW test was checked up to 2^64.
+
+ THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST
+ CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
+ FUTURE GNU MP RELEASES.
+
+Copyright 1991, 1993, 1994, 1996-2002, 2005, 2014, 2018-2022 Free
+Software Foundation, Inc.
+
+Contributed by John Amanatides.
+Changed to "BPSW, then Miller Rabin if required" by Marco Bodrato.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+ * the GNU Lesser General Public License as published by the Free
+ Software Foundation; either version 3 of the License, or (at your
+ option) any later version.
+
+or
+
+ * the GNU General Public License as published by the Free Software
+ Foundation; either version 2 of the License, or (at your option) any
+ later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library. If not,
+see https://www.gnu.org/licenses/. */
+
+#include "gmp-impl.h"
+
+#ifndef GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS
+#define GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS 0
+#endif
+
+static int millerrabin (mpz_srcptr,
+ mpz_ptr, mpz_ptr,
+ mpz_srcptr, unsigned long int);
+
+int
+mpz_millerrabin (mpz_srcptr n, int reps)
+{
+ mpz_t nm, x, y, q;
+ mp_bitcnt_t k;
+ int is_prime;
+ TMP_DECL;
+ TMP_MARK;
+
+ ASSERT (SIZ (n) > 0);
+ MPZ_TMP_INIT (nm, SIZ (n) + 1);
+ mpz_tdiv_q_2exp (nm, n, 1);
+
+ MPZ_TMP_INIT (x, SIZ (n) + 1);
+ MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */
+ MPZ_TMP_INIT (q, SIZ (n));
+
+ /* Find q and k, where q is odd and n = 1 + 2**k * q. */
+ k = mpn_scan1 (PTR (nm), 0);
+ mpz_tdiv_q_2exp (q, nm, k);
+ ++k;
+
+ /* BPSW test */
+ mpz_set_ui (x, 2);
+ is_prime = millerrabin (n, x, y, q, k) && mpz_stronglucas (n, x, y);
+
+ if (is_prime)
+ {
+ if (
+#if GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS
+ /* Consider numbers up to 2^64 that pass the BPSW test as primes. */
+#if GMP_NUMB_BITS <= 64
+ SIZ (n) <= 64 / GMP_NUMB_BITS
+#else
+ 0
+#endif
+#if 64 % GMP_NUMB_BITS != 0
+ || SIZ (n) - 64 / GMP_NUMB_BITS == (PTR (n) [64 / GMP_NUMB_BITS] < CNST_LIMB(1) << 64 % GMP_NUMB_BITS)
+#endif
+#else
+ /* Consider numbers up to 35*2^46 that pass the BPSW test as primes.
+ This implementation was tested up to 2463*10^12 > 2^51+2^47+2^46 */
+ /* 2^5 < 35 = 0b100011 < 2^6 */
+#define GMP_BPSW_LIMB_CONST CNST_LIMB(35)
+#define GMP_BPSW_BITS_CONST (LOG2C(35) - 1)
+#define GMP_BPSW_BITS_LIMIT (46 + GMP_BPSW_BITS_CONST)
+
+#define GMP_BPSW_LIMBS_LIMIT (GMP_BPSW_BITS_LIMIT / GMP_NUMB_BITS)
+#define GMP_BPSW_BITS_MOD (GMP_BPSW_BITS_LIMIT % GMP_NUMB_BITS)
+
+#if GMP_NUMB_BITS <= GMP_BPSW_BITS_LIMIT
+ SIZ (n) <= GMP_BPSW_LIMBS_LIMIT
+#else
+ 0
+#endif
+#if GMP_BPSW_BITS_MOD >= GMP_BPSW_BITS_CONST
+ || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST << (GMP_BPSW_BITS_MOD - GMP_BPSW_BITS_CONST))
+#else
+#if GMP_BPSW_BITS_MOD != 0
+ || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST >> (GMP_BPSW_BITS_CONST - GMP_BPSW_BITS_MOD))
+#else
+#if GMP_NUMB_BITS > GMP_BPSW_BITS_CONST
+ || SIZ (nm) - GMP_BPSW_LIMBS_LIMIT + 1 == (PTR (nm) [GMP_BPSW_LIMBS_LIMIT - 1] < GMP_BPSW_LIMB_CONST << (GMP_NUMB_BITS - 1 - GMP_BPSW_BITS_CONST))
+#endif
+#endif
+#endif
+
+#undef GMP_BPSW_BITS_LIMIT
+#undef GMP_BPSW_LIMB_CONST
+#undef GMP_BPSW_BITS_CONST
+#undef GMP_BPSW_LIMBS_LIMIT
+#undef GMP_BPSW_BITS_MOD
+
+#endif
+ )
+ is_prime = 2;
+ else
+ {
+ reps -= 24;
+ if (reps > 0)
+ {
+ gmp_randstate_t rstate;
+ /* (n-5)/2 */
+ mpz_sub_ui (nm, nm, 2L);
+ ASSERT (mpz_cmp_ui (nm, 1L) >= 0);
+
+ gmp_randinit_default (rstate);
+
+ do
+ {
+ /* 3 to (n-1)/2 inclusive, don't want 1, 0 or 2 */
+ mpz_urandomm (x, rstate, nm);
+ mpz_add_ui (x, x, 3L);
+
+ is_prime = millerrabin (n, x, y, q, k);
+ } while (--reps > 0 && is_prime);
+
+ gmp_randclear (rstate);
+ }
+ }
+ }
+ TMP_FREE;
+ return is_prime;
+}
+
+static int
+mod_eq_m1 (mpz_srcptr x, mpz_srcptr m)
+{
+ mp_size_t ms;
+ mp_srcptr mp, xp;
+
+ ms = SIZ (m);
+ if (SIZ (x) != ms)
+ return 0;
+ ASSERT (ms > 0);
+
+ mp = PTR (m);
+ xp = PTR (x);
+ ASSERT ((mp[0] - 1) == (mp[0] ^ 1)); /* n is odd */
+
+ if ((*xp ^ CNST_LIMB(1) ^ *mp) != CNST_LIMB(0)) /* xp[0] != mp[0] - 1 */
+ return 0;
+ else
+ {
+ int cmp;
+
+ --ms;
+ ++xp;
+ ++mp;
+
+ MPN_CMP (cmp, xp, mp, ms);
+
+ return cmp == 0;
+ }
+}
+
+static int
+millerrabin (mpz_srcptr n, mpz_ptr x, mpz_ptr y,
+ mpz_srcptr q, mp_bitcnt_t k)
+{
+ mpz_powm (y, x, q, n);
+
+ if (mpz_cmp_ui (y, 1L) == 0 || mod_eq_m1 (y, n))
+ return 1;
+
+ for (mp_bitcnt_t i = 1; i < k; ++i)
+ {
+ mpz_powm_ui (y, y, 2L, n);
+ if (mod_eq_m1 (y, n))
+ return 1;
+ }
+ return 0;
+}