#include #include "sha1.h" #define R(mi, mj, mk, ml, ei, ej, f) \ do { \ ei = _mm_sha1nexte_epu32(ei, mi); \ ej = abcd; \ mj = _mm_sha1msg2_epu32(mj, mi); \ abcd = _mm_sha1rnds4_epu32(abcd, ei, f); \ ml = _mm_sha1msg1_epu32(ml, mi); \ mk = _mm_xor_si128(mk, mi); \ } while (0) void sha1hashblk(sha1_t *s, const uint8_t *blk) { __m128i abcd, e0, e1; __m128i abcd_save, e_save; __m128i msg0, msg1, msg2, msg3; /* Masks for swapping endianness. We make BSWAPDMSK a macro to please the compiler (it wants immediate values). */ #define bswapdmsk 0x1B /* 0b00'01'10'11 */ const __m128i bswapbmsk = _mm_set_epi64x( 0x0001020304050607ULL, 0x08090A0B0C0D0E0FULL ); const __m128i *blkx = (const __m128i *)blk; abcd_save = abcd = _mm_shuffle_epi32(_mm_loadu_si128((__m128i *)s->dgst), bswapdmsk); e_save = e0 = _mm_set_epi32(s->dgst[4], 0, 0, 0); /* Rounds 0–3 */ msg0 = _mm_shuffle_epi8(_mm_loadu_si128(blkx + 0), bswapbmsk); e0 = _mm_add_epi32(e0, msg0); e1 = abcd; abcd = _mm_sha1rnds4_epu32(abcd, e0, 0); /* Rounds 4–7 */ msg1 = _mm_shuffle_epi8(_mm_loadu_si128(blkx + 1), bswapbmsk); e1 = _mm_sha1nexte_epu32(e1, msg1); e0 = abcd; abcd = _mm_sha1rnds4_epu32(abcd, e1, 0); msg0 = _mm_sha1msg1_epu32(msg0, msg1); /* Rounds 8–11 */ msg2 = _mm_shuffle_epi8(_mm_loadu_si128(blkx + 2), bswapbmsk); e0 = _mm_sha1nexte_epu32(e0, msg2); e1 = abcd; abcd = _mm_sha1rnds4_epu32(abcd, e0, 0); msg1 = _mm_sha1msg1_epu32(msg1, msg2); msg0 = _mm_xor_si128(msg0, msg2); msg3 = _mm_shuffle_epi8(_mm_loadu_si128(blkx + 3), bswapbmsk); R(msg3, msg0, msg1, msg2, e1, e0, 0); /* Rounds 12–15 */ R(msg0, msg1, msg2, msg3, e0, e1, 0); /* Rounds 16–19 */ R(msg1, msg2, msg3, msg0, e1, e0, 1); /* Rounds 20–23 */ R(msg2, msg3, msg0, msg1, e0, e1, 1); /* Rounds 24–27 */ R(msg3, msg0, msg1, msg2, e1, e0, 1); /* Rounds 28–31 */ R(msg0, msg1, msg2, msg3, e0, e1, 1); /* Rounds 32–35 */ R(msg1, msg2, msg3, msg0, e1, e0, 1); /* Rounds 36–39 */ R(msg2, msg3, msg0, msg1, e0, e1, 2); /* Rounds 40–43 */ R(msg3, msg0, msg1, msg2, e1, e0, 2); /* Rounds 44–47 */ R(msg0, msg1, msg2, msg3, e0, e1, 2); /* Rounds 48–51 */ R(msg1, msg2, msg3, msg0, e1, e0, 2); /* Rounds 52–55 */ R(msg2, msg3, msg0, msg1, e0, e1, 2); /* Rounds 56–59 */ R(msg3, msg0, msg1, msg2, e1, e0, 3); /* Rounds 60–63 */ R(msg0, msg1, msg2, msg3, e0, e1, 3); /* Rounds 64–67 */ /* Rounds 68–71 */ e1 = _mm_sha1nexte_epu32(e1, msg1); e0 = abcd; msg2 = _mm_sha1msg2_epu32(msg2, msg1); abcd = _mm_sha1rnds4_epu32(abcd, e1, 3); msg3 = _mm_xor_si128(msg3, msg1); /* Rounds 72–75 */ e0 = _mm_sha1nexte_epu32(e0, msg2); e1 = abcd; msg3 = _mm_sha1msg2_epu32(msg3, msg2); abcd = _mm_sha1rnds4_epu32(abcd, e0, 3); /* Rounds 76–79 */ e1 = _mm_sha1nexte_epu32(e1, msg3); e0 = abcd; abcd = _mm_sha1rnds4_epu32(abcd, e1, 3); e0 = _mm_sha1nexte_epu32(e0, e_save); abcd = _mm_add_epi32(abcd, abcd_save); _mm_storeu_si128((__m128i *)s->dgst, _mm_shuffle_epi32(abcd, bswapdmsk)); s->dgst[4] = _mm_extract_epi32(e0, 3); }