From 746a09a5854b9ce17e40caead51e1a42c2721bb1 Mon Sep 17 00:00:00 2001 From: Thomas Voss Date: Fri, 6 Jun 2025 02:49:26 +0200 Subject: Unvendor dependencies --- vendor/golang.org/x/tools/go/ssa/ssa.go | 1871 ------------------------------- 1 file changed, 1871 deletions(-) delete mode 100644 vendor/golang.org/x/tools/go/ssa/ssa.go (limited to 'vendor/golang.org/x/tools/go/ssa/ssa.go') diff --git a/vendor/golang.org/x/tools/go/ssa/ssa.go b/vendor/golang.org/x/tools/go/ssa/ssa.go deleted file mode 100644 index 1231afd..0000000 --- a/vendor/golang.org/x/tools/go/ssa/ssa.go +++ /dev/null @@ -1,1871 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package ssa - -// This package defines a high-level intermediate representation for -// Go programs using static single-assignment (SSA) form. - -import ( - "fmt" - "go/ast" - "go/constant" - "go/token" - "go/types" - "sync" - - "golang.org/x/tools/go/types/typeutil" - "golang.org/x/tools/internal/typeparams" -) - -// A Program is a partial or complete Go program converted to SSA form. -type Program struct { - Fset *token.FileSet // position information for the files of this Program - imported map[string]*Package // all importable Packages, keyed by import path - packages map[*types.Package]*Package // all created Packages - mode BuilderMode // set of mode bits for SSA construction - MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets - - canon *canonizer // type canonicalization map - ctxt *types.Context // cache for type checking instantiations - - methodsMu sync.Mutex - methodSets typeutil.Map // maps type to its concrete *methodSet - - // memoization of whether a type refers to type parameters - hasParamsMu sync.Mutex - hasParams typeparams.Free - - runtimeTypesMu sync.Mutex - runtimeTypes typeutil.Map // set of runtime types (from MakeInterface) - - // objectMethods is a memoization of objectMethod - // to avoid creation of duplicate methods from type information. - objectMethodsMu sync.Mutex - objectMethods map[*types.Func]*Function -} - -// A Package is a single analyzed Go package containing Members for -// all package-level functions, variables, constants and types it -// declares. These may be accessed directly via Members, or via the -// type-specific accessor methods Func, Type, Var and Const. -// -// Members also contains entries for "init" (the synthetic package -// initializer) and "init#%d", the nth declared init function, -// and unspecified other things too. -type Package struct { - Prog *Program // the owning program - Pkg *types.Package // the corresponding go/types.Package - Members map[string]Member // all package members keyed by name (incl. init and init#%d) - objects map[types.Object]Member // mapping of package objects to members (incl. methods). Contains *NamedConst, *Global, *Function (values but not types) - init *Function // Func("init"); the package's init function - debug bool // include full debug info in this package - syntax bool // package was loaded from syntax - - // The following fields are set transiently, then cleared - // after building. - buildOnce sync.Once // ensures package building occurs once - ninit int32 // number of init functions - info *types.Info // package type information - files []*ast.File // package ASTs - created []*Function // members created as a result of building this package (includes declared functions, wrappers) - initVersion map[ast.Expr]string // goversion to use for each global var init expr -} - -// A Member is a member of a Go package, implemented by *NamedConst, -// *Global, *Function, or *Type; they are created by package-level -// const, var, func and type declarations respectively. -type Member interface { - Name() string // declared name of the package member - String() string // package-qualified name of the package member - RelString(*types.Package) string // like String, but relative refs are unqualified - Object() types.Object // typechecker's object for this member, if any - Pos() token.Pos // position of member's declaration, if known - Type() types.Type // type of the package member - Token() token.Token // token.{VAR,FUNC,CONST,TYPE} - Package() *Package // the containing package -} - -// A Type is a Member of a Package representing a package-level named type. -type Type struct { - object *types.TypeName - pkg *Package -} - -// A NamedConst is a Member of a Package representing a package-level -// named constant. -// -// Pos() returns the position of the declaring ast.ValueSpec.Names[*] -// identifier. -// -// NB: a NamedConst is not a Value; it contains a constant Value, which -// it augments with the name and position of its 'const' declaration. -type NamedConst struct { - object *types.Const - Value *Const - pkg *Package -} - -// A Value is an SSA value that can be referenced by an instruction. -type Value interface { - // Name returns the name of this value, and determines how - // this Value appears when used as an operand of an - // Instruction. - // - // This is the same as the source name for Parameters, - // Builtins, Functions, FreeVars, Globals. - // For constants, it is a representation of the constant's value - // and type. For all other Values this is the name of the - // virtual register defined by the instruction. - // - // The name of an SSA Value is not semantically significant, - // and may not even be unique within a function. - Name() string - - // If this value is an Instruction, String returns its - // disassembled form; otherwise it returns unspecified - // human-readable information about the Value, such as its - // kind, name and type. - String() string - - // Type returns the type of this value. Many instructions - // (e.g. IndexAddr) change their behaviour depending on the - // types of their operands. - Type() types.Type - - // Parent returns the function to which this Value belongs. - // It returns nil for named Functions, Builtin, Const and Global. - Parent() *Function - - // Referrers returns the list of instructions that have this - // value as one of their operands; it may contain duplicates - // if an instruction has a repeated operand. - // - // Referrers actually returns a pointer through which the - // caller may perform mutations to the object's state. - // - // Referrers is currently only defined if Parent()!=nil, - // i.e. for the function-local values FreeVar, Parameter, - // Functions (iff anonymous) and all value-defining instructions. - // It returns nil for named Functions, Builtin, Const and Global. - // - // Instruction.Operands contains the inverse of this relation. - Referrers() *[]Instruction - - // Pos returns the location of the AST token most closely - // associated with the operation that gave rise to this value, - // or token.NoPos if it was not explicit in the source. - // - // For each ast.Node type, a particular token is designated as - // the closest location for the expression, e.g. the Lparen - // for an *ast.CallExpr. This permits a compact but - // approximate mapping from Values to source positions for use - // in diagnostic messages, for example. - // - // (Do not use this position to determine which Value - // corresponds to an ast.Expr; use Function.ValueForExpr - // instead. NB: it requires that the function was built with - // debug information.) - Pos() token.Pos -} - -// An Instruction is an SSA instruction that computes a new Value or -// has some effect. -// -// An Instruction that defines a value (e.g. BinOp) also implements -// the Value interface; an Instruction that only has an effect (e.g. Store) -// does not. -type Instruction interface { - // String returns the disassembled form of this value. - // - // Examples of Instructions that are Values: - // "x + y" (BinOp) - // "len([])" (Call) - // Note that the name of the Value is not printed. - // - // Examples of Instructions that are not Values: - // "return x" (Return) - // "*y = x" (Store) - // - // (The separation Value.Name() from Value.String() is useful - // for some analyses which distinguish the operation from the - // value it defines, e.g., 'y = local int' is both an allocation - // of memory 'local int' and a definition of a pointer y.) - String() string - - // Parent returns the function to which this instruction - // belongs. - Parent() *Function - - // Block returns the basic block to which this instruction - // belongs. - Block() *BasicBlock - - // setBlock sets the basic block to which this instruction belongs. - setBlock(*BasicBlock) - - // Operands returns the operands of this instruction: the - // set of Values it references. - // - // Specifically, it appends their addresses to rands, a - // user-provided slice, and returns the resulting slice, - // permitting avoidance of memory allocation. - // - // The operands are appended in undefined order, but the order - // is consistent for a given Instruction; the addresses are - // always non-nil but may point to a nil Value. Clients may - // store through the pointers, e.g. to effect a value - // renaming. - // - // Value.Referrers is a subset of the inverse of this - // relation. (Referrers are not tracked for all types of - // Values.) - Operands(rands []*Value) []*Value - - // Pos returns the location of the AST token most closely - // associated with the operation that gave rise to this - // instruction, or token.NoPos if it was not explicit in the - // source. - // - // For each ast.Node type, a particular token is designated as - // the closest location for the expression, e.g. the Go token - // for an *ast.GoStmt. This permits a compact but approximate - // mapping from Instructions to source positions for use in - // diagnostic messages, for example. - // - // (Do not use this position to determine which Instruction - // corresponds to an ast.Expr; see the notes for Value.Pos. - // This position may be used to determine which non-Value - // Instruction corresponds to some ast.Stmts, but not all: If - // and Jump instructions have no Pos(), for example.) - Pos() token.Pos -} - -// A Node is a node in the SSA value graph. Every concrete type that -// implements Node is also either a Value, an Instruction, or both. -// -// Node contains the methods common to Value and Instruction, plus the -// Operands and Referrers methods generalized to return nil for -// non-Instructions and non-Values, respectively. -// -// Node is provided to simplify SSA graph algorithms. Clients should -// use the more specific and informative Value or Instruction -// interfaces where appropriate. -type Node interface { - // Common methods: - String() string - Pos() token.Pos - Parent() *Function - - // Partial methods: - Operands(rands []*Value) []*Value // nil for non-Instructions - Referrers() *[]Instruction // nil for non-Values -} - -// Function represents the parameters, results, and code of a function -// or method. -// -// If Blocks is nil, this indicates an external function for which no -// Go source code is available. In this case, FreeVars, Locals, and -// Params are nil too. Clients performing whole-program analysis must -// handle external functions specially. -// -// Blocks contains the function's control-flow graph (CFG). -// Blocks[0] is the function entry point; block order is not otherwise -// semantically significant, though it may affect the readability of -// the disassembly. -// To iterate over the blocks in dominance order, use DomPreorder(). -// -// Recover is an optional second entry point to which control resumes -// after a recovered panic. The Recover block may contain only a return -// statement, preceded by a load of the function's named return -// parameters, if any. -// -// A nested function (Parent()!=nil) that refers to one or more -// lexically enclosing local variables ("free variables") has FreeVars. -// Such functions cannot be called directly but require a -// value created by MakeClosure which, via its Bindings, supplies -// values for these parameters. -// -// If the function is a method (Signature.Recv() != nil) then the first -// element of Params is the receiver parameter. -// -// A Go package may declare many functions called "init". -// For each one, Object().Name() returns "init" but Name() returns -// "init#1", etc, in declaration order. -// -// Pos() returns the declaring ast.FuncLit.Type.Func or the position -// of the ast.FuncDecl.Name, if the function was explicit in the -// source. Synthetic wrappers, for which Synthetic != "", may share -// the same position as the function they wrap. -// Syntax.Pos() always returns the position of the declaring "func" token. -// -// When the operand of a range statement is an iterator function, -// the loop body is transformed into a synthetic anonymous function -// that is passed as the yield argument in a call to the iterator. -// In that case, Function.Pos is the position of the "range" token, -// and Function.Syntax is the ast.RangeStmt. -// -// Synthetic functions, for which Synthetic != "", are functions -// that do not appear in the source AST. These include: -// - method wrappers, -// - thunks, -// - bound functions, -// - empty functions built from loaded type information, -// - yield functions created from range-over-func loops, -// - package init functions, and -// - instantiations of generic functions. -// -// Synthetic wrapper functions may share the same position -// as the function they wrap. -// -// Type() returns the function's Signature. -// -// A generic function is a function or method that has uninstantiated type -// parameters (TypeParams() != nil). Consider a hypothetical generic -// method, (*Map[K,V]).Get. It may be instantiated with all -// non-parameterized types as (*Map[string,int]).Get or with -// parameterized types as (*Map[string,U]).Get, where U is a type parameter. -// In both instantiations, Origin() refers to the instantiated generic -// method, (*Map[K,V]).Get, TypeParams() refers to the parameters [K,V] of -// the generic method. TypeArgs() refers to [string,U] or [string,int], -// respectively, and is nil in the generic method. -type Function struct { - name string - object *types.Func // symbol for declared function (nil for FuncLit or synthetic init) - method *selection // info about provenance of synthetic methods; thunk => non-nil - Signature *types.Signature - pos token.Pos - - // source information - Synthetic string // provenance of synthetic function; "" for true source functions - syntax ast.Node // *ast.Func{Decl,Lit}, if from syntax (incl. generic instances) or (*ast.RangeStmt if a yield function) - info *types.Info // type annotations (iff syntax != nil) - goversion string // Go version of syntax (NB: init is special) - - parent *Function // enclosing function if anon; nil if global - Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error) - Prog *Program // enclosing program - - buildshared *task // wait for a shared function to be done building (may be nil if <=1 builder ever needs to wait) - - // These fields are populated only when the function body is built: - - Params []*Parameter // function parameters; for methods, includes receiver - FreeVars []*FreeVar // free variables whose values must be supplied by closure - Locals []*Alloc // frame-allocated variables of this function - Blocks []*BasicBlock // basic blocks of the function; nil => external - Recover *BasicBlock // optional; control transfers here after recovered panic - AnonFuncs []*Function // anonymous functions (from FuncLit,RangeStmt) directly beneath this one - referrers []Instruction // referring instructions (iff Parent() != nil) - anonIdx int32 // position of a nested function in parent's AnonFuncs. fn.Parent()!=nil => fn.Parent().AnonFunc[fn.anonIdx] == fn. - - typeparams *types.TypeParamList // type parameters of this function. typeparams.Len() > 0 => generic or instance of generic function - typeargs []types.Type // type arguments that instantiated typeparams. len(typeargs) > 0 => instance of generic function - topLevelOrigin *Function // the origin function if this is an instance of a source function. nil if Parent()!=nil. - generic *generic // instances of this function, if generic - - // The following fields are cleared after building. - build buildFunc // algorithm to build function body (nil => built) - currentBlock *BasicBlock // where to emit code - vars map[*types.Var]Value // addresses of local variables - results []*Alloc // result allocations of the current function - returnVars []*types.Var // variables for a return statement. Either results or for range-over-func a parent's results - targets *targets // linked stack of branch targets - lblocks map[*types.Label]*lblock // labelled blocks - subst *subster // type parameter substitutions (if non-nil) - jump *types.Var // synthetic variable for the yield state (non-nil => range-over-func) - deferstack *types.Var // synthetic variable holding enclosing ssa:deferstack() - source *Function // nearest enclosing source function - exits []*exit // exits of the function that need to be resolved - uniq int64 // source of unique ints within the source tree while building -} - -// BasicBlock represents an SSA basic block. -// -// The final element of Instrs is always an explicit transfer of -// control (If, Jump, Return, or Panic). -// -// A block may contain no Instructions only if it is unreachable, -// i.e., Preds is nil. Empty blocks are typically pruned. -// -// BasicBlocks and their Preds/Succs relation form a (possibly cyclic) -// graph independent of the SSA Value graph: the control-flow graph or -// CFG. It is illegal for multiple edges to exist between the same -// pair of blocks. -// -// Each BasicBlock is also a node in the dominator tree of the CFG. -// The tree may be navigated using Idom()/Dominees() and queried using -// Dominates(). -// -// The order of Preds and Succs is significant (to Phi and If -// instructions, respectively). -type BasicBlock struct { - Index int // index of this block within Parent().Blocks - Comment string // optional label; no semantic significance - parent *Function // parent function - Instrs []Instruction // instructions in order - Preds, Succs []*BasicBlock // predecessors and successors - succs2 [2]*BasicBlock // initial space for Succs - dom domInfo // dominator tree info - gaps int // number of nil Instrs (transient) - rundefers int // number of rundefers (transient) -} - -// Pure values ---------------------------------------- - -// A FreeVar represents a free variable of the function to which it -// belongs. -// -// FreeVars are used to implement anonymous functions, whose free -// variables are lexically captured in a closure formed by -// MakeClosure. The value of such a free var is an Alloc or another -// FreeVar and is considered a potentially escaping heap address, with -// pointer type. -// -// FreeVars are also used to implement bound method closures. Such a -// free var represents the receiver value and may be of any type that -// has concrete methods. -// -// Pos() returns the position of the value that was captured, which -// belongs to an enclosing function. -type FreeVar struct { - name string - typ types.Type - pos token.Pos - parent *Function - referrers []Instruction - - // Transiently needed during building. - outer Value // the Value captured from the enclosing context. -} - -// A Parameter represents an input parameter of a function. -type Parameter struct { - name string - object *types.Var // non-nil - typ types.Type - parent *Function - referrers []Instruction -} - -// A Const represents a value known at build time. -// -// Consts include true constants of boolean, numeric, and string types, as -// defined by the Go spec; these are represented by a non-nil Value field. -// -// Consts also include the "zero" value of any type, of which the nil values -// of various pointer-like types are a special case; these are represented -// by a nil Value field. -// -// Pos() returns token.NoPos. -// -// Example printed forms: -// -// 42:int -// "hello":untyped string -// 3+4i:MyComplex -// nil:*int -// nil:[]string -// [3]int{}:[3]int -// struct{x string}{}:struct{x string} -// 0:interface{int|int64} -// nil:interface{bool|int} // no go/constant representation -type Const struct { - typ types.Type - Value constant.Value -} - -// A Global is a named Value holding the address of a package-level -// variable. -// -// Pos() returns the position of the ast.ValueSpec.Names[*] -// identifier. -type Global struct { - name string - object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard - typ types.Type - pos token.Pos - - Pkg *Package -} - -// A Builtin represents a specific use of a built-in function, e.g. len. -// -// Builtins are immutable values. Builtins do not have addresses. -// Builtins can only appear in CallCommon.Value. -// -// Name() indicates the function: one of the built-in functions from the -// Go spec (excluding "make" and "new") or one of these ssa-defined -// intrinsics: -// -// // wrapnilchk returns ptr if non-nil, panics otherwise. -// // (For use in indirection wrappers.) -// func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T -// -// Object() returns a *types.Builtin for built-ins defined by the spec, -// nil for others. -// -// Type() returns a *types.Signature representing the effective -// signature of the built-in for this call. -type Builtin struct { - name string - sig *types.Signature -} - -// Value-defining instructions ---------------------------------------- - -// The Alloc instruction reserves space for a variable of the given type, -// zero-initializes it, and yields its address. -// -// Alloc values are always addresses, and have pointer types, so the -// type of the allocated variable is actually -// Type().Underlying().(*types.Pointer).Elem(). -// -// If Heap is false, Alloc zero-initializes the same local variable in -// the call frame and returns its address; in this case the Alloc must -// be present in Function.Locals. We call this a "local" alloc. -// -// If Heap is true, Alloc allocates a new zero-initialized variable -// each time the instruction is executed. We call this a "new" alloc. -// -// When Alloc is applied to a channel, map or slice type, it returns -// the address of an uninitialized (nil) reference of that kind; store -// the result of MakeSlice, MakeMap or MakeChan in that location to -// instantiate these types. -// -// Pos() returns the ast.CompositeLit.Lbrace for a composite literal, -// or the ast.CallExpr.Rparen for a call to new() or for a call that -// allocates a varargs slice. -// -// Example printed form: -// -// t0 = local int -// t1 = new int -type Alloc struct { - register - Comment string - Heap bool - index int // dense numbering; for lifting -} - -// The Phi instruction represents an SSA φ-node, which combines values -// that differ across incoming control-flow edges and yields a new -// value. Within a block, all φ-nodes must appear before all non-φ -// nodes. -// -// Pos() returns the position of the && or || for short-circuit -// control-flow joins, or that of the *Alloc for φ-nodes inserted -// during SSA renaming. -// -// Example printed form: -// -// t2 = phi [0: t0, 1: t1] -type Phi struct { - register - Comment string // a hint as to its purpose - Edges []Value // Edges[i] is value for Block().Preds[i] -} - -// The Call instruction represents a function or method call. -// -// The Call instruction yields the function result if there is exactly -// one. Otherwise it returns a tuple, the components of which are -// accessed via Extract. -// -// See CallCommon for generic function call documentation. -// -// Pos() returns the ast.CallExpr.Lparen, if explicit in the source. -// -// Example printed form: -// -// t2 = println(t0, t1) -// t4 = t3() -// t7 = invoke t5.Println(...t6) -type Call struct { - register - Call CallCommon -} - -// The BinOp instruction yields the result of binary operation X Op Y. -// -// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source. -// -// Example printed form: -// -// t1 = t0 + 1:int -type BinOp struct { - register - // One of: - // ADD SUB MUL QUO REM + - * / % - // AND OR XOR SHL SHR AND_NOT & | ^ << >> &^ - // EQL NEQ LSS LEQ GTR GEQ == != < <= < >= - Op token.Token - X, Y Value -} - -// The UnOp instruction yields the result of Op X. -// ARROW is channel receive. -// MUL is pointer indirection (load). -// XOR is bitwise complement. -// SUB is negation. -// NOT is logical negation. -// -// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above -// and a boolean indicating the success of the receive. The -// components of the tuple are accessed using Extract. -// -// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source. -// For receive operations (ARROW) implicit in ranging over a channel, -// Pos() returns the ast.RangeStmt.For. -// For implicit memory loads (STAR), Pos() returns the position of the -// most closely associated source-level construct; the details are not -// specified. -// -// Example printed form: -// -// t0 = *x -// t2 = <-t1,ok -type UnOp struct { - register - Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^ - X Value - CommaOk bool -} - -// The ChangeType instruction applies to X a value-preserving type -// change to Type(). -// -// Type changes are permitted: -// - between a named type and its underlying type. -// - between two named types of the same underlying type. -// - between (possibly named) pointers to identical base types. -// - from a bidirectional channel to a read- or write-channel, -// optionally adding/removing a name. -// - between a type (t) and an instance of the type (tσ), i.e. -// Type() == σ(X.Type()) (or X.Type()== σ(Type())) where -// σ is the type substitution of Parent().TypeParams by -// Parent().TypeArgs. -// -// This operation cannot fail dynamically. -// -// Type changes may to be to or from a type parameter (or both). All -// types in the type set of X.Type() have a value-preserving type -// change to all types in the type set of Type(). -// -// Pos() returns the ast.CallExpr.Lparen, if the instruction arose -// from an explicit conversion in the source. -// -// Example printed form: -// -// t1 = changetype *int <- IntPtr (t0) -type ChangeType struct { - register - X Value -} - -// The Convert instruction yields the conversion of value X to type -// Type(). One or both of those types is basic (but possibly named). -// -// A conversion may change the value and representation of its operand. -// Conversions are permitted: -// - between real numeric types. -// - between complex numeric types. -// - between string and []byte or []rune. -// - between pointers and unsafe.Pointer. -// - between unsafe.Pointer and uintptr. -// - from (Unicode) integer to (UTF-8) string. -// -// A conversion may imply a type name change also. -// -// Conversions may to be to or from a type parameter. All types in -// the type set of X.Type() can be converted to all types in the type -// set of Type(). -// -// This operation cannot fail dynamically. -// -// Conversions of untyped string/number/bool constants to a specific -// representation are eliminated during SSA construction. -// -// Pos() returns the ast.CallExpr.Lparen, if the instruction arose -// from an explicit conversion in the source. -// -// Example printed form: -// -// t1 = convert []byte <- string (t0) -type Convert struct { - register - X Value -} - -// The MultiConvert instruction yields the conversion of value X to type -// Type(). Either X.Type() or Type() must be a type parameter. Each -// type in the type set of X.Type() can be converted to each type in the -// type set of Type(). -// -// See the documentation for Convert, ChangeType, and SliceToArrayPointer -// for the conversions that are permitted. Additionally conversions of -// slices to arrays are permitted. -// -// This operation can fail dynamically (see SliceToArrayPointer). -// -// Pos() returns the ast.CallExpr.Lparen, if the instruction arose -// from an explicit conversion in the source. -// -// Example printed form: -// -// t1 = multiconvert D <- S (t0) [*[2]rune <- []rune | string <- []rune] -type MultiConvert struct { - register - X Value - from []*types.Term - to []*types.Term -} - -// ChangeInterface constructs a value of one interface type from a -// value of another interface type known to be assignable to it. -// This operation cannot fail. -// -// Pos() returns the ast.CallExpr.Lparen if the instruction arose from -// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the -// instruction arose from an explicit e.(T) operation; or token.NoPos -// otherwise. -// -// Example printed form: -// -// t1 = change interface interface{} <- I (t0) -type ChangeInterface struct { - register - X Value -} - -// The SliceToArrayPointer instruction yields the conversion of slice X to -// array pointer. -// -// Pos() returns the ast.CallExpr.Lparen, if the instruction arose -// from an explicit conversion in the source. -// -// Conversion may to be to or from a type parameter. All types in -// the type set of X.Type() must be a slice types that can be converted to -// all types in the type set of Type() which must all be pointer to array -// types. -// -// This operation can fail dynamically if the length of the slice is less -// than the length of the array. -// -// Example printed form: -// -// t1 = slice to array pointer *[4]byte <- []byte (t0) -type SliceToArrayPointer struct { - register - X Value -} - -// MakeInterface constructs an instance of an interface type from a -// value of a concrete type. -// -// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set -// of X, and Program.MethodValue(m) to find the implementation of a method. -// -// To construct the zero value of an interface type T, use: -// -// NewConst(constant.MakeNil(), T, pos) -// -// Pos() returns the ast.CallExpr.Lparen, if the instruction arose -// from an explicit conversion in the source. -// -// Example printed form: -// -// t1 = make interface{} <- int (42:int) -// t2 = make Stringer <- t0 -type MakeInterface struct { - register - X Value -} - -// The MakeClosure instruction yields a closure value whose code is -// Fn and whose free variables' values are supplied by Bindings. -// -// Type() returns a (possibly named) *types.Signature. -// -// Pos() returns the ast.FuncLit.Type.Func for a function literal -// closure or the ast.SelectorExpr.Sel for a bound method closure. -// -// Example printed form: -// -// t0 = make closure anon@1.2 [x y z] -// t1 = make closure bound$(main.I).add [i] -type MakeClosure struct { - register - Fn Value // always a *Function - Bindings []Value // values for each free variable in Fn.FreeVars -} - -// The MakeMap instruction creates a new hash-table-based map object -// and yields a value of kind map. -// -// Type() returns a (possibly named) *types.Map. -// -// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or -// the ast.CompositeLit.Lbrack if created by a literal. -// -// Example printed form: -// -// t1 = make map[string]int t0 -// t1 = make StringIntMap t0 -type MakeMap struct { - register - Reserve Value // initial space reservation; nil => default -} - -// The MakeChan instruction creates a new channel object and yields a -// value of kind chan. -// -// Type() returns a (possibly named) *types.Chan. -// -// Pos() returns the ast.CallExpr.Lparen for the make(chan) that -// created it. -// -// Example printed form: -// -// t0 = make chan int 0 -// t0 = make IntChan 0 -type MakeChan struct { - register - Size Value // int; size of buffer; zero => synchronous. -} - -// The MakeSlice instruction yields a slice of length Len backed by a -// newly allocated array of length Cap. -// -// Both Len and Cap must be non-nil Values of integer type. -// -// (Alloc(types.Array) followed by Slice will not suffice because -// Alloc can only create arrays of constant length.) -// -// Type() returns a (possibly named) *types.Slice. -// -// Pos() returns the ast.CallExpr.Lparen for the make([]T) that -// created it. -// -// Example printed form: -// -// t1 = make []string 1:int t0 -// t1 = make StringSlice 1:int t0 -type MakeSlice struct { - register - Len Value - Cap Value -} - -// The Slice instruction yields a slice of an existing string, slice -// or *array X between optional integer bounds Low and High. -// -// Dynamically, this instruction panics if X evaluates to a nil *array -// pointer. -// -// Type() returns string if the type of X was string, otherwise a -// *types.Slice with the same element type as X. -// -// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice -// operation, the ast.CompositeLit.Lbrace if created by a literal, or -// NoPos if not explicit in the source (e.g. a variadic argument slice). -// -// Example printed form: -// -// t1 = slice t0[1:] -type Slice struct { - register - X Value // slice, string, or *array - Low, High, Max Value // each may be nil -} - -// The FieldAddr instruction yields the address of Field of *struct X. -// -// The field is identified by its index within the field list of the -// struct type of X. -// -// Dynamically, this instruction panics if X evaluates to a nil -// pointer. -// -// Type() returns a (possibly named) *types.Pointer. -// -// Pos() returns the position of the ast.SelectorExpr.Sel for the -// field, if explicit in the source. For implicit selections, returns -// the position of the inducing explicit selection. If produced for a -// struct literal S{f: e}, it returns the position of the colon; for -// S{e} it returns the start of expression e. -// -// Example printed form: -// -// t1 = &t0.name [#1] -type FieldAddr struct { - register - X Value // *struct - Field int // index into CoreType(CoreType(X.Type()).(*types.Pointer).Elem()).(*types.Struct).Fields -} - -// The Field instruction yields the Field of struct X. -// -// The field is identified by its index within the field list of the -// struct type of X; by using numeric indices we avoid ambiguity of -// package-local identifiers and permit compact representations. -// -// Pos() returns the position of the ast.SelectorExpr.Sel for the -// field, if explicit in the source. For implicit selections, returns -// the position of the inducing explicit selection. - -// Example printed form: -// -// t1 = t0.name [#1] -type Field struct { - register - X Value // struct - Field int // index into CoreType(X.Type()).(*types.Struct).Fields -} - -// The IndexAddr instruction yields the address of the element at -// index Index of collection X. Index is an integer expression. -// -// The elements of maps and strings are not addressable; use Lookup (map), -// Index (string), or MapUpdate instead. -// -// Dynamically, this instruction panics if X evaluates to a nil *array -// pointer. -// -// Type() returns a (possibly named) *types.Pointer. -// -// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if -// explicit in the source. -// -// Example printed form: -// -// t2 = &t0[t1] -type IndexAddr struct { - register - X Value // *array, slice or type parameter with types array, *array, or slice. - Index Value // numeric index -} - -// The Index instruction yields element Index of collection X, an array, -// string or type parameter containing an array, a string, a pointer to an, -// array or a slice. -// -// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if -// explicit in the source. -// -// Example printed form: -// -// t2 = t0[t1] -type Index struct { - register - X Value // array, string or type parameter with types array, *array, slice, or string. - Index Value // integer index -} - -// The Lookup instruction yields element Index of collection map X. -// Index is the appropriate key type. -// -// If CommaOk, the result is a 2-tuple of the value above and a -// boolean indicating the result of a map membership test for the key. -// The components of the tuple are accessed using Extract. -// -// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source. -// -// Example printed form: -// -// t2 = t0[t1] -// t5 = t3[t4],ok -type Lookup struct { - register - X Value // map - Index Value // key-typed index - CommaOk bool // return a value,ok pair -} - -// SelectState is a helper for Select. -// It represents one goal state and its corresponding communication. -type SelectState struct { - Dir types.ChanDir // direction of case (SendOnly or RecvOnly) - Chan Value // channel to use (for send or receive) - Send Value // value to send (for send) - Pos token.Pos // position of token.ARROW - DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode] -} - -// The Select instruction tests whether (or blocks until) one -// of the specified sent or received states is entered. -// -// Let n be the number of States for which Dir==RECV and T_i (0<=i string iterator; false => map iterator. -} - -// The TypeAssert instruction tests whether interface value X has type -// AssertedType. -// -// If !CommaOk, on success it returns v, the result of the conversion -// (defined below); on failure it panics. -// -// If CommaOk: on success it returns a pair (v, true) where v is the -// result of the conversion; on failure it returns (z, false) where z -// is AssertedType's zero value. The components of the pair must be -// accessed using the Extract instruction. -// -// If Underlying: tests whether interface value X has the underlying -// type AssertedType. -// -// If AssertedType is a concrete type, TypeAssert checks whether the -// dynamic type in interface X is equal to it, and if so, the result -// of the conversion is a copy of the value in the interface. -// -// If AssertedType is an interface, TypeAssert checks whether the -// dynamic type of the interface is assignable to it, and if so, the -// result of the conversion is a copy of the interface value X. -// If AssertedType is a superinterface of X.Type(), the operation will -// fail iff the operand is nil. (Contrast with ChangeInterface, which -// performs no nil-check.) -// -// Type() reflects the actual type of the result, possibly a -// 2-types.Tuple; AssertedType is the asserted type. -// -// Depending on the TypeAssert's purpose, Pos may return: -// - the ast.CallExpr.Lparen of an explicit T(e) conversion; -// - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation; -// - the ast.CaseClause.Case of a case of a type-switch statement; -// - the Ident(m).NamePos of an interface method value i.m -// (for which TypeAssert may be used to effect the nil check). -// -// Example printed form: -// -// t1 = typeassert t0.(int) -// t3 = typeassert,ok t2.(T) -type TypeAssert struct { - register - X Value - AssertedType types.Type - CommaOk bool -} - -// The Extract instruction yields component Index of Tuple. -// -// This is used to access the results of instructions with multiple -// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and -// IndexExpr(Map). -// -// Example printed form: -// -// t1 = extract t0 #1 -type Extract struct { - register - Tuple Value - Index int -} - -// Instructions executed for effect. They do not yield a value. -------------------- - -// The Jump instruction transfers control to the sole successor of its -// owning block. -// -// A Jump must be the last instruction of its containing BasicBlock. -// -// Pos() returns NoPos. -// -// Example printed form: -// -// jump done -type Jump struct { - anInstruction -} - -// The If instruction transfers control to one of the two successors -// of its owning block, depending on the boolean Cond: the first if -// true, the second if false. -// -// An If instruction must be the last instruction of its containing -// BasicBlock. -// -// Pos() returns NoPos. -// -// Example printed form: -// -// if t0 goto done else body -type If struct { - anInstruction - Cond Value -} - -// The Return instruction returns values and control back to the calling -// function. -// -// len(Results) is always equal to the number of results in the -// function's signature. -// -// If len(Results) > 1, Return returns a tuple value with the specified -// components which the caller must access using Extract instructions. -// -// There is no instruction to return a ready-made tuple like those -// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or -// a tail-call to a function with multiple result parameters. -// -// Return must be the last instruction of its containing BasicBlock. -// Such a block has no successors. -// -// Pos() returns the ast.ReturnStmt.Return, if explicit in the source. -// -// Example printed form: -// -// return -// return nil:I, 2:int -type Return struct { - anInstruction - Results []Value - pos token.Pos -} - -// The RunDefers instruction pops and invokes the entire stack of -// procedure calls pushed by Defer instructions in this function. -// -// It is legal to encounter multiple 'rundefers' instructions in a -// single control-flow path through a function; this is useful in -// the combined init() function, for example. -// -// Pos() returns NoPos. -// -// Example printed form: -// -// rundefers -type RunDefers struct { - anInstruction -} - -// The Panic instruction initiates a panic with value X. -// -// A Panic instruction must be the last instruction of its containing -// BasicBlock, which must have no successors. -// -// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction; -// they are treated as calls to a built-in function. -// -// Pos() returns the ast.CallExpr.Lparen if this panic was explicit -// in the source. -// -// Example printed form: -// -// panic t0 -type Panic struct { - anInstruction - X Value // an interface{} - pos token.Pos -} - -// The Go instruction creates a new goroutine and calls the specified -// function within it. -// -// See CallCommon for generic function call documentation. -// -// Pos() returns the ast.GoStmt.Go. -// -// Example printed form: -// -// go println(t0, t1) -// go t3() -// go invoke t5.Println(...t6) -type Go struct { - anInstruction - Call CallCommon - pos token.Pos -} - -// The Defer instruction pushes the specified call onto a stack of -// functions to be called by a RunDefers instruction or by a panic. -// -// If DeferStack != nil, it indicates the defer list that the defer is -// added to. Defer list values come from the Builtin function -// ssa:deferstack. Calls to ssa:deferstack() produces the defer stack -// of the current function frame. DeferStack allows for deferring into an -// alternative function stack than the current function. -// -// See CallCommon for generic function call documentation. -// -// Pos() returns the ast.DeferStmt.Defer. -// -// Example printed form: -// -// defer println(t0, t1) -// defer t3() -// defer invoke t5.Println(...t6) -type Defer struct { - anInstruction - Call CallCommon - DeferStack Value // stack of deferred functions (from ssa:deferstack() intrinsic) onto which this function is pushed - pos token.Pos -} - -// The Send instruction sends X on channel Chan. -// -// Pos() returns the ast.SendStmt.Arrow, if explicit in the source. -// -// Example printed form: -// -// send t0 <- t1 -type Send struct { - anInstruction - Chan, X Value - pos token.Pos -} - -// The Store instruction stores Val at address Addr. -// Stores can be of arbitrary types. -// -// Pos() returns the position of the source-level construct most closely -// associated with the memory store operation. -// Since implicit memory stores are numerous and varied and depend upon -// implementation choices, the details are not specified. -// -// Example printed form: -// -// *x = y -type Store struct { - anInstruction - Addr Value - Val Value - pos token.Pos -} - -// The MapUpdate instruction updates the association of Map[Key] to -// Value. -// -// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack, -// if explicit in the source. -// -// Example printed form: -// -// t0[t1] = t2 -type MapUpdate struct { - anInstruction - Map Value - Key Value - Value Value - pos token.Pos -} - -// A DebugRef instruction maps a source-level expression Expr to the -// SSA value X that represents the value (!IsAddr) or address (IsAddr) -// of that expression. -// -// DebugRef is a pseudo-instruction: it has no dynamic effect. -// -// Pos() returns Expr.Pos(), the start position of the source-level -// expression. This is not the same as the "designated" token as -// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the -// position of the ("designated") Lparen token. -// -// If Expr is an *ast.Ident denoting a var or func, Object() returns -// the object; though this information can be obtained from the type -// checker, including it here greatly facilitates debugging. -// For non-Ident expressions, Object() returns nil. -// -// DebugRefs are generated only for functions built with debugging -// enabled; see Package.SetDebugMode() and the GlobalDebug builder -// mode flag. -// -// DebugRefs are not emitted for ast.Idents referring to constants or -// predeclared identifiers, since they are trivial and numerous. -// Nor are they emitted for ast.ParenExprs. -// -// (By representing these as instructions, rather than out-of-band, -// consistency is maintained during transformation passes by the -// ordinary SSA renaming machinery.) -// -// Example printed form: -// -// ; *ast.CallExpr @ 102:9 is t5 -// ; var x float64 @ 109:72 is x -// ; address of *ast.CompositeLit @ 216:10 is t0 -type DebugRef struct { - // TODO(generics): Reconsider what DebugRefs are for generics. - anInstruction - Expr ast.Expr // the referring expression (never *ast.ParenExpr) - object types.Object // the identity of the source var/func - IsAddr bool // Expr is addressable and X is the address it denotes - X Value // the value or address of Expr -} - -// Embeddable mix-ins and helpers for common parts of other structs. ----------- - -// register is a mix-in embedded by all SSA values that are also -// instructions, i.e. virtual registers, and provides a uniform -// implementation of most of the Value interface: Value.Name() is a -// numbered register (e.g. "t0"); the other methods are field accessors. -// -// Temporary names are automatically assigned to each register on -// completion of building a function in SSA form. -// -// Clients must not assume that the 'id' value (and the Name() derived -// from it) is unique within a function. As always in this API, -// semantics are determined only by identity; names exist only to -// facilitate debugging. -type register struct { - anInstruction - num int // "name" of virtual register, e.g. "t0". Not guaranteed unique. - typ types.Type // type of virtual register - pos token.Pos // position of source expression, or NoPos - referrers []Instruction -} - -// anInstruction is a mix-in embedded by all Instructions. -// It provides the implementations of the Block and setBlock methods. -type anInstruction struct { - block *BasicBlock // the basic block of this instruction -} - -// CallCommon is contained by Go, Defer and Call to hold the -// common parts of a function or method call. -// -// Each CallCommon exists in one of two modes, function call and -// interface method invocation, or "call" and "invoke" for short. -// -// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon -// represents an ordinary function call of the value in Value, -// which may be a *Builtin, a *Function or any other value of kind -// 'func'. -// -// Value may be one of: -// -// (a) a *Function, indicating a statically dispatched call -// to a package-level function, an anonymous function, or -// a method of a named type. -// (b) a *MakeClosure, indicating an immediately applied -// function literal with free variables. -// (c) a *Builtin, indicating a statically dispatched call -// to a built-in function. -// (d) any other value, indicating a dynamically dispatched -// function call. -// -// StaticCallee returns the identity of the callee in cases -// (a) and (b), nil otherwise. -// -// Args contains the arguments to the call. If Value is a method, -// Args[0] contains the receiver parameter. -// -// Example printed form: -// -// t2 = println(t0, t1) -// go t3() -// defer t5(...t6) -// -// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon -// represents a dynamically dispatched call to an interface method. -// In this mode, Value is the interface value and Method is the -// interface's abstract method. The interface value may be a type -// parameter. Note: an interface method may be shared by multiple -// interfaces due to embedding; Value.Type() provides the specific -// interface used for this call. -// -// Value is implicitly supplied to the concrete method implementation -// as the receiver parameter; in other words, Args[0] holds not the -// receiver but the first true argument. -// -// Example printed form: -// -// t1 = invoke t0.String() -// go invoke t3.Run(t2) -// defer invoke t4.Handle(...t5) -// -// For all calls to variadic functions (Signature().Variadic()), -// the last element of Args is a slice. -type CallCommon struct { - Value Value // receiver (invoke mode) or func value (call mode) - Method *types.Func // interface method (invoke mode) - Args []Value // actual parameters (in static method call, includes receiver) - pos token.Pos // position of CallExpr.Lparen, iff explicit in source -} - -// IsInvoke returns true if this call has "invoke" (not "call") mode. -func (c *CallCommon) IsInvoke() bool { - return c.Method != nil -} - -func (c *CallCommon) Pos() token.Pos { return c.pos } - -// Signature returns the signature of the called function. -// -// For an "invoke"-mode call, the signature of the interface method is -// returned. -// -// In either "call" or "invoke" mode, if the callee is a method, its -// receiver is represented by sig.Recv, not sig.Params().At(0). -func (c *CallCommon) Signature() *types.Signature { - if c.Method != nil { - return c.Method.Type().(*types.Signature) - } - return typeparams.CoreType(c.Value.Type()).(*types.Signature) -} - -// StaticCallee returns the callee if this is a trivially static -// "call"-mode call to a function. -func (c *CallCommon) StaticCallee() *Function { - switch fn := c.Value.(type) { - case *Function: - return fn - case *MakeClosure: - return fn.Fn.(*Function) - } - return nil -} - -// Description returns a description of the mode of this call suitable -// for a user interface, e.g., "static method call". -func (c *CallCommon) Description() string { - switch fn := c.Value.(type) { - case *Builtin: - return "built-in function call" - case *MakeClosure: - return "static function closure call" - case *Function: - if fn.Signature.Recv() != nil { - return "static method call" - } - return "static function call" - } - if c.IsInvoke() { - return "dynamic method call" // ("invoke" mode) - } - return "dynamic function call" -} - -// The CallInstruction interface, implemented by *Go, *Defer and *Call, -// exposes the common parts of function-calling instructions, -// yet provides a way back to the Value defined by *Call alone. -type CallInstruction interface { - Instruction - Common() *CallCommon // returns the common parts of the call - Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer) -} - -func (s *Call) Common() *CallCommon { return &s.Call } -func (s *Defer) Common() *CallCommon { return &s.Call } -func (s *Go) Common() *CallCommon { return &s.Call } - -func (s *Call) Value() *Call { return s } -func (s *Defer) Value() *Call { return nil } -func (s *Go) Value() *Call { return nil } - -func (v *Builtin) Type() types.Type { return v.sig } -func (v *Builtin) Name() string { return v.name } -func (*Builtin) Referrers() *[]Instruction { return nil } -func (v *Builtin) Pos() token.Pos { return token.NoPos } -func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) } -func (v *Builtin) Parent() *Function { return nil } - -func (v *FreeVar) Type() types.Type { return v.typ } -func (v *FreeVar) Name() string { return v.name } -func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers } -func (v *FreeVar) Pos() token.Pos { return v.pos } -func (v *FreeVar) Parent() *Function { return v.parent } - -func (v *Global) Type() types.Type { return v.typ } -func (v *Global) Name() string { return v.name } -func (v *Global) Parent() *Function { return nil } -func (v *Global) Pos() token.Pos { return v.pos } -func (v *Global) Referrers() *[]Instruction { return nil } -func (v *Global) Token() token.Token { return token.VAR } -func (v *Global) Object() types.Object { return v.object } -func (v *Global) String() string { return v.RelString(nil) } -func (v *Global) Package() *Package { return v.Pkg } -func (v *Global) RelString(from *types.Package) string { return relString(v, from) } - -func (v *Function) Name() string { return v.name } -func (v *Function) Type() types.Type { return v.Signature } -func (v *Function) Pos() token.Pos { return v.pos } -func (v *Function) Token() token.Token { return token.FUNC } -func (v *Function) Object() types.Object { - if v.object != nil { - return types.Object(v.object) - } - return nil -} -func (v *Function) String() string { return v.RelString(nil) } -func (v *Function) Package() *Package { return v.Pkg } -func (v *Function) Parent() *Function { return v.parent } -func (v *Function) Referrers() *[]Instruction { - if v.parent != nil { - return &v.referrers - } - return nil -} - -// TypeParams are the function's type parameters if generic or the -// type parameters that were instantiated if fn is an instantiation. -func (fn *Function) TypeParams() *types.TypeParamList { - return fn.typeparams -} - -// TypeArgs are the types that TypeParams() were instantiated by to create fn -// from fn.Origin(). -func (fn *Function) TypeArgs() []types.Type { return fn.typeargs } - -// Origin returns the generic function from which fn was instantiated, -// or nil if fn is not an instantiation. -func (fn *Function) Origin() *Function { - if fn.parent != nil && len(fn.typeargs) > 0 { - // Nested functions are BUILT at a different time than their instances. - // Build declared package if not yet BUILT. This is not an expected use - // case, but is simple and robust. - fn.declaredPackage().Build() - } - return origin(fn) -} - -// origin is the function that fn is an instantiation of. Returns nil if fn is -// not an instantiation. -// -// Precondition: fn and the origin function are done building. -func origin(fn *Function) *Function { - if fn.parent != nil && len(fn.typeargs) > 0 { - return origin(fn.parent).AnonFuncs[fn.anonIdx] - } - return fn.topLevelOrigin -} - -func (v *Parameter) Type() types.Type { return v.typ } -func (v *Parameter) Name() string { return v.name } -func (v *Parameter) Object() types.Object { return v.object } -func (v *Parameter) Referrers() *[]Instruction { return &v.referrers } -func (v *Parameter) Pos() token.Pos { return v.object.Pos() } -func (v *Parameter) Parent() *Function { return v.parent } - -func (v *Alloc) Type() types.Type { return v.typ } -func (v *Alloc) Referrers() *[]Instruction { return &v.referrers } -func (v *Alloc) Pos() token.Pos { return v.pos } - -func (v *register) Type() types.Type { return v.typ } -func (v *register) setType(typ types.Type) { v.typ = typ } -func (v *register) Name() string { return fmt.Sprintf("t%d", v.num) } -func (v *register) setNum(num int) { v.num = num } -func (v *register) Referrers() *[]Instruction { return &v.referrers } -func (v *register) Pos() token.Pos { return v.pos } -func (v *register) setPos(pos token.Pos) { v.pos = pos } - -func (v *anInstruction) Parent() *Function { return v.block.parent } -func (v *anInstruction) Block() *BasicBlock { return v.block } -func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block } -func (v *anInstruction) Referrers() *[]Instruction { return nil } - -func (t *Type) Name() string { return t.object.Name() } -func (t *Type) Pos() token.Pos { return t.object.Pos() } -func (t *Type) Type() types.Type { return t.object.Type() } -func (t *Type) Token() token.Token { return token.TYPE } -func (t *Type) Object() types.Object { return t.object } -func (t *Type) String() string { return t.RelString(nil) } -func (t *Type) Package() *Package { return t.pkg } -func (t *Type) RelString(from *types.Package) string { return relString(t, from) } - -func (c *NamedConst) Name() string { return c.object.Name() } -func (c *NamedConst) Pos() token.Pos { return c.object.Pos() } -func (c *NamedConst) String() string { return c.RelString(nil) } -func (c *NamedConst) Type() types.Type { return c.object.Type() } -func (c *NamedConst) Token() token.Token { return token.CONST } -func (c *NamedConst) Object() types.Object { return c.object } -func (c *NamedConst) Package() *Package { return c.pkg } -func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) } - -func (d *DebugRef) Object() types.Object { return d.object } - -// Func returns the package-level function of the specified name, -// or nil if not found. -func (p *Package) Func(name string) (f *Function) { - f, _ = p.Members[name].(*Function) - return -} - -// Var returns the package-level variable of the specified name, -// or nil if not found. -func (p *Package) Var(name string) (g *Global) { - g, _ = p.Members[name].(*Global) - return -} - -// Const returns the package-level constant of the specified name, -// or nil if not found. -func (p *Package) Const(name string) (c *NamedConst) { - c, _ = p.Members[name].(*NamedConst) - return -} - -// Type returns the package-level type of the specified name, -// or nil if not found. -func (p *Package) Type(name string) (t *Type) { - t, _ = p.Members[name].(*Type) - return -} - -func (v *Call) Pos() token.Pos { return v.Call.pos } -func (s *Defer) Pos() token.Pos { return s.pos } -func (s *Go) Pos() token.Pos { return s.pos } -func (s *MapUpdate) Pos() token.Pos { return s.pos } -func (s *Panic) Pos() token.Pos { return s.pos } -func (s *Return) Pos() token.Pos { return s.pos } -func (s *Send) Pos() token.Pos { return s.pos } -func (s *Store) Pos() token.Pos { return s.pos } -func (s *If) Pos() token.Pos { return token.NoPos } -func (s *Jump) Pos() token.Pos { return token.NoPos } -func (s *RunDefers) Pos() token.Pos { return token.NoPos } -func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() } - -// Operands. - -func (v *Alloc) Operands(rands []*Value) []*Value { - return rands -} - -func (v *BinOp) Operands(rands []*Value) []*Value { - return append(rands, &v.X, &v.Y) -} - -func (c *CallCommon) Operands(rands []*Value) []*Value { - rands = append(rands, &c.Value) - for i := range c.Args { - rands = append(rands, &c.Args[i]) - } - return rands -} - -func (s *Go) Operands(rands []*Value) []*Value { - return s.Call.Operands(rands) -} - -func (s *Call) Operands(rands []*Value) []*Value { - return s.Call.Operands(rands) -} - -func (s *Defer) Operands(rands []*Value) []*Value { - return append(s.Call.Operands(rands), &s.DeferStack) -} - -func (v *ChangeInterface) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (v *ChangeType) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (v *Convert) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (v *MultiConvert) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (s *DebugRef) Operands(rands []*Value) []*Value { - return append(rands, &s.X) -} - -func (v *Extract) Operands(rands []*Value) []*Value { - return append(rands, &v.Tuple) -} - -func (v *Field) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (v *FieldAddr) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (s *If) Operands(rands []*Value) []*Value { - return append(rands, &s.Cond) -} - -func (v *Index) Operands(rands []*Value) []*Value { - return append(rands, &v.X, &v.Index) -} - -func (v *IndexAddr) Operands(rands []*Value) []*Value { - return append(rands, &v.X, &v.Index) -} - -func (*Jump) Operands(rands []*Value) []*Value { - return rands -} - -func (v *Lookup) Operands(rands []*Value) []*Value { - return append(rands, &v.X, &v.Index) -} - -func (v *MakeChan) Operands(rands []*Value) []*Value { - return append(rands, &v.Size) -} - -func (v *MakeClosure) Operands(rands []*Value) []*Value { - rands = append(rands, &v.Fn) - for i := range v.Bindings { - rands = append(rands, &v.Bindings[i]) - } - return rands -} - -func (v *MakeInterface) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (v *MakeMap) Operands(rands []*Value) []*Value { - return append(rands, &v.Reserve) -} - -func (v *MakeSlice) Operands(rands []*Value) []*Value { - return append(rands, &v.Len, &v.Cap) -} - -func (v *MapUpdate) Operands(rands []*Value) []*Value { - return append(rands, &v.Map, &v.Key, &v.Value) -} - -func (v *Next) Operands(rands []*Value) []*Value { - return append(rands, &v.Iter) -} - -func (s *Panic) Operands(rands []*Value) []*Value { - return append(rands, &s.X) -} - -func (v *Phi) Operands(rands []*Value) []*Value { - for i := range v.Edges { - rands = append(rands, &v.Edges[i]) - } - return rands -} - -func (v *Range) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (s *Return) Operands(rands []*Value) []*Value { - for i := range s.Results { - rands = append(rands, &s.Results[i]) - } - return rands -} - -func (*RunDefers) Operands(rands []*Value) []*Value { - return rands -} - -func (v *Select) Operands(rands []*Value) []*Value { - for i := range v.States { - rands = append(rands, &v.States[i].Chan, &v.States[i].Send) - } - return rands -} - -func (s *Send) Operands(rands []*Value) []*Value { - return append(rands, &s.Chan, &s.X) -} - -func (v *Slice) Operands(rands []*Value) []*Value { - return append(rands, &v.X, &v.Low, &v.High, &v.Max) -} - -func (s *Store) Operands(rands []*Value) []*Value { - return append(rands, &s.Addr, &s.Val) -} - -func (v *TypeAssert) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -func (v *UnOp) Operands(rands []*Value) []*Value { - return append(rands, &v.X) -} - -// Non-Instruction Values: -func (v *Builtin) Operands(rands []*Value) []*Value { return rands } -func (v *FreeVar) Operands(rands []*Value) []*Value { return rands } -func (v *Const) Operands(rands []*Value) []*Value { return rands } -func (v *Function) Operands(rands []*Value) []*Value { return rands } -func (v *Global) Operands(rands []*Value) []*Value { return rands } -func (v *Parameter) Operands(rands []*Value) []*Value { return rands } -- cgit v1.2.3