diff options
author | Thomas Voss <mail@thomasvoss.com> | 2024-11-27 20:54:24 +0100 |
---|---|---|
committer | Thomas Voss <mail@thomasvoss.com> | 2024-11-27 20:54:24 +0100 |
commit | 4bfd864f10b68b71482b35c818559068ef8d5797 (patch) | |
tree | e3989f47a7994642eb325063d46e8f08ffa681dc /doc/rfc/rfc4549.txt | |
parent | ea76e11061bda059ae9f9ad130a9895cc85607db (diff) |
doc: Add RFC documents
Diffstat (limited to 'doc/rfc/rfc4549.txt')
-rw-r--r-- | doc/rfc/rfc4549.txt | 1963 |
1 files changed, 1963 insertions, 0 deletions
diff --git a/doc/rfc/rfc4549.txt b/doc/rfc/rfc4549.txt new file mode 100644 index 0000000..8430ee1 --- /dev/null +++ b/doc/rfc/rfc4549.txt @@ -0,0 +1,1963 @@ + + + + + + +Network Working Group A. Melnikov, Ed. +Request for Comments: 4549 Isode Ltd. +Category: Informational June 2006 + + + Synchronization Operations for Disconnected IMAP4 Clients + +Status of This Memo + + This memo provides information for the Internet community. It does + not specify an Internet standard of any kind. Distribution of this + memo is unlimited. + +Copyright Notice + + Copyright (C) The Internet Society (2006). + +Abstract + + This document attempts to address some of the issues involved in + building a disconnected IMAP4 client. In particular, it deals with + the issues of what might be called the "driver" portion of the + synchronization tool: the portion of the code responsible for issuing + the correct set of IMAP4 commands to synchronize the disconnected + client in the way that is most likely to make the human who uses the + disconnected client happy. + + This note describes different strategies that can be used by + disconnected clients and shows how to use IMAP protocol in order to + minimize the time of the synchronization process. + + This note also lists IMAP extensions that a server should implement + in order to provide better synchronization facilities to disconnected + clients. + + + + + + + + + + + + + + + + + +Melnikov Informational [Page 1] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + +Table of Contents + + 1. Introduction ....................................................3 + 1.1. Conventions Used in This Document ..........................3 + 2. Design Principles ...............................................3 + 3. Overall Picture of Synchronization ..............................4 + 4. Mailbox Synchronization Steps and Strategies ....................7 + 4.1. Checking UID Validity ......................................7 + 4.2. Synchronizing Local Changes with the Server ................8 + 4.2.1. Uploading Messages to the Mailbox ...................8 + 4.2.2. Optimizing "move" and "copy" Operations .............9 + 4.2.3. Replaying Local Flag Changes .......................14 + 4.2.4. Processing Mailbox Compression (EXPUNGE) Requests ..15 + 4.2.5. Closing a Mailbox ..................................17 + 4.3. Details of "Normal" Synchronization of a Single Mailbox ...18 + 4.3.1. Discovering New Messages and Changes to Old + Messages ...........................................18 + 4.3.2. Searching for "Interesting" Messages. ..............20 + 4.3.3. Populating Cache with "Interesting" Messages. ......21 + 4.3.4. User-Initiated Synchronization .....................22 + 4.4. Special Case: Descriptor-Only Synchronization .............22 + 4.5. Special Case: Fast New-Only Synchronization ...............23 + 4.6. Special Case: Blind FETCH .................................23 + 5. Implementation Considerations ..................................24 + 5.1. Error Recovery during Playback ............................26 + 5.2. Quality of Implementation Issues ..........................28 + 5.3. Optimizations .............................................28 + 6. IMAP Extensions That May Help ..................................30 + 6.1. CONDSTORE Extension .......................................30 + 7. Security Considerations ........................................33 + 8. References .....................................................33 + 8.1. Normative References ......................................33 + 8.2. Informative References ....................................34 + 9. Acknowledgements ...............................................34 + + + + + + + + + + + + + + + + + +Melnikov Informational [Page 2] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + +1. Introduction + + Several recommendations presented in this document are generally + applicable to all types of IMAP clients. However, this document + tries to concentrate on disconnected mail clients [IMAP-MODEL]. It + also suggests some IMAP extensions* that should be implemented by + IMAP servers in order to make the life of disconnected clients + easier. In particular, the [UIDPLUS] extension was specifically + designed to streamline certain disconnected operations, like + expunging, uploading, and copying messages (see Sections 4.2.1, + 4.2.2.1, and 4.2.4). + + Readers of this document are also strongly advised to read RFC 2683 + [RFC2683]. + + * Note that the functionality provided by the base IMAP protocol + [IMAP4] is sufficient to perform basic synchronization. + +1.1. Conventions Used in This Document + + In examples, "C:" and "S:" indicate lines sent by the client and + server, respectively. Long lines in examples are broken for + editorial clarity. + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this + document are to be interpreted as described in RFC 2119 [KEYWORDS]. + + Let's call an IMAP command idempotent if the result of executing the + command twice sequentially is the same as the result of executing the + command just once. + +2. Design Principles + + All mailbox state or content information stored on the disconnected + client should be viewed strictly as a cache of the state of the + server. The "master" state remains on the server, just as it would + with an interactive IMAP4 client. The one exception to this rule is + that information about the state of the disconnected client's cache + (the state includes flag changes while offline and during scheduled + message uploads) remains on the disconnected client: that is, the + IMAP4 server is not responsible for remembering the state of the + disconnected IMAP4 client. + + We assume that a disconnected client is a client that, for whatever + reason, wants to minimize the length of time that it is "on the + phone" to the IMAP4 server. Often this will be because the client is + using a dialup connection, possibly with very low bandwidth, but + + + +Melnikov Informational [Page 3] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + sometimes it might just be that the human is in a hurry to catch an + airplane, or some other event beyond our control. Whatever the + reason, we assume that we must make efficient use of the network + connection, both in the usual sense (not generating spurious traffic) + and in the sense that we would prefer not to have the connection + sitting idle while the client and/or the server is performing + strictly local computation or I/O. Another, perhaps simpler way of + stating this is that we assume that network connections are + "expensive". + + Practical experience with disconnected mail systems has shown that + there is no single synchronization strategy that is appropriate for + all cases. Different humans have different preferences, and the same + human's preference will vary depending both on external circumstance + (how much of a hurry the human is in today) and on the value that the + human places on the messages being transferred. The point here is + that there is no way that the synchronization program can guess + exactly what the human wants to do, so the human will have to provide + some guidance. + + Taken together, the preceding two principles lead to the conclusion + that the synchronization program must make its decisions based on + some kind of guidance provided by the human, by selecting the + appropriate options in the user interface or through some sort of + configuration file. Almost certainly, it should not pause for I/O + with the human in the middle of the synchronization process. The + human will almost certainly have several different configurations for + the synchronization program, for different circumstances. + + Since a disconnected client has no way of knowing what changes might + have occurred to the mailbox while it was disconnected, message + numbers are not useful to a disconnected client. All disconnected + client operations should be performed using UIDs, so that the client + can be sure that it and the server are talking about the same + messages during the synchronization process. + +3. Overall Picture of Synchronization + + The basic strategy for synchronization is outlined below. Note that + the real strategy may vary from one application to another or may + depend on a synchronization mode. + + a) Process any "actions" that were pending on the client that were + not associated with any mailbox. (In particular sending messages + composed offline with SMTP. This is not part of IMAP + synchronization, but it is mentioned here for completeness.) + + + + + +Melnikov Informational [Page 4] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + b) Fetch the current list of "interesting" mailboxes. (The + disconnected client should allow the user to skip this step + completely.) + + c) "Client-to-server synchronization": for each IMAP "action" that + was pending on the client, do the following: + + 1) If the action implies opening a new mailbox (any operation that + operates on messages), open the mailbox. Check its UID + validity value (see Section 4.1 for more details) returned in + the UIDVALIDITY response code. If the UIDVALIDITY value + returned by the server differs, the client MUST empty the local + cache of the mailbox and remove any pending "actions" that + refer to UIDs in that mailbox (and consider them failed). Note + that this doesn't affect actions performed on client-generated + fake UIDs (see Section 5). + + 2) Perform the action. If the action is to delete a mailbox + (DELETE), make sure that the mailbox is closed first (see also + Section 3.4.12 of [RFC2683]). + + d) "Server-to-client synchronization": for each mailbox that requires + synchronization, do the following: + + 1) Check the mailbox UIDVALIDITY (see Section 4.1 for more + details) with SELECT/EXAMINE/STATUS. + + If UIDVALIDITY value returned by the server differs, the client + MUST + + * empty the local cache of that mailbox; + * remove any pending "actions" that refer to UIDs in that + mailbox and consider them failed; and + * skip step 2-II. + + 2) Fetch the current "descriptors"; + + I) Discover new messages. + + II) Discover changes to old messages. + + 3) Fetch the bodies of any "interesting" messages that the client + doesn't already have. + + e) Close all open mailboxes not required for further operations (if + staying online) or disconnect all open connections (if going + offline). + + + + +Melnikov Informational [Page 5] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + Terms used: + + "Actions" are queued requests that were made by the human to the + client's Mail User Agent (MUA) software while the client was + disconnected. + + We define "descriptors" as a set of IMAP4 FETCH data items. + Conceptually, a message's descriptor is that set of information that + allows the synchronization program to decide what protocol actions + are necessary to bring the local cache to the desired state for this + message; since this decision is really up to the human, this + information probably includes at least a few header fields intended + for human consumption. Exactly what will constitute a descriptor + depends on the client implementation. At a minimum, the descriptor + contains the message's UID and FLAGS. Other likely candidates are + the RFC822.SIZE, RFC822.HEADER, BODYSTRUCTURE, or ENVELOPE data + items. + + Comments: + + 1) The list of actions should be ordered. For example, if the human + deletes message A1 in mailbox A, then expunges mailbox A, and then + deletes message A2 in mailbox A, the human will expect that + message A1 is gone and that message A2 is still present but is now + deleted. + + By processing all the actions before proceeding with + synchronization, we avoid having to compensate for the local MUA's + changes to the server's state. That is, once we have processed + all the pending actions, the steps that the client must take to + synchronize itself will be the same no matter where the changes to + the server's state originated. + + 2) Steps a and b can be performed in parallel. Alternatively, step a + can be performed after d. + + 3) On step b, the set of "interesting" mailboxes pretty much has to + be determined by the human. What mailboxes belong to this set may + vary between different IMAP4 sessions with the same server, + client, and human. An interesting mailbox can be a mailbox + returned by LSUB command (see Section 6.3.9 of [IMAP4]). The + special mailbox "INBOX" SHOULD be in the default set of mailboxes + that the client considers interesting. However, providing the + ability to ignore INBOX for a particular session or client may be + valuable for some mail filtering strategies. + + + + + + +Melnikov Informational [Page 6] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + 4) On step d-2-II, the client also finds out about changes to the + flags of messages that the client already has in its local cache, + and about messages in the local cache that no longer exist on the + server (i.e., messages that have been expunged). + + 5) "Interesting" messages are those messages that the synchronization + program thinks the human wants to have cached locally, based on + the configuration and the data retrieved in step b. + + 6) A disconnected IMAP client is a special case of an IMAP client, so + it MUST be able to handle any "unexpected" unsolicited responses, + like EXISTS and EXPUNGE, at any time. The disconnected client MAY + ignore EXPUNGE response during "client-to-server" synchronization + phase (step c). + + The rest of this discussion will focus primarily on the + synchronization issues for a single mailbox. + +4. Mailbox Synchronization Steps and Strategies + +4.1. Checking UID Validity + + The "UID validity" of a mailbox is a number returned in an + UIDVALIDITY response code in an OK untagged response at mailbox + selection time. The UID validity value changes between sessions when + UIDs fail to persist between sessions. + + Whenever the client selects a mailbox, the client must compare the + returned UID validity value with the value stored in the local cache. + If the UID validity values differ, the UIDs in the client's cache are + no longer valid. The client MUST then empty the local cache of that + mailbox and remove any pending "actions" that refer to UIDs in that + mailbox. The client MAY also issue a warning to the human. The + client MUST NOT cancel any scheduled uploads (i.e., APPENDs) for the + mailbox. + + Note that UIDVALIDITY is not only returned on a mailbox selection. + The COPYUID and APPENDUID response codes defined in the [UIDPLUS] + extension (see also 4.2.2) and the UIDVALIDITY STATUS response data + item also contain a UIDVALIDITY value for some other mailbox. The + client SHOULD behave as described in the previous paragraph (but it + should act on the other mailbox's cache), no matter how it obtained + the UIDVALIDITY value. + + + + + + + + +Melnikov Informational [Page 7] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + +4.2. Synchronizing Local Changes with the Server + +4.2.1. Uploading Messages to the Mailbox + + Two of the most common examples of operations resulting in message + uploads are: + + 1) Saving a draft message + + 2) Copying a message between remote mailboxes on two different IMAP + servers or a local mailbox and a remote mailbox. + + Message upload is performed with the APPEND command. A message + scheduled to be uploaded has no UID associated with it, as all UIDs + are assigned by the server. The APPEND command will effectively + associate a UID with the uploaded message that can be stored in the + local cache for future reference. However, [IMAP4] doesn't describe + a simple mechanism to discover the message UID by just performing the + APPEND command. In order to discover the UID, the client can do one + of the following: + + 1) Remove the uploaded message from cache. Then, use the mechanism + described in 4.3 to fetch the information about the uploaded + message as if it had been uploaded by some other client. + + 2) Try to fetch header information as described in 4.2.2 in order to + find a message that corresponds to the uploaded message. One + strategy for doing this is described in 4.2.2. + + Case 1 describes a not particularly smart client. + + C: A003 APPEND Drafts (\Seen $MDNSent) {310} + S: + Ready for literal data + C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST) + C: From: Fred Foobar <foobar@blt.example.COM> + C: Subject: afternoon meeting + C: To: mooch@owatagu.siam.edu + C: Message-Id: <B27397-0100000@blt.example.COM> + C: MIME-Version: 1.0 + C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII + C: + C: Hello Joe, do you think we can meet at 3:30 tomorrow? + C: + S: A003 OK APPEND Completed + + Fortunately, there is a simpler way to discover the message UID in + the presence of the [UIDPLUS] extension: + + + + +Melnikov Informational [Page 8] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + C: A003 APPEND Drafts (\Seen $MDNSent) {310} + S: + Ready for literal data + C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST) + C: From: Fred Foobar <foobar@blt.example.COM> + C: Subject: afternoon meeting + C: To: mooch@owatagu.siam.edu + C: Message-Id: <B27397-0100000@blt.example.COM> + C: MIME-Version: 1.0 + C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII + C: + C: Hello Joe, do you think we can meet at 3:30 tomorrow? + C: + S: A003 OK [APPENDUID 1022843275 77712] APPEND completed + + The UID of the appended message is the second parameter of APPENDUID + response code. + +4.2.2. Optimizing "move" and "copy" Operations + + Practical experience with IMAP and other mailbox access protocols + that support multiple mailboxes suggests that moving a message from + one mailbox to another is an extremely common operation. + +4.2.2.1. Moving a Message between Two Mailboxes on the Same Server + + In IMAP4, a "move" operation between two mailboxes on the same server + is really a combination of a COPY operation and a STORE +FLAGS + (\Deleted) operation. This makes good protocol sense for IMAP, but + it leaves a simple-minded disconnected client in the silly position + of deleting and possibly expunging its cached copy of a message, then + fetching an identical copy via the network. + + However, the presence of the UIDPLUS extension in the server can + help: + + C: A001 UID COPY 567,414 "Interesting Messages" + S: A001 OK [COPYUID 1022843275 414,567 5:6] Completed + + This tells the client that the message with UID 414 in the current + mailbox was successfully copied to the mailbox "Interesting Messages" + and was given the UID 5, and that the message with UID 567 was given + the UID 6. + + In the absence of UIDPLUS extension support in the server, the + following trick can be used. By including the Message-ID: header and + the INTERNALDATE data item as part of the descriptor, the client can + check the descriptor of a "new" message against messages that are + already in its cache and avoid fetching the extra copy. Of course, + + + +Melnikov Informational [Page 9] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + it's possible that the cost of checking to see if the message is + already in the local cache may exceed the cost of just fetching it, + so this technique should not be used blindly. If the MUA implements + a "move" command, it makes special provisions to use this technique + when it knows that a copy/delete sequence is the result of a "move" + command. + + Note that servers are not required (although they are strongly + encouraged with "SHOULD language") to preserve INTERNALDATE when + copying messages. + + Also note that since it's theoretically possible for this algorithm + to find the wrong message (given sufficiently malignant Message-ID + headers), implementers should provide a way to disable this + optimization, both permanently and on a message-by-message basis. + + Example 1: Copying a message in the absence of UIDPLUS extension. + + At some point in time the client has fetched the source message and + some information was cached: + + C: C021 UID FETCH <uids> (BODY.PEEK[] INTERNALDATE FLAGS) + ... + S: * 27 FETCH (UID 123 INTERNALDATE "31-May-2002 05:26:59 -0600" + FLAGS (\Draft $MDNSent) BODY[] {1036} + S: ... + S: Message-Id: <20040903110856.22a127cd@chardonnay> + S: ... + S: ...message body... + S: ) + ... + S: C021 OK fetch completed + + Later on, the client decides to copy the message: + + C: C035 UID COPY 123 "Interesting Messages" + S: C035 OK Completed + + As the server hasn't provided the COPYUID response code, the client + tries the optimization described above: + + C: C036 SELECT "Interesting Messages" + ... + C: C037 UID SEARCH ON 31-May-2002 HEADER + "Message-Id" "20040903110856.22a127cd@chardonnay" + S: SEARCH 12368 + S: C037 OK completed + + + + +Melnikov Informational [Page 10] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + Note that if the server has returned multiple UIDs in the SEARCH + response, the client MUST NOT use any of the returned UID. + +4.2.2.2. Moving a Message from a Remote Mailbox to a Local + + Moving a message from a remote mailbox to a local is done with FETCH + (that includes FLAGS and INTERNALDATE) followed by UID STORE <uid> + +FLAGS.SILENT (\Deleted): + + C: A003 UID FETCH 123 (BODY.PEEK[] INTERNALDATE FLAGS) + S: * 27 FETCH (UID 123 INTERNALDATE "31-May-2002 05:26:59 -0600" + FLAGS (\Seen $MDNSent) BODY[] + S: ...message body... + S: ) + S: A003 OK UID FETCH completed + C: A004 UID STORE <uid> +FLAGS.SILENT (\Deleted) + S: A004 STORE completed + + Note that there is no reason to fetch the message during + synchronization if it's already in the client's cache. Also, the + client SHOULD preserve delivery date in the local cache. + +4.2.2.3. Moving a Message from a Local Mailbox to a Remote + + Moving a message from a local mailbox to a remote is done with + APPEND: + + C: A003 APPEND Drafts (\Seen $MDNSent) "31-May-2002 05:26:59 -0600" + {310} + S: + Ready for literal data + C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST) + C: From: Fred Foobar <foobar@blt.example.COM> + C: Subject: afternoon meeting + C: To: mooch@owatagu.siam.edu + C: Message-Id: <B27397-0100000@blt.example.COM> + C: MIME-Version: 1.0 + C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII + C: + C: Hello Joe, do you think we can meet at 3:30 tomorrow? + C: + S: A003 OK [APPENDUID 1022843275 77712] completed + + The client SHOULD specify the delivery date from the local cache in + the APPEND. + + If the [LITERAL+] extension is available, the client can save a + round-trip*: + + + + +Melnikov Informational [Page 11] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + C: A003 APPEND Drafts (\Seen $MDNSent) "31-May-2002 05:26:59 -0600" + {310+} + C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST) + C: From: Fred Foobar <foobar@blt.example.COM> + C: Subject: afternoon meeting + C: To: mooch@owatagu.siam.edu + C: Message-Id: <B27397-0100000@blt.example.COM> + C: MIME-Version: 1.0 + C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII + C: + C: Hello Joe, do you think we can meet at 3:30 tomorrow? + C: + S: A003 OK [APPENDUID 1022843275 77712] completed + + * Note that there is a risk that the server will reject the message + due to its size. If this happens, the client will waste bandwidth + transferring the whole message. If the client wouldn't have used + the LITERAL+, this could have been avoided: + + C: A003 APPEND Drafts (\Seen $MDNSent) "31-May-2004 05:26:59 -0600" + {16777215} + S: A003 NO Sorry, message is too big + +4.2.2.4. Moving a Message between Two Mailboxes on Different Servers + + Moving a message between two mailbox on two different servers is a + combination of the operations described in 4.2.2.2 followed by the + operations described in 4.2.2.3. + +4.2.2.5. Uploading Multiple Messages to a Remote Mailbox with + MULTIAPPEND + + When there is a need to upload multiple messages to a remote mailbox + (e.g., as per 4.2.2.3), the presence of certain IMAP extensions may + significantly improve performance. One of them is [MULTIAPPEND]. + + For some mail stores, opening a mailbox for appending might be + expensive. [MULTIAPPEND] tells the server to open the mailbox once + (instead of opening and closing it "n" times per "n" messages to be + uploaded) and to keep it open while a group of messages is being + uploaded to the server. + + Also, if the server supports both [MULTIAPPEND] and [LITERAL+] + extensions, the entire upload is accomplished in a single + command/response round-trip. + + + + + + +Melnikov Informational [Page 12] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + Note: Client implementers should be aware that [MULTIAPPEND] performs + append of multiple messages atomically. This means, for example, if + there is not enough space to save "n"-th message (or the message has + invalid structure and is rejected by the server) after successful + upload of "n-1" messages, the whole upload operation fails, and no + message will be saved in the mailbox. Although this behavior might + be desirable in certain situations, it might not be what you want. + Otherwise, the client should use the regular APPEND command (Section + 4.2.2.3), possibly utilizing the [LITERAL+] extension. See also + Section 5.1 for discussions about error recovery. + + Note: MULTIAPPEND can be used together with the UIDPLUS extension in + a way similar to what was described in Section 4.2.1. [MULTIAPPEND] + extends the syntax of the APPENDUID response code to allow for + multiple message UIDs in the second parameter. + + Example 2: + + This example demonstrates the use of MULTIAPPEND together with + UIDPLUS (synchronization points where the client waits for + confirmations from the server are marked with "<--->"): + + C: A003 APPEND Jan-2002 (\Seen $MDNSent) "31-May-2002 05:26:59 -0600" + {310} + <---> + S: + Ready for literal data + C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST) + C: From: Fred Foobar <foobar@blt.example.COM> + C: Subject: afternoon meeting + C: To: mooch@owatagu.siam.edu + C: Message-Id: <B27397-0100000@blt.example.COM> + C: MIME-Version: 1.0 + C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII + C: + C: Hello Joe, do you think we can meet at 3:30 tomorrow? + C: (\Seen) " 1-Jun-2002 22:43:04 -0800" {286} + <---> + S: + Ready for literal data + C: Date: Mon, 7 Feb 1994 22:43:04 -0800 (PST) + C: From: Joe Mooch <mooch@OWaTaGu.siam.EDU> + C: Subject: Re: afternoon meeting + C: To: foobar@blt.example.com + C: Message-Id: <a0434793874930@OWaTaGu.siam.EDU> + C: MIME-Version: 1.0 + C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII + C: + C: 3:30 is fine with me. + C: + + + +Melnikov Informational [Page 13] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + S: A003 OK [APPENDUID 1022843275 77712,77713] completed + + The upload takes 3 round-trips. + + Example 3: + + In this example, Example 2 was modified for the case when the server + supports MULTIAPPEND, LITERAL+, and UIDPLUS. The upload takes only 1 + round-trip. + + C: A003 APPEND Jan-2002 (\Seen $MDNSent) "31-May-2002 05:26:59 -0600" + {310+} + C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST) + C: From: Fred Foobar <foobar@blt.example.COM> + C: Subject: afternoon meeting + C: To: mooch@owatagu.siam.edu + C: Message-Id: <B27397-0100000@blt.example.COM> + C: MIME-Version: 1.0 + C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII + C: + C: Hello Joe, do you think we can meet at 3:30 tomorrow? + C: (\Seen) " 1-Jun-2002 22:43:04 -0800" {286+} + C: Date: Mon, 7 Feb 1994 22:43:04 -0800 (PST) + C: From: Joe Mooch <mooch@OWaTaGu.siam.EDU> + C: Subject: Re: afternoon meeting + C: To: foobar@blt.example.com + C: Message-Id: <a0434793874930@OWaTaGu.siam.EDU> + C: MIME-Version: 1.0 + C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII + C: + C: 3:30 is fine with me. + C: + S: A003 OK [APPENDUID 1022843275 77712,77713] completed + +4.2.3. Replaying Local Flag Changes + + The disconnected client uses the STORE command to synchronize local + flag state with the server. The disconnected client SHOULD use + +FLAGS.SILENT or -FLAGS.SILENT in order to set or unset flags + modified by the user while offline. The FLAGS form MUST NOT be used, + as there is a risk that this will overwrite flags on the server that + have been changed by some other client. + + Example 4: + + For the message with UID 15, the disconnected client stores the + following flags \Seen and $Highest. The flags were modified on the + server by some other client: \Seen, \Answered, and $Highest. While + + + +Melnikov Informational [Page 14] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + offline, the user requested that the $Highest flags be removed and + that the \Deleted flag be added. The flag synchronization sequence + for the message should look like: + + C: A001 UID STORE 15 +FLAGS.SILENT (\Deleted) + S: A001 STORE completed + C: A002 UID STORE 15 -FLAGS.SILENT ($Highest) + S: A002 STORE completed + + If the disconnected client is able to store an additional binary + state information (or a piece of information that can take a value + from a predefined set of values) in the local cache of an IMAP + mailbox or in a local mailbox (e.g., message priority), and if the + server supports storing of arbitrary keywords, the client MUST use + keywords to store this state on the server. + + Example 5: + + Imagine a speculative mail client that can mark a message as one of + work-related ($Work), personal ($Personal), or spam ($Spam). In + order to mark a message as personal, the client issues: + + C: A001 UID STORE 15 +FLAGS.SILENT ($Personal) + S: A001 STORE completed + C: A002 UID STORE 15 -FLAGS.SILENT ($Work $Spam) + S: A002 STORE completed + + In order to mark the message as not work, not personal and not spam, + the client issues: + + C: A003 UID STORE 15 -FLAGS.SILENT ($Personal $Work $Spam) + S: A003 STORE completed + +4.2.4. Processing Mailbox Compression (EXPUNGE) Requests + + A naive disconnected client implementation that supports compressing + a mailbox while offline may decide to issue an EXPUNGE command to the + server in order to expunge messages marked \Deleted. The problem + with this command during synchronization is that it permanently + erases all messages with the \Deleted flag set, i.e., even those + messages that were marked as \Deleted on the server while the user + was offline. Doing this might result in an unpleasant surprise for + the user. + + Fortunately the [UIDPLUS] extension can help in this case as well. + The extension introduces UID EXPUNGE command, that, unlike EXPUNGE, + takes a UID set parameter, that lists UIDs of all messages that can + be expunged. When processing this command the server erases only + + + +Melnikov Informational [Page 15] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + messages with \Deleted flag listed in the UID list. Thus, messages + not listed in the UID set will not be expunged even if they have the + \Deleted flag set. + + Example 6: + + While the user was offline, 3 messages with UIDs 7, 27, and 65 were + marked \Deleted when the user requested to compress the open mailbox. + Another client marked a message \Deleted on the server (UID 34). + During synchronization, the disconnected client issues: + + C: A001 UID EXPUNGE 7,27,65 + S: * ... EXPUNGE + S: * ... EXPUNGE + S: * ... EXPUNGE + S: A001 UID EXPUNGE completed + + If another client issues UID SEARCH DELETED command (to find all + messages with the \Deleted flag) before and after the UID EXPUNGE, it + will get: + + Before: + + C: B001 UID SEARCH DELETED + S: * SEARCH 65 34 27 7 + S: B001 UID SEARCH completed + + After: + + C: B002 UID SEARCH DELETED + S: * SEARCH 34 + S: B002 UID SEARCH completed + + In the absence of the [UIDPLUS] extension, the following sequence of + commands can be used as an approximation. Note: It's possible for + another client to mark additional messages as deleted while this + sequence is being performed. In this case, these additional messages + will be expunged as well. + + 1) Find all messages marked \Deleted on the server. + + C: A001 UID SEARCH DELETED + S: * SEARCH 65 34 27 7 + S: A001 UID SEARCH completed + + 2) Find all messages that must not be erased (for the previous + example the list will consist of the message with UID 34). + + + + +Melnikov Informational [Page 16] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + 3) Temporarily remove \Deleted flag on all messages found in step 2. + + C: A002 UID STORE 34 -FLAGS.SILENT (\Deleted) + S: A002 UID STORE completed + + 4) Expunge the mailbox. + + C: A003 EXPUNGE + S: * 20 EXPUNGE + S: * 7 EXPUNGE + S: * 1 EXPUNGE + S: A003 EXPUNGE completed + + Here, the message with UID 7 has message number 1, with UID 27 has + message number 7, and with UID 65 has message number 20. + + 5) Restore \Deleted flag on all messages found when performing step + 2. + + C: A004 UID STORE 34 +FLAGS.SILENT (\Deleted) + S: A004 UID STORE completed + +4.2.5. Closing a Mailbox + + When the disconnected client has to close a mailbox, it should not + use the CLOSE command, because CLOSE does a silent EXPUNGE. (Section + 4.2.4 explains why EXPUNGE should not be used by a disconnected + client.) It is safe to use CLOSE only if the mailbox was opened with + EXAMINE. + + If the mailbox was opened with SELECT, the client can use one of the + following commands to implicitly close the mailbox and prevent the + silent expunge: + + 1) UNSELECT - This is a command described in [UNSELECT] that works as + CLOSE, but doesn't cause the silent EXPUNGE. This command is + supported by the server if it reports UNSELECT in its CAPABILITY + list. + + 2) SELECT <another_mailbox> - SELECT causes implicit CLOSE without + EXPUNGE. + + 3) If the client intends to issue LOGOUT after closing the mailbox, + it may just issue LOGOUT, because LOGOUT causes implicit CLOSE + without EXPUNGE as well. + + 4) SELECT <non_existing_mailbox> - If the client knows a mailbox that + doesn't exist or can't be selected, it MAY SELECT it. + + + +Melnikov Informational [Page 17] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + If the client opened the mailbox with SELECT and just wants to avoid + implicit EXPUNGE without closing the mailbox, it may also use the + following: + + 5) EXAMINE <mailbox> - Reselect the same mailbox in read-only mode. + +4.3. Details of "Normal" Synchronization of a Single Mailbox + + The most common form of synchronization is where the human trusts the + integrity of the client's copy of the state of a particular mailbox + and simply wants to bring the client's cache up to date so that it + accurately reflects the mailbox's current state on the server. + +4.3.1. Discovering New Messages and Changes to Old Messages + + Let <lastseenuid> represent the highest UID that the client knows + about in this mailbox. Since UIDs are allocated in strictly + ascending order, this is simply the UID of the last message in the + mailbox that the client knows about. Let <lastseenuid+1> represent + <lastseenuid>'s UID plus one. Let <descriptors> represent a list + consisting of all the FETCH data item items that the implementation + considers part of the descriptor; at a minimum this is just the FLAGS + data item, but it usually also includes BODYSTRUCTURE and + RFC822.SIZE. At this step, <descriptors> SHOULD NOT include RFC822. + + With no further information, the client can issue the following two + commands: + + tag1 UID FETCH <lastseenuid+1>:* <descriptors> + tag2 UID FETCH 1:<lastseenuid> FLAGS + + The first command will request some information about "new" messages + (i.e., messages received by the server since the last + synchronization). It will also allow the client to build a message + number to UID map (only for new messages). The second command allows + the client to + + 1) update cached flags for old messages; + + 2) find out which old messages got expunged; and + + 3) build a mapping between message numbers and UIDs (for old + messages). + + The order here is significant. We want the server to start returning + the list of new message descriptors as fast as it can, so that the + client can start issuing more FETCH commands, so we start out by + asking for the descriptors of all the messages we know the client + + + +Melnikov Informational [Page 18] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + cannot possibly have cached yet. The second command fetches the + information we need to determine what changes may have occurred to + messages that the client already has cached. Note that the former + command should only be issued if the UIDNEXT value cached by the + client differs from the one returned by the server. Once the client + has issued these two commands, there's nothing more the client can do + with this mailbox until the responses to the first command start + arriving. A clever synchronization program might use this time to + fetch its local cache state from disk or to start the process of + synchronizing another mailbox. + + The following is an example of the first FETCH: + + C: A011 UID fetch 131:* (FLAGS BODYSTRUCTURE INTERNALDATE + RFC822.SIZE) + + Note 1: The first FETCH may result in the server's sending a huge + volume of data. A smart disconnected client should use message + ranges (see also Section 3.2.1.2 of [RFC2683]), so that the user is + able to execute a different operation between fetching information + for a group of new messages. + + Example 7: + + Knowing the new UIDNEXT returned by the server on SELECT or EXAMINE + (<uidnext>), the client can split the UID range + <lastseenuid+1>:<uidnext> into groups, e.g., 100 messages. After + that, the client can issue: + + C: A011 UID fetch <lastseenuid+1>:<lastseenuid+100> + (FLAGS BODYSTRUCTURE INTERNALDATE RFC822.SIZE) + ... + C: A012 UID fetch <lastseenuid+101>:<lastseenuid+200> + (FLAGS BODYSTRUCTURE INTERNALDATE RFC822.SIZE) + ... + ... + C: A0FF UID fetch <lastseenuid+901>:<uidnext> + (FLAGS BODYSTRUCTURE INTERNALDATE RFC822.SIZE) + + Note that unless a SEARCH command is issued, it is impossible to + determine how many messages will fall into a subrange, as UIDs are + not necessarily contiguous. + + Note 2: The client SHOULD ignore any unsolicited EXPUNGE responses + received during the first FETCH command. EXPUNGE responses contain + message numbers that are useless to a client that doesn't have the + message-number-to-UID translation table. + + + + +Melnikov Informational [Page 19] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + The second FETCH command will result in zero or more untagged fetch + responses. Each response will have a corresponding UID FETCH data + item. All messages that didn't have a matching untagged FETCH + response MUST be removed from the local cache. + + For example, if the <lastseenuid> had a value 15000 and the local + cache contained 3 messages with the UIDs 12, 777, and 14999, + respectively, then after receiving the following responses from the + server, the client must remove the message with UID 14999 from its + local cache. + + S: * 1 FETCH (UID 12 FLAGS (\Seen)) + S: * 2 FETCH (UID 777 FLAGS (\Answered \Deleted)) + + Note 3: If the client is not interested in flag changes (i.e., the + client only wants to know which old messages are still on the + server), the second FETCH command can be substituted with: + + tag2 UID SEARCH UID 1:<lastseenuid> + + This command will generate less traffic. However, an implementor + should be aware that in order to build the mapping table from message + numbers to UIDs, the output of the SEARCH command MUST be sorted + first, because there is no requirement for a server to return UIDs in + SEARCH response in any particular order. + +4.3.2. Searching for "Interesting" Messages. + + This step is performed entirely on the client (from the information + received in the step described in 4.3.1), entirely on the server, or + on some combination of both. The decision on what is an + "interesting" message is up to the client software and the human. + One easy criterion that should probably be implemented in any client + is whether the message is "too big" for automatic retrieval, where + "too big" is a parameter defined in the client's configuration. + + Another commonly used criterion is the age of a message. For + example, the client may choose to download only messages received in + the last week (in this case, <date> would be today's date minus 7 + days): + + tag3 UID SEARCH UID <uidset> SINCE <date> + + Keep in mind that a date search disregards time and time zone. The + client can avoid doing this search if it specified INTERNALDATE in + <descriptors> on the step described in 4.3.1. If the client did, it + can perform the local search on its message cache. + + + + +Melnikov Informational [Page 20] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + At this step, the client also decides what kind of information about + a particular message to fetch from the server. In particular, even + for a message that is considered "too big", the client MAY choose to + fetch some part(s) of it. For example, if the message is a + multipart/mixed containing a text part and a MPEG attachment, there + is no reason for the client not to fetch the text part. The decision + of which part should or should not be fetched can be based on the + information received in the BODYSTRUCTURE FETCH response data item + (i.e., if BODYSTRUCTURE was included in <descriptors> on the step + described in 4.3.1). + +4.3.3. Populating Cache with "Interesting" Messages. + + Once the client has found out which messages are "interesting", it + can start issuing appropriate FETCH commands for "interesting" + messages or parts thereof. + + Note that fetching a message into the disconnected client's local + cache does NOT imply that the human has (or even will) read the + message. Thus, the synchronization program for a disconnected client + should always be careful to use the .PEEK variants of the FETCH data + items that implicitly set the \Seen flag. + + Once the last descriptor has arrived and the last FETCH command has + been issued, the client simply needs to process the incoming fetch + items and use them to update the local message cache. + + In order to avoid deadlock problems, the client must give processing + of received messages priority over issuing new FETCH commands during + this synchronization process. This may necessitate temporary local + queuing of FETCH requests that cannot be issued without causing a + deadlock. In order to achieve the best use of the "expensive" + network connection, the client will almost certainly need to pay + careful attention to any flow-control information that it can obtain + from the underlying transport connection (usually a TCP connection). + + Note: The requirement stated in the previous paragraph might result + in an unpleasant user experience, if followed blindly. For example, + the user might be unwilling to wait for the client to finish + synchronization before starting to process the user's requests. A + smart disconnected client should allow the user to perform requested + operations in between IMAP commands that are part of the + synchronization process. See also Note 1 in Section 4.3.1. + + + + + + + + +Melnikov Informational [Page 21] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + Example 8: + + After fetching a message BODYSTRUCTURE, the client discovers a + complex MIME message. Then, it decides to fetch MIME headers of the + nested MIME messages and some body parts. + + C: A011 UID fetch 11 (BODYSTRUCTURE) + S: ... + C: A012 UID fetch 11 (BODY[HEADER] BODY[1.MIME] BODY[1.1.MIME] + BODY[1.2.MIME] BODY[2.MIME] BODY[3.MIME] BODY[4.MIME] + BODY[5.MIME] BODY[6.MIME] BODY[7.MIME] BODY[8.MIME] BODY[9.MIME] + BODY[10.MIME] BODY[11.MIME] BODY[12.MIME] BODY[13.MIME] + BODY[14.MIME] BODY[15.MIME] BODY[16.MIME] BODY[17.MIME] + BODY[18.MIME] BODY[19.MIME] BODY[20.MIME] BODY[21.MIME]) + S: ... + C: A013 UID fetch 11 (BODY[1.1] BODY[1.2]) + S: ... + C: A014 UID fetch 11 (BODY[3] BODY[4] BODY[5] BODY[6] BODY[7] BODY[8] + BODY[9] BODY[10] BODY[11] BODY[13] BODY[14] BODY[15] BODY[16] + BODY[21]) + S: ... + +4.3.4. User-Initiated Synchronization + + After the client has finished the main synchronization process as + described in Sections 4.3.1-4.3.3, the user may optionally request + additional synchronization steps while the client is still online. + This is not any different from the process described in Sections + 4.3.2 and 4.3.3. + + Typical examples are: + + 1) fetch all messages selected in UI. + 2) fetch all messages marked as \Flagged on the server. + +4.4. Special Case: Descriptor-Only Synchronization + + For some mailboxes, fetching the descriptors might be the entire + synchronization step. Practical experience with IMAP has shown that + a certain class of mailboxes (e.g., "archival" mailboxes) are used + primarily for long-term storage of important messages that the human + wants to have instantly available on demand but does not want + cluttering up the disconnected client's cache at any other time. + Messages in this kind of mailbox would be fetched exclusively by + explicit actions queued by the local MUA. Thus, the only + synchronization desirable on this kind of mailbox is fetching enough + descriptor information for the user to be able to identify messages + for subsequent download. + + + +Melnikov Informational [Page 22] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + Special mailboxes that receive messages from a high volume, low + priority mailing list might also be in this category, at least when + the human is in a hurry. + +4.5. Special Case: Fast New-Only Synchronization + + In some cases, the human might be in such a hurry that he or she + doesn't care about changes to old messages, just about new messages. + In this case, the client can skip the UID FETCH command that obtains + the flags and UIDs for old messages (1:<lastseenuid>). + +4.6. Special Case: Blind FETCH + + In some cases, the human may know (for whatever reason) that he or + she always wants to fetch any new messages in a particular mailbox, + unconditionally. In this case, the client can just fetch the + messages themselves, rather than just the descriptors, by using a + command like: + + tag1 UID FETCH <lastseenuid+1>:* (FLAGS BODY.PEEK[]) + + Note that this example ignores the fact that the messages can be + arbitrary long. The disconnected client MUST always check for + message size before downloading, unless explicitly told otherwise. A + well-behaved client should instead use something like the following: + + 1) Issue "tag1 UID FETCH <lastseenuid+1>:* (FLAGS RFC822.SIZE)". + + 2) From the message sizes returned in step 1, construct UID set + <required_messages>. + + 3) Issue "tag2 UID FETCH <required_messages> (BODY.PEEK[])". + + or + + 1) Issue "tag1 UID FETCH <lastseenuid+1>:* (FLAGS)". + + 2) Construct UID set <old_uids> from the responses of step 1. + + 3) Issue "tag2 SEARCH UID <old_uids> SMALLER <message_limit>". + Construct UID set <required_messages> from the result of the + SEARCH command. + + 4) Issue "tag3 UID FETCH <required_messages> (BODY.PEEK[])". + + + + + + + +Melnikov Informational [Page 23] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + or + + 1) Issue "tag1 UID FETCH <lastseenuid+1>:* (FLAGS + BODY.PEEK[]<0.<length>>)", where <length> should be replaced with + the maximal message size the client is willing to download. + + Note: In response to such a command, the server will only return + partial data if the message is longer than <length>. It will + return the full message data for any message whose size is smaller + than or equal to <length>. In the former case, the client will + not be able to extract the full MIME structure of the message from + the truncated data, so the client should include BODYSTRUCTURE in + the UID FETCH command as well. + +5. Implementation Considerations + + Below are listed some common implementation pitfalls that should be + considered when implementing a disconnected client. + + 1) Implementing fake UIDs on the client. + + A message scheduled to be uploaded has no UID, as UIDs are + selected by the server. The client may implement fake UIDs + internally in order to reference not-yet-uploaded messages in + further operations. (For example, a message could be scheduled to + be uploaded, but subsequently marked as deleted or copied to + another mailbox). Here, the client MUST NOT under any + circumstances send these fake UIDs to the server. Also, client + implementers should be reminded that according to [IMAP4] a UID is + a 32-bit unsigned integer excluding 0. So, both 4294967295 and + 2147483648 are valid UIDs, and 0 and -1 are both invalid. Some + disconnected mail clients have been known to send negative numbers + (e.g., "-1") as message UIDs to servers during synchronization. + + Situation 1: The user starts composing a new message, edits it, + saves it, continues to edit it, and saves it again. + + A disconnected client may record in its replay log (log of + operations to be replayed on the server during synchronization) + the sequence of operations as shown below. For the purpose of + this situation, we assume that all draft messages are stored in + the mailbox called Drafts on an IMAP server. We will also use the + following conventions: <old_uid> is the UID of the intermediate + version of the draft when it was saved for the first time. This + is a fake UID generated on the client. <new_uid> is the UID of + the final version of the draft. This is another fake UID + generated on the client. + + + + +Melnikov Informational [Page 24] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + 1) APPEND Drafts (\Seen $MDNSent \Drafts) {<nnn>} + ...first version of the message follows... + + 2) APPEND Drafts (\Seen $MDNSent \Drafts) {<mmm>} + ...final version of the message follows... + + 3) STORE <old_uid> +FLAGS (\Deleted) + + Step 1 corresponds to the first attempt to save the draft message, + step 2 corresponds to the second attempt to save the draft + message, and step 3 deletes the first version of the draft message + saved in step 1. + + A naive disconnected client may send the command in step 3 without + replacing the fake client generated <old_uid> with the value + returned by the server in step 1. A server will probably reject + this command, which will make the client believe that the + synchronization sequence has failed. + + 2) Section 5.1 discusses common implementation errors related to + error recovery during playback. + + 3) Don't assume that the disconnected client is the only client used + by the user. + + Situation 2: Some clients may use the \Deleted flag as an + indicator that the message should not appear in the user's view. + Usage of the \Deleted flag for this purpose is not safe, as other + clients (e.g., online clients) might EXPUNGE the mailbox at any + time. + + 4) Beware of data dependencies between synchronization operations. + + It might be very tempting for a client writer to perform some + optimizations on the playback log. Such optimizations might + include removing redundant operations (for example, see + optimization 2 in Section 5.3), or their reordering. + + It is not always safe to reorder or remove redundant operations + during synchronization because some operations may have + dependencies (as Situation 3 demonstrates). So, if in doubt, + don't do this. + + Situation 3: The user copies a message out of a mailbox and then + deletes the mailbox. + + + + + + +Melnikov Informational [Page 25] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + C: A001 SELECT Old-Mail + S: ... + C: A002 UID COPY 111 ToDo + S: A002 OK [COPYUID 1022843345 111 94] Copy completed + ... + C: A015 CLOSE + S: A015 OK Completed + C: A016 DELETE Old-Mail + S: A016 OK Mailbox deletion completed successfully + + If the client performs DELETE (tag A016) first and COPY (tag A002) + second, then the COPY fails. Also, the message that the user so + carefully copied into another mailbox has been lost. + +5.1. Error Recovery during Playback + + Error recovery during synchronization is one of the trickiest parts + to get right. Below, we will discuss certain error conditions and + suggest possible choices for handling them. + + 1) Lost connection to the server. + + The client MUST remember the current position in the playback + (replay) log and replay it starting from the interrupted operation + (the last command issued by the client, but not acknowledged by + the server) the next time it successfully connects to the same + server. If the connection was lost while executing a non- + idempotent IMAP command (see the definition in Section 1), then + when the client is reconnected, it MUST make sure that the + interrupted command was indeed not executed. If it wasn't + executed, the client must restart playback from the interrupted + command, otherwise from the following command. + + Upon reconnect, care must be taken in order to properly reapply + logical operations that are represented by multiple IMAP commands, + e.g., UID EXPUNGE emulation when UID EXPUNGE is not supported by + the server (see Section 4.2.4). + + Once the client detects that the connection to the server was + lost, it MUST stop replaying its log. There are existing + disconnected clients that, to the great annoyance of users, pop up + an error dialog for each and every playback operation that fails. + + 2) Copying/appending messages to a mailbox that doesn't exist. (The + server advertises this condition by sending the TRYCREATE response + code in the tagged NO response to the APPEND or COPY command.) + + + + + +Melnikov Informational [Page 26] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + The user should be advised about the situation and be given one of + the following choices: + + a) Try to recreate a mailbox. + b) Copy/upload messages to another mailbox. + c) Skip copy/upload. + d) Abort replay. + + 3) Copying messages from a mailbox that doesn't exist, or renaming or + getting/changing ACLs [ACL] on a mailbox that doesn't exist: + + a) Skip operation. + b) Abort replay. + + 4) Deleting mailboxes or deleting/expunging messages that no longer + exist. + + This is actually is not an error and should be ignored by the + client. + + 5) Performing operations on messages that no longer exist. + + a) Skip operation. + b) Abort replay. + + In the case of changing flags on an expunged message, the client + should silently ignore the error. + + Note 1: Several synchronization operations map to multiple IMAP + commands (for example, "move" described in 4.2.2). The client must + guarantee atomicity of each such multistep operation. For example, + when performing a "move" between two mailboxes on the same server, if + the server is unable to copy messages, the client MUST NOT attempt to + set the \Deleted flag on the messages being copied, let alone expunge + them. However, the client MAY consider that move operation to have + succeeded even if the server was unable to set the \Deleted flag on + copied messages. + + Note 2: Many synchronization operations have data dependencies. A + failed operation must cause all dependent operations to fail as well. + The client should check this and MUST NOT try to perform all + dependent operations blindly (unless the user corrected the original + problem). For example, a message may be scheduled to be appended to + a mailbox on the server and later on the appended message may be + copied to another mailbox. If the APPEND operation fails, the client + must not attempt to COPY the failed message later on. (See also + Section 5, Situation 3). + + + + +Melnikov Informational [Page 27] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + +5.2. Quality of Implementation Issues + + Below, some quality of implementation issues are listed for + disconnected clients. They will help to write a disconnected client + that works correctly, performs synchronization as quickly as possible + (and thus can make the user happier as well as save her some money), + and minimizes the server load: + + 1) Don't lose information. + + No matter how smart your client is in other areas, if it loses + information, users will get very upset. + + 2) Don't do work unless explicitly asked. Be flexible. Ask all + questions BEFORE starting synchronization, if possible. + + 3) Minimize traffic. + + The client MUST NOT issue a command if the client already received + the required information from the server. + + The client MUST make use of UIDPLUS extension if it is supported + by the server. + + See also optimization 1 in Section 5.3. + + 4) Minimize the number of round-trips. + + Round-trips kill performance, especially on links with high + latency. Sections 4.2.2.5 and 5.2 give some advice on how to + minimize the number of round-trips. + + See also optimization 1 in Section 5.3. + +5.3. Optimizations + + Some useful optimizations are described in this section. A + disconnected client that supports the recommendations listed below + will give the user a more pleasant experience. + + 1) The initial OK or PREAUTH responses may contain the CAPABILITY + response code as described in Section 7.1 of [IMAP4]. This + response code gives the same information as returned by the + CAPABILITY command*. A disconnected client that pays attention to + this response code can avoid sending CAPABILITY command and will + save a round-trip. + + + + + +Melnikov Informational [Page 28] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + * Note: Some servers report in the CAPABILITY response code + extensions that are only relevant in unauthenticated state or in + all states. Such servers usually send another CAPABILITY + response code upon successful authentication using LOGIN or + AUTHENTICATE command (that negotiates no security layer; see + Section 6.2.2 of [IMAP4]). The CAPABILITY response code sent + upon successful LOGIN/AUTHENTICATE might be different from the + CAPABILITY response code in the initial OK response, as + extensions only relevant for unauthenticated state will not be + advertised, and some additional extensions available only in + authenticated and/or selected state will be. + + Example 9: + + S: * OK [CAPABILITY IMAP4REV1 LOGIN-REFERRALS STARTTLS + AUTH=DIGEST-MD5 AUTH=SRP] imap.example.com ready + C: 2 authenticate DIGEST-MD5 + S: 2 OK [CAPABILITY IMAP4REV1 IDLE NAMESPACE MAILBOX-REFERRALS SCAN + SORT THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND] + User authenticated (no layer) + + 2) An advanced disconnected client may choose to optimize its replay + log. For example, there might be some operations that are + redundant (the list is not complete): + + a) an EXPUNGE followed by another EXPUNGE or CLOSE; + b) changing flags (other than the \Deleted flag) on a message that + gets immediately expunged; + c) opening and closing the same mailbox. + + When optimizing, be careful about data dependencies between commands. + For example, if the client is wishing to optimize (see case b, above) + + tag1 UID STORE <uid1> +FLAGS (\Deleted) + ... + tag2 UID STORE <uid1> +FLAGS (\Flagged) + ... + tag3 UID COPY <uid1> "Backup" + ... + tag4 UID EXPUNGE <uid1> + + it can't remove the second UID STORE command because the message is + being copied before it gets expunged. + + In general, it might be a good idea to keep mailboxes open during + synchronization (see case c above), if possible. This can be more + easily achieved in conjunction with optimization 3 described below. + + + + +Melnikov Informational [Page 29] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + 3) Perform some synchronization steps in parallel, if possible. + + Several synchronization steps don't depend on each other and thus + can be performed in parallel. Because the server machine is + usually more powerful than the client machine and can perform some + operations in parallel, this may speed up the total time of + synchronization. + + In order to achieve such parallelization, the client will have to + open more than one connection to the same server. Client writers + should not forget about non-trivial cost associated with + establishing a TCP connection and performing an authentication. + The disconnected client MUST NOT use one connection per mailbox. + In most cases, it is sufficient to have two connections. The + disconnected client SHOULD avoid selecting the same mailbox in + more than one connection; see Section 3.1.1 of [RFC2683] for more + details. + + Any mailbox synchronization MUST start with checking the + UIDVALIDITY as described in Section 4.1 of this document. The + client MAY use STATUS command to check UID Validity of a non- + selected mailbox. This is preferable to opening many connections + to the same server to perform synchronization of multiple + mailboxes simultaneously. As described in Section 5.3.10 of + [IMAP4], this SHOULD NOT be used on the selected mailbox. + +6. IMAP Extensions That May Help + + The following extensions can save traffic and/or the number of + round-trips: + + 1) The use of [UIDPLUS] is discussed in Sections 4.1, 4.2.1, 4.2.2.1 + and 4.2.4. + + 2) The use of the MULTIAPPEND and LITERAL+ extensions for uploading + messages is discussed in Section 4.2.2.5. + + 3) Use the CONDSTORE extension (see Section 6.1) for quick flag + resynchronization. + +6.1. CONDSTORE Extension + + An advanced disconnected mail client should use the [CONDSTORE] + extension when it is supported by the server. The client must cache + the value from HIGHESTMODSEQ OK response code received on mailbox + opening and update it whenever the server sends MODSEQ FETCH data + items. + + + + +Melnikov Informational [Page 30] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + If the client receives NOMODSEQ OK untagged response instead of + HIGHESTMODSEQ, it MUST remove the last known HIGHESTMODSEQ value from + its cache and follow the more general instructions in Section 3. + + When the client opens the mailbox for synchronization, it first + compares UIDVALIDITY as described in step d-1 in Section 3. If the + cached UIDVALIDITY value matches the one returned by the server, the + client MUST compare the cached value of HIGHESTMODSEQ with the one + returned by the server. If the cached HIGHESTMODSEQ value also + matches the one returned by the server, then the client MUST NOT + fetch flags for cached messages, as they hasn't changed. If the + value on the server is higher than the cached one, the client MAY use + "SEARCH MODSEQ <cached-value>" to find all messages with flags + changed since the last time the client was online and had the mailbox + opened. Alternatively, the client MAY use "FETCH 1:* (FLAGS) + (CHANGEDSINCE <cached-value>)". The latter operation combines + searching for changed messages and fetching new information. + + In all cases, the client still needs to fetch information about new + messages (if requested by the user) as well as discover which + messages have been expunged. + + Step d ("Server-to-client synchronization") in Section 4 in the + presence of the CONDSTORE extension is amended as follows: + + d) "Server-to-client synchronization" - For each mailbox that + requires synchronization, do the following: + + 1a) Check the mailbox UIDVALIDITY (see section 4.1 for more + details) with SELECT/EXAMINE/STATUS. + + If the UIDVALIDITY value returned by the server differs, the + client MUST + + * empty the local cache of that mailbox; + * "forget" the cached HIGHESTMODSEQ value for the mailbox; + * remove any pending "actions" that refer to UIDs in that + mailbox (note that this doesn't affect actions performed on + client-generated fake UIDs; see Section 5); and + * skip steps 1b and 2-II; + + 1b) Check the mailbox HIGHESTMODSEQ. If the cached value is the + same as the one returned by the server, skip fetching message + flags on step 2-II, i.e., the client only has to find out + which messages got expunged. + + + + + + +Melnikov Informational [Page 31] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + 2) Fetch the current "descriptors". + + I) Discover new messages. + + II) Discover changes to old messages and flags for new messages + using + "FETCH 1:* (FLAGS) (CHANGEDSINCE <cached-value>)" or + "SEARCH MODSEQ <cached-value>". + + Discover expunged messages; for example, using + "UID SEARCH 1:<lastseenuid>". (All messages not returned + in this command are expunged.) + + 3) Fetch the bodies of any "interesting" messages that the client + doesn't already have. + + Example 10: + + The UIDVALIDITY value is the same, but the HIGHESTMODSEQ value + has changed on the server while the client was offline. + + C: A142 SELECT INBOX + S: * 172 EXISTS + S: * 1 RECENT + S: * OK [UNSEEN 12] Message 12 is first unseen + S: * OK [UIDVALIDITY 3857529045] UIDs valid + S: * OK [UIDNEXT 201] Predicted next UID + S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft) + S: * OK [PERMANENTFLAGS (\Deleted \Seen \*)] Limited + S: * OK [HIGHESTMODSEQ 20010715194045007] + S: A142 OK [READ-WRITE] SELECT completed + + After that, either: + + C: A143 UID FETCH 1:* (FLAGS) (CHANGEDSINCE 20010715194032001) + S: * 2 FETCH (UID 6 MODSEQ (20010715205008000) FLAGS (\Deleted)) + S: * 5 FETCH (UID 9 MODSEQ (20010715195517000) FLAGS ($NoJunk + $AutoJunk $MDNSent)) + ... + S: A143 OK FETCH completed + + or: + + + + + + + + + +Melnikov Informational [Page 32] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + + C: A143 UID SEARCH MODSEQ 20010715194032001 UID 1:20 + S: * SEARCH 6 9 11 12 18 19 20 23 (MODSEQ 20010917162500) + S: A143 OK Search complete + C: A144 UID SEARCH 1:20 + S: * SEARCH 6 9 ... + S: A144 OK FETCH completed + +7. Security Considerations + + It is believed that this document does not raise any new security + concerns that are not already present in the base [IMAP4] protocol, + and these issues are discussed in [IMAP4]. Additional security + considerations may be found in different extensions mentioned in this + document; in particular, in [UIDPLUS], [LITERAL+], [CONDSTORE], + [MULTIAPPEND], and [UNSELECT]. + + Implementers are also reminded about the importance of thorough + testing. + +8. References + +8.1. Normative References + + [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, March 1997. + + [IMAP4] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - + VERSION 4rev1", RFC 3501, March 2003. + + [UIDPLUS] Crispin, M., "Internet Message Access Protocol (IMAP) - + UIDPLUS extension", RFC 4315, December 2005. + + [LITERAL+] Myers, J., "IMAP4 non-synchronizing literals", RFC + 2088, January 1997. + + [CONDSTORE] Melnikov, A. and S. Hole, "IMAP Extension for + Conditional STORE Operation or Quick Flag Changes + Resynchronization", RFC 4551, June 2006. + + [MULTIAPPEND] Crispin, M., "Internet Message Access Protocol (IMAP) - + MULTIAPPEND Extension", RFC 3502, March 2003. + + [UNSELECT] Melnikov, A., "Internet Message Access Protocol (IMAP) + UNSELECT command", RFC 3691, February 2004. + + [RFC2683] Leiba, B., "IMAP4 Implementation Recommendations", RFC + 2683, September 1999. + + + + +Melnikov Informational [Page 33] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + +8.2. Informative References + + [ACL] Melnikov, A., "IMAP4 Access Control List (ACL) + Extension", RFC 4314, December 2005. + + [IMAP-MODEL] Crispin, M., "Distributed Electronic Mail Models in + IMAP4", RFC 1733, December 1994. + +9. Acknowledgements + + This document is based on version 01 of the text written by Rob + Austein in November 1994. + + The editor appreciates comments posted by Mark Crispin to the IMAP + mailing list and the comments/corrections/ideas received from Grant + Baillie, Cyrus Daboo, John G. Myers, Chris Newman, and Timo Sirainen. + + The editor would also like to thank the developers of Netscape + Messenger and Mozilla mail clients for providing examples of + disconnected mail clients that served as a base for many + recommendations in this document. + +Editor's Address + + Alexey Melnikov + Isode Limited + 5 Castle Business Village + 36 Station Road + Hampton, Middlesex + TW12 2BX + United Kingdom + + Phone: +44 77 53759732 + EMail: alexey.melnikov@isode.com + + + + + + + + + + + + + + + + + +Melnikov Informational [Page 34] + +RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006 + + +Full Copyright Statement + + Copyright (C) The Internet Society (2006). + + This document is subject to the rights, licenses and restrictions + contained in BCP 78, and except as set forth therein, the authors + retain all their rights. + + This document and the information contained herein are provided on an + "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS + OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET + ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, + INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE + INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED + WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +Intellectual Property + + The IETF takes no position regarding the validity or scope of any + Intellectual Property Rights or other rights that might be claimed to + pertain to the implementation or use of the technology described in + this document or the extent to which any license under such rights + might or might not be available; nor does it represent that it has + made any independent effort to identify any such rights. Information + on the procedures with respect to rights in RFC documents can be + found in BCP 78 and BCP 79. + + Copies of IPR disclosures made to the IETF Secretariat and any + assurances of licenses to be made available, or the result of an + attempt made to obtain a general license or permission for the use of + such proprietary rights by implementers or users of this + specification can be obtained from the IETF on-line IPR repository at + http://www.ietf.org/ipr. + + The IETF invites any interested party to bring to its attention any + copyrights, patents or patent applications, or other proprietary + rights that may cover technology that may be required to implement + this standard. Please address the information to the IETF at + ietf-ipr@ietf.org. + +Acknowledgement + + Funding for the RFC Editor function is provided by the IETF + Administrative Support Activity (IASA). + + + + + + + +Melnikov Informational [Page 35] + |