diff options
author | Thomas Voss <mail@thomasvoss.com> | 2024-11-27 20:54:24 +0100 |
---|---|---|
committer | Thomas Voss <mail@thomasvoss.com> | 2024-11-27 20:54:24 +0100 |
commit | 4bfd864f10b68b71482b35c818559068ef8d5797 (patch) | |
tree | e3989f47a7994642eb325063d46e8f08ffa681dc /doc/rfc/rfc5114.txt | |
parent | ea76e11061bda059ae9f9ad130a9895cc85607db (diff) |
doc: Add RFC documents
Diffstat (limited to 'doc/rfc/rfc5114.txt')
-rw-r--r-- | doc/rfc/rfc5114.txt | 1291 |
1 files changed, 1291 insertions, 0 deletions
diff --git a/doc/rfc/rfc5114.txt b/doc/rfc/rfc5114.txt new file mode 100644 index 0000000..83d7a9f --- /dev/null +++ b/doc/rfc/rfc5114.txt @@ -0,0 +1,1291 @@ + + + + + + +Network Working Group M. Lepinski +Request for Comments: 5114 S. Kent +Category: Informational BBN Technologies + January 2008 + + + Additional Diffie-Hellman Groups for Use with IETF Standards + +Status of This Memo + + This memo provides information for the Internet community. It does + not specify an Internet standard of any kind. Distribution of this + memo is unlimited. + +Abstract + + This document describes eight Diffie-Hellman groups that can be used + in conjunction with IETF protocols to provide security for Internet + communications. The groups allow implementers to use the same groups + with a variety of security protocols, e.g., SMIME, Secure SHell + (SSH), Transport Layer Security (TLS), and Internet Key Exchange + (IKE). + + All of these groups comply in form and structure with relevant + standards from ISO, ANSI, NIST, and the IEEE. These groups are + compatible with all IETF standards that make use of Diffie-Hellman or + Elliptic Curve Diffie-Hellman cryptography. + + These groups and the associated test data are defined by NIST on + their web site [EX80056A], but have not yet (as of this writing) been + published in a formal NIST document. Publication of these groups and + associated test data, as well as describing how to use Diffie-Hellman + and Elliptic Curve Diffie-Hellman for key agreement in all of the + protocols cited below, in one RFC, will facilitate development of + interoperable implementations and support the Federal Information + Processing Standard (FIPS) validation of implementations that make + use of these groups. + + + + + + + + + + + + + + +Lepinski & Kent Informational [Page 1] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +Table of Contents + + 1. Introduction ....................................................2 + 2. Additional Diffie-Hellman Groups ................................4 + 2.1. 1024-bit MODP Group with 160-bit Prime Order Subgroup ......4 + 2.2. 2048-bit MODP Group with 224-bit Prime Order Subgroup ......4 + 2.3. 2048-bit MODP Group with 256-bit Prime Order Subgroup ......5 + 2.4. 192-bit Random ECP Group ...................................6 + 2.5. 224-bit Random ECP Group ...................................7 + 2.6. 256-bit Random ECP Group ...................................7 + 2.7. 384-bit Random ECP Group ...................................8 + 2.8. 521-bit Random ECP Group ...................................9 + 3. Using These Groups with IETF Standards ..........................9 + 3.1. X.509 Certificates .........................................9 + 3.2. IKE .......................................................10 + 3.3. TLS .......................................................10 + 3.4. SSH .......................................................11 + 3.5. SMIME .....................................................11 + 4. Security Considerations ........................................12 + 5. IANA Considerations ............................................13 + 6. Acknowledgments ................................................13 + Appendix A: Test Data .............................................14 + A.1. 1024-bit MODP Group with 160-bit Prime Order Subgroup......15 + A.2. 2048-bit MODP Group with 224-bit Prime Order Subgroup......15 + A.3. 2048-bit MODP Group with 256-bit Prime Order Subgroup......16 + A.4. 192-bit Random ECP Group ..................................17 + A.5. 224-bit Random ECP Group ..................................18 + A.6. 256-bit Random ECP Group ..................................18 + A.7. 384-bit Random ECP Group ..................................19 + A.8. 521-bit Random ECP Group ..................................19 + Normative References ..............................................20 + Informative References ............................................20 + +1. Introduction + + This document provides parameters and test data for several + Diffie-Hellman (D-H) groups that can be used with IETF protocols that + employ D-H keys, (e.g., IKE, TLS, SSH, and SMIME) and with IETF + standards, such as Public Key Infrastructure for X.509 Certificates + (PKIX) (for certificates that carry D-H keys). These groups + complement others already documented for the IETF, including the + "Oakley" groups defined in RFC 2409 [RFC2409] for use with IKEv1, and + several additional D-H groups defined later, e.g., [RFC3526] and + [RFC4492]. + + + + + + + +Lepinski & Kent Informational [Page 2] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + The initial impetus for the definition of D-H groups (in the IETF) + arose in the IPsec (IKE) context, because of the use of an ephemeral, + unauthenticated D-H exchange as the starting point for that protocol. + RFC 2409 defined five standard Oakley Groups: three modular + exponentiation groups and two elliptic curve groups over GF[2^N]. + One modular exponentiation group (768 bits - Oakley Group 1) was + declared to be mandatory for all IKEv1 implementations to support, + while the other four were optional. Sixteen additional groups + subsequently have been defined and registered with IANA for use with + IKEv1, including eight that have also been registered for use with + IKEv2. All of these additional groups are optional in the IKE + context. Of the twenty-one groups defined so far for use with IKE, + eight are MODP groups (exponentiation groups modulo a prime), ten are + EC2N groups (elliptic curve groups over GF[2^N]), and three are ECP + groups (elliptic curve groups over GF[P]). + + The purpose of this document is to provide the parameters and test + data for eight additional groups, in a format consistent with + existing RFCs along with instructions on how these groups can be used + with IETF protocols such as SMIME, SSH, TLS, and IKE. Three of these + groups were previously specified for use with IKE [RFC4753], and five + of these groups were previously specified for use with TLS [RFC4492]. + (The latter document does not provide or reference test data for the + specified groups). By combining the specification of all eight + groups with test data and instructions for use in a variety of + protocols, this document serves as a resource for implementers who + may wish to offer the same Diffie-Hellman groups for use with + multiple IETF protocols. + + All of these groups are compatible with applicable ISO [ISO-14888-3], + ANSI [X9.62], and NIST [NIST80056A] standards for Diffie-Hellman key + exchange. These groups and the associated test data are defined by + NIST on their web site [EX80056A], but have not yet (as of this + writing) been published in a formal NIST document. Publication of + these groups with associated test data as an RFC will facilitate + development of interoperable implementations and support FIPS + validation of implementations that make use of these groups. + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this + document are to be interpreted as described in RFC 2119 [RFC2119]. + + + + + + + + + + +Lepinski & Kent Informational [Page 3] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +2. Additional Diffie-Hellman Groups + + This section contains the specification for eight groups for use in + IKE, TLS, SSH, etc. There are three standard prime modulus groups + and five elliptic curve groups. All groups were taken from + publications of the National Institute of Standards and Technology, + specifically [DSS] and [NIST80056A]. Test data for each group is + provided in Appendix A. + +2.1. 1024-bit MODP Group with 160-bit Prime Order Subgroup + + The hexadecimal value of the prime is: + + p = B10B8F96 A080E01D DE92DE5E AE5D54EC 52C99FBC FB06A3C6 + 9A6A9DCA 52D23B61 6073E286 75A23D18 9838EF1E 2EE652C0 + 13ECB4AE A9061123 24975C3C D49B83BF ACCBDD7D 90C4BD70 + 98488E9C 219A7372 4EFFD6FA E5644738 FAA31A4F F55BCCC0 + A151AF5F 0DC8B4BD 45BF37DF 365C1A65 E68CFDA7 6D4DA708 + DF1FB2BC 2E4A4371 + + The hexadecimal value of the generator is: + + g = A4D1CBD5 C3FD3412 6765A442 EFB99905 F8104DD2 58AC507F + D6406CFF 14266D31 266FEA1E 5C41564B 777E690F 5504F213 + 160217B4 B01B886A 5E91547F 9E2749F4 D7FBD7D3 B9A92EE1 + 909D0D22 63F80A76 A6A24C08 7A091F53 1DBF0A01 69B6A28A + D662A4D1 8E73AFA3 2D779D59 18D08BC8 858F4DCE F97C2A24 + 855E6EEB 22B3B2E5 + + The generator generates a prime-order subgroup of size: + + q = F518AA87 81A8DF27 8ABA4E7D 64B7CB9D 49462353 + +2.2. 2048-bit MODP Group with 224-bit Prime Order Subgroup + + The hexadecimal value of the prime is: + + p = AD107E1E 9123A9D0 D660FAA7 9559C51F A20D64E5 683B9FD1 + B54B1597 B61D0A75 E6FA141D F95A56DB AF9A3C40 7BA1DF15 + EB3D688A 309C180E 1DE6B85A 1274A0A6 6D3F8152 AD6AC212 + 9037C9ED EFDA4DF8 D91E8FEF 55B7394B 7AD5B7D0 B6C12207 + C9F98D11 ED34DBF6 C6BA0B2C 8BBC27BE 6A00E0A0 B9C49708 + B3BF8A31 70918836 81286130 BC8985DB 1602E714 415D9330 + 278273C7 DE31EFDC 7310F712 1FD5A074 15987D9A DC0A486D + CDF93ACC 44328387 315D75E1 98C641A4 80CD86A1 B9E587E8 + BE60E69C C928B2B9 C52172E4 13042E9B 23F10B0E 16E79763 + C9B53DCF 4BA80A29 E3FB73C1 6B8E75B9 7EF363E2 FFA31F71 + CF9DE538 4E71B81C 0AC4DFFE 0C10E64F + + + +Lepinski & Kent Informational [Page 4] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + The hexadecimal value of the generator is: + + g = AC4032EF 4F2D9AE3 9DF30B5C 8FFDAC50 6CDEBE7B 89998CAF + 74866A08 CFE4FFE3 A6824A4E 10B9A6F0 DD921F01 A70C4AFA + AB739D77 00C29F52 C57DB17C 620A8652 BE5E9001 A8D66AD7 + C1766910 1999024A F4D02727 5AC1348B B8A762D0 521BC98A + E2471504 22EA1ED4 09939D54 DA7460CD B5F6C6B2 50717CBE + F180EB34 118E98D1 19529A45 D6F83456 6E3025E3 16A330EF + BB77A86F 0C1AB15B 051AE3D4 28C8F8AC B70A8137 150B8EEB + 10E183ED D19963DD D9E263E4 770589EF 6AA21E7F 5F2FF381 + B539CCE3 409D13CD 566AFBB4 8D6C0191 81E1BCFE 94B30269 + EDFE72FE 9B6AA4BD 7B5A0F1C 71CFFF4C 19C418E1 F6EC0179 + 81BC087F 2A7065B3 84B890D3 191F2BFA + + The generator generates a prime-order subgroup of size: + + q = 801C0D34 C58D93FE 99717710 1F80535A 4738CEBC BF389A99 + B36371EB + +2.3. 2048-bit MODP Group with 256-bit Prime Order Subgroup + + The hexadecimal value of the prime is: + + p = 87A8E61D B4B6663C FFBBD19C 65195999 8CEEF608 660DD0F2 + 5D2CEED4 435E3B00 E00DF8F1 D61957D4 FAF7DF45 61B2AA30 + 16C3D911 34096FAA 3BF4296D 830E9A7C 209E0C64 97517ABD + 5A8A9D30 6BCF67ED 91F9E672 5B4758C0 22E0B1EF 4275BF7B + 6C5BFC11 D45F9088 B941F54E B1E59BB8 BC39A0BF 12307F5C + 4FDB70C5 81B23F76 B63ACAE1 CAA6B790 2D525267 35488A0E + F13C6D9A 51BFA4AB 3AD83477 96524D8E F6A167B5 A41825D9 + 67E144E5 14056425 1CCACB83 E6B486F6 B3CA3F79 71506026 + C0B857F6 89962856 DED4010A BD0BE621 C3A3960A 54E710C3 + 75F26375 D7014103 A4B54330 C198AF12 6116D227 6E11715F + 693877FA D7EF09CA DB094AE9 1E1A1597 + + + + + + + + + + + + + + + + + +Lepinski & Kent Informational [Page 5] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + The hexadecimal value of the generator is: + + g = 3FB32C9B 73134D0B 2E775066 60EDBD48 4CA7B18F 21EF2054 + 07F4793A 1A0BA125 10DBC150 77BE463F FF4FED4A AC0BB555 + BE3A6C1B 0C6B47B1 BC3773BF 7E8C6F62 901228F8 C28CBB18 + A55AE313 41000A65 0196F931 C77A57F2 DDF463E5 E9EC144B + 777DE62A AAB8A862 8AC376D2 82D6ED38 64E67982 428EBC83 + 1D14348F 6F2F9193 B5045AF2 767164E1 DFC967C1 FB3F2E55 + A4BD1BFF E83B9C80 D052B985 D182EA0A DB2A3B73 13D3FE14 + C8484B1E 052588B9 B7D2BBD2 DF016199 ECD06E15 57CD0915 + B3353BBB 64E0EC37 7FD02837 0DF92B52 C7891428 CDC67EB6 + 184B523D 1DB246C3 2F630784 90F00EF8 D647D148 D4795451 + 5E2327CF EF98C582 664B4C0F 6CC41659 + + The generator generates a prime-order subgroup of size: + + q = 8CF83642 A709A097 B4479976 40129DA2 99B1A47D 1EB3750B + A308B0FE 64F5FBD3 + +2.4. 192-bit Random ECP Group + + The curve is based on the integers modulo the prime p given by: + p = 2^(192) - 2^(64) - 1 + + Group prime (in hexadecimal): + p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF + + The equation for the elliptic curve is: + y^2 = x^3 + ax + b (mod p) + + Group curve parameter A (in hexadecimal): + a = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFC + + Group curve parameter B (in hexadecimal): + b = 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1 + + The generator for this group is given by: g=(gx,gy) where + + gx = 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012 + + gy = 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811 + + Group order (in hexadecimal): + n = FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831 + + + + + + + +Lepinski & Kent Informational [Page 6] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +2.5. 224-bit Random ECP Group + + The curve is based on the integers modulo the prime p given by: + p = 2^(224) - 2^(96) + 1 + + Group prime (in hexadecimal): + p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 00000000 + 00000001 + + The equation for the elliptic curve is: + y^2 = x^3 + ax + b (mod p) + + Group curve parameter A (in hexadecimal): + a = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF + FFFFFFFE + + Group curve parameter B (in hexadecimal): + b = B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943 + 2355FFB4 + + The generator for this group is given by: g=(gx,gy) where + + gx = B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6 + 115C1D21 + + gy = BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199 + 85007E34 + + Group Order (in hexadecimal): + n = FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 E0B8F03E 13DD2945 + 5C5C2A3D + +2.6. 256-bit Random ECP Group + + The curve is based on the integers modulo the prime p given by: + p = 2^(256)-2^(224)+2^(192)+2^(96)-1 + + Group prime (in hexadecimal): + p = FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF + FFFFFFFF FFFFFFFF + + The equation for the elliptic curve is: + y^2 = x^3 + ax + b (mod p) + + Group curve parameter A (in hexadecimal): + a = FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF + FFFFFFFF FFFFFFFC + + + + +Lepinski & Kent Informational [Page 7] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + Group curve parameter B (in hexadecimal): + b = 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 + 3BCE3C3E 27D2604B + + The generator for this group is given by: g=(gx,gy) where + + gx = 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 + F4A13945 D898C296 + + gy = 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE + CBB64068 37BF51F5 + + Group Order (in hexadecimal): + n = FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 + F3B9CAC2 FC632551 + +2.7. 384-bit Random ECP Group + + The curve is based on the integers modulo the prime p given by: + p = 2^(384)-2^(128)-2^(96)+2^(32)-1 + + Group prime (in hexadecimal): + p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + FFFFFFFF FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFF + + The equation for the elliptic curve is: + y^2 = x^3 + ax + b (mod p) + + Group curve parameter A (in hexadecimal): + a = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + FFFFFFFF FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFC + + Group curve parameter B (in hexadecimal): + b = B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112 + 0314088F 5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF + + The generator for this group is given by: g=(gx,gy) where + + gx = AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98 + 59F741E0 82542A38 5502F25D BF55296C 3A545E38 72760AB7 + + gy = 3617DE4A 96262C6F 5D9E98BF 9292DC29 F8F41DBD 289A147C + E9DA3113 B5F0B8C0 0A60B1CE 1D7E819D 7A431D7C 90EA0E5F + + Group Order (in hexadecimal): + n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + C7634D81 F4372DDF 581A0DB2 48B0A77A ECEC196A CCC52973 + + + + +Lepinski & Kent Informational [Page 8] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +2.8. 521-bit Random ECP Group + + The curve is based on the integers modulo the prime p given by: + p = 2^(521)-1 + + Group Prime (in hexadecimal): + p = 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + + The equation for the elliptic curve is: + y^2 = x^3 + ax + b (mod p) + + Group curve parameter A (in hexadecimal): + a = 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFC + + Group curve parameter B (in hexadecimal): + b = 00000051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B + 99B315F3 B8B48991 8EF109E1 56193951 EC7E937B 1652C0BD + 3BB1BF07 3573DF88 3D2C34F1 EF451FD4 6B503F00 + + The generator for this group is given by: g=(gx,gy) where + + gx = 000000C6 858E06B7 0404E9CD 9E3ECB66 2395B442 9C648139 + 053FB521 F828AF60 6B4D3DBA A14B5E77 EFE75928 FE1DC127 + A2FFA8DE 3348B3C1 856A429B F97E7E31 C2E5BD66 + + gy = 00000118 39296A78 9A3BC004 5C8A5FB4 2C7D1BD9 98F54449 + 579B4468 17AFBD17 273E662C 97EE7299 5EF42640 C550B901 + 3FAD0761 353C7086 A272C240 88BE9476 9FD16650 + + Group Order (in hexadecimal): + n = 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF + FFFFFFFF FFFFFFFF FFFFFFFA 51868783 BF2F966B 7FCC0148 + F709A5D0 3BB5C9B8 899C47AE BB6FB71E 91386409 + +3. Using These Groups with IETF Standards + +3.1. X.509 Certificates + + Representation of both MODP and Elliptic Curve Diffie-Hellman public + keys (and associated parameters) in X.509 certificates is defined in + [RFC3279]. The MODP groups defined above MUST be represented via the + syntax defined in Section 2.3.3, and the elliptic curve groups via + + + + + +Lepinski & Kent Informational [Page 9] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + the syntax defined in Section in 2.3.5 of that RFC. When a + Diffie-Hellman public key is encoded in a certificate, if the + KeyUsage extension is present, the keyAgreement bits MUST be + asserted, and encipherOnly or decipherOnly (but not both) MAY be + asserted. + +3.2. IKE + + Use of MODP Diffie-Hellman groups with IKEv2 is defined in [RFC4306], + and the use of MODP groups with IKEv1 is defined in [RFC2409]. + However, in the case of ECP Diffie-Hellman groups, the format of key + exchange payloads and the derivation of a shared secret has thus far + been specified on a group-by-group basis. For the ECP Diffie-Hellman + groups defined in this document, the key exchange payload format and + shared key derivation procedure specified in [RFC4753] MUST be used + (with both IKEv2 and IKEv1). + + In order to use a Diffie-Hellman group with IKE, it is required that + a transform ID for the group be registered with IANA. The following + table provides the Transform IDs of each Diffie-Hellman group + described in this document, as registered in both [IANA-IKE] and + [IANA-IKE2]. + + NAME | NUMBER + --------------------------------------------------------+--------- + 1024-bit MODP Group with 160-bit Prime Order Subgroup | 22 + 2048-bit MODP Group with 224-bit Prime Order Subgroup | 23 + 2048-bit MODP Group with 256-bit Prime Order Subgroup | 24 + 192-bit Random ECP Group | 25 + 224-bit Random ECP Group | 26 + 256-bit Random ECP Group | 19 + 384-bit Random ECP Group | 20 + 521-bit Random ECP Group | 21 + +3.3. TLS + + Use of MODP Diffie-Hellman groups in TLS 1.1 is defined in [RFC4346]. + TLS 1.0, the widely deployed predecessor of TLS 1.1, is specified in + [RFC2246] and is the same as TLS 1.1 with respect to the use of + (MODP) Diffie-Hellman to compute a pre-Master secret. (Currently, + the TLS working group is in the process of producing a specification + for TLS 1.2. It is unlikely that TLS 1.2 will make significant + changes to the use of Diffie-Hellman, and thus the following will + likely also be applicable to TLS 1.2). + + + + + + + +Lepinski & Kent Informational [Page 10] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + A server may employ a certificate containing (fixed) Diffie-Hellman + parameters, and likewise for a client using a certificate. Thus, the + relevant PKIX RFCs (see 3.1 above) are applicable. Alternatively, a + server may send ephemeral Diffie-Hellman parameters in the server key + exchange message, where the message signature is verified using an + RSA- or DSS-signed server certificate. The details for accomplishing + this for MODP Diffie-Hellman groups are provided in [RFC2246]. + + Use of Elliptic Curve Diffie-Hellman in TLS 1.1 (and 1.0) is defined + in [RFC4492]. The elliptic curves in this document appear in the + IANA EC Named Curve Registry [IANA-TLS], although the names in the + registry are taken from the Standards for Efficient Cryptography + Group (SECG) specification [SECG] and differ from the names appearing + in NIST publications. The following table provides the EC Named + Curve ID for each of the elliptic curves along with both the NIST + name and the SECG name for the curve. + + NAME (NIST) | NUMBER | NAME (SECG) + ---------------------------------+--------------+--------------- + 192-bit Random ECP Group | 19 | secp192r1 + 224-bit Random ECP Group | 21 | secp224r1 + 256-bit Random ECP Group | 23 | secp256r1 + 384-bit Random ECP Group | 24 | secp384r1 + 521-bit Random ECP Group | 25 | secp521r1 + +3.4. SSH + + Use of Diffie-Hellman with SSH was defined initially in [RFC4253]. + That RFC defined two MODP Diffie-Hellman groups, and called for the + registration of additional groups via an IANA registry. However, + [RFC4419] extended the original model to allow MODP Diffie-Hellman + parameters to be transmitted as part of the key exchange messages. + Thus, using RFC 4419, no additional specifications (or IANA registry + actions) are required to enable use of the MODP groups defined in + this document. At this time, no RFC describes the use of Elliptic + Curve Diffie-Hellman with SSH. However, [SSH-ECC] provides a + description of how to make use of Elliptic Curve Diffie-Hellman with + SSH. + +3.5. SMIME + + Use of Diffie-Hellman in SMIME is defined via a discussion of + Cryptographic Message Syntax (CMS) enveloped data [RFC3852]. For + MODP Diffie-Hellman, the appropriate reference is [RFC2631]. This + specification calls for a sender to extract the Diffie-Hellman (MODP) + parameters from a recipient's certificate, and thus the PKIX + specifications for representation of Diffie-Hellman parameters + suffice. The sender transmits his public key via the + + + +Lepinski & Kent Informational [Page 11] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + OriginatorIdentifierorKey field, or via a reference to the sender's + certificate. + + Use of Elliptic Curve Diffie-Hellman in CMS is defined in [RFC3278]. + As with use of MODP Diffie-Hellman in the CMS context, the sender is + assumed to acquire the recipient's public key and parameters from a + certificate. The sender includes his Elliptic Curve Diffie-Hellman + public key in the KeyAgreeRecipientInfo originator field. (See + Section 8.2 of RFC 3278 for details of the ECC-CMS-SharedInfo). + +4. Security Considerations + + The strength of a key derived from a Diffie-Hellman exchange using + any of the groups defined here depends on the inherent strength of + the group, the size of the exponent used, and the entropy provided by + the random number generator used. The groups defined in this + document were chosen to make the work factor for solving the discrete + logarithm problem roughly comparable to an attack on the subgroup. + + Using secret keys of an appropriate size is crucial to the security + of a Diffie-Hellman exchange. For modular exponentiation groups, the + size of the secret key should be equal to the size of q (the size of + the prime order subgroup). For elliptic curve groups, the size of + the secret key must be equal to the size of n (the order of the group + generated by the point g). Using larger secret keys provides + absolutely no additional security, and using smaller secret keys is + likely to result in dramatically less security. (See [NIST80056A] + for more information on selecting secret keys.) + + When secret keys of an appropriate size are used, an approximation of + the strength of each of the Diffie-Hellman groups is provided in the + table below. For each group, the table contains an RSA key size and + symmetric key size that provide roughly equivalent levels of + security. This data is based on the recommendations in [NIST80057]. + + GROUP | SYMMETRIC | RSA + -------------------------------------------+------------+------- + 1024-bit MODP with 160-bit Prime Subgroup | 80 | 1024 + 2048-bit MODP with 224-bit Prime Subgroup | 112 | 2048 + 2048-bit MODP with 256-bit Prime Subgroup | 112 | 2048 + 192-bit Random ECP Group | 80 | 1024 + 224-bit Random ECP Group | 112 | 2048 + 256-bit Random ECP Group | 128 | 3072 + 384-bit Random ECP Group | 192 | 7680 + 521-bit Random ECP Group | 256 | 15360 + + + + + + +Lepinski & Kent Informational [Page 12] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +5. IANA Considerations + + IANA has taken the following actions: + + Updated the IKE and IKEv2 registries to include the following five + groups defined in this document: (Note that the other three ECP + groups defined in this document have already been added to the IKE + registry). + + o 1024-bit MODP Group with 160-bit Prime Order Subgroup + + o 2048-bit MODP Group with 224-bit Prime Order Subgroup + + o 2048-bit MODP Group with 256-bit Prime Order Subgroup + + o 192-bit Random ECP Group + + o 224-bit Random ECP Group + + Updated [IANA-IKE] and [IANA-IKE2] to reflect the above, which now + appear as entries in the list of Diffie-Hellman groups given by Group + Description. The descriptions are as stated above. + +6. Acknowledgments + + We wish to thank NIST for publishing the group definitions and + providing test data to assist implementers in verifying that software + or hardware correctly implements these groups. We also wish to thank + Tero Kivinen and Sean Turner for providing helpful comments after + reviewing an earlier version of this document. + + + + + + + + + + + + + + + + + + + + + +Lepinski & Kent Informational [Page 13] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +Appendix A. Test Data + + The test data in this appendix is a protocol-independent subset of + the test data in [EX80056A]. In the test data for the three modular + exponentiation groups, we use the following notation: + + xA: The secret key of party A + + yA: The public key of party A + + xB: The secret key of party B + + yB: The public key of party B + + Z: The shared secret that results from the Diffie-Hellman + computation + + In the test data for the five elliptic curve groups, we use the + following notation: + + dA: The secret value of party A + + x_qA: The x-coordinate of the public key of party A + + y_qA: The y-coordinate of the public key of party A + + dB: The secret value of party B + + x_qA: The x-coordinate of the public key of party B + + y_qA: The y-coordinate of the public key of party B + + x_Z: The x-coordinate of the shared secret that results from the + Diffie-Hellman computation + + y_Z: The y-coordinate of the shared secret that results form the + Diffie-Hellman computation + + + + + + + + + + + + + + +Lepinski & Kent Informational [Page 14] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +A.1. 1024-bit MODP Group with 160-bit Prime Order Subgroup + + xA = B9A3B3AE 8FEFC1A2 93049650 7086F845 5D48943E + + yA = 2A853B3D 92197501 + B9015B2D EB3ED84F 5E021DCC 3E52F109 D3273D2B 7521281C + BABE0E76 FF5727FA 8ACCE269 56BA9A1F CA26F202 28D8693F + EB10841D 84A73600 54ECE5A7 F5B7A61A D3DFB3C6 0D2E4310 + 6D8727DA 37DF9CCE 95B47875 5D06BCEA 8F9D4596 5F75A5F3 + D1DF3701 165FC9E5 0C4279CE B07F9895 40AE96D5 D88ED776 + + xB = 9392C9F9 EB6A7A6A 9022F7D8 3E7223C6 835BBDDA + + yB = 717A6CB0 53371FF4 + A3B93294 1C1E5663 F861A1D6 AD34AE66 576DFB98 F6C6CBF9 + DDD5A56C 7833F6BC FDFF0955 82AD868E 440E8D09 FD769E3C + ECCDC3D3 B1E4CFA0 57776CAA F9739B6A 9FEE8E74 11F8D6DA + C09D6A4E DB46CC2B 5D520309 0EAE6126 311E53FD 2C14B574 + E6A3109A 3DA1BE41 BDCEAA18 6F5CE067 16A2B6A0 7B3C33FE + + Z = 5C804F45 4D30D9C4 + DF85271F 93528C91 DF6B48AB 5F80B3B5 9CAAC1B2 8F8ACBA9 + CD3E39F3 CB614525 D9521D2E 644C53B8 07B810F3 40062F25 + 7D7D6FBF E8D5E8F0 72E9B6E9 AFDA9413 EAFB2E8B 0699B1FB + 5A0CACED DEAEAD7E 9CFBB36A E2B42083 5BD83A19 FB0B5E96 + BF8FA4D0 9E345525 167ECD91 55416F46 F408ED31 B63C6E6D + +A.2. 2048-bit MODP Group with 224-bit Prime Order Subgroup + + xA = 22E62601 + DBFFD067 08A680F7 47F361F7 6D8F4F72 1A0548E4 83294B0C + + yA = 1B3A6345 1BD886E6 99E67B49 4E288BD7 + F8E0D370 BADDA7A0 EFD2FDE7 D8F66145 CC9F2804 19975EB8 + 08877C8A 4C0C8E0B D48D4A54 01EB1E87 76BFEEE1 34C03831 + AC273CD9 D635AB0C E006A42A 887E3F52 FB8766B6 50F38078 + BC8EE858 0CEFE243 968CFC4F 8DC3DB08 4554171D 41BF2E86 + 1B7BB4D6 9DD0E01E A387CBAA 5CA672AF CBE8BDB9 D62D4CE1 + 5F17DD36 F91ED1EE DD65CA4A 06455CB9 4CD40A52 EC360E84 + B3C926E2 2C4380A3 BF309D56 849768B7 F52CFDF6 55FD053A + 7EF70697 9E7E5806 B17DFAE5 3AD2A5BC 568EBB52 9A7A61D6 + 8D256F8F C97C074A 861D827E 2EBC8C61 34553115 B70E7103 + 920AA16D 85E52BCB AB8D786A 68178FA8 FF7C2F5C 71648D6F + + xB = 4FF3BC96 + C7FC6A6D 71D3B363 800A7CDF EF6FC41B 4417EA15 353B7590 + + + + + +Lepinski & Kent Informational [Page 15] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + yB = 4DCEE992 A9762A13 F2F83844 AD3D77EE + 0E31C971 8B3DB6C2 035D3961 182C3E0B A247EC41 82D760CD + 48D99599 970622A1 881BBA2D C822939C 78C3912C 6661FA54 + 38B20766 222B75E2 4C2E3AD0 C7287236 129525EE 15B5DD79 + 98AA04C4 A9696CAC D7172083 A97A8166 4EAD2C47 9E444E4C + 0654CC19 E28D7703 CEE8DACD 6126F5D6 65EC52C6 7255DB92 + 014B037E B621A2AC 8E365DE0 71FFC140 0ACF077A 12913DD8 + DE894734 37AB7BA3 46743C1B 215DD9C1 2164A7E4 053118D1 + 99BEC8EF 6FC56117 0C84C87D 10EE9A67 4A1FA8FF E13BDFBA + 1D44DE48 946D68DC 0CDD7776 35A7AB5B FB1E4BB7 B856F968 + 27734C18 4138E915 D9C3002E BCE53120 546A7E20 02142B6C + + Z = 34D9BDDC 1B42176C 313FEA03 4C21034D + 074A6313 BB4ECDB3 703FFF42 4567A46B DF75530E DE0A9DA5 + 229DE7D7 6732286C BC0F91DA 4C3C852F C099C679 531D94C7 + 8AB03D9D ECB0A4E4 CA8B2BB4 591C4021 CF8CE3A2 0A541D33 + 994017D0 200AE2C9 516E2FF5 14577926 9E862B0F B474A2D5 + 6DC31ED5 69A7700B 4C4AB16B 22A45513 531EF523 D7121207 + 7B5A169B DEFFAD7A D9608284 C7795B6D 5A5183B8 7066DE17 + D8D671C9 EBD8EC89 544D45EC 061593D4 42C62AB9 CE3B1CB9 + 943A1D23 A5EA3BCF 21A01471 E67E003E 7F8A69C7 28BE490B + 2FC88CFE B92DB6A2 15E5D03C 17C464C9 AC1A46E2 03E13F95 + 2995FB03 C69D3CC4 7FCB510B 6998FFD3 AA6DE73C F9F63869 + +A.3. 2048-bit MODP Group with 256-bit Prime Order Subgroup + + xA = 0881382C DB87660C + 6DC13E61 4938D5B9 C8B2F248 581CC5E3 1B354543 97FCE50E + + yA = 2E9380C8 323AF975 45BC4941 DEB0EC37 + 42C62FE0 ECE824A6 ABDBE66C 59BEE024 2911BFB9 67235CEB + A35AE13E 4EC752BE 630B92DC 4BDE2847 A9C62CB8 15274542 + 1FB7EB60 A63C0FE9 159FCCE7 26CE7CD8 523D7450 667EF840 + E4919121 EB5F01C8 C9B0D3D6 48A93BFB 75689E82 44AC134A + F544711C E79A02DC C3422668 4780DDDC B4985941 06C37F5B + C7985648 7AF5AB02 2A2E5E42 F09897C1 A85A11EA 0212AF04 + D9B4CEBC 937C3C1A 3E15A8A0 342E3376 15C84E7F E3B8B9B8 + 7FB1E73A 15AF12A3 0D746E06 DFC34F29 0D797CE5 1AA13AA7 + 85BF6658 AFF5E4B0 93003CBE AF665B3C 2E113A3A 4E905269 + 341DC071 1426685F 4EF37E86 8A8126FF 3F2279B5 7CA67E29 + + xB = 7D62A7E3 EF36DE61 + 7B13D1AF B82C780D 83A23BD4 EE670564 5121F371 F546A53D + + + + + + + + +Lepinski & Kent Informational [Page 16] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + yB = 575F0351 BD2B1B81 7448BDF8 7A6C362C + 1E289D39 03A30B98 32C5741F A250363E 7ACBC7F7 7F3DACBC + 1F131ADD 8E03367E FF8FBBB3 E1C57844 24809B25 AFE4D226 + 2A1A6FD2 FAB64105 CA30A674 E07F7809 85208863 2FC04923 + 3791AD4E DD083A97 8B883EE6 18BC5E0D D047415F 2D95E683 + CF14826B 5FBE10D3 CE41C6C1 20C78AB2 0008C698 BF7F0BCA + B9D7F407 BED0F43A FB2970F5 7F8D1204 3963E66D DD320D59 + 9AD9936C 8F44137C 08B180EC 5E985CEB E186F3D5 49677E80 + 607331EE 17AF3380 A725B078 2317D7DD 43F59D7A F9568A9B + B63A84D3 65F92244 ED120988 219302F4 2924C7CA 90B89D24 + F71B0AB6 97823D7D EB1AFF5B 0E8E4A45 D49F7F53 757E1913 + + Z = 86C70BF8 D0BB81BB 01078A17 219CB7D2 + 7203DB2A 19C877F1 D1F19FD7 D77EF225 46A68F00 5AD52DC8 + 4553B78F C60330BE 51EA7C06 72CAC151 5E4B35C0 47B9A551 + B88F39DC 26DA14A0 9EF74774 D47C762D D177F9ED 5BC2F11E + 52C879BD 95098504 CD9EECD8 A8F9B3EF BD1F008A C5853097 + D9D1837F 2B18F77C D7BE01AF 80A7C7B5 EA3CA54C C02D0C11 + 6FEE3F95 BB873993 85875D7E 86747E67 6E728938 ACBFF709 + 8E05BE4D CFB24052 B83AEFFB 14783F02 9ADBDE7F 53FAE920 + 84224090 E007CEE9 4D4BF2BA CE9FFD4B 57D2AF7C 724D0CAA + 19BF0501 F6F17B4A A10F425E 3EA76080 B4B9D6B3 CEFEA115 + B2CEB878 9BB8A3B0 EA87FEBE 63B6C8F8 46EC6DB0 C26C5D7C + +A.4. 192-bit Random ECP Group + + dA = 323FA316 9D8E9C65 93F59476 BC142000 AB5BE0E2 49C43426 + + x_qA = CD46489E CFD6C105 E7B3D325 66E2B122 E249ABAA DD870612 + + y_qA = 68887B48 77DF51DD 4DC3D6FD 11F0A26F 8FD38443 17916E9A + + dB = 631F95BB 4A67632C 9C476EEE 9AB695AB 240A0499 307FCF62 + + x_qB = 519A1216 80E00454 66BA21DF 2EEE47F5 973B5005 77EF13D5 + + y_qB = FF613AB4 D64CEE3A 20875BDB 10F953F6 B30CA072 C60AA57F + + x_Z = AD420182 633F8526 BFE954AC DA376F05 E5FF4F83 7F54FEBE + + y_Z = 4371545E D772A597 41D0EDA3 2C671112 B7FDDD51 461FCF32 + + + + + + + + + + +Lepinski & Kent Informational [Page 17] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +A.5. 224-bit Random ECP Group + + dA = B558EB6C + 288DA707 BBB4F8FB AE2AB9E9 CB62E3BC 5C7573E2 2E26D37F + + x_qA = 49DFEF30 + 9F81488C 304CFF5A B3EE5A21 54367DC7 833150E0 A51F3EEB + + y_qA = 4F2B5EE4 + 5762C4F6 54C1A0C6 7F54CF88 B016B51B CE3D7C22 8D57ADB4 + + dB = AC3B1ADD + 3D9770E6 F6A708EE 9F3B8E0A B3B480E9 F27F85C8 8B5E6D18 + + x_qB = 6B3AC96A + 8D0CDE6A 5599BE80 32EDF10C 162D0A8A D219506D CD42A207 + + y_qB = D491BE99 + C213A7D1 CA3706DE BFE305F3 61AFCBB3 3E2609C8 B1618AD5 + + x_Z = 52272F50 + F46F4EDC 91515690 92F46DF2 D96ECC3B 6DC1714A 4EA949FA + + y_Z = 5F30C6AA + 36DDC403 C0ACB712 BB88F176 3C3046F6 D919BD9C 524322BF + +A.6. 256-bit Random ECP Group + + dA = 81426414 5F2F56F2 + E96A8E33 7A128499 3FAF432A 5ABCE59E 867B7291 D507A3AF + + x_qA = 2AF502F3 BE8952F2 + C9B5A8D4 160D09E9 7165BE50 BC42AE4A 5E8D3B4B A83AEB15 + + y_qA = EB0FAF4C A986C4D3 + 8681A0F9 872D79D5 6795BD4B FF6E6DE3 C0F5015E CE5EFD85 + + dB = 2CE1788E C197E096 + DB95A200 CC0AB26A 19CE6BCC AD562B8E EE1B5937 61CF7F41 + + x_qB = B120DE4A A3649279 + 5346E8DE 6C2C8646 AE06AAEA 279FA775 B3AB0715 F6CE51B0 + + y_qB = 9F1B7EEC E20D7B5E + D8EC685F A3F071D8 37270270 92A84113 85C34DDE 5708B2B6 + + x_Z = DD0F5396 219D1EA3 + 93310412 D19A08F1 F5811E9D C8EC8EEA 7F80D21C 820C2788 + + + +Lepinski & Kent Informational [Page 18] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + + y_Z = 0357DCCD 4C804D0D + 8D33AA42 B848834A A5605F9A B0D37239 A115BBB6 47936F50 + +A.7. 384-bit Random ECP Group + + dA = D27335EA 71664AF2 44DD14E9 FD126071 5DFD8A79 65571C48 + D709EE7A 7962A156 D706A90C BCB5DF29 86F05FEA DB9376F1 + + x_qA = 793148F1 787634D5 DA4C6D90 74417D05 E057AB62 F82054D1 + 0EE6B040 3D627954 7E6A8EA9 D1FD7742 7D016FE2 7A8B8C66 + + y_qA = C6C41294 331D23E6 F480F4FB 4CD40504 C947392E 94F4C3F0 + 6B8F398B B29E4236 8F7A6859 23DE3B67 BACED214 A1A1D128 + + dB = 52D1791F DB4B70F8 9C0F00D4 56C2F702 3B612526 2C36A7DF + 1F802311 21CCE3D3 9BE52E00 C194A413 2C4A6C76 8BCD94D2 + + x_qB = 5CD42AB9 C41B5347 F74B8D4E FB708B3D 5B36DB65 915359B4 + 4ABC1764 7B6B9999 789D72A8 4865AE2F 223F12B5 A1ABC120 + + y_qB = E171458F EAA939AA A3A8BFAC 46B404BD 8F6D5B34 8C0FA4D8 + 0CECA163 56CA9332 40BDE872 3415A8EC E035B0ED F36755DE + + x_Z = 5EA1FC4A F7256D20 55981B11 0575E0A8 CAE53160 137D904C + 59D926EB 1B8456E4 27AA8A45 40884C37 DE159A58 028ABC0E + + y_Z = 0CC59E4B 046414A8 1C8A3BDF DCA92526 C48769DD 8D3127CA + A99B3632 D1913942 DE362EAF AA962379 374D9F3F 066841CA + +A.8. 521-bit Random ECP Group + + dA = 0113 F82DA825 735E3D97 276683B2 B74277BA + D27335EA 71664AF2 430CC4F3 3459B966 9EE78B3F FB9B8683 + 015D344D CBFEF6FB 9AF4C6C4 70BE2545 16CD3C1A 1FB47362 + + x_qA = 01EB B34DD757 21ABF8AD C9DBED17 889CBB97 + 65D90A7C 60F2CEF0 07BB0F2B 26E14881 FD4442E6 89D61CB2 + DD046EE3 0E3FFD20 F9A45BBD F6413D58 3A2DBF59 924FD35C + + y_qA = 00F6 B632D194 C0388E22 D8437E55 8C552AE1 + 95ADFD15 3F92D749 08351B2F 8C4EDA94 EDB0916D 1B53C020 + B5EECAED 1A5FC38A 233E4830 587BB2EE 3489B3B4 2A5A86A4 + + dB = 00CE E3480D86 45A17D24 9F2776D2 8BAE6169 + 52D1791F DB4B70F7 C3378732 AA1B2292 8448BCD1 DC2496D4 + 35B01048 066EBE4F 72903C36 1B1A9DC1 193DC2C9 D0891B96 + + + + +Lepinski & Kent Informational [Page 19] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + x_qB = 010E BFAFC6E8 5E08D24B FFFCC1A4 511DB0E6 + 34BEEB1B 6DEC8C59 39AE4476 6201AF62 00430BA9 7C8AC6A0 + E9F08B33 CE7E9FEE B5BA4EE5 E0D81510 C24295B8 A08D0235 + + y_qB = 00A4 A6EC300D F9E257B0 372B5E7A BFEF0934 + 36719A77 887EBB0B 18CF8099 B9F4212B 6E30A141 9C18E029 + D36863CC 9D448F4D BA4D2A0E 60711BE5 72915FBD 4FEF2695 + + x_Z = 00CD EA89621C FA46B132 F9E4CFE2 261CDE2D + 4368EB56 56634C7C C98C7A00 CDE54ED1 866A0DD3 E6126C9D + 2F845DAF F82CEB1D A08F5D87 521BB0EB ECA77911 169C20CC + + y_Z = 00F9 A7164102 9B7FC1A8 08AD07CD 4861E868 + 614B865A FBECAB1F 2BD4D8B5 5EBCB5E3 A53143CE B2C511B1 + AE0AF5AC 827F60F2 FD872565 AC5CA0A1 64038FE9 80A7E4BD + +Normative References + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, March 1997. + +Informative References + + [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version + 1.0", RFC 2246, January 1999. + + [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange + (IKE)", RFC 2409, November 1998. + + [RFC2631] Rescorla, E., "Diffie-Hellman Key Agreement Method", + RFC 2631, June 1999. + + [RFC3278] Blake-Wilson, S., Brown, D., and P. Lambert, "Use of + Elliptic Curve Cryptography (ECC) Algorithms in + Cryptographic Message Syntax (CMS)", RFC 3278, April + 2002. + + [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and + Identifiers for the Internet X.509 Public Key + Infrastructure Certificate and Certificate Revocation + List (CRL) Profile", RFC 3279, April 2002. + + [RFC3526] Kivinen, T. and M. Kojo, "More Modular Exponential + (MODP) Diffie-Hellman groups for Internet Key Exchange + (IKE)", RFC 3526, May 2003. + + [RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)", RFC + 3852, July 2004. + + + +Lepinski & Kent Informational [Page 20] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell + (SSH) Transport Layer Protocol", RFC 4253, January + 2006. + + [RFC4306] Kaufman, C., Ed., "Internet Key Exchange (IKEv2) + Protocol", RFC 4306, December 2005. + + [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer + Security (TLS) Protocol Version 1.1", RFC 4346, April + 2006. + + [RFC4419] Friedl, M., Provos, N., and W. Simpson, "Diffie- + Hellman Group Exchange for the Secure Shell (SSH) + Transport Layer Protocol", RFC 4419, March 2006. + + [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., + and B. Moeller, "Elliptic Curve Cryptography (ECC) + Cipher Suites for Transport Layer Security (TLS)", RFC + 4492, May 2006. + + [RFC4753] Fu, D. and J. Solinas, "ECP Groups For IKE and IKEv2", + RFC 4753, January 2007. + + [SSH-ECC] Green, J. and D. Stebila, "Elliptic-Curve Algorithm + Integration in the Secure Shell Transport Layer", Work + in Progress, 2007. + + [IANA-IKE] Internet Assigned Numbers Authority, Internet Key + Exchange (IKE) Attributes. + http://www.iana.org/assignments/ipsec-registry + + [IANA-IKE2] IKEv2 Parameters. + http://www.iana.org/assignments/ikev2-parameters + + [IANA-TLS] Internet Assigned Numbers Authority, Transport Layer + Security (TLS) Attributes. + http://www.iana.org/assignments/tls-parameters + + [ISO-14888-3] International Organization for Standardization and + International Electrotechnical Commission, ISO/IEC + 14888-3:2006, Information Technology: Security + Techniques: Digital Signatures with Appendix: Part 3 + - Discrete Logarithm Based Mechanisms. + + [DSS] National Institute for Standards and Technology, + Digital Signature Standard (DSS), FIPS PUB 186-2, + January 2000. + http://csrc.nist.gov/publications/fips/index.html + + + +Lepinski & Kent Informational [Page 21] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + + [NIST80056A] National Institute of Standards and Technology, + "Recommendation for Pair-Wise Key Establishment + Schemes Using Discrete Logarithm Cryptography," NIST + Special Publication 800-56A, March 2006. + http://csrc.nist.gov/CryptoToolkit/KeyMgmt.html + + [EX80056A] National Institute for Standards and Technology, + "Examples for NIST 800-56A," May 2007. + http://csrc.nist.gov/groups/ST/toolkit/examples.html + + [NIST80057] National Institute of Standards and Technology, + "Recommendation for Key Management - Part 1", NIST + Special Publication 800-57. + + [SECG] SECG, "Recommended Elliptic Curve Domain Parameters", + SEC 2, 2000, + <http://www.secg.org/>. + + [X9.62] ANSI X9.62-2005, Public Key Cryptography For The + Financial Services Industry: The Elliptic Curve + Digital Signature Algorithm (ECDSA). 2005. + +Author's Addresses + + Matt Lepinski + BBN Technologies + 10 Moulton St. + Cambridge, MA 02138 + + EMail: mlepinski@bbn.com + + + Stephen Kent + BBN Technologies + 10 Moulton St. + Cambridge, MA 02138 + + EMail: kent@bbn.com + + + + + + + + + + + + + +Lepinski & Kent Informational [Page 22] + +RFC 5114 Additional Diffie-Hellman Groups January 2008 + + +Full Copyright Statement + + Copyright (C) The IETF Trust (2008). + + This document is subject to the rights, licenses and restrictions + contained in BCP 78, and except as set forth therein, the authors + retain all their rights. + + This document and the information contained herein are provided on an + "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS + OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND + THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS + OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF + THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED + WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +Intellectual Property + + The IETF takes no position regarding the validity or scope of any + Intellectual Property Rights or other rights that might be claimed to + pertain to the implementation or use of the technology described in + this document or the extent to which any license under such rights + might or might not be available; nor does it represent that it has + made any independent effort to identify any such rights. Information + on the procedures with respect to rights in RFC documents can be + found in BCP 78 and BCP 79. + + Copies of IPR disclosures made to the IETF Secretariat and any + assurances of licenses to be made available, or the result of an + attempt made to obtain a general license or permission for the use of + such proprietary rights by implementers or users of this + specification can be obtained from the IETF on-line IPR repository at + http://www.ietf.org/ipr. + + The IETF invites any interested party to bring to its attention any + copyrights, patents or patent applications, or other proprietary + rights that may cover technology that may be required to implement + this standard. Please address the information to the IETF at + ietf-ipr@ietf.org. + + + + + + + + + + + + +Lepinski & Kent Informational [Page 23] + |