diff options
Diffstat (limited to 'doc/rfc/rfc8350.txt')
-rw-r--r-- | doc/rfc/rfc8350.txt | 1627 |
1 files changed, 1627 insertions, 0 deletions
diff --git a/doc/rfc/rfc8350.txt b/doc/rfc/rfc8350.txt new file mode 100644 index 0000000..3c1a721 --- /dev/null +++ b/doc/rfc/rfc8350.txt @@ -0,0 +1,1627 @@ + + + + + + +Internet Engineering Task Force (IETF) R. Zhang +Request for Comments: 8350 China Telecom +Category: Experimental R. Pazhyannur +ISSN: 2070-1721 S. Gundavelli + Cisco + Z. Cao + H. Deng + Z. Du + Huawei + April 2018 + + + Alternate Tunnel Encapsulation for Data Frames in + Control and Provisioning of Wireless Access Points (CAPWAP) + +Abstract + + Control and Provisioning of Wireless Access Points (CAPWAP) is a + protocol for encapsulating a station's data frames between the + Wireless Transmission Point (WTP) and Access Controller (AC). + Specifically, the station's IEEE 802.11 data frames can be either + locally bridged or tunneled to the AC. When tunneled, a CAPWAP Data + Channel is used for tunneling. In many deployments, encapsulating + data frames to an entity other than the AC (for example, to an Access + Router (AR)) is desirable. Furthermore, it may also be desirable to + use different tunnel encapsulation modes between the WTP and the + Access Router. This document defines an extension to the CAPWAP + protocol that supports this capability and refers to it as alternate + tunnel encapsulation. The alternate tunnel encapsulation allows 1) + the WTP to tunnel non-management data frames to an endpoint different + from the AC and 2) the WTP to tunnel using one of many known + encapsulation types, such as IP-IP, IP-GRE, or CAPWAP. The WTP may + advertise support for alternate tunnel encapsulation during the + discovery and join process, and the AC may select one of the + supported alternate tunnel encapsulation types while configuring the + WTP. + + + + + + + + + + + + + + + +Zhang, et al. Experimental [Page 1] + +RFC 8350 Alternate Tunnel April 2018 + + +Status of This Memo + + This document is not an Internet Standards Track specification; it is + published for examination, experimental implementation, and + evaluation. + + This document defines an Experimental Protocol for the Internet + community. This document is a product of the Internet Engineering + Task Force (IETF). It represents the consensus of the IETF + community. It has received public review and has been approved for + publication by the Internet Engineering Steering Group (IESG). Not + all documents approved by the IESG are candidates for any level of + Internet Standard; see Section 2 of RFC 7841. + + Information about the current status of this document, any errata, + and how to provide feedback on it may be obtained at + https://www.rfc-editor.org/info/rfc8350. + +Copyright Notice + + Copyright (c) 2018 IETF Trust and the persons identified as the + document authors. All rights reserved. + + This document is subject to BCP 78 and the IETF Trust's Legal + Provisions Relating to IETF Documents + (https://trustee.ietf.org/license-info) in effect on the date of + publication of this document. Please review these documents + carefully, as they describe your rights and restrictions with respect + to this document. Code Components extracted from this document must + include Simplified BSD License text as described in Section 4.e of + the Trust Legal Provisions and are provided without warranty as + described in the Simplified BSD License. + + + + + + + + + + + + + + + + + + + +Zhang, et al. Experimental [Page 2] + +RFC 8350 Alternate Tunnel April 2018 + + +Table of Contents + + 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 + 1.1. Conventions Used in This Document . . . . . . . . . . . . 7 + 1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 7 + 1.3. History of the Document . . . . . . . . . . . . . . . . . 8 + 2. Alternate Tunnel Encapsulation Overview . . . . . . . . . . . 9 + 3. Extensions for CAPWAP Protocol Message Elements . . . . . . . 11 + 3.1. Supported Alternate Tunnel Encapsulations . . . . . . . . 11 + 3.2. Alternate Tunnel Encapsulations Type . . . . . . . . . . 11 + 3.3. IEEE 802.11 WTP Alternate Tunnel Failure Indication . . . 12 + 4. Alternate Tunnel Types . . . . . . . . . . . . . . . . . . . 13 + 4.1. CAPWAP-Based Alternate Tunnel . . . . . . . . . . . . . . 13 + 4.2. PMIPv6-Based Alternate Tunnel . . . . . . . . . . . . . . 14 + 4.3. GRE-Based Alternate Tunnel . . . . . . . . . . . . . . . 15 + 5. Alternate Tunnel Information Elements . . . . . . . . . . . . 16 + 5.1. Access Router Information Elements . . . . . . . . . . . 16 + 5.1.1. AR IPv4 List Element . . . . . . . . . . . . . . . . 16 + 5.1.2. AR IPv6 List Element . . . . . . . . . . . . . . . . 17 + 5.2. Tunnel DTLS Policy Element . . . . . . . . . . . . . . . 17 + 5.3. IEEE 802.11 Tagging Mode Policy Element . . . . . . . . . 19 + 5.4. CAPWAP Transport Protocol Element . . . . . . . . . . . . 20 + 5.5. GRE Key Element . . . . . . . . . . . . . . . . . . . . . 22 + 5.6. IPv6 MTU Element . . . . . . . . . . . . . . . . . . . . 23 + 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 24 + 7. Security Considerations . . . . . . . . . . . . . . . . . . . 25 + 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 25 + 8.1. Normative References . . . . . . . . . . . . . . . . . . 25 + 8.2. Informative References . . . . . . . . . . . . . . . . . 27 + Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 28 + Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 28 + +1. Introduction + + Service Providers are deploying very large Wi-Fi networks containing + hundreds of thousands of Access Points (APs), which are referred to + as Wireless Transmission Points (WTPs) in Control and Provisioning of + Wireless Access Points (CAPWAP) terminology [RFC5415]. These + networks are designed to carry traffic generated from mobile users. + The volume in mobile user traffic is already very large and expected + to continue growing rapidly. As a result, operators are looking for + scalable solutions that can meet the increasing demand. The + scalability requirement can be met by splitting the control/ + management plane from the data plane. This enables the data plane to + scale independent of the control/management plane. This + specification provides a way to enable such separation. + + + + + +Zhang, et al. Experimental [Page 3] + +RFC 8350 Alternate Tunnel April 2018 + + + CAPWAP [RFC5415] [RFC5416] defines a tunnel mode that describes how + the WTP handles the data plane (user traffic). The following types + are defined: + + o Local Bridging: All data frames are locally bridged. + + o IEEE 802.3 Tunnel: All data frames are tunneled to the Access + Controller (AC) in IEEE 802.3 format. + + o IEEE 802.11 Tunnel: All data frames are tunneled to the AC in IEEE + 802.11 format. + + Figure 1 describes a system with Local Bridging. The AC is in a + centralized location. The data plane is locally bridged by the WTPs; + this leads to a system with a centralized control plane and a + distributed data plane. This system has two benefits: 1) it reduces + the scale requirement on the data traffic handling capability of the + AC, and 2) it leads to more efficient/optimal routing of data traffic + while maintaining centralized control/management. + + Locally Bridged + +-----+ Data Frames +----------------+ + | WTP |===============| Access Router | + +-----+ +----------------+ + \\ + \\ CAPWAP Control Channel +----------+ + ++=========================| AC | + // CAPWAP Data Channel: | | + // IEEE 802.11 Mgmt Traffic +----------+ + // + +-----+ +----------------+ + | WTP |============== | Access Router | + +-----+ +----------------+ + Locally Bridged + Data Frames + + Figure 1: Centralized Control with Distributed Data + + The AC handles control of WTPs. In addition, the AC also handles the + IEEE 802.11 management traffic to/from the stations. There is a + CAPWAP Control and Data Channel between the WTP and the AC. Note + that even though there is no user traffic transported between the WTP + and AC, there is still a CAPWAP Data Channel. The CAPWAP Data + Channel carries the IEEE 802.11 management traffic (like IEEE 802.11 + Action Frames). + + + + + + +Zhang, et al. Experimental [Page 4] + +RFC 8350 Alternate Tunnel April 2018 + + + Figure 2 shows a system where the tunnel mode is configured to tunnel + data frames between the WTP and the AC using either the IEEE 802.3 + Tunnel or 802.11 Tunnel configurations. Operators deploy this + configuration when they need to tunnel the user traffic. The + tunneling requirement may be driven by the need to apply policy at + the AC. This requirement could be met in the locally bridged system + (Figure 1) if the Access Router (AR) implemented the required policy. + However, in many deployments, the operator managing the WTP is + different than the operator managing the Access Router. When the + operators are different, the policy has to be enforced in a tunnel + termination point in the WTP operator's network. + + +-----+ + | WTP | + +-----+ + \\ + \\ CAPWAP Control Channel +----------+ + ++=========================| AC | + // CAPWAP Data Channel: | | + // IEEE 802.11 Mgmt Traffic | | + // Data Frames +----------+ + // + +-----+ + | WTP | + +-----+ + + Figure 2: Centralized Control and Centralized Data + + The key difference with the locally bridged system is that the data + frames are tunneled to the AC instead of being locally bridged. + There are two shortcomings with the system in Figure 2: 1) it does + not allow the WTP to tunnel data frames to an endpoint different from + the AC, and 2) it does not allow the WTP to tunnel data frames using + any encapsulation other than CAPWAP (as specified in Section 4.4.2 of + [RFC5415]). + + Figure 3 shows a system where the WTP tunnels data frames to an + alternate entity different from the AC. The WTP also uses an + alternate tunnel encapsulation such as Layer 2 Tunneling Protocol + (L2TP), L2TPv3, IP-in-IP, IP/GRE, etc. This enables 1) independent + scaling of data plane and 2) leveraging of commonly used tunnel + encapsulations such as L2TP, GRE, etc. + + + + + + + + + +Zhang, et al. Experimental [Page 5] + +RFC 8350 Alternate Tunnel April 2018 + + + Alternate Tunnel to AR (L2TPv3, IP-IP, CAPWAP, etc.) + _________ + +-----+ ( ) +-----------------+ + | WTP |======+Internet +==============|Access Router(AR)| + +-----+ (_________) +-----------------+ + \\ ________ CAPWAP Control + \\ ( ) Channel +--------+ + ++=+Internet+========================| AC | + // (________)CAPWAP Data Channel: +--------+ + // IEEE 802.11 Mgmt Traffic + // _________ + +-----+ ( ) +----------------+ + | WTP |====+Internet +================| Access Router | + +-----+ (_________) +----------------+ + Alternate Tunnel to AR (L2TPv3, IP-in-IP, CAPWAP, etc.) + + Figure 3: Centralized Control with an Alternate Tunnel for Data + + The WTP may support widely used encapsulation types such as L2TP, + L2TPv3, IP-in-IP, IP/GRE, etc. The WTP advertises the different + alternate tunnel encapsulation types it can support. The AC + configures one of the advertised types. As is shown in Figure 3, + there is a CAPWAP Control and Data Channel between the WTP and AC. + The CAPWAP Data Channel carries the stations' management traffic, as + in the case of the locally bridged system. The main reason to + maintain a CAPWAP Data Channel is to maintain similarity with the + locally bridged system. The WTP maintains three tunnels: CAPWAP + Control, CAPWAP Data, and another alternate tunnel for the data + frames. The data frames are transported by an alternate tunnel + between the WTP and a tunnel termination point, such as an Access + Router. This specification describes how the alternate tunnel can be + established. The specification defines message elements for the WTP + to advertise support for alternate tunnel encapsulation, for the AC + to configure alternate tunnel encapsulation, and for the WTP to + report failure of the alternate tunnel. + + The alternate tunnel encapsulation also supports the third-party WLAN + service provider scenario (i.e., Virtual Network Operator (VNO)). + Under this scenario, the WLAN provider owns the WTP and AC resources + while the VNOs can rent the WTP resources from the WLAN provider for + network access. The AC belonging to the WLAN service provider + manages the WTPs in the centralized mode. + + As shown in Figure 4, VNO 1 and VNO 2 don't possess the network + access resources; however, they provide services by acquiring + resources from the WLAN provider. Since a WTP is capable of + supporting up to 16 Service Set Identifiers (SSIDs), the WLAN + provider may provide network access service for different providers + + + +Zhang, et al. Experimental [Page 6] + +RFC 8350 Alternate Tunnel April 2018 + + + with different SSIDs. For example, SSID1 is advertised by the WTP + for VNO 1 while SSID2 is advertised by the WTP for VNO 2. Therefore, + the data traffic from the user can be directly steered to the + corresponding Access Router of the VNO who owns that user. As is + shown in Figure 4, AC can notify multiple AR addresses for load + balancing or redundancy. + + +----+ + | AC | + +--+-+ + CAPWAP-CTL | + +-----------------+ + | CAPWAP-DATA: IEEE 802.11 Mgmt Traffic + | + WLAN Provider| VNO 1 + +-----+ CAPWAP-DATA (SSID1) +---------------+ + SSID1 | WTP +--------------------------|Access Router 1| + SSID2 +--+-++ +---------------+ + | | + | | VNO 1 + | | GRE-DATA (SSID1) +---------------+ + | +---------------------------|Access Router 2| + | +---------------+ + | + | VNO 2 + | CAPWAP-DATA (SSID2) +---------------+ + +-----------------------------|Access Router 3| + +---------------+ + + Figure 4: Third-Party WLAN Service Provider + +1.1. Conventions Used in This Document + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and + "OPTIONAL" in this document are to be interpreted as described in + BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all + capitals, as shown here. + +1.2. Terminology + + Station (STA): A device that contains an IEEE 802.11-conformant + Medium Access Control (MAC) and Physical layer (PHY) interface to the + Wireless Medium (WM). + + Access Controller (AC): The network entity that provides WTP access + to the network infrastructure in the data plane, control plane, + management plane, or a combination therein. + + + +Zhang, et al. Experimental [Page 7] + +RFC 8350 Alternate Tunnel April 2018 + + + Access Router (AR): A specialized router usually residing at the edge + or boundary of a network. This router ensures the connectivity of + its network with external networks, a wide area network, or the + Internet. + + Wireless Termination Point (WTP): The physical or network entity that + contains a Radio Frequency (RF) antenna and wireless Physical layer + (PHY) to transmit and receive station traffic for wireless access + networks. + + CAPWAP Control Channel: A bidirectional flow defined by the AC IP + Address, WTP IP Address, AC control port, WTP control port, and the + transport-layer protocol (UDP or UDP-Lite) over which CAPWAP Control + packets are sent and received. + + CAPWAP Data Channel: A bidirectional flow defined by the AC IP + Address, WTP IP Address, AC data port, WTP data port, and the + transport-layer protocol (UDP or UDP-Lite) over which CAPWAP Data + packets are sent and received. In certain WTP modes, the CAPWAP Data + Channel only transports IEEE 802.11 management frames and not the + data plane (user traffic). + +1.3. History of the Document + + This document was started to accommodate Service Providers' need of a + more flexible deployment mode with alternative tunnels [RFC7494]. + Experiments and tests have been done for this alternate tunnel + network infrastructure. However important, the deployment of + relevant technology is yet to be completed. This Experimental + document is intended to serve as an archival record for any future + work on the operational and deployment requirements. + + + + + + + + + + + + + + + + + + + + +Zhang, et al. Experimental [Page 8] + +RFC 8350 Alternate Tunnel April 2018 + + +2. Alternate Tunnel Encapsulation Overview + + +-+-+-+-+-+-+ +-+-+-+-+-+-+ + | WTP | | AC | + +-+-+-+-+-+-+ +-+-+-+-+-+-+ + |Join Request [ Supported Alternate | + | Tunnel Encapsulations ] | + |---------------------------------------->| + | | + |Join Response | + |<----------------------------------------| + | | + |IEEE 802.11 WLAN Configuration Request [ | + | IEEE 802.11 Add WLAN, | + | Alternate Tunnel Encapsulation ( | + | Tunnel Type, Tunnel Info Element) | + | ] | + |<----------------------------------------| + | | + | | + +-+-+-+-+-+-+ | + | Setup | | + | Alternate | | + | Tunnel | | + +-+-+-+-+-+-+ | + |IEEE 802.11 WLAN Configuration Response | + |[ Alternate Tunnel Encapsulation ( | + | Tunnel Type, Tunnel Info Element) ] | + |---------------------------------------->| + | | + +-+-+-+-+-+-+ | + | Tunnel | | + | Failure | | + +-+-+-+-+-+-+ | + |WTP Alternate Tunnel Failure Indication | + |(Report Failure (AR Address(es))) | + |---------------------------------------->| + | | + +-+-+-+-+-+-+-+ | + | Tunnel | | + | Established | | + +-+-+-+-+-+-+-+ | + |WTP Alternate Tunnel Failure Indication | + |(Report Clearing Failure) | + |---------------------------------------->| + | | + + Figure 5: Setup of an Alternate Tunnel + + + +Zhang, et al. Experimental [Page 9] + +RFC 8350 Alternate Tunnel April 2018 + + + The above example describes how the alternate tunnel encapsulation + may be established. When the WTP joins the AC, it should indicate + its alternate tunnel encapsulation capability. The AC determines + whether an alternate tunnel configuration is required. If an + appropriate alternate tunnel type is selected, then the AC provides + the Alternate Tunnel Encapsulations Type message element containing + the tunnel type and a tunnel-specific information element. The + tunnel-specific information element, for example, may contain + information like the IP address of the tunnel termination point. The + WTP sets up the alternate tunnel using the Alternate Tunnel + Encapsulations Type message element. + + Since an AC can configure a WTP with more than one AR available for + the WTP to establish the data tunnel(s) for user traffic, it may be + useful for the WTP to communicate the selected AR. To enable this, + the IEEE 802.11 WLAN Configuration Response may carry the Alternate + Tunnel Encapsulations Type message element containing the AR list + element corresponding to the selected AR as shown in Figure 5. + + On detecting a tunnel failure, the WTP SHALL forward data frames to + the AC and discard the frames. In addition, the WTP may dissociate + existing clients and refuse association requests from new clients. + Depending on the implementation and deployment scenario, the AC may + choose to reconfigure the WLAN (on the WTP) to a Local Bridging mode + or to tunnel frames to the AC. When the WTP detects an alternate + tunnel failure, the WTP informs the AC using a message element, IEEE + 802.11 WTP Alternate Tunnel Failure Indication (defined in + Section 3.3). It MAY be carried in the WTP Event Request message, + which is defined in [RFC5415]. + + The WTP also needs to notify the AC of which AR(s) are unavailable. + Particularly, in the VNO scenario, the AC of the WLAN service + provider needs to maintain the association of the AR addresses of the + VNOs and SSIDs and provide this information to the WTP for the + purpose of load balancing or master-slave mode. + + The message element has a Status field that indicates whether the + message is reporting a failure or clearing the previously reported + failure. + + For the case where an AC is unreachable but the tunnel endpoint is + still reachable, the WTP behavior is up to the implementation. For + example, the WTP could choose to either tear down the alternate + tunnel or let the existing user's traffic continue to be tunneled. + + + + + + + +Zhang, et al. Experimental [Page 10] + +RFC 8350 Alternate Tunnel April 2018 + + +3. Extensions for CAPWAP Protocol Message Elements + +3.1. Supported Alternate Tunnel Encapsulations + + This message element is sent by a WTP to communicate its capability + to support alternate tunnel encapsulations. The message element + contains the following fields: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Tunnel-Type 1 | Tunnel-Type 2 | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | ... | Tunnel-Type N | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 6: Supported Alternate Tunnel Encapsulations + + o Type: 54 for Supported Alternate Tunnel Encapsulations Type + + o Length: The length in bytes; two bytes for each Alternative + Tunnel-Type that is included + + o Tunnel-Type: This is identified by the value defined in + Section 3.2. There may be one or more Tunnel-Types, as is shown + in Figure 6. + +3.2. Alternate Tunnel Encapsulations Type + + This message element can be sent by the AC, allows the AC to select + the alternate tunnel encapsulation, and may be provided along with + the IEEE 802.11 Add WLAN message element. When the message element + is present, the following fields of the IEEE 802.11 Add WLAN element + SHALL be set as follows: MAC mode is set to 0 (Local MAC), and Tunnel + Mode is set to 0 (Local Bridging). Besides, the message element can + also be sent by the WTP to communicate the selected AR(s). + + The message element contains the following fields: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Tunnel-Type | Info Element Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Info Element + +-+-+-+-+-+-+-+-+-+ + + Figure 7: Alternate Tunnel Encapsulations Type + + + +Zhang, et al. Experimental [Page 11] + +RFC 8350 Alternate Tunnel April 2018 + + + o Type: 55 for Alternate Tunnel Encapsulations Type + + o Length: > 4 + + o Tunnel-Type: The Tunnel-Type is specified by a 2-byte value. This + specification defines the values from 0 to 6 as given below. The + remaining values are reserved for future use. + + * 0: CAPWAP. This refers to a CAPWAP Data Channel described in + [RFC5415] and [RFC5416]. + + * 1: L2TP. This refers to tunnel encapsulation described in + [RFC2661]. + + * 2: L2TPv3. This refers to tunnel encapsulation described in + [RFC3931]. + + * 3: IP-in-IP. This refers to tunnel encapsulation described in + [RFC2003]. + + * 4: PMIPv6-UDP. This refers to the UDP encapsulation mode for + Proxy Mobile IPv6 (PMIPv6) described in [RFC5844]. This + encapsulation mode is the basic encapsulation mode and does not + include the TLV header specified in Section 7.2 of [RFC5845]. + + * 5: GRE. This refers to GRE tunnel encapsulation as described + in [RFC2784]. + + * 6: GTPv1-U. This refers to the GPRS Tunnelling Protocol (GTP) + User Plane mode as described in [TS.3GPP.29.281]. + + o Info Element: This field contains tunnel-specific configuration + parameters to enable the WTP to set up the alternate tunnel. This + specification provides details for this element for CAPWAP, + PMIPv6, and GRE. This specification reserves the tunnel type + values for the key tunnel types and defines the most common + message elements. It is anticipated that message elements for the + other protocols (like L2TPv3) will be defined in other + specifications in the future. + +3.3. IEEE 802.11 WTP Alternate Tunnel Failure Indication + + The WTP MAY include the Alternate Tunnel Failure Indication message + in a WTP Event Request message to inform the AC about the status of + the alternate tunnel. For the case where the WTP establishes data + tunnels with multiple ARs (e.g., under a VNO scenario), the WTP needs + to notify the AC of which AR(s) are unavailable. The message element + contains the following fields: + + + +Zhang, et al. Experimental [Page 12] + +RFC 8350 Alternate Tunnel April 2018 + + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | WLAN ID | Status | Reserved | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . Access Router Information Element . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 8: IEEE 802.11 WTP Alternate Tunnel Failure Indication + + o Type: 1062 for IEEE 802.11 WTP Alternate Tunnel Failure Indication + + o Length: > 4 + + o WLAN ID: An 8-bit value specifying the WLAN Identifier. The value + MUST be between 1 and 16. + + o Status: An 8-bit boolean indicating whether the radio failure is + being reported or cleared. A value of 0 is used to clear the + event, while a value of 1 is used to report the event. + + o Reserved: MUST be set to a value of 0 and MUST be ignored by the + receiver. + + o Access Router Information Element: The IPv4 or IPv6 address of the + Access Router that terminates the alternate tunnel. The Access + Router Information Elements allow the WTP to notify the AC of + which AR(s) are unavailable. + +4. Alternate Tunnel Types + +4.1. CAPWAP-Based Alternate Tunnel + + If the CAPWAP encapsulation is selected by the AC and configured by + the AC to the WTP, the Info Element field defined in Section 3.2 + SHOULD contain the following information: + + o Access Router Information: The IPv4 or IPv6 address of the Access + Router for the alternate tunnel. + + o Tunnel DTLS Policy: The CAPWAP protocol allows optional protection + of data packets using DTLS. Use of data packet protection on a + WTP is not mandatory but is determined by the associated AC + policy. (This is consistent with the WTP behavior described in + [RFC5415].) + + + + + + +Zhang, et al. Experimental [Page 13] + +RFC 8350 Alternate Tunnel April 2018 + + + o IEEE 802.11 Tagging Mode Policy: It is used to specify how the + CAPWAP Data Channel packets are to be tagged for QoS purposes (see + [RFC5416] for more details). + + o CAPWAP Transport Protocol: The CAPWAP protocol supports both UDP + and UDP-Lite (see [RFC3828]). When run over IPv4, UDP is used for + the CAPWAP Data Channels. When run over IPv6, the CAPWAP Data + Channel may use either UDP or UDP-Lite. + + The message element structure for CAPWAP encapsulation is shown in + Figure 9: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Tunnel-Type=0 | Info Element Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . Access Router Information Element . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . Tunnel DTLS Policy Element . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . IEEE 802.11 Tagging Mode Policy Element . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . CAPWAP Transport Protocol Element . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 9: Alternate Tunnel Encapsulation - CAPWAP + +4.2. PMIPv6-Based Alternate Tunnel + + A user plane based on PMIPv6 (defined in [RFC5213]) can also be used + as an alternate tunnel encapsulation between the WTP and the AR. In + this scenario, a WTP acts as the Mobile Access Gateway (MAG) function + that manages the mobility-related signaling for a station that is + attached to the WTP IEEE 802.11 radio access. The Local Mobility + Anchor (LMA) function is at the AR. If PMIPv6 UDP encapsulation is + selected by the AC and configured by the AC to a WTP, the Info + Element field defined in Section 3.2 SHOULD contain the following + information: + + o Access Router (acting as LMA) Information: IPv4 or IPv6 address + for the alternate tunnel endpoint. + + + + + + + + + +Zhang, et al. Experimental [Page 14] + +RFC 8350 Alternate Tunnel April 2018 + + + The message element structure for PMIPv6 encapsulation is shown in + Figure 10: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Tunnel-Type=4 | Info Element Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . Access Router Information Element . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 10: Alternate Tunnel Encapsulation - PMIPv6 + +4.3. GRE-Based Alternate Tunnel + + A user plane based on Generic Routing Encapsulation (defined in + [RFC2784]) can also be used as an alternate tunnel encapsulation + between the WTP and the AR. In this scenario, a WTP and the Access + Router represent the two endpoints of the GRE tunnel. If GRE is + selected by the AC and configured by the AC to a WTP, the Info + Element field defined in Section 3.2 SHOULD contain the following + information: + + o Access Router Information: The IPv4 or IPv6 address for the + alternate tunnel endpoint. + + o GRE Key Information: The Key field is intended to be used for + identifying an individual traffic flow within a tunnel [RFC2890]. + + The message element structure for GRE is shown in Figure 11: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Tunnel-Type=5 | Info Element Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . Access Router Information Element . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . GRE Key Element . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 11: Alternate Tunnel Encapsulation - GRE + + + + + + + + + +Zhang, et al. Experimental [Page 15] + +RFC 8350 Alternate Tunnel April 2018 + + +5. Alternate Tunnel Information Elements + + This section defines the various elements described in Sections 4.1, + 4.2, and 4.3. + + These information elements can only be included in the Alternate + Tunnel Encapsulations Type message element and the IEEE 802.11 WTP + Alternate Tunnel Failure Indication message element as their sub- + elements. + +5.1. Access Router Information Elements + + The Access Router Information Elements allow the AC to notify a WTP + of which AR(s) are available for establishing a data tunnel. The AR + information may be an IPv4 or IPv6 address. For any Tunnel-Type, + this information element SHOULD be included in the Alternate Tunnel + Encapsulations Type message element. + + If the Alternate Tunnel Encapsulations Type message element is sent + by the WTP to communicate the selected AR(s), this Access Router + Information Element SHOULD be included in it. + + The following are the Access Router Information Elements defined in + this specification. The AC can use one of them to notify the WTP + about the destination information of the data tunnel. The Elements + containing the AR IPv4 address MUST NOT be used if an IPv6 Data + Channel with IPv6 transport is used. + +5.1.1. AR IPv4 List Element + + This element (see Figure 12) is used by the AC to configure a WTP + with the AR IPv4 address available for the WTP to establish the data + tunnel for user traffic. + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | AR IPv4 Element Type | Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR IPv4 Address-1 . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR IPv4 Address-2 . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR IPv4 Address-N . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 12: AR IPv4 List Element + + + + +Zhang, et al. Experimental [Page 16] + +RFC 8350 Alternate Tunnel April 2018 + + + Type: 0 + + Length: This refers to the total length in octets of the element, + excluding the Type and Length fields. + + AR IPv4 Address: The IPv4 address of the AR. At least one IPv4 + address SHALL be present. Multiple addresses may be provided for + load balancing or redundancy. + +5.1.2. AR IPv6 List Element + + This element (see Figure 13) is used by the AC to configure a WTP + with the AR IPv6 address available for the WTP to establish the data + tunnel for user traffic. + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | AR IPv6 Element Type | Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR IPv6 Address-1 . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR IPv6 Address-2 . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR IPv6 Address-N . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 13: AR IPv6 List Element + + Type: 1 + + Length: This refers to the total length in octets of the element + excluding the Type and Length fields. + + AR IPv6 Address: The IPv6 address of the AR. At least one IPv6 + address SHALL be present. Multiple addresses may be provided for + load balancing or redundancy. + +5.2. Tunnel DTLS Policy Element + + The AC distributes its Datagram Transport Layer Security (DTLS) usage + policy for the CAPWAP data tunnel between a WTP and the AR. There + are multiple supported options, which are represented by the bit + fields below as defined in AC Descriptor message elements. The WTP + MUST abide by one of the options for tunneling user traffic with AR. + The Tunnel DTLS Policy Element obeys the definition in [RFC5415]. + If, for reliability reasons, the AC has provided more than one AR + address in the Access Router Information Element, the same Tunnel + + + +Zhang, et al. Experimental [Page 17] + +RFC 8350 Alternate Tunnel April 2018 + + + DTLS Policy (the last one in Figure 14) is generally applied for all + tunnels associated with those ARs. Otherwise, Tunnel DTLS Policy + MUST be bonded together with each of the Access Router Information + Elements, and the WTP will enforce the independent tunnel DTLS policy + for each tunnel with a specific AR. + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + |Tunnel DTLS Policy Element Type| Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Reserved |D|C|R| + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Reserved |D|C|R| + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . ...... . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Reserved |D|C|R| + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 14: Tunnel DTLS Policy Element + + Type: 2 + + Length: This refers to the total length in octets of the element + excluding the Type and Length fields. + + Reserved: A set of reserved bits for future use. All implementations + complying with this protocol MUST set to 0 any bits that are reserved + in the version of the protocol supported by that implementation. + Receivers MUST ignore all bits not defined for the version of the + protocol they support. + + D: DTLS-Enabled Data Channel Supported (see [RFC5415]). + + C: Clear Text Data Channel Supported (see [RFC5415]). + + R: A reserved bit for future use (see [RFC5415]). + + AR Information: This means Access Router Information Element. In + this context, each address in AR Information MUST be one of + previously specified AR addresses. + + + + + +Zhang, et al. Experimental [Page 18] + +RFC 8350 Alternate Tunnel April 2018 + + + In Figure 14, the last element that has no AR Information is the + default tunnel DTLS policy, which provides options for any address + not previously mentioned. Therefore, the AR Information field here + is optional. In this element, if all ARs share the same tunnel DTLS + policy, there won't be an AR Information field or its specific tunnel + DTLS policy. + +5.3. IEEE 802.11 Tagging Mode Policy Element + + In IEEE 802.11 networks, the IEEE 802.11 Tagging Mode Policy Element + is used to specify how the WTP applies the QoS tagging policy when + receiving the packets from stations on a particular radio. When the + WTP sends out the packet to data channel to the AR(s), the packets + have to be tagged for QoS purposes (see [RFC5416]). + + The IEEE 802.11 Tagging Mode Policy abides by the IEEE 802.11 WTP + Quality of Service defined in Section 6.22 of [RFC5416]. + + If, for reliability reasons, the AC has provided more than one AR + address in the Access Router Information Element, the same IEEE + 802.11 Tagging Mode Policy (the last one in Figure 15) is generally + applied for all tunnels associated with those ARs. Otherwise, IEEE + 802.11 Tagging Mode Policy MUST be bonded together with each of the + Access Router Information Elements, and the WTP will enforce the + independent IEEE 802.11 Tagging Mode Policy for each tunnel with a + specific AR. + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Tagging Mode Policy Ele. Type | Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Reserved |P|Q|D|O|I| + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Reserved |P|Q|D|O|I| + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . ...... . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Reserved |P|Q|D|O|I| + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 15: IEEE 802.11 Tagging Mode Policy Element + + + + + +Zhang, et al. Experimental [Page 19] + +RFC 8350 Alternate Tunnel April 2018 + + + Type: 3 + + Length: This refers to the total length in octets of the element + excluding the Type and Length fields. + + Reserved: A set of reserved bits for future use. + + P: When set, the WTP is to employ the IEEE 802.1p QoS mechanism (see + [RFC5416]). + + Q: When the 'P' bit is set, the 'Q' bit is used by the AC to + communicate to the WTP how IEEE 802.1p QoS is to be enforced (see + [RFC5416]). + + D: When set, the WTP is to employ the DSCP QoS mechanism (see + [RFC5416]). + + O: When the 'D' bit is set, the 'O' bit is used by the AC to + communicate to the WTP how Differentiated Services Code Point (DSCP) + QoS is to be enforced on the outer (tunneled) header (see [RFC5416]). + + I: When the 'D' bit is set, the 'I' bit is used by the AC to + communicate to the WTP how DSCP QoS is to be enforced on the + station's packet (inner) header (see [RFC5416]). + + AR Information: This means Access Router Information Element. In + this context, each address in AR information MUST be one of the + previously specified AR addresses. + + In Figure 15, the last element that has no AR information is the + default IEEE 802.11 Tagging Mode Policy, which provides options for + any address not previously mentioned. Therefore, the AR Information + field here is optional. If all ARs share the same IEEE 802.11 + Tagging Mode Policy, in this element, there will not be an AR + Information field and its specific IEEE 802.11 Tagging Mode Policy. + +5.4. CAPWAP Transport Protocol Element + + The CAPWAP data tunnel supports both UDP and UDP-Lite (see + [RFC3828]). When run over IPv4, UDP is used for the CAPWAP Data + Channels. When run over IPv6, the CAPWAP Data Channel may use either + UDP or UDP-Lite. The AC specifies and configures the WTP for which + the transport protocol is to be used for the CAPWAP data tunnel. + + The CAPWAP Transport Protocol Element abides by the definition in + Section 4.6.14 of [RFC5415]. + + + + + +Zhang, et al. Experimental [Page 20] + +RFC 8350 Alternate Tunnel April 2018 + + + If, for reliability reasons, the AC has provided more than one AR + address in the Access Router Information Element, the same CAPWAP + Transport Protocol (the last one in Figure 16) is generally applied + for all tunnels associated with those ARs. Otherwise, CAPWAP + Transport Protocol MUST be bonded together with each of the Access + Router Information Elements, and the WTP will enforce the independent + CAPWAP Transport Protocol for each tunnel with a specific AR. + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Type=4 | Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Transport | Reserved | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Transport | Reserved | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . ...... . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Transport | Reserved | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 16: CAPWAP Transport Protocol Element + + Type: 4 + + Length: 1 + + Transport: The transport to use for the CAPWAP Data Channel. The + following enumerated values are supported: + + 1 - UDP-Lite: The UDP-Lite transport protocol is to be used for + the CAPWAP Data Channel. Note that this option MUST NOT be used + if the CAPWAP Control Channel is being used over IPv4 and if the + AR address contained in the AR Information Element is an IPv4 + address. + + 2 - UDP: The UDP transport protocol is to be used for the CAPWAP + Data Channel. + + AR Information: This means Access Router Information Element. In + this context, each address in AR information MUST be one of the + previously specified AR addresses. + + + + +Zhang, et al. Experimental [Page 21] + +RFC 8350 Alternate Tunnel April 2018 + + + In Figure 16, the last element that has no AR information is the + default CAPWAP Transport Protocol, which provides options for any + address not previously mentioned. Therefore, the AR Information + field here is optional. If all ARs share the same CAPWAP Transport + Protocol, in this element, there will not be an AR Information field + and its specific CAPWAP Transport Protocol. + +5.5. GRE Key Element + + If a WTP receives the GRE Key Element in the Alternate Tunnel + Encapsulations Type message element for GRE selection, the WTP MUST + insert the GRE Key to the encapsulation packet (see [RFC2890]). An + AR acting as a decapsulating tunnel endpoint identifies packets + belonging to a traffic flow based on the Key value. + + The GRE Key Element field contains a 4-octet number defined in + [RFC2890]. + + If, for reliability reasons, the AC has provided more than one AR + address in the Access Router Information Element, a GRE Key Element + MAY be bonded together with each of the Access Router Information + Elements, and the WTP will enforce the independent GRE Key for each + tunnel with a specific AR. + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | GRE Key Element Type | Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | GRE Key | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | GRE Key | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . ...... . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 17: GRE Key Element + + Type: 5 + + Length: This refers to the total length in octets of the element + excluding the Type and Length fields. + + + + + +Zhang, et al. Experimental [Page 22] + +RFC 8350 Alternate Tunnel April 2018 + + + GRE Key: The Key field contains a 4-octet number that is inserted by + the WTP according to [RFC2890]. + + AR Information: This means Access Router Information Element. In + this context, it SHOULD be restricted to a single address and MUST be + the address of one of previously specified AR addresses. + + Any address not explicitly mentioned here does not have a GRE key. + +5.6. IPv6 MTU Element + + If AC has chosen a tunneling mechanism based on IPv6, it SHOULD + support the minimum IPv6 MTU requirements [RFC8200]. This issue is + described in [ARCH-TUNNELS]. AC SHOULD inform the WTP about the IPv6 + MTU information in the Tunnel Info Element field. + + If, for reliability reasons, the AC has provided more than one AR + address in the Access Router Information Element, an IPv6 MTU Element + MAY be bonded together with each of the Access Router Information + Elements, and the WTP will enforce the independent IPv6 MTU for each + tunnel with a specific AR. + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | IPv6 MTU Element Type | Length | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Minimum IPv6 MTU | Reserved | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Minimum IPv6 MTU | Reserved | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . AR Information . + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | ...... | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Figure 18: IPv6 MTU Element + + Type: 6 + + Length: This refers to the total length in octets of the element + excluding the Type and Length fields. + + Minimum IPv6 MTU: The field contains a 2-octet number indicating the + minimum IPv6 MTU in the tunnel. + + + + +Zhang, et al. Experimental [Page 23] + +RFC 8350 Alternate Tunnel April 2018 + + + AR Information: This means Access Router Information Element. In + this context, each address in AR information MUST be one of + previously specified AR addresses. + +6. IANA Considerations + + Per this document, IANA has registered the following values in the + existing "CAPWAP Message Element Type" registry, defined in + [RFC5415]. + + o 54: Supported Alternate Tunnel Encapsulations Type as defined in + Section 3.1. + + o 55: Alternate Tunnel Encapsulations Type as defined in + Section 3.2. + + o 1062: IEEE 802.11 WTP Alternate Tunnel Failure Indication as + defined in Section 3.3. + + Per this document, IANA has created a registry called "Alternate + Tunnel-Types" under "CAPWAP Parameters". This specification defines + the Alternate Tunnel Encapsulations Type message element. This + element contains a field Tunnel-Type. The namespace for the field is + 16 bits (0-65535). This specification defines values 0 through 6 and + can be found in Section 3.2. Future allocations of values in this + namespace are to be assigned by IANA using the "Specification + Required" policy [RFC8126]. The registry format is given below. + + Description Value Reference + CAPWAP 0 [RFC5415] [RFC5416] + L2TP 1 [RFC2661] + L2TPv3 2 [RFC3931] + IP-IP 3 [RFC2003] + PMIPv6-UDP 4 [RFC5844] + GRE 5 [RFC2784] + GTPv1-U 6 [TS.3GPP.29.281] + + + + + + + + + + + + + + + +Zhang, et al. Experimental [Page 24] + +RFC 8350 Alternate Tunnel April 2018 + + + Per this document, IANA has created a registry called "Alternate + Tunnel Sub-elements" under "CAPWAP Parameters". This specification + defines the Alternate Tunnel Sub-elements. Currently, these + information elements can only be included in the Alternate Tunnel + Encapsulations Type message element with the IEEE 802.11 WTP + Alternate Tunnel Failure Indication message element as its sub- + elements. These information elements contain a Type field. The + namespace for the field is 16 bits (0-65535). This specification + defines values 0 through 6 in Section 5. This namespace is managed + by IANA, and assignments require an Expert Review [RFC8126]. + + Description Value + AR IPv4 List 0 + AR IPv6 List 1 + Tunnel DTLS Policy 2 + IEEE 802.11 Tagging Mode Policy 3 + CAPWAP Transport Protocol 4 + GRE Key 5 + IPv6 MTU 6 + +7. Security Considerations + + This document introduces three new CAPWAP WTP message elements. + These elements are transported within CAPWAP Control messages as the + existing message elements. Therefore, this document does not + introduce any new security risks to the control plane compared to + [RFC5415] and [RFC5416]. In the data plane, if the encapsulation + type selected itself is not secured, it is suggested to protect the + tunnel by using known secure methods, such as IPsec. + +8. References + +8.1. Normative References + + [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003, + DOI 10.17487/RFC2003, October 1996, + <https://www.rfc-editor.org/info/rfc2003>. + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, + DOI 10.17487/RFC2119, March 1997, + <https://www.rfc-editor.org/info/rfc2119>. + + [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, + G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"", + RFC 2661, DOI 10.17487/RFC2661, August 1999, + <https://www.rfc-editor.org/info/rfc2661>. + + + + +Zhang, et al. Experimental [Page 25] + +RFC 8350 Alternate Tunnel April 2018 + + + [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. + Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, + DOI 10.17487/RFC2784, March 2000, + <https://www.rfc-editor.org/info/rfc2784>. + + [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE", + RFC 2890, DOI 10.17487/RFC2890, September 2000, + <https://www.rfc-editor.org/info/rfc2890>. + + [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed., + and G. Fairhurst, Ed., "The Lightweight User Datagram + Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/RFC3828, July + 2004, <https://www.rfc-editor.org/info/rfc3828>. + + [RFC3931] Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed., + "Layer Two Tunneling Protocol - Version 3 (L2TPv3)", + RFC 3931, DOI 10.17487/RFC3931, March 2005, + <https://www.rfc-editor.org/info/rfc3931>. + + [RFC5415] Calhoun, P., Ed., Montemurro, M., Ed., and D. Stanley, + Ed., "Control And Provisioning of Wireless Access Points + (CAPWAP) Protocol Specification", RFC 5415, + DOI 10.17487/RFC5415, March 2009, + <https://www.rfc-editor.org/info/rfc5415>. + + [RFC5416] Calhoun, P., Ed., Montemurro, M., Ed., and D. Stanley, + Ed., "Control and Provisioning of Wireless Access Points + (CAPWAP) Protocol Binding for IEEE 802.11", RFC 5416, + DOI 10.17487/RFC5416, March 2009, + <https://www.rfc-editor.org/info/rfc5416>. + + [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for + Writing an IANA Considerations Section in RFCs", BCP 26, + RFC 8126, DOI 10.17487/RFC8126, June 2017, + <https://www.rfc-editor.org/info/rfc8126>. + + [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC + 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, + May 2017, <https://www.rfc-editor.org/info/rfc8174>. + + [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6 + (IPv6) Specification", STD 86, RFC 8200, + DOI 10.17487/RFC8200, July 2017, + <https://www.rfc-editor.org/info/rfc8200>. + + + + + + + +Zhang, et al. Experimental [Page 26] + +RFC 8350 Alternate Tunnel April 2018 + + +8.2. Informative References + + [ARCH-TUNNELS] + Touch, J. and M. Townsley, "IP Tunnels in the Internet + Architecture", Work in Progress, draft-ietf-intarea- + tunnels-08, January 2018. + + [RFC5213] Gundavelli, S., Ed., Leung, K., Devarapalli, V., + Chowdhury, K., and B. Patil, "Proxy Mobile IPv6", + RFC 5213, DOI 10.17487/RFC5213, August 2008, + <https://www.rfc-editor.org/info/rfc5213>. + + [RFC5844] Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy + Mobile IPv6", RFC 5844, DOI 10.17487/RFC5844, May 2010, + <https://www.rfc-editor.org/info/rfc5844>. + + [RFC5845] Muhanna, A., Khalil, M., Gundavelli, S., and K. Leung, + "Generic Routing Encapsulation (GRE) Key Option for Proxy + Mobile IPv6", RFC 5845, DOI 10.17487/RFC5845, June 2010, + <https://www.rfc-editor.org/info/rfc5845>. + + [RFC7494] Shao, C., Deng, H., Pazhyannur, R., Bari, F., Zhang, R., + and S. Matsushima, "IEEE 802.11 Medium Access Control + (MAC) Profile for Control and Provisioning of Wireless + Access Points (CAPWAP)", RFC 7494, DOI 10.17487/RFC7494, + April 2015, <https://www.rfc-editor.org/info/rfc7494>. + + [TS.3GPP.29.281] + 3GPP, "General Packet Radio System (GPRS) Tunnelling + Protocol User Plane (GTPv1-U)", 3GPP TS 29.281, V13.1.0, + March 2016. + + + + + + + + + + + + + + + + + + + + +Zhang, et al. Experimental [Page 27] + +RFC 8350 Alternate Tunnel April 2018 + + +Contributors + + The authors would like to thank Andreas Schultz, Hong Liu, Yifan + Chen, Chunju Shao, Li Xue, Jianjie You, Jin Li, Joe Touch, Alexey + Melnikov, Kathleen Moriarty, Mirja Kuehlewind, Catherine Meadows, and + Paul Kyzivat for their valuable comments. + +Authors' Addresses + + Rong Zhang + China Telecom + No.109 Zhongshandadao avenue + Guangzhou 510630 + China + + Email: zhangr@gsta.com + + + Rajesh S. Pazhyannur + Cisco + 170 West Tasman Drive + San Jose, CA 95134 + United States of America + + Email: rpazhyan@cisco.com + + + Sri Gundavelli + Cisco + 170 West Tasman Drive + San Jose, CA 95134 + United States of America + + Email: sgundave@cisco.com + + + Zhen Cao + Huawei + Xinxi Rd. 3 + Beijing 100085 + China + + Email: zhencao.ietf@gmail.com + + + + + + + + +Zhang, et al. Experimental [Page 28] + +RFC 8350 Alternate Tunnel April 2018 + + + Hui Deng + Huawei + Xinxi Rd. 3 + Beijing 100085 + China + + Email: denghui02@gmail.com + + + Zongpeng Du + Huawei + No.156 Beiqing Rd. Z-park, HaiDian District + Beijing 100095 + China + + Email: duzongpeng@huawei.com + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Zhang, et al. Experimental [Page 29] + |