diff options
Diffstat (limited to 'doc/rfc/rfc9496.txt')
-rw-r--r-- | doc/rfc/rfc9496.txt | 1354 |
1 files changed, 1354 insertions, 0 deletions
diff --git a/doc/rfc/rfc9496.txt b/doc/rfc/rfc9496.txt new file mode 100644 index 0000000..d3dfb0c --- /dev/null +++ b/doc/rfc/rfc9496.txt @@ -0,0 +1,1354 @@ + + + + +Internet Research Task Force (IRTF) H. de Valence +Request for Comments: 9496 +Category: Informational J. Grigg +ISSN: 2070-1721 + M. Hamburg + + I. Lovecruft + + G. Tankersley + + F. Valsorda + December 2023 + + + The ristretto255 and decaf448 Groups + +Abstract + + This memo specifies two prime-order groups, ristretto255 and + decaf448, suitable for safely implementing higher-level and complex + cryptographic protocols. The ristretto255 group can be implemented + using Curve25519, allowing existing Curve25519 implementations to be + reused and extended to provide a prime-order group. Likewise, the + decaf448 group can be implemented using edwards448. + + This document is a product of the Crypto Forum Research Group (CFRG) + in the IRTF. + +Status of This Memo + + This document is not an Internet Standards Track specification; it is + published for informational purposes. + + This document is a product of the Internet Research Task Force + (IRTF). The IRTF publishes the results of Internet-related research + and development activities. These results might not be suitable for + deployment. This RFC represents the consensus of the Crypto Forum + Research Group of the Internet Research Task Force (IRTF). Documents + approved for publication by the IRSG are not candidates for any level + of Internet Standard; see Section 2 of RFC 7841. + + Information about the current status of this document, any errata, + and how to provide feedback on it may be obtained at + https://www.rfc-editor.org/info/rfc9496. + +Copyright Notice + + Copyright (c) 2023 IETF Trust and the persons identified as the + document authors. All rights reserved. + + This document is subject to BCP 78 and the IETF Trust's Legal + Provisions Relating to IETF Documents + (https://trustee.ietf.org/license-info) in effect on the date of + publication of this document. Please review these documents + carefully, as they describe your rights and restrictions with respect + to this document. + +Table of Contents + + 1. Introduction + 2. Notation and Conventions Used in This Document + 2.1. Negative Field Elements + 2.2. Constant-Time Operations + 3. The Group Abstraction + 4. ristretto255 + 4.1. Implementation Constants + 4.2. Square Root of a Ratio of Field Elements + 4.3. ristretto255 Group Operations + 4.3.1. Decode + 4.3.2. Encode + 4.3.3. Equals + 4.3.4. Element Derivation + 4.4. Scalar Field + 5. decaf448 + 5.1. Implementation Constants + 5.2. Square Root of a Ratio of Field Elements + 5.3. decaf448 Group Operations + 5.3.1. Decode + 5.3.2. Encode + 5.3.3. Equals + 5.3.4. Element Derivation + 5.4. Scalar Field + 6. API Considerations + 7. IANA Considerations + 8. Security Considerations + 9. References + 9.1. Normative References + 9.2. Informative References + Appendix A. Test Vectors for ristretto255 + A.1. Multiples of the Generator + A.2. Invalid Encodings + A.3. Group Elements from Uniform Byte Strings + A.4. Square Root of a Ratio of Field Elements + Appendix B. Test Vectors for decaf448 + B.1. Multiples of the Generator + B.2. Invalid Encodings + B.3. Group Elements from Uniform Byte Strings + Acknowledgements + Authors' Addresses + +1. Introduction + + Decaf [Decaf] is a technique for constructing prime-order groups with + nonmalleable encodings from non-prime-order elliptic curves. + Ristretto extends this technique to support cofactor-8 curves such as + Curve25519 [RFC7748]. In particular, this allows an existing + Curve25519 library to provide a prime-order group with only a thin + abstraction layer. + + Many group-based cryptographic protocols require the number of + elements in the group (the group order) to be prime. Prime-order + groups are useful because every non-identity element of the group is + a generator of the entire group. This means the group has a cofactor + of 1, and all elements are equivalent from the perspective of + hardness of the discrete logarithm problem. + + Edwards curves provide a number of implementation benefits for + cryptography. These benefits include formulas for curve operations + that are among the fastest currently known, and for which the + addition formulas are complete with no exceptional points. However, + the group of points on the curve is not of prime order, i.e., it has + a cofactor larger than 1. This abstraction mismatch is usually + handled, if it is handled at all, by means of ad hoc protocol tweaks + such as multiplying by the cofactor in an appropriate place. + + Even for simple protocols such as signatures, these tweaks can cause + subtle issues. For instance, Ed25519 implementations may have + different validation behavior between batched and singleton + verification, and at least as specified in [RFC8032], the set of + valid signatures is not defined precisely [Ed25519ValidCrit]. + + For more complex protocols, careful analysis is required as the + original security proofs may no longer apply, and the tweaks for one + protocol may have disastrous effects when applied to another (for + instance, the octuple-spend vulnerability described in [MoneroVuln]). + + Decaf and Ristretto fix this abstraction mismatch in one place for + all protocols, providing an abstraction to protocol implementors that + matches the abstraction commonly assumed in protocol specifications + while still allowing the use of high-performance curve + implementations internally. The abstraction layer imposes minor + overhead but only in the encoding and decoding phases. + + While Ristretto is a general method and can be used in conjunction + with any Edwards curve with cofactor 4 or 8, this document specifies + the ristretto255 group, which can be implemented using Curve25519, + and the decaf448 group, which can be implemented using edwards448. + + There are other elliptic curves that can be used internally to + implement ristretto255 or decaf448; those implementations would be + interoperable with one based on Curve25519 or edwards448, but those + constructions are out of scope for this document. + + The Ristretto construction is described and justified in detail at + [RistrettoGroup]. + + This document represents the consensus of the Crypto Forum Research + Group (CFRG). This document is not an IETF product and is not a + standard. + +2. Notation and Conventions Used in This Document + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and + "OPTIONAL" in this document are to be interpreted as described in BCP + 14 [RFC2119] [RFC8174] when, and only when, they appear in all + capitals, as shown here. + + Readers are cautioned that the term "Curve25519" has varying + interpretations in the literature and that the canonical meaning of + the term has shifted over time. Originally, it referred to a + specific Diffie-Hellman key exchange mechanism. Use shifted over + time, and "Curve25519" has been used to refer to the abstract + underlying curve, its concrete representation in Montgomery form, or + the specific Diffie-Hellman mechanism. This document uses the term + "Curve25519" to refer to the abstract underlying curve, as + recommended in [Naming]. The abstract Edwards form of the curve we + refer to here as "Curve25519" is referred to in [RFC7748] as + "edwards25519", and the Montgomery form that is isogenous to the + Edwards form is referred to in [RFC7748] as "curve25519". + + Elliptic curve points in this document are represented in extended + Edwards coordinates in the (x, y, z, t) format [Twisted], also called + extended homogeneous coordinates in Section 5.1.4 of [RFC8032]. + Field elements are values modulo p, the Curve25519 prime 2^255 - 19 + or the edwards448 prime 2^448 - 2^224 - 1, as specified in Sections + 4.1 and 4.2 of [RFC7748], respectively. All formulas specify field + operations unless otherwise noted. The symbol ^ denotes + exponentiation. + + The | symbol represents a constant-time logical OR. + + The notation array[A:B] means the elements of array from A to B-1. + That is, it is exclusive of B. Arrays are indexed starting from 0. + + A byte is an 8-bit entity (also known as "octet"), and a byte string + is an ordered sequence of bytes. An N-byte string is a byte string + of N bytes in length. + + Element encodings are presented as hex-encoded byte strings with + whitespace added for readability. + +2.1. Negative Field Elements + + As in [RFC8032], given a field element e, define IS_NEGATIVE(e) as + TRUE if the least nonnegative integer representing e is odd and FALSE + if it is even. This SHOULD be implemented in constant time. + +2.2. Constant-Time Operations + + We assume that the field element implementation supports the + following operations, which SHOULD be implemented in constant time: + + * CT_EQ(u, v): return TRUE if u = v, FALSE otherwise. + * CT_SELECT(v IF cond ELSE u): return v if cond is TRUE, else return + u. + * CT_ABS(u): return -u if IS_NEGATIVE(u), else return u. + + Note that CT_ABS MAY be implemented as: + + CT_SELECT(-u IF IS_NEGATIVE(u) ELSE u) + +3. The Group Abstraction + + Ristretto and Decaf implement an abstract prime-order group interface + that exposes only the behavior that is useful to higher-level + protocols, without leaking curve-related details and pitfalls. + + Each abstract group exposes operations on abstract element and + abstract scalar types. The operations defined on these types + include: decoding, encoding, equality, addition, negation, + subtraction, and (multi-)scalar multiplication. Each abstract group + also exposes a deterministic function to derive abstract elements + from fixed-length byte strings. A description of each of these + operations is below. + + Decoding is a function from byte strings to abstract elements with + built-in validation, so that only the canonical encodings of valid + elements are accepted. The built-in validation avoids the need for + explicit invalid curve checks. + + Encoding is a function from abstract elements to byte strings. + Internally, an abstract element might have more than one possible + representation; for example, the implementation might use projective + coordinates. When encoding, all equivalent representations of the + same element are encoded as identical byte strings. Decoding the + output of the encoding function always succeeds and returns an + element equivalent to the encoding input. + + The equality check reports whether two representations of an abstract + element are equivalent. + + The element derivation function maps deterministically from byte + strings of a fixed length to abstract elements. It has two important + properties. First, if the input is a uniformly random byte string, + then the output is (within a negligible statistical distance of) a + uniformly random abstract group element. This means the function is + suitable for selecting random group elements. + + Second, although the element derivation function is many-to-one and + therefore not strictly invertible, it is not pre-image resistant. On + the contrary, given an arbitrary abstract group element P, there is + an efficient algorithm to randomly sample from byte strings that map + to P. In some contexts, this property would be a weakness, but it is + important in some contexts: in particular, it means that a + combination of a cryptographic hash function and the element + derivation function is suitable to define encoding functions such as + hash_to_ristretto255 (Appendix B of [RFC9380]) and hash_to_decaf448 + (Appendix C of [RFC9380]). + + Addition is the group operation. The group has an identity element + and prime order l. Adding together l copies of the same element + gives the identity. Adding the identity element to any element + returns that element unchanged. Negation returns an element that, + when added to the negation input, gives the identity element. + Subtraction is the addition of a negated element, and scalar + multiplication is the repeated addition of an element. + +4. ristretto255 + + ristretto255 is an instantiation of the abstract prime-order group + interface defined in Section 3. This document describes how to + implement the ristretto255 prime-order group using Curve25519 points + as internal representations. + + A "ristretto255 group element" is the abstract element of the prime- + order group. An "element encoding" is the unique reversible encoding + of a group element. An "internal representation" is a point on the + curve used to implement ristretto255. Each group element can have + multiple equivalent internal representations. + + Encoding, decoding, equality, and the element derivation function are + defined in Section 4.3. Element addition, subtraction, negation, and + scalar multiplication are implemented by applying the corresponding + operations directly to the internal representation. + + The group order is the same as the order of the Curve25519 prime- + order subgroup: + + l = 2^252 + 27742317777372353535851937790883648493 + + Since ristretto255 is a prime-order group, every element except the + identity is a generator. However, for interoperability, a canonical + generator is selected, which can be internally represented by the + Curve25519 base point, enabling reuse of existing precomputation for + scalar multiplication. The encoding of this canonical generator, as + produced by the function specified in Section 4.3.2, is: + + e2f2ae0a 6abc4e71 a884a961 c500515f 58e30b6a a582dd8d b6a65945 e08d2d76 + +4.1. Implementation Constants + + This document references the following constant field element values + that are used for the implementation of group operations. + + * D = 37095705934669439343138083508754565189542113879843219016388785 + 533085940283555 + - This is the Edwards d parameter for Curve25519, as specified in + Section 4.1 of [RFC7748]. + * SQRT_M1 = 19681161376707505956807079304988542015446066515923890162 + 744021073123829784752 + * SQRT_AD_MINUS_ONE = 2506306895338462347411141415870215270124453150 + 2492656460079210482610430750235 + * INVSQRT_A_MINUS_D = 5446930700890931692099581386874514160539359729 + 2927456921205312896311721017578 + * ONE_MINUS_D_SQ = 1159843021668779879193775521855586647937357759715 + 417654439879720876111806838 + * D_MINUS_ONE_SQ = 4044083434630853685810104246932319082624839914623 + 8708352240133220865137265952 + +4.2. Square Root of a Ratio of Field Elements + + The following function is defined on field elements and is used to + implement other ristretto255 functions. This function is only used + internally to implement some of the group operations. + + On input field elements u and v, the function SQRT_RATIO_M1(u, v) + returns: + + * (TRUE, +sqrt(u/v)) if u and v are nonzero and u/v is square in the + field; + * (TRUE, zero) if u is zero; + * (FALSE, zero) if v is zero and u is nonzero; and + * (FALSE, +sqrt(SQRT_M1*(u/v))) if u and v are nonzero and u/v is + non-square in the field (so SQRT_M1*(u/v) is square in the field), + + where +sqrt(x) indicates the nonnegative square root of x in the + field. + + The computation is similar to what is described in Section 5.1.3 of + [RFC8032], with the difference that, if the input is non-square, the + function returns a result with a defined relationship to the inputs. + This result is used for efficient implementation of the derivation + function. The function can be refactored from an existing Ed25519 + implementation. + + SQRT_RATIO_M1(u, v) is defined as follows: + +r = (u * v^3) * (u * v^7)^((p-5)/8) // Note: (p - 5) / 8 is an integer. +check = v * r^2 + +correct_sign_sqrt = CT_EQ(check, u) +flipped_sign_sqrt = CT_EQ(check, -u) +flipped_sign_sqrt_i = CT_EQ(check, -u*SQRT_M1) + +r_prime = SQRT_M1 * r +r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r) + +// Choose the nonnegative square root. +r = CT_ABS(r) + +was_square = correct_sign_sqrt | flipped_sign_sqrt + +return (was_square, r) + +4.3. ristretto255 Group Operations + + This section describes the implementation of the external functions + exposed by the ristretto255 prime-order group. + +4.3.1. Decode + + All elements are encoded as 32-byte strings. Decoding proceeds as + follows: + + 1. Interpret the string as an unsigned integer s in little-endian + representation. If the length of the string is not 32 bytes or + if the resulting value is >= p, decoding fails. + + | Note: Unlike the field element decoding described in [RFC7748], + | the most significant bit is not masked, and non-canonical + | values are rejected. The test vectors in Appendix A.2 exercise + | these edge cases. + + 2. If IS_NEGATIVE(s) returns TRUE, decoding fails. + 3. Process s as follows: + + ss = s^2 + u1 = 1 - ss + u2 = 1 + ss + u2_sqr = u2^2 + + v = -(D * u1^2) - u2_sqr + + (was_square, invsqrt) = SQRT_RATIO_M1(1, v * u2_sqr) + + den_x = invsqrt * u2 + den_y = invsqrt * den_x * v + + x = CT_ABS(2 * s * den_x) + y = u1 * den_y + t = x * y + + 4. If was_square is FALSE, IS_NEGATIVE(t) returns TRUE, or y = 0, + decoding fails. Otherwise, return the group element represented + by the internal representation (x, y, 1, t) as the result of + decoding. + +4.3.2. Encode + + A group element with internal representation (x0, y0, z0, t0) is + encoded as follows: + + 1. Process the internal representation into a field element s as + follows: + + u1 = (z0 + y0) * (z0 - y0) + u2 = x0 * y0 + + // Ignore was_square since this is always square. + (_, invsqrt) = SQRT_RATIO_M1(1, u1 * u2^2) + + den1 = invsqrt * u1 + den2 = invsqrt * u2 + z_inv = den1 * den2 * t0 + + ix0 = x0 * SQRT_M1 + iy0 = y0 * SQRT_M1 + enchanted_denominator = den1 * INVSQRT_A_MINUS_D + + rotate = IS_NEGATIVE(t0 * z_inv) + + // Conditionally rotate x and y. + x = CT_SELECT(iy0 IF rotate ELSE x0) + y = CT_SELECT(ix0 IF rotate ELSE y0) + z = z0 + den_inv = CT_SELECT(enchanted_denominator IF rotate ELSE den2) + + y = CT_SELECT(-y IF IS_NEGATIVE(x * z_inv) ELSE y) + + s = CT_ABS(den_inv * (z - y)) + + 2. Return the 32-byte little-endian encoding of s. More + specifically, this is the encoding of the canonical + representation of s as an integer between 0 and p-1, inclusive. + + Note that decoding and then re-encoding a valid group element will + yield an identical byte string. + +4.3.3. Equals + + The equality function returns TRUE when two internal representations + correspond to the same group element. Note that internal + representations MUST NOT be compared in any way other than specified + here. + + For two internal representations (x1, y1, z1, t1) and (x2, y2, z2, + t2), if + + CT_EQ(x1 * y2, y1 * x2) | CT_EQ(y1 * y2, x1 * x2) + + evaluates to TRUE, then return TRUE. Otherwise, return FALSE. + + Note that the equality function always returns TRUE when applied to + an internal representation and to the internal representation + obtained by encoding and then re-decoding it. However, the internal + representations themselves might not be identical. + + Implementations MAY also perform constant-time byte comparisons on + the encodings of group elements (produced by Section 4.3.2) for an + equivalent, although less efficient, result. + +4.3.4. Element Derivation + + The element derivation function operates on 64-byte strings. To + obtain such an input from an arbitrary-length byte string, + applications should use a domain-separated hash construction, the + choice of which is out of scope for this document. + + The element derivation function on an input string b proceeds as + follows: + + 1. Compute P1 as MAP(b[0:32]). + 2. Compute P2 as MAP(b[32:64]). + 3. Return P1 + P2. + + The MAP function is defined on 32-byte strings as: + + 1. Mask the most significant bit in the final byte of the string, + and interpret the string as an unsigned integer r in little- + endian representation. Reduce r modulo p to obtain a field + element t. + * Masking the most significant bit is equivalent to interpreting + the whole string as an unsigned integer in little-endian + representation and then reducing it modulo 2^255. + + | Note: Similar to the field element decoding described in + | [RFC7748], and unlike the field element decoding described in + | Section 4.3.1, the most significant bit is masked, and non- + | canonical values are accepted. + + 2. Process t as follows: + + r = SQRT_M1 * t^2 + u = (r + 1) * ONE_MINUS_D_SQ + v = (-1 - r*D) * (r + D) + + (was_square, s) = SQRT_RATIO_M1(u, v) + s_prime = -CT_ABS(s*t) + s = CT_SELECT(s IF was_square ELSE s_prime) + c = CT_SELECT(-1 IF was_square ELSE r) + + N = c * (r - 1) * D_MINUS_ONE_SQ - v + + w0 = 2 * s * v + w1 = N * SQRT_AD_MINUS_ONE + w2 = 1 - s^2 + w3 = 1 + s^2 + + 3. Return the group element represented by the internal + representation (w0*w3, w2*w1, w1*w3, w0*w2). + +4.4. Scalar Field + + The scalars for the ristretto255 group are integers modulo the order + l of the ristretto255 group. Note that this is the same scalar field + as Curve25519, allowing existing implementations to be reused. + + Scalars are encoded as 32-byte strings in little-endian order. + Implementations SHOULD check that any scalar s falls in the range 0 + <= s < l when parsing them and reject non-canonical scalar encodings. + Implementations SHOULD reduce scalars modulo l when encoding them as + byte strings. Omitting these strict range checks is NOT RECOMMENDED + but is allowed to enable reuse of scalar arithmetic implementations + in existing Curve25519 libraries. + + Given a uniformly distributed 64-byte string b, implementations can + obtain a uniformly distributed scalar by interpreting the 64-byte + string as a 512-bit unsigned integer in little-endian order and + reducing the integer modulo l, as in [RFC8032]. To obtain such an + input from an arbitrary-length byte string, applications should use a + domain-separated hash construction, the choice of which is out of + scope for this document. + +5. decaf448 + + decaf448 is an instantiation of the abstract prime-order group + interface defined in Section 3. This document describes how to + implement the decaf448 prime-order group using edwards448 points as + internal representations. + + A "decaf448 group element" is the abstract element of the prime-order + group. An "element encoding" is the unique reversible encoding of a + group element. An "internal representation" is a point on the curve + used to implement decaf448. Each group element can have multiple + equivalent internal representations. + + Encoding, decoding, equality, and the element derivation functions + are defined in Section 5.3. Element addition, subtraction, negation, + and scalar multiplication are implemented by applying the + corresponding operations directly to the internal representation. + + The group order is the same as the order of the edwards448 prime- + order subgroup: + + l = 2^446 - + 13818066809895115352007386748515426880336692474882178609894547503885 + + Since decaf448 is a prime-order group, every element except the + identity is a generator; however, for interoperability, a canonical + generator is selected. This generator can be internally represented + by 2*B, where B is the edwards448 base point, enabling reuse of + existing precomputation for scalar multiplication. The encoding of + this canonical generator, as produced by the function specified in + Section 5.3.2, is: + + 66666666 66666666 66666666 66666666 66666666 66666666 66666666 + 33333333 33333333 33333333 33333333 33333333 33333333 33333333 + + This repetitive constant is equal to 1/sqrt(5) in decaf448's field, + corresponding to the curve448 base point with x = 5. + +5.1. Implementation Constants + + This document references the following constant field element values + that are used for the implementation of group operations. + + * D = 72683872429560689054932380788800453435364136068731806028149019 + 918061232816673077268639638369867654593008888446184363736105349801 + 8326358 + - This is the Edwards d parameter for edwards448, as specified in + Section 4.2 of [RFC7748], and is equal to -39081 in the field. + * ONE_MINUS_D = 39082 + * ONE_MINUS_TWO_D = 78163 + * SQRT_MINUS_D = 989442336477322197691770048769290191284175762955299 + 010740998895980437021160012578568021315638965153739277122320928458 + 83226922417596214 + * INVSQRT_MINUS_D = 315019913931389607337177038330951043522456072897 + 266928557328499619017160722351061360252776265186336876723201881398 + 623946864393857820716 + +5.2. Square Root of a Ratio of Field Elements + + The following function is defined on field elements and is used to + implement other decaf448 functions. This function is only used + internally to implement some of the group operations. + + On input field elements u and v, the function SQRT_RATIO_M1(u, v) + returns: + + * (TRUE, +sqrt(u/v)) if u and v are nonzero and u/v is square in the + field; + * (TRUE, zero) if u is zero; + * (FALSE, zero) if v is zero and u is nonzero; and + * (FALSE, +sqrt(-u/v)) if u and v are nonzero and u/v is non-square + in the field (so -(u/v) is square in the field), + + where +sqrt(x) indicates the nonnegative square root of x in the + field. + + The computation is similar to what is described in Section 5.2.3 of + [RFC8032], with the difference that, if the input is non-square, the + function returns a result with a defined relationship to the inputs. + This result is used for efficient implementation of the derivation + function. The function can be refactored from an existing edwards448 + implementation. + + SQRT_RATIO_M1(u, v) is defined as follows: + + r = u * (u * v)^((p - 3) / 4) // Note: (p - 3) / 4 is an integer. + + check = v * r^2 + was_square = CT_EQ(check, u) + + // Choose the nonnegative square root. + r = CT_ABS(r) + + return (was_square, r) + +5.3. decaf448 Group Operations + + This section describes the implementation of the external functions + exposed by the decaf448 prime-order group. + +5.3.1. Decode + + All elements are encoded as 56-byte strings. Decoding proceeds as + follows: + + 1. Interpret the string as an unsigned integer s in little-endian + representation. If the length of the string is not 56 bytes or + if the resulting value is >= p, decoding fails. + + | Note: Unlike the field element decoding described in [RFC7748], + | non-canonical values are rejected. The test vectors in + | Appendix B.2 exercise these edge cases. + + 2. If IS_NEGATIVE(s) returns TRUE, decoding fails. + 3. Process s as follows: + + ss = s^2 + u1 = 1 + ss + + u2 = u1^2 - 4 * D * ss + + (was_square, invsqrt) = SQRT_RATIO_M1(1, u2 * u1^2) + + u3 = CT_ABS(2 * s * invsqrt * u1 * SQRT_MINUS_D) + + x = u3 * invsqrt * u2 * INVSQRT_MINUS_D + y = (1 - ss) * invsqrt * u1 + t = x * y + + 4. If was_square is FALSE, then decoding fails. Otherwise, return + the group element represented by the internal representation (x, + y, 1, t) as the result of decoding. + +5.3.2. Encode + + A group element with internal representation (x0, y0, z0, t0) is + encoded as follows: + + 1. Process the internal representation into a field element s as + follows: + + u1 = (x0 + t0) * (x0 - t0) + + // Ignore was_square since this is always square. + (_, invsqrt) = SQRT_RATIO_M1(1, u1 * ONE_MINUS_D * x0^2) + + ratio = CT_ABS(invsqrt * u1 * SQRT_MINUS_D) + u2 = INVSQRT_MINUS_D * ratio * z0 - t0 + s = CT_ABS(ONE_MINUS_D * invsqrt * x0 * u2) + + 2. Return the 56-byte little-endian encoding of s. More + specifically, this is the encoding of the canonical + representation of s as an integer between 0 and p-1, inclusive. + + Note that decoding and then re-encoding a valid group element will + yield an identical byte string. + +5.3.3. Equals + + The equality function returns TRUE when two internal representations + correspond to the same group element. Note that internal + representations MUST NOT be compared in any way other than specified + here. + + For two internal representations (x1, y1, z1, t1) and (x2, y2, z2, + t2), if + + CT_EQ(x1 * y2, y1 * x2) + + evaluates to TRUE, then return TRUE. Otherwise, return FALSE. + + Note that the equality function always returns TRUE when applied to + an internal representation and to the internal representation + obtained by encoding and then re-decoding it. However, the internal + representations themselves might not be identical. + + Implementations MAY also perform constant-time byte comparisons on + the encodings of group elements (produced by Section 5.3.2) for an + equivalent, although less efficient, result. + +5.3.4. Element Derivation + + The element derivation function operates on 112-byte strings. To + obtain such an input from an arbitrary-length byte string, + applications should use a domain-separated hash construction, the + choice of which is out of scope for this document. + + The element derivation function on an input string b proceeds as + follows: + + 1. Compute P1 as MAP(b[0:56]). + 2. Compute P2 as MAP(b[56:112]). + 3. Return P1 + P2. + + The MAP function is defined on 56-byte strings as: + + 1. Interpret the string as an unsigned integer r in little-endian + representation. Reduce r modulo p to obtain a field element t. + + | Note: Similar to the field element decoding described in + | [RFC7748], and unlike the field element decoding described in + | Section 5.3.1, non-canonical values are accepted. + + 2. Process t as follows: + + r = -t^2 + u0 = d * (r-1) + u1 = (u0 + 1) * (u0 - r) + + (was_square, v) = SQRT_RATIO_M1(ONE_MINUS_TWO_D, (r + 1) * u1) + v_prime = CT_SELECT(v IF was_square ELSE t * v) + sgn = CT_SELECT(1 IF was_square ELSE -1) + s = v_prime * (r + 1) + + w0 = 2 * CT_ABS(s) + w1 = s^2 + 1 + w2 = s^2 - 1 + w3 = v_prime * s * (r - 1) * ONE_MINUS_TWO_D + sgn + + 3. Return the group element represented by the internal + representation (w0*w3, w2*w1, w1*w3, w0*w2). + +5.4. Scalar Field + + The scalars for the decaf448 group are integers modulo the order l of + the decaf448 group. Note that this is the same scalar field as + edwards448, allowing existing implementations to be reused. + + Scalars are encoded as 56-byte strings in little-endian order. + Implementations SHOULD check that any scalar s falls in the range 0 + <= s < l when parsing them and reject non-canonical scalar encodings. + Implementations SHOULD reduce scalars modulo l when encoding them as + byte strings. Omitting these strict range checks is NOT RECOMMENDED + but is allowed to enable reuse of scalar arithmetic implementations + in existing edwards448 libraries. + + Given a uniformly distributed 64-byte string b, implementations can + obtain a uniformly distributed scalar by interpreting the 64-byte + string as a 512-bit unsigned integer in little-endian order and + reducing the integer modulo l. To obtain such an input from an + arbitrary-length byte string, applications should use a domain- + separated hash construction, the choice of which is out of scope for + this document. + +6. API Considerations + + ristretto255 and decaf448 are abstractions that implement two prime- + order groups. Their elements are represented by curve points, but + are not curve points, and implementations SHOULD reflect that fact. + That is, the type representing an element of the group SHOULD be + opaque to the caller, meaning they do not expose the underlying curve + point or field elements. Moreover, implementations SHOULD NOT expose + any internal constants or functions used in the implementation of the + group operations. + + The reason for this encapsulation is that ristretto255 and decaf448 + implementations can change their underlying curve without causing any + breaking change. The ristretto255 and decaf448 constructions are + carefully designed so that this will be the case, as long as + implementations do not expose internal representations or operate on + them except as described in this document. In particular, + implementations SHOULD NOT define any external ristretto255 or + decaf448 interface as operating on arbitrary curve points, and they + SHOULD NOT construct group elements except via decoding, the element + derivation function, or group operations on other valid group + elements per Section 3. However, they are allowed to apply any + optimization strategy to the internal representations as long as it + doesn't change the exposed behavior of the API. + + It is RECOMMENDED that implementations not perform a decoding and + encoding operation for each group operation, as it is inefficient and + unnecessary. Implementations SHOULD instead provide an opaque type + to hold the internal representation through multiple operations. + +7. IANA Considerations + + This document has no IANA actions. + +8. Security Considerations + + The ristretto255 and decaf448 groups provide higher-level protocols + with the abstraction they expect: a prime-order group. Therefore, + it's expected to be safer for use in any situation where Curve25519 + or edwards448 is used to implement a protocol requiring a prime-order + group. Note that the safety of the abstraction can be defeated by + implementations that do not follow the guidance in Section 6. + + There is no function to test whether an elliptic curve point is a + valid internal representation of a group element. The decoding + function always returns a valid internal representation or an error, + and operations exposed by the group per Section 3 return valid + internal representations when applied to valid internal + representations. In this way, an implementation can maintain the + invariant that an internal representation is always valid, so that + checking is never necessary, and invalid states are unrepresentable. + +9. References + +9.1. Normative References + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, + DOI 10.17487/RFC2119, March 1997, + <https://www.rfc-editor.org/info/rfc2119>. + + [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC + 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, + May 2017, <https://www.rfc-editor.org/info/rfc8174>. + +9.2. Informative References + + [Decaf] Hamburg, M., "Decaf: Eliminating cofactors through point + compression", 2015, + <https://www.shiftleft.org/papers/decaf/decaf.pdf>. + + [Ed25519ValidCrit] + de Valence, H., "It's 255:19AM. Do you know what your + validation criteria are?", 4 October 2020, + <https://hdevalence.ca/blog/2020-10-04-its-25519am>. + + [MoneroVuln] + Nick, J., "Exploiting Low Order Generators in One-Time + Ring Signatures", May 2017, + <https://jonasnick.github.io/blog/2017/05/23/exploiting- + low-order-generators-in-one-time-ring-signatures/>. + + [Naming] Bernstein, D. J., "Subject: [Cfrg] 25519 naming", message + to the Cfrg mailing list, 26 August 2014, + <https://mailarchive.ietf.org/arch/msg/cfrg/- + 9LEdnzVrE5RORux3Oo_oDDRksU/>. + + [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves + for Security", RFC 7748, DOI 10.17487/RFC7748, January + 2016, <https://www.rfc-editor.org/info/rfc7748>. + + [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital + Signature Algorithm (EdDSA)", RFC 8032, + DOI 10.17487/RFC8032, January 2017, + <https://www.rfc-editor.org/info/rfc8032>. + + [RFC9380] Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R. S., + and C. A. Wood, "Hashing to Elliptic Curves", RFC 9380, + DOI 10.17487/RFC9380, August 2023, + <https://www.rfc-editor.org/info/rfc9380>. + + [RistrettoGroup] + de Valence, H., Lovecruft, I., Arcieri, T., and M. + Hamburg, "The Ristretto Group", <https://ristretto.group>. + + [Twisted] Hisil, H., Wong, K. K., Carter, G., and E. Dawson, + "Twisted Edwards Curves Revisited", Cryptology ePrint + Archive, Paper 2008/522, December 2008, + <https://eprint.iacr.org/2008/522>. + +Appendix A. Test Vectors for ristretto255 + + This section contains test vectors for ristretto255. The octets are + hex encoded, and whitespace is inserted for readability. + +A.1. Multiples of the Generator + + The following are the encodings of the multiples 0 to 15 of the + canonical generator, represented as an array of elements. That is, + the first entry is the encoding of the identity element, and each + successive entry is obtained by adding the generator to the previous + entry. + + B[ 0]: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 + 00000000 + B[ 1]: e2f2ae0a 6abc4e71 a884a961 c500515f 58e30b6a a582dd8d b6a65945 + e08d2d76 + B[ 2]: 6a493210 f7499cd1 7fecb510 ae0cea23 a110e8d5 b901f8ac add3095c + 73a3b919 + B[ 3]: 94741f5d 5d52755e ce4f23f0 44ee27d5 d1ea1e2b d196b462 166b1615 + 2a9d0259 + B[ 4]: da808627 73358b46 6ffadfe0 b3293ab3 d9fd53c5 ea6c9553 58f56832 + 2daf6a57 + B[ 5]: e882b131 016b52c1 d3337080 187cf768 423efccb b517bb49 5ab812c4 + 160ff44e + B[ 6]: f64746d3 c92b1305 0ed8d802 36a7f000 7c3b3f96 2f5ba793 d19a601e + bb1df403 + B[ 7]: 44f53520 926ec81f bd5a3878 45beb7df 85a96a24 ece18738 bdcfa6a7 + 822a176d + B[ 8]: 903293d8 f2287ebe 10e2374d c1a53e0b c887e592 699f02d0 77d5263c + dd55601c + B[ 9]: 02622ace 8f7303a3 1cafc63f 8fc48fdc 16e1c8c8 d234b2f0 d6685282 + a9076031 + B[10]: 20706fd7 88b2720a 1ed2a5da d4952b01 f413bcf0 e7564de8 cdc81668 + 9e2db95f + B[11]: bce83f8b a5dd2fa5 72864c24 ba1810f9 522bc600 4afe9587 7ac73241 + cafdab42 + B[12]: e4549ee1 6b9aa030 99ca208c 67adafca fa4c3f3e 4e5303de 6026e3ca + 8ff84460 + B[13]: aa52e000 df2e16f5 5fb1032f c33bc427 42dad6bd 5a8fc0be 0167436c + 5948501f + B[14]: 46376b80 f409b29d c2b5f6f0 c5259199 0896e571 6f41477c d30085ab + 7f10301e + B[15]: e0c418f7 c8d9c4cd d7395b93 ea124f3a d99021bb 681dfc33 02a9d99a + 2e53e64e + + Note that because + + B[i+1] = B[i] + B[1] + + these test vectors allow testing of the encoding function and the + implementation of addition simultaneously. + +A.2. Invalid Encodings + + These are examples of encodings that MUST be rejected according to + Section 4.3.1. + + # Non-canonical field encodings. + 00ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + ffffffff + + ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + ffffff7f + + f3ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + ffffff7f + + edffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + ffffff7f + + # Negative field elements. + 01000000 00000000 00000000 00000000 00000000 00000000 00000000 + 00000000 + + 01ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + ffffff7f + + ed57ffd8 c914fb20 1471d1c3 d245ce3c 746fcbe6 3a3679d5 1b6a516e + bebe0e20 + + c34c4e18 26e5d403 b78e246e 88aa051c 36ccf0aa febffe13 7d148a2b + f9104562 + + c940e5a4 404157cf b1628b10 8db051a8 d439e1a4 21394ec4 ebccb9ec + 92a8ac78 + + 47cfc549 7c53dc8e 61c91d17 fd626ffb 1c49e2bc a94eed05 2281b510 + b1117a24 + + f1c6165d 33367351 b0da8f6e 4511010c 68174a03 b6581212 c71c0e1d + 026c3c72 + + 87260f7a 2f124951 18360f02 c26a470f 450dadf3 4a413d21 042b43b9 + d93e1309 + + # Non-square x^2. + 26948d35 ca62e643 e26a8317 7332e6b6 afeb9d08 e4268b65 0f1f5bbd + 8d81d371 + + 4eac077a 713c57b4 f4397629 a4145982 c661f480 44dd3f96 427d40b1 + 47d9742f + + de6a7b00 deadc788 eb6b6c8d 20c0ae96 c2f20190 78fa604f ee5b87d6 + e989ad7b + + bcab477b e20861e0 1e4a0e29 5284146a 510150d9 817763ca f1a6f4b4 + 22d67042 + + 2a292df7 e32cabab bd9de088 d1d1abec 9fc0440f 637ed2fb a145094d + c14bea08 + + f4a9e534 fc0d216c 44b218fa 0c42d996 35a0127e e2e53c71 2f706096 + 49fdff22 + + 8268436f 8c412619 6cf64b3c 7ddbda90 746a3786 25f9813d d9b84570 + 77256731 + + 2810e5cb c2cc4d4e ece54f61 c6f69758 e289aa7a b440b3cb eaa21995 + c2f4232b + + # Negative x * y value. + 3eb858e7 8f5a7254 d8c97311 74a94f76 755fd394 1c0ac937 35c07ba1 + 4579630e + + a45fdc55 c76448c0 49a1ab33 f17023ed fb2be358 1e9c7aad e8a61252 + 15e04220 + + d483fe81 3c6ba647 ebbfd3ec 41adca1c 6130c2be eee9d9bf 065c8d15 + 1c5f396e + + 8a2e1d30 050198c6 5a544831 23960ccc 38aef684 8e1ec8f5 f780e852 + 3769ba32 + + 32888462 f8b486c6 8ad7dd96 10be5192 bbeaf3b4 43951ac1 a8118419 + d9fa097b + + 22714250 1b9d4355 ccba2904 04bde415 75b03769 3cef1f43 8c47f8fb + f35d1165 + + 5c37cc49 1da847cf eb9281d4 07efc41e 15144c87 6e0170b4 99a96a22 + ed31e01e + + 44542511 7cb8c90e dcbc7c1c c0e74f74 7f2c1efa 5630a967 c64f2877 + 92a48a4b + + # s = -1, which causes y = 0. + ecffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + ffffff7f + +A.3. Group Elements from Uniform Byte Strings + + The following pairs are inputs to the element derivation function of + Section 4.3.4 and their encoded outputs. + + I: 5d1be09e3d0c82fc538112490e35701979d99e06ca3e2b5b54bffe8b4dc772c1 + 4d98b696a1bbfb5ca32c436cc61c16563790306c79eaca7705668b47dffe5bb6 + O: 3066f82a 1a747d45 120d1740 f1435853 1a8f04bb ffe6a819 f86dfe50 + f44a0a46 + + I: f116b34b8f17ceb56e8732a60d913dd10cce47a6d53bee9204be8b44f6678b27 + 0102a56902e2488c46120e9276cfe54638286b9e4b3cdb470b542d46c2068d38 + O: f26e5b6f 7d362d2d 2a94c5d0 e7602cb4 773c95a2 e5c31a64 f133189f + a76ed61b + + I: 8422e1bbdaab52938b81fd602effb6f89110e1e57208ad12d9ad767e2e25510c + 27140775f9337088b982d83d7fcf0b2fa1edffe51952cbe7365e95c86eaf325c + O: 006ccd2a 9e6867e6 a2c5cea8 3d3302cc 9de128dd 2a9a57dd 8ee7b9d7 + ffe02826 + + I: ac22415129b61427bf464e17baee8db65940c233b98afce8d17c57beeb7876c2 + 150d15af1cb1fb824bbd14955f2b57d08d388aab431a391cfc33d5bafb5dbbaf + O: f8f0c87c f237953c 5890aec3 99816900 5dae3eca 1fbb0454 8c635953 + c817f92a + + I: 165d697a1ef3d5cf3c38565beefcf88c0f282b8e7dbd28544c483432f1cec767 + 5debea8ebb4e5fe7d6f6e5db15f15587ac4d4d4a1de7191e0c1ca6664abcc413 + O: ae81e7de df20a497 e10c304a 765c1767 a42d6e06 029758d2 d7e8ef7c + c4c41179 + + I: a836e6c9a9ca9f1e8d486273ad56a78c70cf18f0ce10abb1c7172ddd605d7fd2 + 979854f47ae1ccf204a33102095b4200e5befc0465accc263175485f0e17ea5c + O: e2705652 ff9f5e44 d3e841bf 1c251cf7 dddb77d1 40870d1a b2ed64f1 + a9ce8628 + + I: 2cdc11eaeb95daf01189417cdddbf95952993aa9cb9c640eb5058d09702c7462 + 2c9965a697a3b345ec24ee56335b556e677b30e6f90ac77d781064f866a3c982 + O: 80bd0726 2511cdde 4863f8a7 434cef69 6750681c b9510eea 557088f7 + 6d9e5065 + + The following element derivation function inputs all produce the same + encoded output. + + I: edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff + 1200000000000000000000000000000000000000000000000000000000000000 + I: edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f + ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff + I: 0000000000000000000000000000000000000000000000000000000000000080 + ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f + I: 0000000000000000000000000000000000000000000000000000000000000000 + 1200000000000000000000000000000000000000000000000000000000000080 + + O: 30428279 1023b731 28d277bd cb5c7746 ef2eac08 dde9f298 3379cb8e + 5ef0517f + +A.4. Square Root of a Ratio of Field Elements + + The following are inputs and outputs of SQRT_RATIO_M1(u, v) defined + in Section 4.2. The values are little-endian encodings of field + elements. + + u: 0000000000000000000000000000000000000000000000000000000000000000 + v: 0000000000000000000000000000000000000000000000000000000000000000 + was_square: TRUE + r: 0000000000000000000000000000000000000000000000000000000000000000 + + u: 0000000000000000000000000000000000000000000000000000000000000000 + v: 0100000000000000000000000000000000000000000000000000000000000000 + was_square: TRUE + r: 0000000000000000000000000000000000000000000000000000000000000000 + + u: 0100000000000000000000000000000000000000000000000000000000000000 + v: 0000000000000000000000000000000000000000000000000000000000000000 + was_square: FALSE + r: 0000000000000000000000000000000000000000000000000000000000000000 + + u: 0200000000000000000000000000000000000000000000000000000000000000 + v: 0100000000000000000000000000000000000000000000000000000000000000 + was_square: FALSE + r: 3c5ff1b5d8e4113b871bd052f9e7bcd0582804c266ffb2d4f4203eb07fdb7c54 + + u: 0400000000000000000000000000000000000000000000000000000000000000 + v: 0100000000000000000000000000000000000000000000000000000000000000 + was_square: TRUE + r: 0200000000000000000000000000000000000000000000000000000000000000 + + u: 0100000000000000000000000000000000000000000000000000000000000000 + v: 0400000000000000000000000000000000000000000000000000000000000000 + was_square: TRUE + r: f6ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff3f + +Appendix B. Test Vectors for decaf448 + + This section contains test vectors for decaf448. The octets are hex + encoded, and whitespace is inserted for readability. + +B.1. Multiples of the Generator + + The following are the encodings of the multiples 0 to 15 of the + canonical generator, represented as an array of elements. That is, + the first entry is the encoding of the identity element, and each + successive entry is obtained by adding the generator to the previous + entry. + + B[ 0]: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 + 00000000 00000000 00000000 00000000 00000000 00000000 00000000 + B[ 1]: 66666666 66666666 66666666 66666666 66666666 66666666 66666666 + 33333333 33333333 33333333 33333333 33333333 33333333 33333333 + B[ 2]: c898eb4f 87f97c56 4c6fd61f c7e49689 314a1f81 8ec85eeb 3bd5514a + c816d387 78f69ef3 47a89fca 817e66de fdedce17 8c7cc709 b2116e75 + B[ 3]: a0c09bf2 ba7208fd a0f4bfe3 d0f5b29a 54301230 6d43831b 5adc6fe7 + f8596fa3 08763db1 5468323b 11cf6e4a eb8c18fe 44678f44 545a69bc + B[ 4]: b46f1836 aa287c0a 5a5653f0 ec5ef9e9 03f436e2 1c1570c2 9ad9e5f5 + 96da97ee af17150a e30bcb31 74d04bc2 d712c8c7 789d7cb4 fda138f4 + B[ 5]: 1c5bbecf 4741dfaa e79db72d face00ea aac502c2 060934b6 eaaeca6a + 20bd3da9 e0be8777 f7d02033 d1b15884 232281a4 1fc7f80e ed04af5e + B[ 6]: 86ff0182 d40f7f9e db786251 5821bd67 bfd6165a 3c44de95 d7df79b8 + 779ccf64 60e3c68b 70c16aaa 280f2d7b 3f22d745 b97a8990 6cfc476c + B[ 7]: 502bcb68 42eb06f0 e49032ba e87c554c 031d6d4d 2d7694ef bf9c468d + 48220c50 f8ca2884 3364d70c ee92d6fe 246e6144 8f9db980 8b3b2408 + B[ 8]: 0c9810f1 e2ebd389 caa78937 4d780079 74ef4d17 227316f4 0e578b33 + 6827da3f 6b482a47 94eb6a39 75b971b5 e1388f52 e91ea2f1 bcb0f912 + B[ 9]: 20d41d85 a18d5657 a2964032 1563bbd0 4c2ffbd0 a37a7ba4 3a4f7d26 + 3ce26faf 4e1f74f9 f4b590c6 9229ae57 1fe37fa6 39b5b8eb 48bd9a55 + B[10]: e6b4b8f4 08c7010d 0601e7ed a0c309a1 a42720d6 d06b5759 fdc4e1ef + e22d076d 6c44d42f 508d67be 462914d2 8b8edce3 2e709430 5164af17 + B[11]: be88bbb8 6c59c13d 8e9d09ab 98105f69 c2d1dd13 4dbcd3b0 863658f5 + 3159db64 c0e139d1 80f3c89b 8296d0ae 324419c0 6fa87fc7 daaf34c1 + B[12]: a456f936 9769e8f0 8902124a 0314c7a0 6537a06e 32411f4f 93415950 + a17badfa 7442b621 7434a3a0 5ef45be5 f10bd7b2 ef8ea00c 431edec5 + B[13]: 186e452c 4466aa43 83b4c002 10d52e79 22dbf977 1e8b47e2 29a9b7b7 + 3c8d10fd 7ef0b6e4 1530f91f 24a3ed9a b71fa38b 98b2fe47 46d51d68 + B[14]: 4ae7fdca e9453f19 5a8ead5c be1a7b96 99673b52 c40ab279 27464887 + be53237f 7f3a21b9 38d40d0e c9e15b1d 5130b13f fed81373 a53e2b43 + B[15]: 841981c3 bfeec3f6 0cfeca75 d9d8dc17 f46cf010 6f2422b5 9aec580a + 58f34227 2e3a5e57 5a055ddb 051390c5 4c24c6ec b1e0aceb 075f6056 + +B.2. Invalid Encodings + + These are examples of encodings that MUST be rejected according to + Section 5.3.1. + + # Non-canonical field encodings. + 8e24f838 059ee9fe f1e20912 6defe53d cd74ef9b 6304601c 6966099e + ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + + 86fcc721 2bd4a0b9 80928666 dc28c444 a605ef38 e09fb569 e28d4443 + ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + + 866d54bd 4c4ff41a 55d4eefd beca73cb d653c7bd 3135b383 708ec0bd + ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + + 4a380ccd ab9c8636 4a89e77a 464d64f9 157538cf dfa686ad c0d5ece4 + ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + + f22d9d4c 945dd44d 11e0b1d3 d3d358d9 59b4844d 83b08c44 e659d79f + ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + + 8cdffc68 1aa99e9c 818c8ef4 c3808b58 e86acdef 1ab68c84 77af185b + ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + + 0e1c12ac 7b5920ef fbd044e8 97c57634 e2d05b5c 27f8fa3d f8a086a1 + ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff + + # Negative field elements. + 15141bd2 121837ef 71a0016b d11be757 507221c2 6542244f 23806f3f + d3496b7d 4c368262 76f3bf5d eea2c60c 4fa4cec6 9946876d a497e795 + + 455d3802 38434ab7 40a56267 f4f46b7d 2eb2dd8e e905e51d 7b0ae8a6 + cb2bae50 1e67df34 ab21fa45 946068c9 f233939b 1d9521a9 98b7cb93 + + 810b1d8e 8bf3a9c0 23294bbf d3d905a9 7531709b dc0f4239 0feedd70 + 10f77e98 686d400c 9c86ed25 0ceecd9d e0a18888 ffecda0f 4ea1c60d + + d3af9cc4 1be0e5de 83c0c627 3bedcb93 51970110 044a9a41 c7b9b226 + 7cdb9d7b f4dc9c2f db8bed32 87818460 4f1d9944 305a8df4 274ce301 + + 9312bcab 09009e43 30ff89c4 bc1e9e00 0d863efc 3c863d3b 6c507a40 + fd2cdefd e1bf0892 b4b5ed97 80b91ed1 398fb4a7 344c605a a5efda74 + + 53d11bce 9e62a29d 63ed82ae 93761bdd 76e38c21 e2822d6e bee5eb1c + 5b8a03ea f9df749e 2490eda9 d8ac27d1 f71150de 93668074 d18d1c3a + + 697c1aed 3cd88585 15d4be8a c158b229 fe184d79 cb2b06e4 9210a6f3 + a7cd537b cd9bd390 d96c4ab6 a4406da5 d9364072 6285370c fa95df80 + + # Non-square x^2. + 58ad4871 5c9a1025 69b68b88 362a4b06 45781f5a 19eb7e59 c6a4686f + d0f0750f f42e3d7a f1ab38c2 9d69b670 f3125891 9c9fdbf6 093d06c0 + + 8ca37ee2 b15693f0 6e910cf4 3c4e32f1 d5551dda 8b1e48cb 6ddd55e4 + 40dbc7b2 96b60191 9a4e4069 f59239ca 247ff693 f7daa42f 086122b1 + + 982c0ec7 f43d9f97 c0a74b36 db0abd9c a6bfb981 23a90782 787242c8 + a523cdc7 6df14a91 0d544711 27e7662a 1059201f 902940cd 39d57af5 + + baa9ab82 d07ca282 b968a911 a6c3728d 74bf2fe2 58901925 787f03ee + 4be7e3cb 6684fd1b cfe5071a 9a974ad2 49a4aaa8 ca812642 16c68574 + + 2ed9ffe2 ded67a37 2b181ac5 24996402 c4297062 9db03f5e 8636cbaf + 6074b523 d154a7a8 c4472c4c 353ab88c d6fec7da 7780834c c5bd5242 + + f063769e 4241e76d 815800e4 933a3a14 4327a30e c40758ad 3723a788 + 388399f7 b3f5d45b 6351eb8e ddefda7d 5bff4ee9 20d338a8 b89d8b63 + + 5a0104f1 f55d152c eb68bc13 81824998 91d90ee8 f09b4003 8ccc1e07 + cb621fd4 62f781d0 45732a4f 0bda73f0 b2acf943 55424ff0 388d4b9c + +B.3. Group Elements from Uniform Byte Strings + + The following pairs are inputs to the element derivation function of + Section 5.3.4 and their encoded outputs. + + I: cbb8c991fd2f0b7e1913462d6463e4fd2ce4ccdd28274dc2ca1f4165 + d5ee6cdccea57be3416e166fd06718a31af45a2f8e987e301be59ae6 + 673e963001dbbda80df47014a21a26d6c7eb4ebe0312aa6fffb8d1b2 + 6bc62ca40ed51f8057a635a02c2b8c83f48fa6a2d70f58a1185902c0 + O: 0c709c96 07dbb01c 94513358 745b7c23 953d03b3 3e39c723 4e268d1d + 6e24f340 14ccbc22 16b965dd 231d5327 e591dc3c 0e8844cc fd568848 + + I: b6d8da654b13c3101d6634a231569e6b85961c3f4b460a08ac4a5857 + 069576b64428676584baa45b97701be6d0b0ba18ac28d443403b4569 + 9ea0fbd1164f5893d39ad8f29e48e399aec5902508ea95e33bc1e9e4 + 620489d684eb5c26bc1ad1e09aba61fabc2cdfee0b6b6862ffc8e55a + O: 76ab794e 28ff1224 c727fa10 16bf7f1d 329260b7 218a39ae a2fdb17d + 8bd91190 17b093d6 41cedf74 328c3271 84dc6f2a 64bd90ed dccfcdab + + I: 36a69976c3e5d74e4904776993cbac27d10f25f5626dd45c51d15dcf + 7b3e6a5446a6649ec912a56895d6baa9dc395ce9e34b868d9fb2c1fc + 72eb6495702ea4f446c9b7a188a4e0826b1506b0747a6709f37988ff + 1aeb5e3788d5076ccbb01a4bc6623c92ff147a1e21b29cc3fdd0e0f4 + O: c8d7ac38 4143500e 50890a1c 25d64334 3accce58 4caf2544 f9249b2b + f4a69210 82be0e7f 3669bb5e c24535e6 c45621e1 f6dec676 edd8b664 + + I: d5938acbba432ecd5617c555a6a777734494f176259bff9dab844c81 + aadcf8f7abd1a9001d89c7008c1957272c1786a4293bb0ee7cb37cf3 + 988e2513b14e1b75249a5343643d3c5e5545a0c1a2a4d3c685927c38 + bc5e5879d68745464e2589e000b31301f1dfb7471a4f1300d6fd0f99 + O: 62beffc6 b8ee11cc d79dbaac 8f0252c7 50eb052b 192f41ee ecb12f29 + 79713b56 3caf7d22 588eca5e 80995241 ef963e7a d7cb7962 f343a973 + + I: 4dec58199a35f531a5f0a9f71a53376d7b4bdd6bbd2904234a8ea65b + bacbce2a542291378157a8f4be7b6a092672a34d85e473b26ccfbd4c + dc6739783dc3f4f6ee3537b7aed81df898c7ea0ae89a15b5559596c2 + a5eeacf8b2b362f3db2940e3798b63203cae77c4683ebaed71533e51 + O: f4ccb31d 263731ab 88bed634 304956d2 603174c6 6da38742 053fa37d + d902346c 3862155d 68db63be 87439e3d 68758ad7 268e239d 39c4fd3b + + I: df2aa1536abb4acab26efa538ce07fd7bca921b13e17bc5ebcba7d1b + 6b733deda1d04c220f6b5ab35c61b6bcb15808251cab909a01465b8a + e3fc770850c66246d5a9eae9e2877e0826e2b8dc1bc08009590bc677 + 8a84e919fbd28e02a0f9c49b48dc689eb5d5d922dc01469968ee81b5 + O: 7e79b00e 8e0a76a6 7c0040f6 2713b8b8 c6d6f05e 9c6d0259 2e8a22ea + 896f5dea cc7c7df5 ed42beae 6fedb900 0285b482 aa504e27 9fd49c32 + + I: e9fb440282e07145f1f7f5ecf3c273212cd3d26b836b41b02f108431 + 488e5e84bd15f2418b3d92a3380dd66a374645c2a995976a015632d3 + 6a6c2189f202fc766e1c82f50ad9189be190a1f0e8f9b9e69c9c18cc + 98fdd885608f68bf0fdedd7b894081a63f70016a8abf04953affbefa + O: 20b171cb 16be977f 15e013b9 752cf86c 54c631c4 fc8cbf7c 03c4d3ac + 9b8e8640 e7b0e930 0b987fe0 ab504466 9314f6ed 1650ae03 7db853f1 + +Acknowledgements + + The authors would like to thank Daira Emma Hopwood, Riad S. Wahby, + Christopher Wood, and Thomas Pornin for their comments on the + document. + +Authors' Addresses + + Henry de Valence + Email: ietf@hdevalence.ca + + + Jack Grigg + Email: ietf@jackgrigg.com + + + Mike Hamburg + Email: ietf@shiftleft.org + + + Isis Lovecruft + Email: ietf@en.ciph.re + + + George Tankersley + Email: ietf@gtank.cc + + + Filippo Valsorda + Email: ietf@filippo.io |