1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
|
Network Working Group Robert W. Scheifler
Request for Comments: 1013 June 1987
X WINDOW SYSTEM PROTOCOL, VERSION 11
Alpha Update
April 1987
Copyright (c) 1986, 1987 Massachusetts Institute of Technology
X Window System is a trademark of M.I.T.
Status of this Memo
This RFC is distributed to the Internet community for information
only. It does not establish an Internet standard. The X window
system has been widely reviewed and tested. The internet community
is encouraged to experiment with it. Distribution of this memo is
unlimited (see copyright notice on page 2).
M.I.T. [Page 1]
^L
RFC 1013 June 1987
Permission to use, copy, modify, and distribute this document for any
purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright
notice and this permission notice are retained, and that the name of
M.I.T. not be used in advertising or publicity pertaining to this
document without specific, written prior permission. M.I.T. makes no
representations about the suitability of this document or the
protocol defined in this document for any purpose. It is provided
"as is" without express or implied warranty.
Author: Robert W. Scheifler
Laboratory for Computer Science
545 Technology Square, Room 418
Cambridge, MA 02139
Contributors:
Dave Carver (Digital HPW)
Branko Gerovac (Digital HPW)
Jim Gettys (MIT/Project Athena, Digital)
Phil Karlton (Digital WSL)
Scott McGregor (Digital SSG)
Ram Rao (Digital UEG)
David Rosenthal (Sun)
Dave Winchell (Digital UEG)
Implementors of initial server who provided useful input:
Susan Angebranndt (Digital)
Raymond Drewry (Digital)
Todd Newman (Digital)
Invited reviewers who provided useful input:
Andrew Cherenson (Berkeley)
Burns Fisher (Digital)
Dan Garfinkel (HP)
Leo Hourvitz (Next)
Brock Krizan (HP)
David Laidlaw (Stellar)
Dave Mellinger (Interleaf)
Ron Newman (MIT)
John Ousterhout (Berkeley)
Andrew Palay (ITC CMU)
Ralph Swick (MIT)
Craig Taylor (Sun)
Jeffery Vroom (Stellar)
This document does not attempt to provide the rationale or pragmatics
required to fully understand the protocol or to place it in
perspective within a complete system. Knowledge of X Version 10
will certainly aid in understanding this document.
M.I.T. [Page 2]
^L
RFC 1013 June 1987
The protocol contains many management mechanisms that are not
intended for normal applications. Not all mechanisms are needed to
build a particular user interface. It is important to keep in mind
that the protocol is intended to provide mechanism, not policy.
This document does not attempt to define precise formats or bit
encodings.
-------------------------------------------------------------------
M.I.T. [Page 3]
^L
RFC 1013 June 1987
SECTION 1. TERMINOLOGY
Access control list
X maintains a list of hosts from which client programs may be
run. By default, only programs on the local host may use the
display, plus any hosts specified in an initial list read by
the server. This "access control list" can be changed by
clients on the local host. Some server implementations may
also implement other authorization mechanisms.
Active grab
A grab is "active" when the pointer or keyboard is actually
owned by the single grabbing client.
Ancestors
If W is an inferior of A, then A is an "ancestor" of W.
Atom
An "atom" is a unique id corresponding to a string name.
Atoms are used to identify properties, types, and selections.
Backing store
When a server maintains the contents of a window, the
off-screen saved pixels are known as a "backing store".
Bit gravity
When a window is resized, the contents of the window are
not necessarily discarded. It is possible to request the
server (though no guarantees are made) to relocate the
previous contents to some region of the window. This
attraction of window contents for some location of a window
is known as "bit gravity".
Bitmap
A "bitmap" is a pixmap of depth one.
Button grabbing
Buttons on the pointer may be passively "grabbed" by a
client. When the button is pressed, the pointer is then
actively grabbed by the client.
Byte order
For image (pixmap/bitmap) data, byte order is defined by
the server, and clients with different native byte ordering
must swap bytes as necessary. For all other parts of the
protocol, the byte order is defined by the client, and the
server swaps bytes as necessary.
Children
The "children" of a window are its first-level subwindows.
M.I.T. [Page 4]
^L
RFC 1013 June 1987
Client
An application program connects to the window system server
by some interprocess communication (IPC) path, such as a TCP
connection or a shared memory buffer. This program is the
window system server. More precisely, the client is the IPC
path itself; a program with multiple paths open to the server
is viewed as multiple clients by the protocol. Resource
lifetimes are controlled by connection lifetimes, not by
program lifetimes.
Clipping regions
In a graphics context, a bitmap or list of rectangles can
be specified to restrict output to a particular region of
the window. The image defined by the bitmap or rectangles
is called a "clipping region".
Color cell
An entry in a colormap is known as a "color cell". An entry
contains three values specifying red, green and blue
intensities. These values are always viewed as 16 bit
unsigned numbers, with zero being minimum intensity. The
values are scaled by the server to match the display
hardware. The components of a cell are coincident with
components of other cells in DirectColor and TrueColor
colormaps.
Colormap
A "colormap" consists of a set of color cells. A pixel value
indexes the color map to produce intensities to be displayed.
Depending on hardware limitations, one or more colormaps may
be installed at one time, such that windows associated with
those maps display with true colors.
Connection
The IPC path between the server and client program is known
as a "connection". A client program typically (but not
necessarily) has one connection to the server over which
requests and events are sent.
Containment
A window "contains" the pointer if the window is viewable and
the hotspot of the cursor is within a visible region of the
window or a visible region of one of its inferiors. The
border of the window is included as part of the window for
containment. The pointer is "in" a window if the window
contains the pointer but no inferior contains the pointer.
Coordinate system
The coordinate system has X horizontal and Y vertical, with
the origin [0, 0] at the upper left. Coordinates are
discrete, and in terms of pixels. Each window and pixmap has
M.I.T. [Page 5]
^L
RFC 1013 June 1987
its own coordinate system. For a window, the origin is at
the inside upper left, inside the border.
Cursor
A "cursor" is the visible shape of the pointer on a screen.
It consist of a hot spot, a source bitmap, a shape bitmap,
and a pair of colors. The cursor defined for a window
controls the visible appearance when the pinter is in that
window.
Depth
The "depth" of a window or pixmap is number of bits per pixel
it has. The depth of a gcontext is the depth of the root of
the gcontext.
Device
Keyboards, mice, tablets, track-balls, button boxes, etc. are
all collectively known as input "devices". The core protocol
only deals with two devices, "the keyboard" and "the
pointer".
Drawable
Both windows and pixmaps may be used as sources and
destinations in graphics operations. These are collectively
known as "drawables". However, an InputOnly window cannot be
used as a source or destination in a graphics operation.
Event
Clients are informed of information asynchronously via
"events". These events may be either asynchronously generated
from devices, or generated as side effects of client
requests. Events are grouped into types; events are never
sent to a client by the server unless the client has
specificially asked to be informed of that type of event,
but other clients can force events to be sent to other
clients. Events are typically reported relative to a window.
Event mask
Events are requested relative to a window. The set of event
types a client requests relative to a window described using
an "event mask".
Event sychronization
There are certain race conditions possible when
demultiplexing device events to clients (in particular
deciding where pointer and keyboard events should be sent
when in the middle of window management operations). The
event synchronization mechanism allows synchronous processing
of device events.
M.I.T. [Page 6]
^L
RFC 1013 June 1987
Event propagation
Device-related events "propagate" from the source window to
ancestor windows until some client has expressed interest in
handling that type of event, or until the event is discarded
explicitly.
Event source
The smallest window containing the pointer is the "source"
of a device related event.
Exposure event
Servers do not guarantee to preserve the contents of windows
when windows are obscured or reconfigur contents of regions
of windows have been lost.
Extension
Named "extensions" to the core protocol can be defined to
extend the system. Extension to output requests, resources,
and event types are all possible, and expected.
Font
A "font" is an array of glyphs (typically characters). The
protocol does no translation or interpretation of character
sets. The client simply indicates values used to index the
glyph array. A font contains additional metric information
to determine inter-glyph and inter-line spacing.
Glyph
A "glyph" is an image, typically of a character, in a font.
Grab
Keyboard keys, the keyboard, pointer buttons, the pointer,
and the server can be "grabbed" for exclusive use by a
client. In general, these facilities are not intended to be
used by normal applications, but are intended for various
input and window managers to implement various styles of
user interfaces.
Graphics context
Various information for graphics output is stored in "GC"'s,
such as foreground pixel, background pixel, line width,
clipping region, etc.
Hotspot
A cursor has an associated "hot spot" which defines a point
in the cursor that corresponds to the coordinates reported
for the pointer.
Identifier
Each resource has an "identifier", a unique value associated
with it that clients use to name the resource. An identifier
M.I.T. [Page 7]
^L
RFC 1013 June 1987
can be used over any connection to name the resource.
Inferiors
The "inferiors" of a window are all of the subwindows nested
below it: the children, the children's children, etc.
Input focus
The "input focus" is nominally where keyboard input goes.
Keyboard events are by default sent to the client expressing
interest on the window the pointer is in. This is said to be
a "real estate driven" input focus. It is also possible to
attach the keyboard input to a specific window; events will
then be sent to the appropriate client independent of the
pointer position.
Input manager
Control over keyboard input is typically provided by an
"input manager" client.
InputOnly window
A window that cannot be used for graphics requests.
InputOnly windows are "invisible", and can be used to control
such things as cursors, input event generation, and grabbing.
InputOutput window
The "normal" kind of opaque window, used for both input
and output.
Key grabbing
Keys on the keyboard may be passively "grabbed" by a client.
When the key is pressed, the keyboard is then actively
grabbed by the client.
Keyboard grabbing
A client can actively "grab" control of the keyboard, and key
events will be sent to that client rather than the client the
events would normally have been sent to.
Mapping
A window is said to be "mapped" if a map call has been
performed on it. Unmapped windows are never viewable or
visible.
Modifier keys
Shift, Control, Meta, Super, Hyper, ALT, Compose, Apple,
CapsLock, ShiftLock, and similar keys are called "modifier"
keys.
Obscures
Window A "obscures" window B if both are viewable
InputOutput windows and A is higher in the global stacking
M.I.T. [Page 8]
^L
RFC 1013 June 1987
order, and the rectangle defined by the outside edges of
intersects the rectangle defined by the outside edges of B.
Note the (fine) distinction with "occludes". Also note that
window borders are included in the calculation.
Occludes
Window A "occludes" window B if both are mapped and A is
higher in the global stacking order, and the rectangle
defined by the outside edges of A intersects the rectangle
defined by the outside edges of B. Note the (fine)
distinction with "obscures". Also note that window borders
are included in the calculation.
Padding
Some padding bytes are inserted in the data stream to
maintain alignment of the protocol requests on natural
boundaries. This increases ease of portability to some
machine architectures.
Parent window
If C is a child of P, then P is the "parent" of C.
Passive grab
Grabbing a key or button is a "passive" grab. The grab
activates when the key or button is actually pressed.
Pixel value
A "pixel" is an N-bit value, where N is the number of bit
planes used in a particular window or pixmap. For a window,
a pixel value indexes a colormap to derive an actual color
to be displayed.
Pixmap
A "pixmap" is a three dimensional array of bits. A pixmap
is normally thought of as a two dimensional array of pixels,
where each pixel can be a value from 0 to (2^N)-1, where N
is the depth (z axis) of the pixmap. A pixmap can also be
thought of as a stack of N bitmaps.
Plane mask
Graphics operations can be restricted to only affect a
subset of bit planes of a destination. A "plane mask" is
a bit mask describing which planes are to be modified, and
is stored in a graphics context.
Pointer
The "pointer" is the pointing device attached to the cursor,
and tracked on the screens.
Pointer grabbing
A client can actively "grab" control of the pointer, and
M.I.T. [Page 9]
^L
RFC 1013 June 1987
button and motion events will be sent to that client rather
than the client the events would normally have been sent to.
Pointing device
A "pointing device" is typically a mouse or tablet, or some
other device with effective dimensional motion. There is
only one visible cursor is defined by the core protocol,
and it tracks whatever pointing device is attached as the
pointer.
Property
Windows may have associated "properties", consisting of a
name, a type, a data format, and some data. The protocol
places no interpretation on properties, they are intended
as a general-purpose naming mechanism for clients. For
example, clients might share information such as resize
hints, program names, and icon formats with a window
manager via properties.
Property list
The "property list" of a window is the list of properties
that have been defined for the window.
Redirecting control
Window managers (or client programs) may wish to enforce
window layout policy in various ways. When a client
attempts to change the size or position of a window, the
operation may be "redirected" to a specified client,
rather than the operation actually being performed.
Reply
Information requested by a client program is sent back to
the client with a "reply". Both events and replys are
multipexed on the same connection. Most requests do not
generate replies.
Request
A command to the server is called a "request". It is a
single block of data sent over a connection.
Resource
Windows, pixmaps, cursors, fonts, graphics contexts, and
colormaps are known as "resources". They all have unique
identifiers associated with them for naming purposes. The
lifetime of a resource is bounded by the lifetime of the
connection over which the resource was created.
Root
The "root" of a pixmap or gcontext is the same as the root
of whatever drawable was used when the pixmap or gcontext
was created. The "root" of a window is the root window
M.I.T. [Page 10]
^L
RFC 1013 June 1987
under which the window was created.
Root window
Each screen has a "root window" covering it. It cannot be
reconfigured or unmapped, but otherwise acts as a full
fledged window. A root window has no parent.
Save set
The "save set" of a client is a list of other client's
windows which, if they are inferiors of one of the client's
windows at connection close, should not be destroyed, and
which should be remapped if it is unmapped. Save sets are
typically used by window managers to avoid lost windows if
the manager should terminate abnormally.
Screen
A server may provide several independent "screens", which
typically have physically independent monitors. This would
be the expected configuration when there is only a single
keyboard and pointer shared among the screens.
Server
The "server" provides the basic windowing mechanism. It
handles IPC connections from clients, demultipexes graphics
requests onto the screens, and multiplexes input back to the
appropriate clients.
Server grabbing
The server can be "grabbed" by a single client for exclusive
use. This prevents processing of any requests from other
client connections until the grab is complete. This is
typically only a transient state for such things as
rubber-banding and pop-up menus, or to execute requests
indivisibly.
Sibling
Children of the same parent window are known as "sibling"
windows.
Stacking order
Sibling windows may "stack" on top of each other. Windows
above both obscure and occlude lower windows. This is
similar to paper on a desk. The relationship between
sibling windows is known as the "stacking order".
Stipple
A "stipple pattern" is a bitmap that is used to tile a
region to serve as an additional clip mask for a fill
operation with the foreground color.
M.I.T. [Page 11]
^L
RFC 1013 June 1987
Tile
A pixmap can be replicated in two dimensions to "tile"
a region. The pixmap itself is also known as a "tile".
Timestamp
A time value, expressed in milliseconds, typically since
the last server reset. Timestamp values wrap around (after
about 49.7 days). The server, given its current time is
represented by timestamp T, always interprets timestamps
from clients by treating half of the timestamp space as
being earlier in time than T, and half of the timestamp
space as being later in time than T. One timestamp value
(named CurrentTime) is never generated by the server;
this value is reserved for use in requests to represent
the current server time.
Type
A type is an arbitrary atom used to identify the
interpretation of property data. Types are completely
uninterpreted by the server; they are solely for the
benefit of clients.
Unviewable
A window is "unviewable" if it is mapped but some ancestor is
unmapped.
Viewable
A window is "viewable" if it and all of its ancestors are
mapped. This does not imply that any portion of the window
is actually visible.
Visible
A region of a window is "visible" if someone looking at the
screen can actually "see" it: the window is viewable and the
region is not occluded by any other window.
Window gravity
When windows are resized, subwindows may be repositioned
automatically relative to some position in the window. This
attraction of a subwindow to some part of its parent is known
as "window gravity".
Window manager
Manipulation of windows on the screen, and much of the user
interface (policy) is typically provided by a "window
manager" client.
XYFormat
The data for a pixmap is said to be in "XYFormat" if it is
organized as a set of bitmaps representing individual bit
planes.
M.I.T. [Page 12]
^L
RFC 1013 June 1987
ZFormat
The data for a pixmap is said to be in "ZFormat" if it is
organized as a set of pixel values in scanline order.
SECTION 2. PROTOCOL FORMATS
Request Format
Every request contains an 8-bit "major" opcode, and a 16-bit length
field expressed in units of 4 bytes. Every request consists of 4
bytes of header containing the major opcode, the length field, and a
data byte) followed by zero or more additional bytes of data; the
length field defines the total length of the request, including the
header. The length field in a request must equal the minimum length
required to contain the request; if the specified length is smaller
or larger than the required length, an error is enerated. Unused
bytes in a request are not required to be zero. Major opcodes 128
through 255 are reserved for extensions. Extensions are intended
to contain multiple requests, so extension requests typically have
an additional minor opcode encoded in the "spare" data byte in the
request header, but the placement and interpretation of this minor
opcode, and all other fields in extension requests, are not defined
by the core protocol. Every request is implicitly assigned a sequence
number, starting with one,used in replies, errors, and events.
Reply Format
Every reply contains a 32-bit length field expressed in units of 4
bytes. Every reply consists of 32 bytes, followed by zero or more
additional bytes of data, as specified in the length field. Unused
bytes within a reply are not guaranteed to be zero. Every reply
also contains the least significant 16 bits of the sequence number
of the corresponding request.
Error Format
Error reports are 32 bytes long. Every error includes an 8-bit error
code. Error codes 128 through 255 are reserved for extensions. Every
error also includes the major and minor opcodes of the failed
request, and the least significant 16 bits of the sequence number of
the request. For the following errors (see Section 5), the failing
resource id is also returned: Colormap, Cursor, Drawable, Font,
GContext, IDChoice, Pixmap, and Window. For Atom errors, the failing
atom is returned. For Value errors, the failing value is returned.
Other core errors return no additional data. Unused bytes within
an error are not guaranteed to be zero.
Event Format
Events are 32 bytes long. Unused bytes within an event are not
M.I.T. [Page 13]
^L
RFC 1013 June 1987
guaranteed to be zero. Every event contains an 8-bit type code. The
most significant bit in this code is set if the event was generated
from a SendEvent request. Event codes 64 through 127 are reserved for
extensions, although the core protocol does not define a mechanism
for selecting interest in such events. Every core event (with the
exception of KeymapNotify) also contains the least significant 16
bits of the sequence number of the last request issued by the client
that was (or is currently being) processed by the server.
SECTION 3. SYNTAX
The syntax {...} encloses a set of alternatives.
The syntax [...] encloses a set of structure components.
In general, TYPEs are in upper case and AlternativeValues are
capitalized.
Requests in Section 10 are described in the following format:
RequestName
arg1: type1
...
argN: typeN
=>
result1: type1
...
resultM: typeM
Errors: kind1, ..., kindK
Description.
If no => is present in the description, then the request has no
reply (it is asynchronous), although errors may still be reported.
Events in Section 12 are described in the following format:
EventName
value1: type1
...
valueN: typeN
Description.
M.I.T. [Page 14]
^L
RFC 1013 June 1987
SECTION 4. COMMON TYPES
LISTofFOO
A type name of the form LISTofFOO means a counted list of elements
of type FOO; the size of the length field may vary (it is not
necessarily the same size as a FOO), in some cases may be implicit,
and is not fully specified in this document.
BITMASK and LISTofVALUE
The types BITMASK and LISTofVALUE are somewhat special. Various
requests contain arguments of the form:
value-mask: BITMASK
value-list: LISTofVALUE
used to allow the client to specify a subset of a heterogeneous
collection of "optional" arguments. The value-mask specifies which
arguments are to be provided; each such argument is assigned a unique
bit position. The representation of the BITMASK will typically
contain more bits than there are defined arguments; unused bits in
the value-mask must be zero (or the server generates a Value error).
The value-list contains one value for each one bit in the mask, from
least to most significant bit in the mask. Each value is represented
with 4 bytes, but the actual value occupies only the least
significant bytes as required; the values of the unused bytes do not
matter.
Or Types
A type of the form "T1 or ... or Tn" means the union of the indicated
types; a single-element type is given as the element without
enclosing braces.
DEVICE: 32-bit id (<class,model,manufacturer,unit> 8 bits each)
WINDOW: 32-bit id
PIXMAP: 32-bit id
CURSOR: 32-bit id
FONT: 32-bit id
GCONTEXT: 32-bit id
COLORMAP: 32-bit id
DRAWABLE: WINDOW or PIXMAP
ATOM: 32-bit id (top 3 bits guaranteed to be zero)
VISUALID: 32-bit id (top 3 bits guaranteed to be zero)
VALUE: 32-bit quantity (used only in LISTofVALUE)
INT8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARD8: 8-bit unsigned integer
CARD16: 16-bit unsigned integer
CARD32: 32-bit unsigned integer
M.I.T. [Page 15]
^L
RFC 1013 June 1987
TIMESTAMP: CARD32
BITGRAVITY: {Forget, Static,
NorthWest, North, NorthEast,
West, Center, East,
SouthWest, South, SouthEast}
WINGRAVITY: {Unmap, Static,
NorthWest, North, NorthEast,
West, Center, East,
SouthWest, South, SouthEast}
BOOL: {True, False}
EVENT: {KeyPress, KeyRelease,
OwnerGrabButton,
ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint,
Button1Motion, Button2Motion, Button3Motion,
Button4Motion, Button5Motion, ButtonMotion
Exposure, VisibilityChange,
StructureNotify, ResizeRedirect,
SubstructureNotify, SubstructureRedirect,
FocusChange,
PropertyChange, ColormapChange,
KeymapState}
POINTEREVENT: {ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint,
Button1Motion, Button2Motion, Button3Motion,
Button4Motion, Button5Motion, ButtonMotion
KeymapState}
DEVICEEVENT: {KeyPress, KeyRelease,
ButtonPress, ButtonRelease,
PointerMotion,
Button1Motion, Button2Motion, Button3Motion,
Button4Motion, Button5Motion, ButtonMotion}
KEYCODE: CARD8
BUTTON: CARD8
KEYMASK: {Shift, CapsLock, Control, Mod1, Mod2, Mod3, Mod4, Mod5}
BUTMASK: {Button1, Button2, Button3, Button4, Button5}
KEYBUTMASK: KEYMASK or BUTMASK
STRING8: LISTofCARD8
STRING16: LISTofCHAR2B
CHAR2B: [byte1, byte2: CARD8]
POINT: [x, y: INT16]
RECTANGLE: [x, y: INT16,
width, height: CARD16]
ARC: [x, y: INT16,
width, height: CARD16,
angle1, angle2: INT16]
HOST: [family: {Internet, NS, ECMA, Datakit, DECnet}
address: LISTofCARD8]
The [x,y] coordinates of a RECTANGLE specify the upper left corner.
M.I.T. [Page 16]
^L
RFC 1013 June 1987
The primary interpretation of "large" characters in a STRING16 is
that they are composed of two bytes used to index a 2-D matrix;
hence the use of CHAR2B rather than CARD16. This corresponds to
the JIS/ISO method of indexing two-byte characters. It is expected
that most "large" fonts will be defined with two-byte matrix
indexing. For large fonts constructed with linear indexing, a
CHAR2B can be interpreted as a 16-bit number by treating byte1 as
the most significant byte; this means that clients should always
transmit such 16-bit character values most significant byte first,
as the server will never byte-swap CHAR2B quantities.
The length, format, and interpretation of a HOST address are specific
to the family.
SECTION 5. ERRORS
In general, when a request terminates with an error, the request has
no side effects (i.e., there is no partial execution). The only
requests for which this is not true are ChangeWindowAttributes,
ChangeGC, PolyText8, PolyText16, FreeColors, StoreColors, and
ChangeKeyboardControl.
The following error codes can be returned by the various requests:
Access
An attempt to grab a key/button combination already grabbed
by another client.
An attempt to free a colormap entry not allocated by the
client.
An attempt to store into a read-only or an unallocated
colormap entry.
An attempt to modify the access control list from other than
the local (or otherwise authorized) host.
An attempt to select an event type, that at most one client
can select at a time, when another client has already
selected it.
Alloc
The server failed to allocate the requested resource.
Note that this only covers allocation errors at a very coarse
level, and is not intended to (nor can it in practice hope
to) cover all cases of a server running out of allocation
space in the middle of service.
M.I.T. [Page 17]
^L
RFC 1013 June 1987
The semantics when a server runs out of allocation space are
left unspecified.
Atom
A value for an ATOM argument does not name a defined ATOM.
Colormap
A value for a COLORMAP argument does not name a defined
COLORMAP.
Cursor
A value for a CURSOR argument does not name a defined CURSOR.
Drawable
A value for a DRAWABLE argument does not name a defined
WINDOW or PIXMAP.
Font
A value for a FONT or <FONT or GCONTEXT> argument does not
name a defined FONT.
GContext
A value for a GCONTEXT argument does not name a defined
GCONTEXT.
IDChoice
The value chosen for a resource identifier is either not
included in the range assigned to the client, or is already
in use.
Implementation
The server does not implement some aspect of the request. A
server which generates this error for a core request is
deficient. As such, this error is not listed for any of the
requests, but clients should be prepared to receive such
errors, and handle or discard them.
Length
The length of a request is shorter or longer than that
required to minimally contain the arguments.
Match
An InputOnly window is used as a DRAWABLE.
Some argument (or pair of arguments) has the correct type and
range, but fails to "match" in some other way required by the
request.
Name
A font or color of the specified name does not exist.
M.I.T. [Page 18]
^L
RFC 1013 June 1987
Pixmap
A value for a PIXMAP argument does not name a defined PIXMAP.
Property
The requested property does not exist for the specified
window.
Request
The major or minor opcode does not specify a valid request.
Value
Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an
argument, the full range defined by the argument's type is
accepted. Any argument defined as a set of alternatives can
generate this error.
Window
A value for a WINDOW argument does not name a defined WINDOW.
Note: the Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap,
and Window errors are also used when the argument type is extended
by union with a set of fixed alternatives, e.g.,<Window or
PointerRoot or None>.
SECTION 6. KEYBOARDS
Keycodes are always in the inclusive range [8,255].
For keyboards with both left-side and right-side modifier keys (e.g.,
Shift and Control), the mask bits in the protocol always define the
OR of the keys. If electronically distinguishable, they can have
separate up/down events generated, and clients that want to
distinguish can track the individual states manually.
<As part of the core we need to define a universal association
between keycaps and keycodes. A keycap is the graphical information
imprinted on a keyboard key, e.g., "$ 4", "T", "+ =".>
SECTION 7. POINTERS
Buttons are always numbered starting with one.
SECTION 8. PREDEFINED ATOMS
Predefined atoms are not strictly necessary, and may not be useful in
all environments, but will eliminate many InternAtom requests in most
applications. The core protocol imposes no semantics on these names,
M.I.T. [Page 19]
^L
RFC 1013 June 1987
except as they are used in FONTPROP structures (see QueryFont). Note
that upper/lower case matters.
BITMAP ICON_SIZE RGB_GREEN_MAP
COMMAND ITALIC_ANGLE RGB_RED_MAP
COPYRIGHT MAX_SPACE SECONDARY
CUT_BUFFER0 MIN_SPACE SIZE_HINTS
CUT_BUFFER1 NAME STRIKEOUT_ASCENT
CUT_BUFFER2 NORMAL_HINTS STRIKEOUT_DESCENT
CUT_BUFFER3 NORM_SPACE STRING
CUT_BUFFER4 PIXMAP SUBSCRIPT_X
CUT_BUFFER5 POINT_SIZE SUBSCRIPT_Y
CUT_BUFFER6 PRIMARY SUPERSCRIPT_X
CUT_BUFFER7 QUAD_WIDTH SUPERSCRIPT_Y
DEFAULT_CHAR RECTANGLE UNDERLINE_POSITION
END_SPACE RESIZE_HINT UNDERLINE_THICKNESS
FACE_NAME RESOLUTION WEIGHT
FAMILY_NAME RGB_BEST_MAP WINDOW
FONT_ASCENT RGB_BLUE_MAP WM_HINTS
FONT_DESCENT RGB_COLOR_MAP X_HEIGHT
ICON RGB_DEFAULT_MAP ZOOM_HINTS
ICON_NAME
SECTION 9. CONNECTION SETUP
For remote clients, the X protocol can be built on top of any
reliable byte stream. For TCP connections, displays on a given host
a numbered starting from 0, and the server for display N listens and
accepts connections on port 6000+N.
The client must send an initial byte of data to identify the byte
order to be employed. The value of the byte must be octal 102 or
154. The value 102 (ASCII uppercase B) means values are transmitted
most significant byte first, and value 154 (ASCII lowercase l) means
values are transmitted least significant byte first. Except where
explicitly noted in the protocol, all 16-bit and 32-bit quantities
sent by the client must be transmitted with this byte order, and all
16-bit and 32-bit quantities returned by the server will be
transmitted with this byte order.
Following the byte-order byte, the following information is sent by
the client at connection setup:
protocol-major-version: CARD16
protocol-minor-version: CARD16
authorization-protocol-name: STRING8
authorization-protocol-data: STRING8
The version numbers indicate what version of the protocol the
client expects the server to implement. See below for an
M.I.T. [Page 20]
^L
RFC 1013 June 1987
explanation. The authorization name indicates what
authorization protocol the client expects the server to use,
and the data is specific to that protocol. Specification of
valid authorization mechanisms is not part of the core X
protocol. It is hoped that eventually one authorization
protocol will be agreed upon. In the mean time, a server
that implements a different protocol than the client expects,
or a server that only implements the host-based mechanism,
will simply ignore this information.
Received by the client at connection setup:
success: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD16
length: CARD16
Length is the amount of additional data to follow, in units
of 4 bytes. The version numbers are an escape hatch in case
future revisions of the protocol are necessary. In general,
the major version would increment for incompatible changes,
and the minor version would increment for small upward
compatible changes. Barring changes, the major version
will be eleven, and the minor version will be zero. The
protocol version numbers returned indicate the protocol the
server actually supports. This might not equal the version
sent by the client. The server can (but need not) refuse
connections from clients that offer a different version
than the server supports. A server can (but need not)
support more than one version simultaneously.
Additional data received if authorization fails:
reason: STRING8
Additional data received if authorization is accepted:
vendor: STRING8
release-number: CARD32
resource-id-base, resource-id-mask: CARD32
image-byte-order: {LSBFirst, MSBFirst}
bitmap-format-scanline-unit: {8, 16, 32}
bitmap-format-scanline-pad: {8, 16, 32}
bitmap-format-bit-order: {LeastSignificant, MostSignificant}
pixmap-formats: LISTofFORMAT
roots: LISTofSCREEN
keyboard: DEVICE
pointer: DEVICE
motion-buffer-size: CARD32
maximum-request-length: CARD16
where
FORMAT: [depth: CARD8,
M.I.T. [Page 21]
^L
RFC 1013 June 1987
bits-per-pixel: {4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]
SCREEN: [root: WINDOW
device: DEVICE
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters,height-in-millimeters:CARD16
allowed-depths: LISTofDEPTH
root-depth: CARD8
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: {Never, WhenMapped, Always}
save-unders: BOOL
current-input-masks: SETofEVENT]
DEPTH: [depth: CARD8
visuals: LISTofVISUALTYPE]
VISUALTYPE: [visual-id: VISUALID
class: {StaticGray, StaticColor,
TrueColor,GrayScale, PseudoColor,
DirectColor}
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARD16]
Per server information:
The vendor string gives some indentification of the owner of the
server implementation. The semantics of the release-number is
controlled by the vendor.
The resource-id-mask contains a single contiguous set of bits (at
least 18); the client allocates resource ids by choosing a value
with (only) some subset of these bits set, and ORing it with
resource-id-base. Only values constructed in this way can be
used to name newly created resources over this connection.
Resource ids never have the top 3 bits set. The client is not
restricted to linear or contiguous allocation of resource ids.
Once an id has been freed, it can be reused, but this should not
be necessary. An id must be unique with respect to the ids of
all other resources, not just other resources of the same type.
Although the server is in general responsible for byte swapping
data to match the client, images are always transmitted and
received in formats (including byte order) specified by the
server. The byte order for images is given by image-byte-order,
and applies to each scanline unit in XYFormat (bitmap) format,
and to each pixel value in ZFormat.
A bitmap is represented in scanline order. Each scanline is padded
to a multiple of bits as given by bitmap-format-scanline-pad. The
M.I.T. [Page 22]
^L
RFC 1013 June 1987
pad bits are of arbitrary value. The scanline is quantized in
multiples of bits as given by bitmap-format-scanline-unit. Within
each unit, the leftmost bit in the bitmap is either the least or
most significant bit in the unit, as given by
bitmap-format-bit-order. If a pixmap is represented in XYFormat,
each plane is represented as a bitmap, and the planes appear from
most to least significant in bit order.
For each pixmap depth supported by some screen, pixmap-formats lists
the ZFormat used to represent images of that depth. In ZFormat, the
pixels are in scanline order, left to right within a scanline. The
number of bits used to hold each pixel is given by bits-per-pixel,
and may be larger than strictly required by the depth. When the
bits-per-pixel is 4, the order of nibbles in the byte is the same as
the image byte-order. Each scanline is padded to a multiple of bits
as given by scanline-pad.
How a pointing device roams the screens is up to the server
implementation, and is transparent to the protocol. No geometry
among screens is defined.
The server may retain the recent history of pointer motion, and to a
finer granularity than is reported by MotionNotify events. Such
history is available via the GetPointerMotions request. The
approximate size of the history buffer is given by
motion-buffer-size.
Maximum-request-length specifies the maximum length of a request, in
4-byte units, accepted by the server; i.e., this is the maximum value
that can appear in the length field of a request. Requests larger
than this generate a Length error, and the server will read and
simply discard the entire request. Maximum-request-length will
always be at least 4096 (i.e., requests of length up to and including
16384 bytes will be accepted by all servers).
Per screen information:
The allowed-depths specifies what pixmap and window depths are
supported. Pixmaps are supported for each depth listed, and windows
of that depth are supported if at least one visual type is listed for
the depth. A pixmap depth of one is always supported and listed, but
windows of depth one might not be supported. A depth of zero is
never listed, but zero-depth InputOnly windows are always supported.
Root-depth and root-visual specify the depth and visual type of the
root window. Width-in-pixels and height-in-pixels specify the size
of the root window (which cannot be changed). The class of the root
window is always InputOutput. Width-in-millimeters and
height-in-millimeters can be used to determine the physical size and
the aspect ratio.
M.I.T. [Page 23]
^L
RFC 1013 June 1987
The default-colormap is the one initially associated with the root
window. Clients with minimal color requirements creating windows of
the same depth as the root may want to allocate from this map by
default.
Black-pixel and white-pixel can be used in implementing a
"monochrome" application. These pixel values are for permanently
allocated entries in the default-colormap; the actual RGB values may
be settable on some screens.
The border of the root window is initially a pixmap filled with the
black-pixel. The initial background of the root window is a pixmap
filled with some unspecified two-color pattern using black-pixel and
white-pixel.
Min-installed-maps specifies the number of maps that can be
guaranteed to installed simultaneously (with InstallColormap),
regardless of the number of entries allocated in each map.
Max-installed-maps specifies the maximum number of maps that might
possibly be installed simultaneously, depending on their
allocations. For the typical case of a single hardware colormap,
both values will be one.
Backing-stores indicates when the server supports backing stores for
this screen, although it may be storage limited in the number of
windows it can support at once. If save-unders is True, then the a
server can support the save-under mode in CreateWindow and
ChangeWindowAttributes, although again it may be storage limited.
The current-input-events is what GetWindowAttributes would return for
the all-event-masks for the root window.
Per visual-type information:
A given visual type might be listed for more than one depth, or for
more than one screen.
For PseudoColor, a pixel value indexes a colormap to produce
independent RGB values; the RGB values can be changed dynamically.
GrayScale is treated the same as PseudoColor, except which primary
drives the screen is undefined, so the client should always store
the same value for red, green, and blue in colormaps. For
DirectColor, a pixel value is decomposed into separate RGB
subfields, and each subfield separately indexes the colormap for
the corresponding value; The RGB values can be changed dynamically.
TrueColor is treated the same as DirectColor, except the colormap
has predefined read-only RGB values, which are server-dependent,
but provide (near-)linear ramps in each primary. StaticColor is
treated the same as PseudoColor, except the colormap has
predefined read-only RGB values, which are server-dependent.
StaticGray is treated the same as StaticColor, except the red,
M.I.T. [Page 24]
^L
RFC 1013 June 1987
green, and blue values are equal for any single pixel value,
resulting in shades of gray. StaticGray with a two-entry colormap
can be thought of as "monochrome".
The red-mask, green-mask, and blue-mask are only defined for
DirectColor and TrueColor; each has one contiguous set of bits, with
no intersections.
The bits-per-rgb-value specifies the log base 2 of the approximate
number of distinct color values (individually) of red, green, and
blue. Actual RGB values are always passed in the protocol within a
16-bit spectrum.
The colormap-entries defines the number of available colormap entries
in a newly created colormap. For DirectColor and TrueColor, this
will usually be the size of an individual pixel subfield.
SECTION 10. REQUESTS
CreateWindow
wid, parent: WINDOW
class: {InputOutput, InputOnly, CopyFromParent}
depth: CARD8
visual: VISUALID or CopyFromParent
x, y: INT16
width, height, border-width: CARD16
value-mask: BITMASK
value-list: LISTofVALUE
Errors: IDChoice, Window, Pixmap, Colormap, Cursor, Match,
Value, Alloc
Creates an unmapped window, and assigns the identifier wid
to it.
A class of CopyFromParent means the class is taken from the
parent. A depth of zero for class InputOutput or
CopyFromParent means the depth is taken from the parent.
A visual of CopyFromParent means the visual type is taken
from the parent. For class InputOutput, the visual type
and depth must be a combination supported for the screen
(else a Match error); the depth need not be the same as the
parent, but the parent must not be of class InputOnly (else
a Match error). For class InputOnly, the depth must be
zero (else a Match error), and the visual must be one
supported for the screen (else a Match error), but the
parent may have any depth and class.
The server essentially acts as if InputOnly windows do not
exist for the purposes of graphics requests, exposure
M.I.T. [Page 25]
^L
RFC 1013 June 1987
processing, and VisibilityNotify events. An InputOnly window
cannot be used as a drawable (as a source or destination for
graphics requests). InputOnly and InputOutput windows act
identically in other respects (properties, grabs, input
control, and so on).
The window is placed on top in the stacking order with
respect to siblings. The x and y coordinates are relative
to the parent's origin, and specify the position of the upper
left outer corner of the window (not the origin). The width
and height specify the inside size, not including the border,
and must be non-zero. The border-width for an InputOnly
window must be zero (else a Match error).
The value-mask and value-list specify attributes of the
window that are to be explicitly initialized. The possible
values are:
background-pixmap: PIXMAP or None or ParentRelative
background-pixel: CARD32
border-pixmap: PIXMAP or CopyFromParent
border-pixel: CARD32
bit-gravity: BITGRAVITY
win-gravity: WINGRAVITY
backing-store: {NotUseful, WhenMapped, Always}
backing-bit-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL
colormap: COLORMAP or CopyFromParent
cursor: CURSOR or None
The default values, when attributes are not explicitly
initialized, are:
background-pixmap: None
border-pixmap: CopyFromParent
bit-gravity: Forget
win-gravity: NorthWest
backing-store: NotUseful
backing-bit-planes: all ones
backing-pixel: zero
save-under: False
event-mask: {} (empty set)
do-not-propagate-mask: {} (empty set)
override-redirect: False
colormap: CopyFromParent
cursor: None
M.I.T. [Page 26]
^L
RFC 1013 June 1987
Only the following attributes are defined for InputOnly
windows: win-gravity, event-mask, do-not-propagate-mask,
and cursor. It is a Match error to specify any other
attributes for InputOnly windows.
If background-pixmap is given, it overrides the default
background-pixel. The background pixmap and the window must
have the same root and the same depth (else a Match error).
Any size pixmap can be used, although some sizes may be
faster than others. If background None is specifed, the
window has no defined background. If background
ParentRelative is specified, the parent's background is
used, but the window must have the same depth as the parent
(else a Match error); if the parent has background None,
then the window will also have background None. A copy
of the parent's background is not made; the parent's
background is reexamined each time the window background is
required. If background-pixel is given, it overrides the
default and any background-pixmap given, and a pixmap of
undefined size filled with background-pixel is used for the
background. For a ParentRelative background, the
background tile origin always aligns with the parent's
background tile origin; otherwise the background tile
origin is always the window origin.
When regions of the window are exposed and the server has
not retained the contents, the server automatically tiles
the regions with the window's background unless the window
has a background of None, in which case the previous screen
contents are simply left in place. Exposure events are then
generated for the regions, even if the background is None.
The border tile origin is always the same as the background
tile origin. If border-pixmap is given, it overrides the
default border-pixel. The border pixmap and the window must
have the same root and the same depth (else a Match error).
Any size pixmap can be used, although some sizes may faster
than others. If CopyFromParent is given, the parent's border
pixmap is copied (subsequent changes to the parent do not
affect the child), but the window must have the same depth
as the parent (else a Match error). If border-pixel is
given, it overrides the default and any border-pixmap given,
and a pixmap of undefined size filled with border-pixel is
used for the border.
Output to a window is always clipped to the inside of the
window, so that the border is never affected.
The bit-gravity defines which region of the window should be
retained if the window is resized, and win-gravity defines
how the window should be repositioned if the parent is
M.I.T. [Page 27]
^L
RFC 1013 June 1987
resized; see ConfigureWindow.
A backing-store of WhenMapped advises the server that
maintaining contents of obscured regions when the window
is mapped would be beneficial. A backing-store of Always
advises the server that maintaining contents even when the
window is unmapped would be beneficial. Note that, even if
the window is larger than its parent, the server should
maintain complete contents, not just the region within the
parent boundaries. If the server maintains contents,
Exposure events will not be generated, but the server may
stop maintaining contents at any time. A value of NotUseful
advises the server that maintaining contents is unnecessary,
although a server may still choose to maintain contents.
Backing-bit-planes indicates (with one bits) which bit
planes of the window hold dynamic data that must be preserved
in backing-stores. Backing-pixel specifies what value to use
in planes not covered by backing-bit-planes. The server is
free to only save the specified bit planes in the
backing-store, and regenerate the remaining planes with the
specified pixel value.
If save-under is True, the server is advised that, when
this window is mapped, saving the contents of windows it
obscures would be beneficial.
The event-mask defines which events the client is interested
in for this window (or, for some event types, inferiors of
the window). The do-not-propagate-mask defines which events
should not be propagated to ancestor windows when no client
has the event type selected in this window.
Override-redirect specifies whether map and configure
request on this window should override a SubstructureRedirect
on the parent, typically to inform a window manager not to
tamper with the window.
The colormap specifies the colormap, that best reflects the
"true" colors of the window. Servers capable of supporting
hardware colormaps may use this information, and window
managers may use it for InstallColormap requests. The
colormap must have the same visual type as the window
(else a match error). If CopyFromParent is specified, the
parents's colormap is copied (subsequent changes to the
parent do not affect the child), but the window must have
the same visual type as the parent (else a Match error) an
the parent must not have a colormap of None (else a Match
error).
M.I.T. [Page 28]
^L
RFC 1013 June 1987
If a cursor is specified, it will be used whenever the
pointer is in the window. If None is specified, the
parent's cursor will be used when the pointer is in the
window, and any change in the parent's cursor will
cause an immediate change in the display cursor.
This request generates a CreateNotify event.
The background and border pixmaps and the cursor may be
freed immediately if no further explicit references to
them are to be made.
Subsequent drawing into the background or border pixmap has
an undefined effect on the window state; the server might or
might not make a copy of the pixmap.
ChangeWindowAttributes
window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Window, Pixmap, Colormap, Cursor, Match, Value,
Access
The value-mask and value-list specify which attributes are
to be changed. The values and restrictions are the same
as for CreateWindow.
Changing the background does not cause the window contents
to be changed. Setting the border, or changing the
background such that border tile origin changes, causes the
border to be repainted. Changing the background of a root
window to None or ParentRelative restores the default
background pixmap. Changing the border of a root window to
CopyFromParent restores the default border pixmap.
Changing the back-store of an obsecured window to
WhenMapped or Always, or changing the backing-bit-planes,
backing-pixel, or save-under of a mapped window, may have
no immediate effect.
Multiple clients can select input on the same window; their
event-masks are disjoint. When an event is generated it
will be reported to all interested clients. However, at
most one client at a time can select for
SubstructureRedirect, at most one client at a time can
select for ResizeRedirectr, and at most one client at a
time can select for ButtonPress.
There is only one do-not-propagate-mask for a window, not
one per client.
M.I.T. [Page 29]
^L
RFC 1013 June 1987
Changing the colormap of a window (i.e., defining a new map,
not changing the contents of the existing map) generates a
ColormapNorify event. Changing the colormap os a visible
window may have no immediate effect on the screen; see
InstallColormap.
Changing the cursor of a root window to None restores the
default cursor.
The order in which attributes are verified and altered is
server dependent. If an error is generated, a subset of
the attributes may have been altered.
GetWindowAttributes
window: WINDOW
=>
visual: VISUALID
class: {InputOutput, InputOnly}
bit-gravity: BITGRAVITY
win-gravity: WINGRAVITY
backing-store: {NotUseful, WhenMapped, Always}
backing-bit-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
colormap: COLORMAP or None
map-is-installed: BOOL
map-state: {Unmapped, Unviewable, Viewable}
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL
Errors: Window
Returns current attributes of the window. All-event-masks
is the inclusive-OR of all event masks selected on the
window by clients. Your-event-mask is the event mask
selected by the querying client.
DestroyWindow
window: WINDOW
Errors: Window
If the argument window is mapped, an UnmapWindow request is
performed automatically. The window and all inferiors are
then destroyed, and a DestroyNotify event is generated for
each window, in order from the argument window downwards,
with unspecified order among siblings at each level.
Normal exposure processing on formerly obscured windows is
performed.
M.I.T. [Page 30]
^L
RFC 1013 June 1987
If the window is a root window, this request has no effect.
DestroySubwindows
window: WINDOW
Errors: Window
Performs a DestroyWindow on all children of the window, in
bottom to top stacking order.
ChangeSaveSet
window: WINDOW
mode: {Insert, Delete}
Errors: Window, Match, Value
Adds or removes the specified window from the client's
"save-set". The window must have been created by some other
client (else a Match error). The use of the save-set is
described in Section 11.
Windows are removed automatically from the save-set by the
server when they are destroyed.
ReparentWindow
window, parent: WINDOW
x, y: INT16
Errors: Window, Match
If the window is mapped, an UnmapWindow request is
performed automatically first. The window is then removed
from its current position in the hierarchy, and is inserted
as a child of the specified parent. The x and y coordinates
are relative to the parent's origin, and specify the new
position of the upper left outer corner of the window. The
window is placed on top in the stacking order with respect
to siblings. A ReparentNotify event is then generated. The
override-redirect attribute of the window is passed on in
this event; a value of True indicates that a window manager
should not tamper with this window. Finally, if the window
was originally mapped, a MapWindow request is performed
automatically.
Normal exposure processing on formerly obscured windows is
performed. The server might not generate exposure events for
regions from the initial unmap that are immediately obscured
by the final map.
A Match error is generated if the new parent is not on the
same screen as the old parent, or if the new parent is the
M.I.T. [Page 31]
^L
RFC 1013 June 1987
window itself or an inferior of the window, or if the window
has a ParentRelative background and the new parent is not
the same depth as the window.
MapWindow
window: WINDOW
Errors: Window
If the window is already mapped, this request has no effect.
If the override-redirect attribute of the window is False and
some other client has selected SubstructureRedirect on the
parent, then a MapRequest event is generated, but the window
remains unmapped. Otherwise, the window is mapped and a
MapNotify event is generated.
If the window is now viewable and its contents had been
discarded, then the window is tiled with its background (if
no background is defined the existing screen contents are not
altered) and one or more exposure events are generated. If a
backing-store has been maintained while the window was
unmapped, no exposure events are generated. If a
backing-store will now be maintained, a full-window exposure
is always generated; otherwise only visible regions may be
reported. Similar tiling and exposure take place for any
newly viewable inferiors.
MapSubwindows
window: WINDOW
Errors: Window
Performs a MapWindow request on all unmapped children of the
window, in top to bottom stacking order.
UnmapWindow
window: WINDOW
Errors: Window
If the window is already unmapped, this request has no
effect. Otherwise, the window is unmapped and an UnmapNotify
event is generated. Normal exposure processing on formerly
obscured windows is performed.
UnmapSubwindows
window: WINDOW
Errors: Window
M.I.T. [Page 32]
^L
RFC 1013 June 1987
Performs an UnmapWindow request on all mapped children of the
window, in bottom to top stacking order.
ConfigureWindow
window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Window, Match, Value
Changes the configuration of the window. The value-mask and
value-list specify which values are to be given. The
possible values are:
x: INT16
y: INT16
width: CARD16
height: CARD16
border-width: CARD16
sibling: WINDOW
stack-mode: {Above, Below, TopIf, BottomIf, Opposite}
The x and y coordinates are relative to the parent's origin,
and specify the position of the upper left outer corner of
the window. The width and height specify the inside size,
not including the border, and must be non-zero. It is a
Match error to attempt to make the border-width of an
InputOnly window non-zero.
If the override-redirect attribute of the window is False
and some other client has selected SubstructureRedirect on
the parent, then a ConfigureRequest event is generated, and
no further processing is performed. Otherwise, the following
is performed.
If some other client has selected ResizeRedirect on the
window and the width or height of the window is being
changed, then a ResizeRequest event is generated, and the
current width and height are used instead in the following.
The geometry of the window is changed as specified and the
window is restacked among siblings as described below, and a
ConfigureNotify event is generated. If the width or height
of the window has actually changed, then children of the
window are affected as described below.
Exposure processing is performed on formerly obscured
windows.
Changing the width or height of the window causes its
contents to be moved or lost, depending on the bit-gravity of
M.I.T. [Page 33]
^L
RFC 1013 June 1987
the window, and causes children to be reconfigured, depending
on their win-gravity. For a change of width and height of W
and H, we define the [x, y] pairs:
NorthWest: [0, 0]
North: [W/2, 0]
NorthEast: [W, 0]
West: [0, H/2]
Center: [W/2, H/2]
East: [W, H/2]
SouthWest: [0, H]
South: [W/2, H]
SouthEast: [W, H]
When a window with one of these bit-gravities is resized, the
corresponding pair defines the change in position of each
pixel in the window. When a window with one of these
win-gravities has its parent window resized, the
corresponding pair defines the change in position of the
window within the parent. When a window is so repositioned,
a GravityNotify event is generated.
A gravity of Static indicates that the contents or origin
should not move relative to the origin of the root window. If
the change in size of the window is coupled with a change in
position of [X, Y], then for bit-gravity the change in
position of each pixel is [-X, -Y], and for win-gravity the
change in position of a child when its parent is so resized
is [-X, -Y]. Note that Static gravity still only takes
effect when the width or height of the window is changed, not
when the window is simply moved.
A bit-gravity of Forget indicates that the window contents
are always discarded after a size change; the window is tiled
with its background (if no background is defined, the
existing screen contents are not altered) and one or more
exposure events are generated. A server may also ignore the
specified bit-gravity and use Forget instead.
A win-gravity of Unmap is like NorthWest, but the child is
also unmapped when the parent is resized, and an UnmapNotify
event is generated.
If a sibling and a stack-mode is specified, the window is
restacked as follows:
Above: window is placed just above sibling
Below: window is placed just below sibling
TopIf: if sibling occludes window, then window is placed
at the top of the stack
BottomIf: if window occludes sibling, then window is
M.I.T. [Page 34]
^L
RFC 1013 June 1987
placed at the bottom of the stack
Opposite: if sibling occludes window, then window is
placed at the top of the stack, else if window
occludes sibling, then window is placed at the
bottom of the stack
If a stack-mode is specified but no sibling is specified, the
window is restacked as follows:
Above: window is placed at the top of the stack
Below: window is placed at the bottom of the stack
TopIf: if any sibling occludes window, then window is
placed at the top of the stack
BottomIf: if window occludes any sibling, then window is
placed at the bottom of the stack
Opposite: if any sibling occludes window, then window is
placed at the top of the stack, else if window
occludes any sibling, then window is placed at
the bottom of the stack
It is a Match error if a sibling is specified without a
stack-mode, or if the window is not actually a sibling.
Note that the computations for BottomIf, TopIf, and Opposite
are performed with respect to the window's final geometry
(as controlled by the other arguments to the request), not
its initial geometry.
CirculateWindow
window: WINDOW
direction: {RaiseLowest, LowerHighest}
Errors: Window, Value
If some other client has selected SubstructureRedirect on the
window, then a CirculateRequest event is generated, and no
further processing is performed. Otherwise, the following is
performed, and then a CirculateNotify event is generated if
the window is actually restacked.
For RaiseLowest, raises the lowest mapped child (if any) that
is occluded by another child to the top of the stack. For
LowerHighest, lowers the highest mapped child (if any) that
occludes another child to the bottom of the stack. Exposure
processing is performed on formerly obscured windows.
GetGeometry
drawable: DRAWABLE
=>
root: WINDOW
depth: CARD8
M.I.T. [Page 35]
^L
RFC 1013 June 1987
x, y: INT16
width, height, border-width: CARD16
Errors: Drawable
Returns the root and (current) geometry of the drawable.
Depth is the number of bits per pixel for the object.
X, y, and border-width will always be zero for pixmaps.
For a window, the x and y coordinates specify the upper
left outer corner of the window relative to its parent's
origin, and the width and height specify the inside size
(not including the border).
It is legal to pass an InputOnly window as a drawable to
this request.
QueryTree
window: WINDOW
=>
root: WINDOW
parent: WINDOW or None
children: LISTofWINDOW
Errors: Window
Returns the root, the parent, and children of the window.
The children are listed in bottom-to-top stacking order.
InternAtom
name: STRING8
only-if-exists: BOOL
=>
atom: ATOM or None
Errors: Value, Alloc
Returns the atom for the given name. If only-if-exists is
False, then the atom is created if it does not exist. The
string should use the ASCII encoding, and upper/lower case
matters.
The lifetime of an atom is not tied to the interning client.
Atoms remained defined until server reset (see Section 11).
GetAtomName
atom: ATOM
=>
name: STRING8
Errors: Atom
M.I.T. [Page 36]
^L
RFC 1013 June 1987
Returns the name for the given atom.
ChangeProperty
window: WINDOW
property, type: ATOM
format: {8, 16, 32}
mode: {Replace, Prepend, Append}
data: LISTofINT8 or LISTofINT16 or LISTofINT32
Errors: Window, Atom, Value, Match, Alloc
Alters the property for the specified window. The type is
uninterpreted by the server. The format specifies whether
the data should be viewed as a list of 8-bit, 16-bit, or
32-bit quantities, so that the server can correctly
byte-swap as necessary.
If mode is Replace, the previous property value is discarded.
If the mode is Prepend or Append, then the type and format
must match the existing property value (else a Match error);
if the property is undefined, it is treated as defined with
the correct type and format with zero-length data. For
Prepend, the data is tacked on to the beginning of the
existing data, and for Append it is tacked on to the
end of the existing data.
Generates a PropertyNotify event on the window.
The lifetime of a property is not tied to the storing client.
Properties remain until explicitly deleted, or the window is
destroyed, or until server reset (see Section 11).
The maximum size of a property is server dependent.
DeleteProperty
window: WINDOW
property: ATOM
Errors: Window, Atom
Deletes the property from the specified window if the
property exists. Generates a PropertyNotify event on the
window unless the property does not exist.
GetProperty
window: WINDOW
property: ATOM
type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL
=>
M.I.T. [Page 37]
^L
RFC 1013 June 1987
type: ATOM
format: {8, 16, 32}
bytes-after: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT32
Errors: Window, Atom, Property, Match, Value
If the specified property does not exist for the specifed
window, a Property error is generated. Otherwise, if type
AnyPropertyType is specified, (part of) the property is
returned regardless of its type; if a type is specified,
(part of) the property is returned only if its type equals
the specified type (else a Match error). The actual type
and format of the property are returned.
Define the following values:
N = actual length of the stored property in bytes
(even if the format is 16 or 32)
I = 4 * long-offset
T = N - I
L = MINIMUM(T, 4 * long-length)
A = N - (I + L)
The returned value starts at byte index I in the property
(indexing from 0), and its length in bytes is L. It is a
Value error if long-offset is given such that L is negative.
The value of bytes-after is A, giving the number of trailing
unread bytes in the stored property.
If delete is True and bytes-after is zero, the property is
also deleted from the window and a PropertyNotify event is
generated on the window.
RotateProperties
window: WINDOW
delta: INT8
properties: LISTofATOM
Errors: Window, Atom, Match
If the property names in the list are viewed as being
numbered starting from zero, and there are N property names
in the list, then the value associated with property name I
becomes the value associated with property name (I + delta)
mod N, for all I from zero to N - 1. The effect is to rotate
the states by delta places around the virtual ring of
property names (right for positive delta, left for negative
delta).
A PropertyNotify event is generated for each property, in the
order listed.
M.I.T. [Page 38]
^L
RFC 1013 June 1987
If an atom occurs more than once in the list or no property
with that name is defined for the window, a Match error is
generated. If an Atom or Match error is generated, no
properties are changed.
ListProperties
window: WINDOW
=>
atoms: LISTofATOM
Errors: Window
Returns the atoms of properties currently defined on the
window.
SetSelectionOwner
selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime
Error: Atom, Window
Changes the owner and last-change time of the specifed
selection. The request has no effect if the specified time
is earlier than the current last-change time of the specified
selection or is later than the current server time;
otherwise, the last-change time is set to the specified time,
with CurrentTime replaced by the current server time.
If the new owner is not the same as the current owner of the
selection, and the current owner is a window, then the
current owner is sent a SelectClear event.
If the owner of a selection is a window, and the window is
later destroyed, the owner of the selection automatically
reverts to None, but the last-change time is not affected.
The selection atom is uninterpreted by the server.
Selections are global to the server.
GetSelectionOwner
selection: ATOM
=>
owner: WINDOW or None
Errors: Atom
Returns the current owner of the specified selection, if any.
ConvertSelection
selection, target: ATOM
M.I.T. [Page 39]
^L
RFC 1013 June 1987
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime
Error: Atom, Window
If the specified selection is owned by a window, the server
sends a SelectionRequest event to the owner. If no owner for
the specified selection exists, the server generates a
SelectionNotify event to the requestor with property None.
The arguments are passed on unchanged in either event.
SendEvent
destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL
event-mask: SETofEVENT
event: <normal-event-format>
Errors: Window, Value
If PointerWindow is specified, destination is replaced with
the window that the pointer is in. If InputFocus is
specified, then if the focus window contains the pointer,
destination is replaced with the window that the pointer is
in, and otherwise destination is replaced with the focus
window.
If propagate is False, then the event is sent to every client
selecting on destination any of the event types in
event-mask.
If propagate is True and no clients have selected on
destination any of the event types in event-mask, then
destination is replaced with the closest ancestor of
destination for which some client has selected a type in
event-mask and no intervening window has that type in its
do-not-propagate-mask. If no such window exists, or if the
window is an ancestor of the focus window and InputFocus was
originally specified sent to any clients. Otherwise, the
event is reported to every client selecting on the final
destination any of the types specified in event-mask.
The event code must be one of the core events, or one of
the events defined by an extension, so that the server can
correctly byte swap the contents as necessary. The
contents of the event are otherwise unaltered and unchecked
by the server except to force on the most significant bit
of the event code.
M.I.T. [Page 40]
^L
RFC 1013 June 1987
Active grabs are ignored for this request.
GrabPointer
grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime
=>
status: {Success, AlreadyGrabbed, Frozen, InvalidTime,
NotViewable}
Errors: Cursor, Window, Value
Actively grabs control of the pointer. Further pointer
events are only reported to the grabbing client. The
request overrides any active pointer grab by this client.
Event-mask is always augmented to include ButtonPress and
ButtonRelease. If owner-events is False, all generated
pointer events are reported with respect to grab-window,
and are only reported if selected by event-mask. If
owner-events is True, then if a generated pointer event
would normally be reported to this client, it is reported
normally; otherwise the event is reported with respect to
the grab-window, and is only reported if selected by
event-mask. For either value of owner-events, unreported
events are simply discarded.
Pointer-mode controls further processing of pointer events,
and keyboard-mode controls further processing of keyboard
events. If the mode is Asynchronous, event processing
continues normally; if the device is currently frozen by
this client, then processing of events for the device is
resumed. If the mode is Synchronous, the device (as seen
via the protocol) appears to freeze, and no further events
for that device are generated by the server until the
grabbing client issues a releasing AllowEvents request.
Actual device changes are not lost while the device is
frozen; they are simply queued for later processing.
If a cursor is specified, then it is displayed regardless
of what window the pointer is in. If no cursor is
specified, then when the pointer is in grab-window or one
of its subwindows, the normal cursor for that window is
displayed, and otherwise the cursor for grab-window is
displayed.
M.I.T. [Page 41]
^L
RFC 1013 June 1987
If a confine-to window is specified, then the pointer
will be restricted to stay contained in that window.
The confine-to window need have no relationship to the
grab-window. If the pointer is not initially in the
confine-to window, then it is warped automatically to
the closest edge (and enter/leave events generated
normally) just before the grab activates. If the
confine-to window is subsequently reconfigured, the
pointer will be warped automatically as necessary to keep
it contained in the window.
This request generates EnterNotify and LeaveNotify events.
The request fails with status AlreadyGrabbed if the
pointer is actively grabbed by some other client. The
request fails with status Frozen if the pointer is frozen
by an active grab of another client. The request fails
with status NotViewable if grab-window or
confine-to window is not viewable. The request fails with
status InvalidTime if the specified time is earlier than
the last-pointer-grab time or later than the current
server time; otherwise the last-pointer-grab time is set
to the specified time, with CurrentTime replaced by the
current server time.
UngrabPointer
time: TIMESTAMP or CurrentTime
Releases the pointer if this client has it actively
grabbed (from either GrabPointer or GrabButton or from a
normal button press), and releases any queued events. The
request has no effect if the specified time is earlier
than the last-pointer-grab time or is later than the
current server time.
This request generates EnterNotify and LeaveNotify events.
An UngrabPointer is performed automatically if the event
window or confine-to window for an active pointer grab
becomes not viewable.
GrabButton
modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor: CURSOR or None
M.I.T. [Page 42]
^L
RFC 1013 June 1987
Errors: Cursor, Window, Value, Access
This request establishes a passive grab. In the future,
if the specified button is pressed when the specified
modifier keys are down (and no other buttons or modifier
keys are down), and grab-window contains the pointer,
and the confine-to window (if any) is viewable, and these
constraints are not satisfied for any ancestor, then the
pointer is actively grabbed as described in GrabPointer,
the last-pointer-grab time is set to the time at which
the button was pressed (as transmitted in the ButtonPress
event), and the ButtonPress event is reported. The
interpretation of the remaining arguments is as for
GrabPointer. The active grab is terminated automatically
when all buttons are released (independent of the state
of modifier keys).
A modifiers of AnyModifier is equivalent to issuing the
request for all possible modifier combinations. A
button of AnyButton is equivalent to issuing the request
for all possible buttons.
An Access error is generated if some other client has
already issued a GrabButton with the same button/key
combination on the same window. When using AnyModifier
or AnyButton, the request fails completely (no grabs are
established) if there is a combination. The request has
no effect on an active grab.
UngrabButton
modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
Errors: Window
Releases the passive button/key combination on the
specified window if it was grabbed by this client. A
modifiers of AnyModifier is equivalent to issuing the
request for all possible modifier combinations. A
button of AnyButton is equivalent to issuing the request
for all possible buttons. Has no effect on an active
grab.
ChangeActivePointerGrab
event-mask: SETofPOINTEREVENT
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime
Errors: Cursor
M.I.T. [Page 43]
^L
RFC 1013 June 1987
Changes the specified dynamic parameters if the pointer
is actively grabbed by the client and the specified time
is no earlier than the last-pointer-grab time and no
later than the current server time. The interpretation
of event-mask and cursor are as in GrabPointer. The
event-mask is always augmented to include ButtonPress
and ButtonRelease. Has no effect on the passive
parameters of a GrabButton.
GrabKeyboard
grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
time: TIMESTAMP or CurrentTime
=>
status: {Success, AlreadyGrabbed, Frozen, InvalidTime,
NotViewable}
Errors: Window, Value
Actively grabs control of the keyboard. Further key
events are reported only to the grabbing client. The
request overrides any active keyboard grab by this
client.
If owner-events is False, all generated key events are
reported with respect to grab-window. If owner-events is
True, then if a generated key event would normally be
reported to this client, it is reported normally;
otherwise the event is reported with respect to the
grab-window. Both KeyPress and KeyRelease events are
always reported, independent of any event selection made
by the client.
Pointer-mode controls further processing of pointer
events, and keyboard-mode controls further processing of
keyboard events. If the mode is Asynchronous, event
processing continues normally; if the device is currently
frozen by this client, then processing of events for the
device is resumed. If the mode is Synchronous, the
device (as seen via the protocol) appears to freeze, and
no further events for that device are generated by the
server until the grabbing client issues a releasing
AllowEvents request. Actual device changes are not lost
while the device is frozen; they are simply queued for
later processing.
This request generates FocusIn and FocusOut events.
The request fails with status AlreadyGrabbed if the
keyboard is actively grabbed by some other client. The
M.I.T. [Page 44]
^L
RFC 1013 June 1987
request fails with status Frozen if the keyboard is
frozen by an active grab of another client. The request
fails with status NotViewable if grab-window is not
viewable. The request fails with status InvalidTime if
the specified time is earlier than the last-keyboard-grab
time or later than the current server time; otherwise the
last-keyboard-grab time is set to the specified time,
with CurrentTime replaced by the current server time.
UngrabKeyboard
time: TIMESTAMP or CurrentTime
Releases the keyboard if this client has it actively
grabbed (from either GrabKeyboard or GrabKey), and
releases any queued events. The request has no effect
if the specified time is earlier than the
last-keyboard-grab time or is later than the current
server time.
This request generates FocusIn and FocusOut events.
An UngrabKeyboard is performed automatically if the event
window for an active keyboard grab becomes not viewable.
GrabKey
key: KEYCODE or AnyNonModifier
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
Errors: Window, Value, Access
This request establishes a passive grab on the keyboard.
In the future, if the specified key (which can itself be a
modifier key) is pressed when the specified modifier keys
are down (and no other modifier keys are down), and the
KeyPress event would be generated in grab-window or one of
its inferiors, and these constraints are not satisfied for
any ancestor, then the keyboard is actively grabbed as
described in GrabKeyboard, the last-keyboard-grab time is
transmitted in set to the time at which the key was
pressed (as in the KeyPress event), and the KeyPress
event is reported. The interpretation of the remaining
arguments is as for GrabKeyboard. The active grab is
terminated automatically when the specified key has been
released (independent of the state of the modifier keys).
A modifiers of AnyModifier is equivalent to issuing the
request for all possible modifier combinations. A key of
AnyNonModifier is equivalent to issuing the request for
M.I.T. [Page 45]
^L
RFC 1013 June 1987
all possible non-modifier key codes.
An Access error is generated if some other client has
issued a GrabKey with the same key combination on the
same window. When using AnyModifier or AnyNonModifier,
the request fails completely (no grabs are established)
if there is a conflicting grab for any combination.
UngrabKey
key: KEYCODE or AnyNonModifier
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW
Errors: Window
Releases the key combination on the specified window if it
was grabbed by this client. A modifiers of AnyModifier is
equivalent to issuing the request for all possible
modifier combinations. A key of AnyNonModifier is
equivalent to issuing the request for all possible
non-modifier key codes. Has no effect on an active grab.
AllowEvents
mode: {AsyncPointer, SyncPointer, ReplayPointer,
AsyncKeyboard, SyncKeyboard, ReplayKeyboard}
time: TIMESTAMP or CurrentTime
Errors: Value
Releases some queued events if the client has caused a
device to freeze. The request has no effect if the
specified time is earlier than the last-grab time of the
most recent active grab for the client, or if the
specified time is later than the current server time.
For AsyncPointer, if the pointer is frozen by the client,
pointer event processing continues normally. If the
pointer is frozen twice by the client on behalf of two
separate grabs, AsyncPointer "thaws" for both.
AsyncPointer has no effect if the pointer is not frozen
by the client, but the pointer need not be grabbed by
the client.
For SyncPointer, if the pointer is frozen and actively
grabbed by the client, pointer event processing continues
normally until the next ButtonPress or ButtonRelease event
is reported to the client, at which time the pointer again
appears to freeze. However if the reported event causes
the pointer grab to be released, then the pointer does not
freeze. SyncPointer has no effect if the pointer is not
frozen by the client, or if the pointer is not grabbed by
M.I.T. [Page 46]
^L
RFC 1013 June 1987
the client.
For ReplayPointer, if the pointer is actively grabbed by
the client and is frozen as the result of an event having
been sent to the client (either from the activation of a
GrabButton, or from a previous AllowEvents with mode
SyncPointer, but not from a GrabPointer), then the pointer
grab is released and that event is completely reprocessed,
but this time ignoring any passive grabs at or above
(towards the root) the grab-window of the grab just
released. The request has no effect if the pointer is
not grabbed by the client, or if the pointer is not
frozen as the result of an event.
For AsyncKeyboard, if the keyboard is frozen by the
client, keyboard event processing continues normally. If
the pointer is frozen twice by the client on behalf of
two separate grabs, AsyncPointer "thaws" for both.
AsyncKeyboard has no effect if the keyboard is not
frozen by the client, but the keyboard need not be
grabbed by the client.
For SyncKeyboard, if the keyboard is frozen and actively
grabbed by the client, keyboard event processing
continues normally until the next KeyPress or KeyRelease
event is reported to the client, at which time the
keyboard again appears to freeze. However if the
reported event causes the keyboard grab to be released,
then the keyboard does not freeze. SyncKeyboard has no
effect if the keyboard is not frozen by the client, or
if the keyboard is not grabbed by the client.
For ReplayKeyboard, if the keyboard is actively grabbed
by the client and is frozen as the result of an event
having been sent to the client (either from the
activation of a GrabKey, or from a previous AllowEvents
with mode SyncKeyboard, but not from a GrabKeyboard),
then the keyboard grab is released and that event is
completely reprocessed, but this time ignoring any passive
grabs at or above (towards the root) the grab-window of
the grab just released. The request has no effect if the
keyboard is not grabbed by the client, or if the keyboard
is notfrozen as the result of an event.
AsyncPointer, SyncPointer, and Replay Pointer have no
effect on processing of keyboard events. AsyncKeyboard,
SyncKeyboard, and ReplayKeyboard have no effect on
processing of pointer events.
It is possible for both a pointer grab and a keyboard grab
to be active simultaneously (by the same or different
M.I.T. [Page 47]
^L
RFC 1013 June 1987
clients). If a device is frozen on behalf of either grab,
no event processing is performed for the device. It is
possible for a single device to be frozen due to both
grabs. In this case, the freeze must be released on
behalf of both grabs before events can again be
processed.
GrabServer
Disables processing of requests and close-downs on all
other connections (than the one this request arrived on).
UngrabServer
Restarts processing of requests and close-downs on other
connections.
QueryPointer
window: WINDOW
=>
root: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, win-x, win-y: INT16
mask: SETofKEYBUTMASK
Errors: Window
The root window the pointer is currently on, and pointer
coordinates relative to the root's origin, are returned.
If same-screen is False, then the pointer is not on the
same screen as the argument window, and child is None and
win-x and win-y are zero. If same-screen is True, then
win-x and win-y are the pointer coordinates relative to
the argument window's origin, and child is the child
containing the pointer, if any. The current state of the
modifier keys and the buttons are also returned.
GetMotionEvents
start, stop: TIMESTAMP or CurrentTime
window: WINDOW
=>
events: LISTofTIMECOORD
where
TIMECOORD: {x, y: CARD16
time: TIMESTAMP}
Error: Window
Returns all events in the motion history buffer that fall
between the specified start and stop times (inclusive)
and that have coordinates that lie within (including
M.I.T. [Page 48]
^L
RFC 1013 June 1987
borders) the specified window at its present placement.
The x and y coordinates are reported relative to the
origin of the window.
TranslateCoordinates
src-window, dst-window: WINDOW
src-x, src-y: INT16
=>
same-screen: BOOL
child: WINDOW or None
dst-x, dst-y: INT16
Errors: Window
The src-x and src-y coordinates are taken relative to
src-window's origin, and returned as dst-x and dst-y
coordinates relative to dst-window's origin. If
same-screen is False, then src-window and dst-window are
on different screens, and dst-x and dst-y are zero. If
the coordinates are contained in a mapped child of
dst-window, then that child is returned.
WarpPointer
src-window: WINDOW or None
dst-window: WINDOW
src-x, src-y: INT16
src-width, src-height: CARD16
dst-x, dst-y: INT16
Errors: Window
Moves the pointer to [dst-x, dst-y] relative to
dst-window's origin. If src-window is None, the move is
independent of the current pointer position, but if a
window is specified, the move only takes place if the
pointer is currently contained in a visible portion of
the specified rectangle of the src-window.
The src-x and src-y coordinates are relative to
src-window's origin. If src-height is zero, it is
replaced with the current height of src-window minus
src-y. If src-width is zero, it is replaced with the
current width of src-window minus src-x.
This request cannot be used to move the pointer outside
the confine-to window of an active pointer grab; an
attempt will only move the pointer as far as the closest
edge of the confine-to window.
M.I.T. [Page 49]
^L
RFC 1013 June 1987
SetInputFocus
focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}
time: TIMESTAMP or CurrentTime
Errors: Window, Value
Changes the input focus and the last-focus-change time.
The request has no effect if the specified time is earlier
than the current last-focus-change time or is later than
the current server time; otherwise, the last-focus-change
time is set to the specified time, with CurrentTime
replaced by the current server time.
If None is specified as the focus, all keyboard events are
discarded until a new focus window is set. In this case,
therevert-to argument is ignored.
If a window is specified as the focus, it becomes the
keyboard's focus window. If a generated keyboard event
would normally be reported to this window or one of its
inferiors, the event is reported normally; otherwise, the
event is reported with respect to the focus window.
If PointerRoot is specified as the focus, the focus
window is dynamically taken to be the root window of
whatever screen the pointer is on at each keyboard event.
In this case, the revert-to argument is ignored.
This request generates FocusIn and FocusOut events.
If the focus window becomes not viewable, the new focus
window depends on the revert-to argument. If revert-to
is Parent, the focus reverts to the parent (or the
closest viewable ancestor) and the new revert-to value is
take to be None. If revert-to is PointerRoot or None,
the focus reverts to that value. When the focus reverts,
FocusIn and FocusOut events are generated, but the
last-focus-change time is not affected.
GetInputFocus
=>
focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}
Returns the current focus state.
QueryKeymap
=>
keys: LISTofCARD8
M.I.T. [Page 50]
^L
RFC 1013 June 1987
Returns a bit vector for the keyboard; each one bit
indicates that the corresponding key is currently pressed.
The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N+7, with the least
significant bit in the byte representing key 8N.
OpenFont
fid: FONT
name: STRING8
Errors: IDChoice, Name, Alloc
Loads the specified font, if necessary, and associates
identifier fid with it. The font can be used as a source
for any drawable. The font name should use the ASCII
encoding, and upper/lower case does not matter.
CloseFont
font: FONT
Errors: Font
Deletes the association between the resource id and the
font. The font itself will be freed when no other
resource references it.
QueryFont
font: FONT or GCONTEXT
=>
font-info: FONTINFO
char-infos: LISTofCHARINFO
where
FONTINFO: [draw-direction: {LeftToRight, RightToLeft}
min-char-or-byte2,max-char-or-byte2:CARD16
min-byte1, max-byte1: CARD8
all-chars-exist: BOOL
default-char: CARD16
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INT16
font-descent: INT16
properties: LISTofFONTPROP]
FONTPROP: [name: ATOM
value: INT32 or CARD32]
CHARINFO: [left-side-bearing: INT16
right-side-bearing: INT16
character-width: INT16
ascent: INT16
descent: INT16
attributes: CARD16]
M.I.T. [Page 51]
^L
RFC 1013 June 1987
Errors: Font
Returns logical information about a font.
The draw-direction is essentially just a hint, indicating
whether most char-infos have a positive (LeftToRight) or a
negative (RightToLeft) character-width metric. The core
protocol defines no support for vertical text.
If min-byte1 and max-byte1 are both zero, then
min-char-or-byte2 specifies the linear character index
corresponding to the first elementb of char-infos, and
max-char-or-byte2 specifies the linear character index of
the last element. If either min-byte1 or max-byte1 are
non-zero, then both min-char-or-byte2 and
max-char-or-byte2 will be less than 256, and the two-byte
character index values corresponding to char-infos element
N (counting from 0) are
byte1 = N/D + min-byte1
byte2 = N\D + min-char-or-byte2
where
D = max-char-or-byte2 - min-char-or-byte2 + 1
/ = integer division
\ = integer modulus
If char-infos has length zero, then min-bounds and
max-bounds will be identical, and the effective
char-infos is one filled with this char-info, of length
L = D * (max-byte1 - min-byte1 + 1)
That is, all glyphs in the specified linear or matrix
range have the same information, as given by min-bounds
(and max-bounds). If all-chars-exist is True, then all
characters in char-infos have non-zero bounding boxes.
The default-char specifies the character that will be
used when an undefined or non-existent character is used.
Note that default-char is a CARD16 (not CHAR2B); for a
font using two-byte matrix format, the default-char has
byte1 in the most significant byte, and byte2 in the
least significant byte. If the default-char itself
specifies an undefined or non-existent character, then
no printing is performed for an undefined or non-existent
character.
The min-bounds and max-bounds contain the minimum and
maximum values of each individual CHARINFO component over
all char-infos (ignoring non-existent characters). The
bounding box of the font, i.e., the smallest rectangle
enclosing the shape obtained by superimposing all
characters at the same origin [x,y], has its upper left
coordinate at
M.I.T. [Page 52]
^L
RFC 1013 June 1987
[x + min-bounds.left-side-bearing, y - max-bounds.
ascent] with a width of
max-bounds.right-side-bearing - min-bounds.
left-side-bearing and a height of
max-bounds.ascent + max-bounds.descent
The font-ascent is the logical extent of the font above
the baseline, for determining line spacing. Specific
characters may extend beyond this. The font-descent is
the logical extent of the font at or below the baseline,
for determining line spacing. Specific characters may
extend beyond this. If the baseline is at Y-coordinate
y, then the logical extent of the font is inclusive
between the Y-coordinate values (y - font-ascent) and
(y + font-descent - 1).
A font is not guaranteed to have any properties. Whether
a property value is signed or unsigned must be derived
from a prior knowledge of the property. When possible,
fonts should have at least the following properties (note
that the trailing colon is not part of the name, and that
upper/lower case matters).
MIN_SPACE: CARD32
The minimum interword spacing, in pixels.
NORM_SPACE: CARD32
The normal interword spacing, in pixels.
MAX_SPACE: CARD32
The maximum interword spacing, in pixels
SUBSCRIPT_X: INT32
SUBSCRIPT_Y: INT32
Offsets from the character origin where subscripts
should begin, in pixels. If the origin is at [x,y],
then subscripts should begin at [x + SubscriptX,
y + SubscriptY].
UNDERLINE_POSITION: INT32
Y offset from the baseline to the top of an underline,
in pixels. If the baseline is Y-coordinate y, then
the top of the underline is at (y +
UnderlinePosition).
UNDERLINE_THICKNESS: CARD32
Thickness of the underline, in pixels.
STRIKEOUT_ASCENT: INT32
STRIKEOUT_DESCENT: INT32
Vertical extents for boxing or voiding characters, in
pixels. If the baseline is at Y-coordinate y, then
the top of the strikeout box is at (y -
StrikeoutAscent), and the height of the box is
(StrikeoutAscent + StrikeoutDescent).
ITALIC_ANGLE: INT32
The angle of characters in the font, in degrees
M.I.T. [Page 53]
^L
RFC 1013 June 1987
scaled by 64, relative to the three-oclock position
from the character origin, with positive indicating
counterclockwise motion (as in Arc requests).
X_HEIGHT: INT32
"1 ex" as in TeX, but expressed in units of pixels.
Often the height of lowercase x.
QUAD_WIDTH: INT32
"1 em" as in TeX, but expressed in units of pixels.
Often the width of the digits 0-9.
WEIGHT: CARD32
The weight or boldness of the font, expressed as a
value between 0 and 1000.
POINT_SIZE: CARD32
The point size, expressed in 1/10ths, of this font at
the ideal resolution. There are 72.27 points to the
inch.
RESOLUTION: CARD32
The number of pixels per point, expressed in 1/100ths,
at which this font was created.
For a character origin at [x,y], the bounding box of a
character,i.e., the smallest rectangle enclosing the
character's shape, described in terms of CHARINFO
components, is a rectangle with its upper left corner at
[x + left-side-bearing, y - ascent]
with a width of
right-side-bearing - left-side-bearing
and a height of
ascent + descent
and the origin for the next character is defined to be
[x + character-width, y]
Note that the baseline is logically viewed as being just
below non-descending characters (when descent is zero,
only pixels with Y-coordinates less than y are drawn),
and that the origin is logically viewed as being
coincident with the left edge of a non-kerned character
(when left-side-bearing is zero, no pixels with
X-coordinate less than x are drawn).
Note that CHARINFO metric values can be negative.
A non-existent character is represented with all CHARINFO
components zero.
The interpretation of the per-character attributes field
is undefined by the core protocol.
QueryTextExtents
font: FONT or GCONTEXT
items: STRING16
=>
M.I.T. [Page 54]
^L
RFC 1013 June 1987
draw-direction: {LeftToRight, RightToLeft}
font-ascent: INT16
font-descent: INT16
overall-ascent: INT16
overall-descent: INT16
overall-width: INT32
overall-left: INT32
overall-right: INT32
Errors: Font
Returns the logical extents of the specified string of
characters in the specified font. Draw-direction,
font-ascent, and font-descent are as described in
QueryFont. Overall-ascent is the maximum of the ascent
metrics of all characters in the string, and
overall-descent is the maximum of the descent metrics.
Overall-width is the sum of the character-width metrics
of all characters in the string. For each character in
the string, let W be the sum of the character-width
metrics of all characters preceding it in the string,
let L be the left-side-bearing metric of the character
plus W, and let R be the right-side-bearing metric of
the character plus W. Overall-left is the minimum L of
all characters in the string, and overall-right is the
maximum R.
For fonts defined with linear indexing rather than
two-byte matrix indexing, the server will interpret each
CHAR2B as a 16-bit number that has been transmitted most
significant byte first (i.e., byte1 of the CHAR2B is
taken as the most significant byte).
If the font has no defined default-char, then undefined
characters in the string are taken to have all zero
metrics.
ListFonts
pattern: STRING8
max-names: CARD16
=>
names: LISTofSTRING8
Returns a list of length at most max-names, of names of
fonts matching the pattern. The pattern should use the
ASCII encoding, and upper/lower case does not matter.
In the pattern, the '?' character (octal value 77) will
match any single character, and the character '*' (octal
value 52) will match any number of characters. The
returned names are in lower case.
M.I.T. [Page 55]
^L
RFC 1013 June 1987
ListFontsWithInfo
pattern: STRING8
max-names: CARD16
=>
fonts: LISTofFONTDATA
where
FONTDATA: [name: STRING8
info: FONTINFO]
FONTINFO: <same type definition as in QueryFont>
Like ListFonts, but also returns information about each
font. The information returned for each font is
identical to what QueryFont would return (except that the
per-character metrics are not returned).
SetFontPath
path: LISTofSTRING8
Errors: Value
Defines the search path for font lookup. There is only one
search path per server, not one per client. The
interpretation of the strings is operating system dependent,
but they are intended to specify directories to be
searched in the order listed.
Setting the path to the empty list restores the default
path defined for the server.
As a side-effect of executing this request, the server
is guaranteed to flush all cached information about fonts
for which there currently are no explicit resource ids
allocated.
The meaning of an error from this request is system
specific.
GetFontPath
=>
path: LISTofSTRING8
Returns the current search path for fonts.
CreatePixmap
pid: PIXMAP
drawable: DRAWABLE
depth: CARD8
width, height: CARD16
Errors: IDChoice, Drawable, Value, Alloc
M.I.T. [Page 56]
^L
RFC 1013 June 1987
Creates a pixmap, and assigns the identifier pid to it.
Width and height must be non-zero. Depth must be one of
the depths supported by root of the specified drawable.
The initial contents of the pixmap are undefined.
It is legal to pass an InputOnly window as a drawable to
this request.
FreePixmap
pixmap: PIXMAP
Errors: Pixmap
Deletes the association between the resource id and the
pixmap. The pixmap storage will be freed when no other
resource references it.
CreateGC
cid: GCONTEXT
drawable: DRAWABLE
value-mask: BITMASK
value-list: LISTofVALUE
Errors: IDChoice, Drawable, Pixmap, Font, Match, Value, Alloc
Creates a graphics context, and assigns the identifier cid to
it. The gcontext can be used with any destination drawable
having the same root and depth as the specified drawable.
The value-mask and value-list specify which components are to
be explicitly initialized. The context components are:
alu-function: {Clear, And, AndReverse, Copy, AndInverted,
Noop, Xor, Or, Nor, Equiv, Invert,
OrReverse, CopyInverted, OrInverted,
Nand, Set}
plane-mask: CARD32
foreground: CARD32
background: CARD32
line-width: CARD16
line-style: {Solid, OnOffDash, DoubleDash}
cap-style: {NotLast, Butt, Round, Projecting}
join-style: {Miter, Round, Bevel}
fill-style: {Solid, Tiled, OpaqueStippled, Stippled}
fill-rule: {EvenOdd, Winding}
arc-mode: {Chord, PieSlice}
tile: PIXMAP
stipple: PIXMAP
tile-stipple-x-origin: INT16
tile-stipple-y-origin: INT16
font: FONT
M.I.T. [Page 57]
^L
RFC 1013 June 1987
subwindow-mode: {ClipByChildren, IncludeInferiors}
graphics-exposures: BOOL
clip-x-origin: INT16
clip-y-origin: INT16
clip-mask: PIXMAP or None
dash-offset: CARD16
dash-list: CARD8
In graphics operations, given a source and destination pixel,
the result is computed bitwise on corresponding bits of the
pixels. That is, a boolean operation is performed in each
bit plane. The plane-mask restricts the operation to a subset
of planes. That is, the result is
((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))
Range checking is not performed on the values for foreground,
background, or plane-mask; they are simply truncated to the
appropriate number of bits.
The meanings of the alu-functions are:
Clear 0
And src AND dst
AndReverse src AND (NOT dst)
Copy src
AndInverted (NOT src) AND dst
NoOp dst
Xor src XOR dst
Or src OR dst
Nor (NOT src) AND (NOT dst)
Equiv (NOT src) XOR dst
Invert NOT dst
OrReverse src OR (NOT dst)
CopyInverted NOT src
OrInverted (NOT src) OR dst
NAnd (NOT src) OR (NOT dst)
Set 1
Line-width is measured in pixels and can be greater than or
equal to one (a "wide" line) or the special value zero (a
"thin" line).
Wide lines are drawn centered on the path described by the
graphics request. Unless otherwise specified by the join or
cap style, the bounding box of a wide line with endpoints
[x1, y1], [x2, y2], and width w is a rectangle with vertices
at the following real coordinates:
[x1-(w*sn/2), y1+(w*cs/2)], [x1+(w*sn/2), y1-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]
M.I.T. [Page 58]
^L
RFC 1013 June 1987
where sn is the sine of the angle of the line and cs is the
cosine of the angle of the line. A pixel is part of the line
(and hence drawn) if the center of the pixel is fully inside
the bounding box (which is viewed as having infinitely thin
edges). If the center of the pixel is exactly on the
bounding box, it is part of the line if and only if the
interior is immediately to its right (x increasing
direction). Pixels with centers on a horizontal edge are a
special case and are part of the line if and only if the
interior is immediately below (y increasing direction).
Note that this description is a mathematical model
describing the pixels that are drawn for a wide line and
does not imply that trigonometry is required to implement
such a model. Real or fixed point arithmetic is
recommended for computing the corners of the line endpoints
for lines greater than one pixel in width.
Thin lines (zero line-width) are "one pixel wide" lines drawn
using an unspecified, device dependent algorithm (for
example, Bresenham). There are only two constraints on this
algorithm. First, if a line is drawn unclipped from [x1,y1]
to [x2,y2] and another line is drawn unclipped from [x1+dx,
y1+dy] to [x2+dx,y2+dy], then a point [x,y] is touched by
drawing the first line if and only if the point [x+dx,y+dy]
is touched by drawing the second line. Second, the effective
set of points comprising a line cannot be affected by
clipping; that is, a point is touched in a clipped line if
and only if the point lies inside the clipping region and
the point would be touched by the line when drawn unclipped.
Note that a wide line drawn from [x1,y1] to [x2,y2] always
draws the same pixels as a wide line drawn from [x2,y2] to
[x1,y1], not counting cap and join styles, but this property
is not guaranteed for thin lines. Also note that "jags" in
adjacent wide lines will always line up properly, but this
property is not guaranteed for thin lines. A line-width of
zero differs from a line-width of one in which pixels are
drawn. In general, drawing a thin line will be faster than
drawing a wide line of width one, but thin lines may not mix
well aesthetically desirable to obtain precise and uniform
results across all displays, a client should always use a
line-width of one, rather than a line-width of zero.
The line-style defines which segments of a line are drawn:
Solid: the full path of the line is drawn
DoubleDash: the full path of the line is drawn, but the
segments defined by the even dashes are
filled differently than the segments defined
by the odd dashes (see fill-style)
OnOffDash: only the segments defined by the even dashes
are drawn, and cap-style applies to each
M.I.T. [Page 59]
^L
RFC 1013 June 1987
individual segment (except NotLast is treated
as Butt for internal caps)
The cap-style defines how the endpoints of a path are drawn:
NotLast: equivalent to Butt, except that for a
line-width of zero or one the final endpoint is
not drawn
Butt: square at the endpoint, with no projection beyond
Round: a circular arc with diameter equal to the
line-width, centered on the endpoint; equivalent
to Butt for line-width zero or one
Projecting: square at the end, but the path continues
beyond the endpoint for a distance equal to
half the line-width; equivalent to Butt for
line-width zero or one
The join-style defines how corners are drawn for wide lines:
Miter: the outer edges of the two lines extend to meet at
an angle
Round: a circular arc with diameter equal to the
line-width, centered on the joinpoint
Bevel: Butt endpoint styles, and then the triangular
"notch" filled
The tile/stipple and clip origins are interpreted relative to
the origin of whatever destination drawable is specified in a
graphics request.
The tile pixmap must have the same root and depth as the
gcontext (else a Match error). The stipple pixmap must have
depth one, and must have the same root as the gcontext (else
a Match error). For stipple operations, the stipple pattern
is tiled in a single plane, and acts as an additional clip
mask to be ANDed with the clip-mask. Any size pixmap can be
used for tiling or stippling, although some sizes may be
faster to use than others.
The fill-style defines the contents of the source for line,
text, and fill requests. For all text and fill requests
(PolyText8, PolyText16, PolyFillRectangle, FillPoly,
PolyFillArc), for line requests (PolyLine, PolySegment,
PolyRectangle, PolyArc) with line-style Solid, and for the
even dashes for line requests with line-style OnOffDash or
DoubleDash:
Solid: foreground
Tiled: tile
OpaqueStippled: a tile with the same width and height as
stipple, but with background everywhere
stipple has a zero and with foreground
everywhere stipple has a one
Stippled: foreground masked by stipple
M.I.T. [Page 60]
^L
RFC 1013 June 1987
For the odd dashes for line requests with line-style
DoubleDash:
Solid: background
Tiled: same as for even dashes
OpaqueStippled: same as for even dashes
Stippled: background masked by stipple
The dash-list value allowed here is actually a simplified
form of the more general patterns that can be set with
SetDashes.Specifying a value of N here is equivalent to
specifying the two element list [N, N] in SetDashes. The
value must be non-zero. The meaning of dash-offset and
dash-list are explained in the SetDashes request.
The clip-mask restricts writes to the destination drawable;
only pixels where the clip-mask has a one bit are drawn. It
affects all graphics requests. The clip-mask does not clip
sources. The clip-mask origin is interpreted relative to the
origin of whatever destination drawable is specified in a
graphics request. If a pixmap is specified as the clip-mask,
it must have depth one and have the same root as the gcontext
(else a Match error). The clip-mask can also be set with the
SetClipRectangles request.
For ClipByChildren, both source and destination windows are
additionally clipped by all viewable InputOutput children.
For IncludeInferiors, neither source nor destination window
is clipped by inferiors; this will result in drawing through
subwindow boundaries. The use of IncludeInferiors on a window
of one depth with mapped inferiors of differing depth is not
illegal, but the semantics isundefined by the core protocol.
The fill-rule defines what pixels are inside (i.e., are
drawn) for paths given in FillPoly requests. EvenOdd means
a point is inside if an infinite ray with the point as origin
crosses the path an odd number of times. For Winding, a
point is inside if an infinite ray with the point as origin
crosses an unequal number of clockwise and counterclockwise
directed path segments. For both rules, a "point" is
infinitely small, and the path is an infinitely thin line.
A pixel is inside if the center point of the pixel is inside
and the center point is not on the boundary. If the center
point is on the boundary, the pixel is inside if and only if
the polygon interior is immediately to its right (x
increasing direction). Pixels with centers along a
horizontal edge are a special case and are inside if and
only if the polygon interior is immediately below (y
increasing direction).
The arc-mode controls filling in the PolyFillArc request.
M.I.T. [Page 61]
^L
RFC 1013 June 1987
The graphics-exposures flag controls GraphicsExposure event
generation for CopyArea and CopyPlane requests (and any
similar requests defined by extensions).
The default component values are:
function: Copy
plane-mask: all ones
foreground: 0
background: 1
line-width: 0
line-style: Solid
cap-style: Butt
join-style: Miter
fill-style: Solid
full-rule: EvenOdd
arc-mode: PieSlice
tile: pixmap of unspecified size filled with forground
pixell (i.e., client specified pixel if any,
else 0)
stipple: pixmap of unspecified size filled with ones
tile-stipple-x-origin: 0
tile-stipple-y-origin: 0
font: <implementation dependent>
subwindow-mode: ClipByChildren
graphics-exposures: True
clip-x-origin: 0
clip-y-origin: 0
clip-mask: None
dash-offset: 0
dash-list: 4 (i.e., the list [4, 4])
Storing a pixmap in a gcontext might or might not result in a
copy being made. If the pixmap is later used as the
destination for a graphics request, the change might or might
not be reflected in the gcontext. If the pixmap is used
simultaneously in a graphics request as both a destination
and as a tile or stipple. the results are not defined.
It is quite likely that some amount of gcontext information
will be cached in display hardware, and that such hardware
can only cache a small number of gcontexts. Given the number
and complexity of components, clients should view switching
between gcontexts with nearly identical state as
significantly more expensive than making minor changes to a
single gcontext.
ChangeGC
gc: GCONTEXT
value-mask: BITMASK
value-list: LISTofVALUE
M.I.T. [Page 62]
^L
RFC 1013 June 1987
Errors: GContext, Pixmap, Font, Match, Value, Alloc
Changes components in gc. The value-mask and value-list
specify which components are to be changed. The values and
restrictions are the same as for CreateGC.
Changing the clip-mask also overrides any previous
SetClipRectangles request on the context. Changing the
dash-offset or dash-list overrides any previous SetDashes
request on the context.
The order in which components are verified and altered is
server dependent. If an error is generated, a subset of the
components may have been altered.
CopyGC
src-gc, dst-gc: GCONTEXT
value-mask: BITMASK
Errors: GContext, Value, Match, Alloc
Copies components from src-gc to dst-gc. The value-mask
specifies which components to copy, as for CreateGC. The
two gcontexts must have the same root and the same depth
(else a Match error).
SetDashes
gc: GCONTEXT
dash-offset: CARD16
dash-list: LISTofCARD8
Errors: GContext, Value, Alloc
Sets the dash-offset and dash-list in gc for dashed line
styles. The initial and alternating elements of the
dash-list are the "even" dashes, the others are the
"odd" dashes. All of the elements must be non-zero.
The dash-offset defines the phase of the pattern,
specifying how many pixels into the dash-list the pattern
should actually begin in any single graphics request.
Dashing is continuous through path segments combined with
a join-style, but is reset to the dash-offset each time a
cap-style is applied.
SetClipRectangles
gc: GCONTEXT
clip-x-origin, clip-y-origin: INT16
rectangles: LISTofRECTANGLE
ordering: {UnSorted, YSorted, YXSorted, YXBanded}
Errors: GContext, Value, Alloc, Match
M.I.T. [Page 63]
^L
RFC 1013 June 1987
Changes clip-mask in gc to the specified list of rectangles
and sets the clip origin. Output will be clipped to remain
contained within the rectangles. The clip origin is
interpreted relative to the origin of whatever destination
drawable is specified in a graphics request. The rectangle
coordinates are interpreted relative to the clip origin.
The rectangles should be non-intersecting, or graphics
results will be undefined.
If known by the client, ordering relations on the rectangles
can be specified with the ordering argument; this may provide
faster operation by the server. If an incorrect ordering is
specified, the server may generate a Match error, but is not
required to do so; if no error is generated, the graphics
results are undefined. UnSorted means the rectangles are in
arbitrary order. YSorted means that the rectangles are
non-decreasing in their Y origin. YXSorted additionally
constrains YSorted order in that all rectangles with an equal
Y origin are non-decreasing in their X origin. YXBanded
additionally constrains YXSorted by requiring that for every
possible Y scanline, all rectangles that include that
scanline have identical Y origins and Y extents.
FreeGC
gc: GCONTEXT
Errors: GContext
Deletes the association between the resource id and the
gcontext, and destroys the gcontext.
ClearToBackground
window: WINDOW
x, y: INT16
width, height: CARD16
exposures: BOOL
Errors: Window, Value, Match
The x and y coordinates are relative to the window's origin,
and specify the upper left corner of the rectangle. If width
is zero, it is replaced with the current width of the window
minus x. If height is zero, it is replaced with the current
height of the window minus y. If the window has a defined
background tile, the rectangle is tiled with a plane-mask of
all ones and alu-function of Copy. If the window has
background None, the contents of the window are not changed.
In eithercase, if exposures is True, then one or more
exposure events are generated for regions of the rectangle
that are eithervisible or are being retained in a backing
store.
M.I.T. [Page 64]
^L
RFC 1013 June 1987
It is a Match error to use an InputOnly window in this
request.
CopyArea
src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x, src-y: INT16
width, height: CARD16
dst-x, dst-y: INT16
Errors: Drawable, GContext, Match
Combines the specified rectangle of src-drawable with the
specified rectangle of dst-drawable. The src-x and src-y
coordinates are relative to src-drawable's origin, dst-x and
dst-y are relative to dst-drawable's origin, each pair
specifying the upper left corner of the rectangle.
Src-drawable must have the same root and the same depth as
dst-drawable (else a Match error).
If regions of the source rectangle are obscured and have not
been retained by the server, or if regions outside the
boundaries of the source drawable are specified, then the
following occurs. If the dst-drawable is a window with a
background of other than None, the corresponding regions of
the destination are tiled (with plane-mask of ones and
alu-function Copy) with that background. Regardless, if
graphics-exposures in gc is True, GraphicsExposure events
for the corresponding desitnation regions are generated.
If graphics-exposures if True but no regions are exposed,
then a NoExposure event is generated.
GC components: alu-function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask
CopyPlane
scr-drawable, dst-drawable: DRAWABLE
GC:Gcontext
src-x, src-y: INT16
width, height: CARD16
dst-x, dst-y: INT16
bit-plane: CARD32
Errors: Drawable, GContext, Value, Match
Src-drawable must have the same root as dst-srawable (else
a match error), but need not have the same depth.
Bit-plane must have exactly one bit set. Effectively, that
plane of the src-drawable and the fore-ground/background
pixels in gc are combined to form a pixmap of the same
depth as dst-drawable, and the equivalent of a CopyArea is
M.I.T. [Page 65]
^L
RFC 1013 June 1987
performed, with all the same exposure semantics.
GC components: alu-function, plan-mask, foreground,
background, subwindow-mode, graphics-exposures,
clip-x-origin, clip-y-origin, clip-mask
PolyPoint
drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: {Origin, Previous}
points: LISTofPOINT
Errors: Drawable, GContext, Value, Match
Combines the foreground pixel in gc with the pixel at each
point in the drawable. The points are drawn in the order
listed.
The first point is always relative to the drawable's origin;
the rest are relative either to that origin or the previous
point, depending on the coordinate-mode.
GCcomponents: alu-function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask
PolyLine
drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: {Origin, Previous}
points: LISTofPOINT
Errors: Drawable, GContext, Value, Match
Draws lines between each pair of points (point[i], point
[i+1]). The lines are drawn in the order listed. The lines
join correctly at all intermediate points, and if the first
and last points coincide, the first and last lines also join
correctly.
For any given line, no pixel is drawn more than once. If
thin (zero line-width) lines intersect, the intersecting
pixels are drawn multiple times. If wide lines intersect,
the intersecting pixels are drawn only once, as though the
entire PolyLine were a single filled shape.
The first point is always relative to the drawable's origin;
the rest are relative either to that origin or the previous
point, depending on the coordinate-mode.
GC components: alu-function, plane-mask, line-width,
line-style, cap-style, join-style, fill-style,
M.I.T. [Page 66]
^L
RFC 1013 June 1987
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, tile-stipple-y-origin,
dash-offset,dash-list
PolySegment
drawable: DRAWABLE
gc: GCONTEXT
segments: LISTofSEGMENT
where SEGMENT: [x1, y1, x2, y2: INT16]
Errors: Drawable, GContext, Match
For each segment, draws a line between [x1, y1] and [x2, y2].
The lines are drawn in the order listed. No joining is
performed at coincident end points. For any given line, no
pixel is drawn more than once. If lines intersect, the
intersecting pixels are drawn multiple times.
GC components: alu-function, plane-mask, line-width,
line-style, cap-style, fill-style, subwindow-mode,
clip-x-origin, clip-y-origin,clip-mask
GC mode-dependent components: foreground, background, tile,
stipple,tile-stipple-x-origin, tile-stipple-y-origin,
dash-offset, dash-list
PolyRectangle
drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE
Errors: Drawable, GContext, Match
Draws the outlines of the specified rectangles, as if a
five-point PolyLine were specified for each rectangle. The x
and y coordinates of each rectangle are relative to the
drawable's origin, and define the upper left corner of the
rectangle.
The rectangles are drawn in the order listed. For any given
rectangle, no pixel is drawn more than once. If rectangles
intersect, the intersecting pixels are drawn multiple times.
GC components: alu-function, plane-mask, line-width,
line-style, join-style, fill-style, subwindow-mode,
clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background, tile,
M.I.T. [Page 67]
^L
RFC 1013 June 1987
stipple, tile-stipple-x-origin, tile-stipple-y-origin,
dash-offset, dash-list
PolyArc
drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC
Errors: Drawable, GContext, Match
Draws circular or elliptical arcs. Each arc is specified by
a rectangle and two angles. The x and y coordinates are
relative to the origin of the drawable, and define the upper
left corner of the rectangle. The center of the circle or
ellipse is the center of the rectangle, and the major and
minor axes are specified by the width and height,
respectively. The angles are signed integers in degrees
scaled by 64, with positive indicating counterclockwise
motion and negative indicating clockwise motion. The start
of the arc is specified by angle1 relative to the
three-oclock position from the center, and the path and
extent of the arc is specified by angle2 relative to the
start of the arc. If the magnitude of angle2 is greater
than 360 degrees, it is truncated to 360 degrees.
The arcs are drawn in the order listed. If the last point in
one arc coincides with the first point in the following arc,
the two arcs will join correctly. If the first point in the
first arc coincides with the last point in the last arc, the
two arcs will join correctly. For any given arc, no pixel is
drawn more than once. If two arcs join correctly and the
line-width is greater than zero and the arcs intersect, no
pixel is drawn more than once. Otherwise, the intersecting
pixels of intersecting arcs are drawn multiple times.
Specifying an arc with one endpoint and a clockwise extent
draws the same pixels as specifying the other endpoint and an
equivalent counterclockwise extent, except as it affects
joins.
By specifying one axis to be zero, a horizontal or vertical
line can be drawn.
Angles are computed based solely on the coordinate system,
ignoring the aspect ratio.
GC components: alu-function, plane-mask, line-width,
line-style, cap-style, join-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background, tile,
stipple,tile-stipple-x-origin, tile-stipple-y-origin,
M.I.T. [Page 68]
^L
RFC 1013 June 1987
dash-offset, dash-list
FillPoly
drawable: DRAWABLE
gc: GCONTEXT
shape: {Complex, Nonconvex, Convex}
coordinate-mode: {Origin, Previous}
points: LISTofPOINT
Errors: Drawable, GContext, Match, Value
Fills the region closed by the specified path. The path is
closed automatically if the last point in the list does not
coincide with the first point. No pixel of the region is
drawn more than once.
The first point is always relative to the drawable's origin;
the rest are relative either to that origin or the previous
point, depending on the coordinate-mode.
The shape parameter may be used by the server to improve
performance. Complex means the path may self-intersect.
Nonconvex means the path does not self-intersect, but the
shape is not wholly convex. If known by the client,
specifying Nonconvex over Complex may improve performance. If
Nonconvex is specified for a self-intersecting path, the
graphics results are undefined.
Convex means the path is wholly convex. If known by the
client, specifying Convex can improve performance. If Convex
is specified for a path that is not convex, the graphics
results are undefined.
GC components: alu-function, plane-mask, fill-style,
fill-rule, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask
GC mode-dependent components: foreground, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin
PolyFillRectangle
drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE
Errors: Drawable, GContext, Match
Fills the specified rectangles. The x and y coordinates of
each rectangle are relative to the drawable's origin, and
define the upper left corner of the rectangle.
M.I.T. [Page 69]
^L
RFC 1013 June 1987
The rectangles are drawn in the order listed. For any given
rectangle, no pixel is drawn more than once. If rectangles
intersect, the intersecting pixels are drawn multiple times.
GC components: alu-function, plane-mask, fill-style,
fill-rule, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask
GC mode-dependent components: foreground, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin
PolyFillArc
drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC
Errors: Drawable, GContext, Match
For each arc, fills the region closed by the specified arc
and one or two line segments, depending on the arc-mode. For
Chord, the single line segment joining the endpoints of the
arc is used. For PieSlice, the two line segments joining the
endpoints of the arc with the center point are used. The
arcs are as specified in the PolyArc request.
The arcs are filled in the order listed. For any given arc,
no pixel is drawn more than once. If regions intersect, the
intersecting pixels are drawn multiple times.
GC components: alu-function, plane-mask, fill-style,
fill-rule, arc-mode, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask
GC mode-dependent components: foreground, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin
PutImage
drawable: DRAWABLE
gc: GCONTEXT
depth: CARD8
width, height: CARD16
dst-x, dst-y: INT16
left-pad: CARD8
format: {Bitmap, XYPixmap, ZPixmap}
bits: <bits>
Errors: Drawable, GContext, Match, Value, Alloc
Combines an image with a rectangle of the drawable. The
dst-x and dst-y coordinates are relative to the drawable's
origin.
M.I.T. [Page 70]
^L
RFC 1013 June 1987
If Bitmap format is used, then depth must be one (else a
Match error) and the image must be in XYFormat. The
foreground pixel in gc defines the source for one bits in the
image, and the background pixel defines the source for the
zero bits.
For XYPixmap and ZPixmap, depth must match the depth of
drawable (else a Match error). For XYPixmap, the image must
be sent in XYFormat. For ZPixmap, the image must be sent in
the ZFormat defined for the given depth.
The left-pad must be zero for ZPixmap format. For Bitmap and
XYPixmap format, left-pad must be less than
bitmap-format-scanline-pad (as given in the server connection
setup info). The first left-pad bits in every scanline are
to be ignored by the server; the actual image begins that
many bits into the data. The width argument defines the width
of the actual image, and does not include left-pad.
GC components: alu-function, plane-mask, subwindow-mode,
clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background
GetImage
drawable: DRAWABLE
x, y: INT16
width, height: CARD16
plane-mask: CARD32
format: {XYFormat, ZFormat}
=>
depth: CARD8
visual: VISUALID or None
bits: <bits>
Errors: Drawable, Value, Match
Returns the contents of the given rectangle of the drawable
in the given format. The x and y coordinates are relative to
the drawable's origin, and define the upper left corner of
the rectangle. If XYFormat is specified, only the bit planes
specified in plane-mask are transmitted. If ZFormat is
specified, then bits in all planes not specified in
plane-mask transmitted as zero. The returned depth specifies
the number of bits per pixel of the image. If the drawable
is a window, its visual type is returned; if the drawable
is a pixmap,the visual is None.
If the drawable is a window, the window must be mapped, and
it must be the case that, if there were no inferiors or
overlapping windows, the specified rectangle of the window
M.I.T. [Page 71]
^L
RFC 1013 June 1987
would be fully visible on the screen will include any
visible portions of inferiors or overlapping windows
contained in the rectangle, but if these windows are of
different depth than the specified window, the contents
returned for them are not defined by the core protocol.
PolyText8
drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM8
where
TEXTITEM8: TEXTELT8 or FONT
TEXTELT8: [delta: INT8
string: STRING8]
Errors: Drawable, GContext, Match, Font
The x and y coordinates are relative to drawable's origin,
and specify the baseline starting position (the initial
character origin). Each text item is processed in turn. A
font item causes the font to be stored in gc, and to be
used for subsequent text; switching among fonts with
differing draw-directions is permitted. A text element
delta specifies an additional change in the position along
the x axis before the string is drawn; the delta is always
added to the character origin (not added or subtracted based
on the draw-direction of the current font). Each character
image, as defined by the a font in gc, is treated as an
additional mask for a fill operation on the drawable.
All contained FONTs are always transmitted most significant
byte first.
If a Font error is generated for an item, the previous items
may have been drawn.
For fonts defined with two-byte matrix indexing, each STRING8
byte is interpreted as a byte2 value of a CHAR2B with a byte1
value of zero.
GC components: alu-function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin
PolyText16
drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
M.I.T. [Page 72]
^L
RFC 1013 June 1987
items: LISTofTEXTITEM16
where
TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [delta-x: INT8
string: STRING16]
Errors: Drawable, GContext, Match, Font
Just like PolyText8, except two-byte (or 16-bit) characters
are used. For fonts defined with linear indexing rather than
two-byte matrix indexing, the server will interpret each
CHAR2B as a 16-bit number that has been transmitted most
significant byte first (i.e., byte1 of the CHAR2B is taken
as the most significant byte).
ImageText8
drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING8
Errors: Drawable, GContext, Match
The x and y coordinates are relative to drawable's origin,
and specify the baseline starting position (the initial
character origin). The effect is to first fill a
destination rectangle with the background pixel defined in
gc, and then paint the text with the foreground pixel.
The upper left corner of the filled rectangle is at
[x + overall-left, y - font-ascent]
the width is
overall-right - overall-left
and the height is
font-ascent + font-descent
where overall-left, overall-right, font-ascent, and
as font-descent are would be returned by a QueryTextExtents
call using gc and string.
The alu-function and fill-style defined in gc are ignored for
this request; the effective alu-function is Copy and the
effective fill-style Solid.
For fonts defined with two-byte matrix indexing, each STRING8
byte is interpreted as a byte2 value of a CHAR2B with a byte1
value of zero.
GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask
M.I.T. [Page 73]
^L
RFC 1013 June 1987
ImageText16
drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING16
Errors: Drawable, GContext, Match
Just like ImageText8, except two-byte (or 16-bit) characters
are used. For fonts defined with linear indexing rather than
two-byte matrix indexing, the server will interpret each
CHAR2B as a 16-bit number that has been transmitted most
significant byte first (i.e., byte1 of the CHAR2B is taken as
the most significant byte).
CreateColormap
mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: {None, All}
Errors: IDChoice, Window, Value, Match, Alloc
Creates a colormap of the specified visual type for the
screen on which the window resides, and associates the
identifier mid with it. The visual type must be one
supported by the screen, and cannot be of class TrueColor
(else a Match error). The initial values of the colormap
entries are undefined for classes GrayScale, PseudoColor,
and DirectColor; for StaticGray, StaticColor, and
TrueColor, the entries will have defined values, but those
values are specific to the visual and are not defined by
the core protocol. For StaticGray, StaticColor, and
TrueColor, alloc must be specified as None (else a Match
error). For the other classes, if alloc is None, the
colormap initially has no allocated entries, and clients
can allocate entries. If alloc is All, then the entire
colormap is "allocated" writable, but entries cannot be
freed with FreeColors, and no relationships among entries
is defined; the client must understand whether the colormap
is GrayScale, PseudoColor, or DirectColor to know how to
store into entries.
FreeColormap
cmap: COLORMAP
Errors: Colormap
Deletes the association between the resource id and the
colormap. If the colormap is an installed map for a screen,
it is uninstalled (see UninstallColormap). If the colormap
M.I.T. [Page 74]
^L
RFC 1013 June 1987
is defined as the colormap for a window (via CreateWindow or
ChangeWindowAttributes), the colormap for the window is
changed to None, and a ColormapNotify event is generated.The
colors displayed for a window with a colormap of None are not
defined by the protocol.
Has no effect on a default colormap for a screen.
CopyColormapAndFree
mid, src-cmap: COLORMAP
Errors: Colormap, Alloc
Creates a colormap for the same screen as src-cmap, and
associates identifier mid with it. Moves all of the client's
existing allocations from src-cmap to the new colormap, and
frees those entries in src-cmap. Values in other entries in
the new colormap are undefined.
InstallColormap
cmap: COLORMAP
Errors: Colormap
Makes this colormap an installed map for its screen. All
windows associated with this colormap immediately display
with true colors. As a side-effect, previously installed
colormaps may be uninstalled, and other windows may display
with false colors. Which colormaps get uninstalled is
server dependent, except that it is guaranteed that the
M-1 most recently client-installed colormaps will not be
uninstalled, where M is the min-installed-maps specified
for the screen in the connection setup.
If cmap is not already an installed map, a ColormapNotify
event is generated on every window having cmap as an
attribute. If a colormap is uninstalled as a result of
the install, a ColormapNotify event is generated on every
window having that colormap as an attribute.
Initially only the default colormap for a screen is
installed.
UninstallColormap
cmap: COLORMAP
Errors: Colormap
If cmap is an installed map for its screen, one or more
colormaps are installed in its place; the choice is server
M.I.T. [Page 75]
^L
RFC 1013 June 1987
dependent, pexcept that if the screen's default colormap is
not installed and can be installed (without forcing other
colormaps out), then the default colormap is used.
If cmap is an installed map, a ColormapNotify event is
generated on every window having this colormap as an
attribute. If a colormap is installed as a result of the
uninstall, a ColormapNotify event is generated on every
window having that colormap as an attribute.
ListInstalledColormaps
window: WINDOW
=>
cmaps: LISTofCOLORMAP
Errors: Window
Returns a list of the currently installed colormaps for the
screen of the specified window.
AllocColor
cmap: COLORMAP
red, green, blue: CARD16
=>
pixel: CARD32
red, green, blue: CARD16
Errors: Colormap, Alloc
Allocates a read-only colormap entry corresponding to the
closest RGB values provided by the hardware. Returns the
pixel and the RGB values actually used.
AllocNamedColor
cmap: COLORMAP
name: STRING8
=>
pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
screen-red, screen-green, screen-blue: CARD16
Errors: Colormap, Name, Alloc
Looks up the named color with respect to the screen
associated with the colormap, then does an AllocColor on
cmap. The name should use the ASCII encoding, and
upper/lower case does not matter. The exact RGB values
specify the "true" values for the color, and the screen
values specify the values actually used in the colormap.
M.I.T. [Page 76]
^L
RFC 1013 June 1987
AllocColorCells
cmap: COLORMAP
colors, planes: CARD16
contiguous: BOOL
=>
pixels, masks: LISTofCARD32
Errors: Colormap, Value, Alloc
The number of colors must be positive, the number of planes
non-negative. If C colors and P planes are requested, then C
pixels and P masks are returned. No mask will have any bits
in common with any other mask, or with any of the pixels. By
ORing together masks and pixels, C*(2^P) distinct pixels can
be produced; all of these are allocated writable by the
request. For GrayScale or PseudoColor, each mask will have
exactly one bit, and for DirectColor each will have exactly
three bits. If contiguous is True, then if all masks are
ORed together, a single contiguous set of bits will be formed
for GrayScale or PseudoColor, and three contiguous sets of
bits (one within each pixel subfield) for DirectColor. The
RGB values of the allocated entries are undefined.
AllocColorPlanes
cmap: COLORMAP
colors, reds, greens, blues: CARD16
contiguous: BOOL
=>
pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32
Errors; Colormap, Value, Alloc
The number of colors must be positive, the reds, greens, and
blues non-negative. If C colors, R reds, G greens, and B
blues are requested, then C pixels are returned, and the
masks have R, G, and B bits set respectively. If contiguous
is True, then each mask will have a contiguous set of bits.
No mask will have any bits in common with any other mask, or
with any of the pixels. For DirectColor, each mask will lie
within the corresponding pixel subfield. By ORing together
subsets of masks with pixels, C*(2^(R+G+B)) distinct pixels
can be produced; all of these are allocated by the request.
The initial RGB values of the allocated entries are
undefined. In the colormap there are only C*(2^R)
independent red entries, C*(2^G) independent green entries,
and C*(2^B) independent blue entries. This is true even for
PseudoColor. When the colormap entry for a pixel value is
changed using StoreColors or StoreNamedColor, the pixel is
decomposed according to the masks and the corresponding
independent entries are updated.
M.I.T. [Page 77]
^L
RFC 1013 June 1987
FreeColors
cmap: COLORMAP
pixels: LISTofCARD32
plane-mask: CARD32
Errors: Colormap, Access, Value
The plane-mask should not have any bits in common with any of
the pixels. The set of all pixels is produced by ORing
together subsets of plane-mask with the pixels. The request
frees all of these pixels. Note that freeing an individual
pixel obtained from AllocColorPlanes may not actually allow
it to be reused until all of its "related" pixels are also
freed.
All specified pixels that are allocated by the client in
cmap are freed, even if one or more pixels produce an error.
A Value error is generated if a specified pixel is not a
valid index into cmap, and an Access error is generated if a
specified pixel is not allocated by the client (i.e., is
unallocated or is only allocated by another client). If more
than one pixel is in error, which one is reported is
arbitrary.
StoreColors
cmap: COLORMAP
items: LISTofCOLORITEM
where
COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]
Errors: Colormap, Access, Value
Changes the colormap entries of the specified pixels. The
do-red, do-green, and do-blue fields indicate which
components should actually be changed. If the colormap is an
installed map for its screen, the changes are visible
immediately.
All specified pixels that are allocated writable in cmap (by
any client) are changed, even if one or more pixels produce
an error. A Value error is generated if a specified pixel is
not a valid index into cmap, and an Access error is generated
if a specified pixel is unallocated or is allocated
read-only. If more than one pixel is in error, which one is
reported is arbitrary.
StoreNamedColor
cmap: COLORMAP
M.I.T. [Page 78]
^L
RFC 1013 June 1987
pixel: CARD32
name: STRING8
do-red, do-green, do-blue: BOOL
Errors: Colormap, Name, Access, Value
Looks up the named color with respect to the screen
associated with cmap, then does a StoreColors in cmap. The
name should use the ASCII encoding, and upper/lower case
does not matter.
QueryColors
cmap: COLORMAP
pixels: LISTofCARD32
=>
colors: LISTofRGB
where
RGB: [red, green, blue: CARD16]
Errors: Colormap, Value
Returns the color values stored in cmap for the specified
pixels. The values returned for an unallocated entry are
undefined. A Value error is generated if a pixel is not a
valid index into cmap. If more than one pixel is in error,
which one is reported is arbitrary.
LookupColor
cmap: COLORMAP
name: STRING8
=>
exact-red, exact-green, exact-blue: CARD16
screen-red, screen-green, screen-blue: CARD16
Errors: Colormap, Name
Looks up the string name of a color with respect to the
screen associated with cmap, and returns both the exact the
color values and the closest values provided by the hardware.
The name should use the ASCII encoding, and upper/lower
case does not matter.
CreateCursor
cid: CURSOR
source: PIXMAP
mask: PIXMAP or None
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
x, y: CARD16
M.I.T. [Page 79]
^L
RFC 1013 June 1987
Errors: IDChoice, Bitmap, Match, Value, Alloc
Creates a cursor and associates identifier cid with it.
Foreground and background RGB values must be specified, even
if the server only has a monochrome screen. The foreground
is used for the one bits in the source, and the background is
used for the zero bits. Both source and mask (if specified)
must have depth one (else a Match error), but can have any
root. The mask pixmap defines the shape of the cursor; that
is, the one bits in the mask define which source pixels will
be displayed. If no mask is given, all pixels of the source
are displayed. The mask, if present, must be the same size
as source (else a Match error). The x and y coordinates
define the hotspot, relative to the source's origin, and must
be a point within the source (else a Match error).
The components of the cursor may be transformed arbitrarily
to meet display limitations.
The pixmaps can be freed immediately if no further explicit
references to them are to be made.
Subsequent drawing in the source or mask pixmap has an
undefined effect on the cursor; the server might or might
not make a copy of the pixmap.
CreateGlyphCursor
cid: CURSOR
source-font: FONT
mask-font: FONT or None
source-char, mask-char: CARD16
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
Errors: IDChoice, Font, Value, Alloc
Similar to CreateCursor, but the source and mask bitmaps are
obtained from the specified font glyphs. The mask font and
character are optional. The origin of the source glyph
defines the hotspot, and the mask is positioned such that
the origins are coincident. The source and mask need not
have the same bounding box metrics. If no mask is given,
all pixels of the source are displayed. Note that
source-char and mask-char are CARD16 (not CHAR2B); for
two-byte matrix fonts, the 16-bit value should be formed
with byte1 in the most significant byte and byte2 in the
least significant byte.
FreeCursor
cursor: CURSOR
M.I.T. [Page 80]
^L
RFC 1013 June 1987
Errors: Cursor
Deletes the association between the resource id and the
cursor. The cursor storage will be freed when no other
resource references it.
RecolorCursor
cursor: CURSOR
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
Errors: Cursor
Changes the color of a cursor. If the cursor is being
displayed on a screen, the change is visible immediately.
QueryBestSize
class: {Cursor, Tile, Stipple}
drawable: DRAWABLE
width, height: CARD16
=>
width, height: CARD16
Errors: Drawable, Value, Match
Returns the "best" size that is "closest" to the argument
size. For Cursor, this is the largest size that can be
fully displayed. For Tile, this is the size that can be
tiled "fastest". For Stipple, this is the size that can
be stippled "fastest".
For Cursor, the drawable indicates the desired screen. For
Tile and Stipple, the drawable indicates screen, and also
possibly window class and depth; an InputOnly window cannot
be used as the drawable for Tile or Stipple (else a Match
error).
QueryExtension
name: STRING8
=>
present: BOOL
major-opcode: CARD8
first-event: CARD8
first-error: CARD8
Determines if the named extension is present. If so, the
major opcode for the extension is returned, if it has one,
otherwise zero is returned. Any minor opcode and the request
formats are specific to the extension. If the extension
involves additional event types, the base event type code is
returned, otherwise zero is returned. The format of the
M.I.T. [Page 81]
^L
RFC 1013 June 1987
events is specific to the extension. If the extension
involves additional error codes, the base error code is
returned, otherwise zero is returned. The format of
additional data in the errors is specific to the extension.
The extension name should be in the ASCII encoding, and
upper/lower case matters.
ListExtensions
=>
names: LISTofSTRING8
Returns a list of all extensions supported by the server.
SetKeyboardMapping
map: LISTofCARD8
=>
status: {Success, Busy}
Errors: Value
Sets the mapping of the keyboard. Elements of the list are
indexed starting from one. The list must be of length 255.
The index is a "core" keycode, and the element of the list
defines the "effective" keycode.
A zero element disables a key, no elements can have values 1
through 7, and no two elements (with index larger than 7) can
have the same non-zero value. If the keyboard does not
really generate a given keycode, specifying a non-zero value
for that core keycode has no effect.
Elements 6 and 7 of the map must always be zero. The first
five elements are special: they specify the keycodes (if
any) that correspond to the Mod1 through Mod5 modifiers.
Setting one of these entries to zero disables use of that
modifier bit. No two of the firstfive elements can have the
same non-zero value.
A server can impose restrictions on how keyboards get
remapped, e.g., if certain keys do not generate up
transitions in hardware.
If any of the keys or modifiers to be altered are currently
in the down state, the status reply is Busy and the mapping
is not changed.
GetKeyboardMapping
=>
map: LISTofCARD8
M.I.T. [Page 82]
^L
RFC 1013 June 1987
Errors: Value
Returns the current mapping of the keyboard. Elements of the
list are indexed starting from one. The length of the list
is 255.
The nominal mapping for a keyboard is almost the identity
mapping, except that map[i]=0 for keycodes that have no
corresponding physical key, and the first five entries
indicate the keycodes (if any) corresponding to the Mod1
through Mod5 modifier bits.
ChangeKeyboardControl
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Match Value
Controls various aspects of the keyboard. The value-mask and
value-list specify which controls are to be changed. The
possible values are:
key-click-percent: INT8
bell-percent: INT8
bell-pitch: INT16
bell-duration: INT16
led: CARD8
led-mode: {On, Off}
key: KEYCODE
auto-repeat-mode: {On, Off, Default}
Key-click-percent sets the volume for key clicks between 0
(off) and 100 (loud) inclusive, if possible. Setting to -1
restores the default. Other negative values generate a Value
error.
Bell-percent sets the base volume for the bell between 0
(off) and 100 (loud) inclusive, if possible. Setting to -1
restores the default. Other negative values generate a Value
error.
Bell-pitch sets the pitch (specified in Hz) of the bell, if
possible. Setting to -1 restores the default. Other
negative values generate a Value error.
Bell-duration sets the duration (specified in milliseconds)
of the bell, if possible. Setting to -1 restores the
default. Other negative values generate a Value error.
If both led-mode and led are specified, then the state of
that LED is changed, if possible. If only led-mode is
M.I.T. [Page 83]
^L
RFC 1013 June 1987
specified, then the state of all LEDs are changed, if
possible. At most 32 LEDs are supported, numbered from one.
It is a Match error if an led is specified without an
led-mode.
If both auto-repeat-mode and key are specified, then the
auto-repeat mode of that key is changed, if possible. If
only auto-repeat-mode is specified, then the global
auto-repeat mode for the entire keyboard is changed, if
possible, without affecting the per-key settings. It is
a Match error if a key is specified without an
auto-repeat-mode.
A bell generator connected with the console but not directly
on the keyboard is treated as if it were part of the
keyboard.
The order in which controls are verified and altered is
server dependent. If an error is generated, a subset of the
controls may have been altered.
GetKeyboardControl
=>
key-click-percent: CARD8
bell-percent: CARD8
bell-pitch: CARD16
bell-duration: CARD16
led-mask: CARD32
global-auto-repeat: {On, Off}
auto-repeats: LISTofCARD8
Errors: Match
Returns the current control values for the keyboard. For the
LEDs, the least significant bit of led-mask corresponds to
LED one, and each one bit in led-mask indicates an LED that
is lit. Auto-repeats is a bit vector; each one bit indicates
that auto-repeat is enabled for the corresponding key. The
vector is represented as 32 bytes. Byte N (from 0) contains
the bits for keys 8N to 8N+7, with the least significant bit
in the byte representing key 8N.
Bell
percent: INT8
Errors: Match, Value
Rings the bell on the keyboard at the specified volume
relative to the base volume for the keyboard, if possible.
Percent, which can range from -100 to 100 inclusive, is added
to the base volume, and the sum limited to the range 0 to 100
M.I.T. [Page 84]
^L
RFC 1013 June 1987
inclusive.
SetPointerMapping
map: LISTofCARD8
=>
status: {Success, Busy}
Errors: Value
Sets the mapping of the pointer. Elements of the list are
indexed starting from one. The length of the list must be
the same as GetPointerMapping would return. The index is a
"core" button number, and the element of the list defines
the "effective" number.
A zero element disables a button, and elements are not
restricted in value by the number of physical buttons, but
no two elements can have the same non-zero value.
If any of the buttons to be altered are currently in the
down state,the status reply is Busy and the mapping is not
changed.
GetPointerMapping
=>
map: LISTofCARD8
Errors: Value
Returns the current mapping of the pointer. Elements of the
list are indexed starting from one. The length of the list
indicates the number of physical buttons.
The nominal mapping for a pointer is the identity mapping;
map[i]=i.
ChangePointerControl
do-acceleration, do-threshold: BOOL
acceleration-numerator, acceleration-denominator: INT16
threshold: INT16
Errors: Match, Value
Defines how the pointer moves. The acceleration is a
multiplier for movement, expressed as a fraction. For
example, specifying 3/1 means the pointer moves three times
as fast as normal. The fraction may be rounded arbitrarily
by the server. Acceleration only takes effect if the
pointer moves more than threshold pixels at once, and only
applies to the amount beyond the threshold. Setting a
value to -1 restores the default. Other negative values
M.I.T. [Page 85]
^L
RFC 1013 June 1987
generate a Value error, as does a zero value for
acceleration-denominator.
GetPointerControl
=>
acceleration-numerator, acceleration-denominator: CARD16
threshold: CARD16
Errors: Match
Returns the current acceleration and threshold for the
pointer.
SetScreenSaver
timeout, interval: INT16
prefer-blanking: {Yes, No, Default}
allow-exposures: {Yes, No, Default}
Errors: Value
Timeout and interval are specified in minutes; setting a
value to -1 restores the default. Other negative values
generate a Value error. If the timeout value is zero,
screen-saver is disabled. If the timeout value is
non-zero, screen-saver is enabled. Once screen-saver
is enabled, if no input from the keyboard or pointer is
generated for timeout minutes, screen-saver is activated.
For each screen, if blanking is preferred and the hardware
supports video blanking, the screen will simply go blank.
Otherwise, if either exposures are allowed or the screen
can be regenerated without sending exposure events to
clients, the screen is tiled with the root window
background tile, randomly re-origined each interval
minutes if the interval value is non-zero. Otherwise, the
state of the screen does not change and screen-saver is not
activated. Screen-saver is deactivated, and all screen
states are restored, at the next keyboard or pointer input
or at the next ForceScreenSaver with mode Reset.
GetScreenSaver
=>
timeout, interval: CARD16
prefer-blanking: {Yes, No}
allow-exposures: {Yes, No}
Returns the current screen-saver control values.
ForceScreenSaver
mode: {Activate, Reset}
If the mode is Activate and screen-saver is currently
M.I.T. [Page 86]
^L
RFC 1013 June 1987
deactivated, then screen-saver is activated (even if
screen-saver has been disabled with a timeout value of zero).
If the mode is Reset and screen-saver is currently enabled,
then screen-saver is deactivated (if it was activated), and
then the activation timer is reset to its initial state, as
if device input had just been received.
ChangeHosts
mode: {Insert, Delete}
host: HOST
Errors: Access, Value
Adds or removes the specified host from the access control
list. When the access control mechanism is enabled and a
host attempts to establish a connection to the server, the
host must be in this list or the server will refuse the
connection.
The client must reside on the same host as the server, and/or
have been granted permission in the initial authorization at
connection setup.
An initial access control list can be specified, typically
by naming a file that the server reads at startup and reset.
ListHosts
=>
mode: {Enabled, Disabled}
hosts: LISTofHOST
Returns the hosts on the access control list, and whether use
of the list at connection setup is currently enabled or
disabled.
Each HOST is padded to a multiple of four bytes.
ChangeAccessControl
mode: {Enable, Disable}
Errors: Value, Access
Enables or disables the use of the access control list at
connection setups.
The client must reside on the same host as the server, and/or
have been granted permission in the initial authorization at
connection setup.
ChangeCloseDownMode
mode: {Destroy, RetainPermanent, RetainTemporary}
M.I.T. [Page 87]
^L
RFC 1013 June 1987
Errors: Value
Defines what will happen to the client's resources at
connection close. A connection starts in Destroy mode. The
meaning of the close-down mode is described in Section 11.
KillClient
resource: CARD32 or AllTemporary
Errors: Value
If a valid resource is specified, forces a close-down of the
client that created the resource. If the client has already
terminated in either RetainPermanent or RetainTemporary mode,
all of the client's resources are destroyed (see Section 11).
If AllTemporary is specified, then the resources of all
clients that have terminated in RetainTemporary are
destroyed.
NoOperation
This request has no arguments and no results, but the request
length field can be non-zero, allowing the request to be any
multiple of 4 bytes in length. The bytes contained in the
request are uninterpreted by the server.
This request can be used in its minimum 4 byte form as
"padding" where necessary by client libraries that find it
convenient to force requests to begin on 64-bit boundaries.
SECTION 11. CONNECTION CLOSE
What happens at connection close:
All event selections made by the client are discarded. If
the client has the pointer actively grabbed, an
UngrabPointer is performed. If the client has the keyboard
actively grabbed, an UngrabKeyboard is performed. All
passive grabs by the client are eleased. If the client has
the server grabbed, and UngrabServer is performed. If
close-down mode (see ChangeCloseDownMode) is
RetainPermanent or RetainTemporary, then all resources
(including colormap entries) allocated by the client are
marked as "permanent" or "temporary", respectively (but
this does not prevent other clients from explicitly
destroying them). If the mode is Destroy, then all of the
client's resources are destroyed as described below.
What happens when a client's resources are destroyed:
For each window in the client's save-set, if the window
M.I.T. [Page 88]
^L
RFC 1013 June 1987
created by the client, that save-set window is reparented to
the closest ancestor such that the save-set window is not an
inferior of a window created by the client. If the save-set
window is unmaped, a MapWindow request is performed on it.
After save-set processing, all windows created by the client
are destroyed. For each non-window resource created by the
client, the appropriate Free request is performed. All
colors and colormap entries allocated by the client are
freed.
What happens when the last connection to a server closes:
A server goes through a cycle, of having no connections and
having some connections. At every transition to the state
of having no connections, the server "resets" its state, as
if it had just been started. This starts by destroying all
lingering resources from clients that have terminated in
RetainPermanent or RetainTemporary mode. It additionally
includes deleting all but the predefined atom identifiers,
deleting all properties on all root windows, resetting all
device maps and attributes (key click, bell volume,
acceleration), resetting the access control list, restoring
the standard root tiles and cursors, restoring the default
font path, and restoring the input focus to state
PointerRoot.
SECTION 12. EVENTS
When a button is pressed with the pointer in some window W, and
no active pointer grab is in progress, then the ancestors if W are
searched from the root down, looking for a passive grab to
activate. If no matching passive grab on the button exists, then
an active grab is started automatically for the client receiving
the event, and the last-pointer-grab time is set to the current
server time. The effect is essentially equivalent to a GrabButton
with arguments:
event-window: the event window
event-mask: the client's selected events on the event window
pointer-mode and keyboard-mode: Asynchronous
owner-events: True if the client has OwnerGrabButton selected
on the event window, else False
confine-to: None
cursor: None
The grab is terminated automatically when all buttons are released.
UngrabPointer and ChangeActiveGrab can both be used to modify the
active grab.
KeyPress
and
KeyRelease
and
M.I.T. [Page 89]
^L
RFC 1013 June 1987
ButtonPress
and
ButtonRelease
and
MotionNotify
root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
detail: <see below>
state: SETofKEYBUTMASK
time: TIMESTAMP
Generated when a key or button changes state, or the pointer
moves. The "source" of the event is the window the pointer
is in. The window with respect to which the event is
normally reported is found by looking up the hierarchy
(starting with the source window) for the first window on
which any client has selected interest in the event,
provided no intervening window prohibits event generation by
including the event type in its do-not-propagate-mask. The
actual window used for reporting can be modified by active
grabs and the focus window. The window the event is reported
with respect to is called the "event" window.
Root is the root window of the "source" window, and root-x
and root-y are the pointer coordinates relative to root's
origin at the time of the event. Event is the "event"
window. If the event window is on the same screen as root,
then event-x and event-y are the pointer coordinates relative
to the event window's origin; otherwise event-x and event-y
are zero. If the source window is an inferior of the event
window, then child is set to the child of the event window
that is an ancestor of the source window. The state
component gives the state of the buttons and modifier keys
just before the event. The detailcomponent varies with
the event type:
KeyPress, KeyRelease: KEYCODE
ButtonPress, ButtonRelease: BUTTON
MotionNotify: {Normal, Hint}
MotionNotify events are only generated when the motion
begins and ends in the window. The granularity of motion
events is not guaranteed, but a client selecting for motion
events is guaranteed to get at least one event when the
pointer moves and comes to rest. Selecting PointerMotion
receives events independent of the state of the pointer
buttons. By selecting some subset of Button[1-5]Motion
instead, MotionNotify events will only be received when one
or more of the specified buttons are pressed. By selecting
ButtonMotion, MotionNotify events will received only when at
M.I.T. [Page 90]
^L
RFC 1013 June 1987
least one button is pressed. The events are always of type
MotionNotify, independent of the selection. If
PointerMotionHint is selected, the server is free to send
only one MotionNotify event (with detail Hint) to the client
for the event window, until either the key or button state
changes, or the pointer leaves the event window, or the
client issues a QueryPointer or GetMotionEvents request.
EnterNotify
and
LeaveNotify
root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
mode: {Normal, Grab, Ungrab}
detail: {Ancestor, Virtual, Inferior, Nonlinear,
NonlinearVirtual}
focus: BOOL
state: SETofKEYBUTMASK
time: TIMESTAMP
If pointer motion causes the pointer to be in a different
window than before, EnterNotify and LeaveNotify events are
generated instead of a MotionNotify event. Only clients
selecting EnterWindow on a window receive EnterNotify events,
and only clients selection LeaveNotifyreceive LeaveNotify
events. The pointer position reported in the event is always
the "final" position, not the "initial" position of the
pointer. In a LeaveNotify event, if a child of the event
window contains the "initial" position of the pointer, then
the child component is set to that child, otherwise it is
None. For an EnterNotify event, if a child of the event
window contains the "final" pointer position, then the child
component is set to that child, otherwise it is None. If
the the event window is the focus window or an inferior of
the focus window, then focus is True, and otherwisefocus is
False.
Normal pointer motion events have mode Normal; pseudo-motion
events when a grab actives have mode Grab, and pseudo-motion
events when a grab deactivates have mode Ungrab.
Normal events are generated as follows:
When the pointer moves from window A to window B, and A is an
inferior of B:
LeaveNotify with detail Ancestor is generated on A
LeaveNotify with detail Virtual is generated on each window
between A and B exclusive (in that order)
EnterNotify with detail Inferior is generated on B
M.I.T. [Page 91]
^L
RFC 1013 June 1987
When the pointer moves from window A to window B, and B is an
inferior of A:
LeaveNotify with detail Inferior is generated on A
EnterNotify with detail Virtual is generated on each window
between A and B exclusive (in that order)
EnterNotify with detail Ancestor is generated on B
When the pointer moves from window A to window B, with window C
being their least common ancestor:
LeaveNotify with detail Nonlinear is generated on A
LeaveNotify with detail NonlinearVirtual is generated on each
window between A and C exclusive (in that order)
EnterNotify with detail NonlinearVirtual is generated on each
window between C and B exclusive (in that order)
EnterNotify with detail Nonlinear is generated on B
When the pointer moves from window A to window B, on different
screens:
LeaveNotify with detail Nonlinear is generated on A
LeaveNotify with detail NonlinearVirtual is generated on each
window above A up to and including its root (in
order)
EnterNotify with detail NonlinearVirtual is generated on each
window
from B's root down to but not including B (in order)
EnterNotify with detail Nonlinear is generated on B
When a pointer grab activates (but after any initial warp into a
confine-to window), with G the grab-window for the grab and P the
window the pointer is in:
EnterNotify and LeaveNotify events with mode Grab are
generated (as for Normal above) as if the pointer were to
suddenly warp from its current position in P to some position
in G.However, the pointer does not warp, and the pointer
position is used as both the "initial"and "final" positions
for the events.
When a pointer grab deactivates, with G the grab-window for the
grab and P the window the pointer is in:
EnterNotify and LeaveNotify events with mode Ungrab are
generated (as for Normal above) as if the pointer were to
suddenly warp from from some position in G to its current
position in P. However, the pointer does not warp, and the
current pointer position is used as both the "initial" and
"final" positions for the events.
FocusIn
and
FocusOut
event: WINDOW
M.I.T. [Page 92]
^L
RFC 1013 June 1987
mode: {Normal, WhileGrabbed, Grab, Ungrab}
detail: {Ancestor, Virtual, Inferior, Nonlinear,
NonlinearVirtual, Pointer, PointerRoot, None}
Generated when the input focus changes. Reported to clients
selecting FocusChange on the window. Events generated by
SetInputFocus when the keyboard is not grabbed have mode
Normal; events generated by SetInputFocus when the keyboard
is grabbed have mode WhileGrabbed; events generated when a
keyboard grab actives have mode Grab, and events generated
when a keyboard grab deactivates have mode Ungrab.
Normal and WhileGrabbed events are generated as follows:
When the focus moves from window A to window B, and A is an
inferior of B, with the pointer in window P:
FocusOut with detail Ancestor is generated on A
FocusOut with detail Virtual is generated on each window
between A and B exclusive (in that order)
FocusIn with detail Inferior is generated on B
If P is an inferior of B, but P is not A or an inferior of A
or an ancestor of A, FocusIn with detail Pointer is
generated on each window below B down to and
including P (in order)
When the focus moves from window A to window B, and B is an
inferior of A, with the pointer in window P:
If P is an inferior of A, but P is not A or an inferior of B
or an ancestor of B, FocusOut with detail Pointer is
generated on each window from P up to but not
including A (in order)
FocusOut with detail Inferior is generated on A
FocusIn with detail Virtual is generated on each window
between A and B exclusive (in that order)
FocusIn with detail Ancestor is generated on B
When the focus moves from window A to window B, with window C
being their least common ancestor, and with the pointer in
window P:
If P is an inferior of A, FocusOut with detail Pointer is
generated on each window from P up to but not
including A (in order)
FocusOut with detail Nonlinear is generated on A
FocusOut with detail NonlinearVirtual is generated on each
window between A and C exclusive (in that order)
FocusIn with detail NonlinearVirtual is generated on each
window between C and B exclusive (in that order)
FocusIn with detail Nonlinear is generated on B
If P is an inferior of B, FocusIn with detail Pointer is
generated on each window below B down to and
including P (in order)
M.I.T. [Page 93]
^L
RFC 1013 June 1987
When the focus moves from window A to window B, on different
screens, with the pointer in window P:
If P is an inferior of A, FocusOut with detail Pointer is
generated on each window from P up to but not
including A (in order)
FocusOut with detail Nonlinear is generated on A
FocusOut with detail NonlinearVirtual is generated on each
window above A up to and including its root (in
order)
FocusIn with detail NonlinearVirtual is generated on each
window from B's root down to but not including B
(in order)
FocusIn with detail Nonlinear is generated on B
If P is an inferior of B, FocusIn with detail Pointer is
generated on each window below B down to and
including P (in order)
When the focus moves from window A to PointerRoot (or None)
If P is an inferior of A, FocusOut with detail Pointer is
generated on each window from P up to but not
including A (in order)
FocusOut with detail Nonlinear is generated on A
FocusOut with detail NonlinearVirtual is generated on each
window above A up to and including its root (in
order)
FocusIn with detail PointerRoot (or None) is generated on
all root windows
When the focus moves from PointerRoot (or None) to window A:
FocusOut with detail PointerRoot (or None) is generated on
all root windows
FocusIn with detail NonlinearVirtual is generated on each
window from A's root down to but not including A
(in order)
FocusIn with detail Nonlinear is generated on A
If P is an inferior of A, FocusIn with detail Pointer is
generated on each window below A down to and
including P (in order)
When the focus moves from PointerRoot to None (or vice versa):
FocusOut with detail PointerRoot (or None) is generated on
all root windows
FocusIn with detail None (or PointerRoot) is generated on
all root windows
When a keyboard grab activates, with G the grab-window for the
grab and F the current focus:
FocusIn and FocusOut events with mode Grab are generated (as
for Normal above) as if the focus were to change from F to G
M.I.T. [Page 94]
^L
RFC 1013 June 1987
When a keyboard grab deactivates, with G the grab-window for the
grab and F the current focus:
FocusIn and FocusOut events with mode Ungrab are generated
(as for Normal above) as if the focus were to change from G
to F
KeymapNotify
keys: LISTofCARD8
The value is a bit vector, as described in QueryKeymap.
Reported to clients selecting KeymapState on a window.
Generated immediately after every EnterNotify and FocusIn.
Expose
window: WINDOW
x, y, width, height: CARD16
last-in-series: BOOL
Reported to clients selecting Exposure on the window.
Possibly generated when a region of the window becomes
viewable, but might only be generated when a region becomes
visible. All of the regions exposed by a given "action" are
guaranteed to be reported contiguously; if last-in-series is
False then another exposure follows.
The x and y coordinates are relative to drawable's origin,
and specify the upper left corner of a rectangule. The
width and height specify the extent of the rectangle.
Expose events are never generated on InputOnly windows.
GraphicsExposure
drawable: DRAWABLE
x, y, width, height: CARD16
last-in-series: BOOL
major-opcode: CARD8
minor-opcode: CARD16
Reported to clients selecting graphics-exposures in a
graphics context. Generated when a destination region could
not be computed due to an obscured or out-of-bounds source
region. All of the regions exposed by a given graphics
request are guaranteed to be reported contiguously; if
last-in-series is False then another exposure follows.
The x and y coordinates are relative to drawable's origin,
and specify the upper left corner of a rectangule. The width
and height specify the extent of the rectangle.
The major and minor opcodes identify the graphics request
used. For the core protocol, major-opcode is always
M.I.T. [Page 95]
^L
RFC 1013 June 1987
CopyArea or CopyPlane and minor-opcode is always zero.
NoExposure
drawable: DRAWABLE
major-opcode: CARD8
minor-opcode: CARD16
Reported to clients selecting graphics-exposures in a
graphics context. Generated when a graphics request that
might produce GraphicsExposure events does not produce any.
The drawable specifies the destination used for the
graphics request.
The major and minor opcodes identify the graphics request
used. For the core protocol, major-opcode is always CopyArea
or CopyPlane and minor-opcode is always zero.
VisibilityNotify
window: WINDOW
state: {Unobscured, PartiallyObscured, FullyObscured}
Reported to clients selecting VisibilityChange on the
window. In the following, the state of the window is
calculated ignoring all of the window's subwindows. When
a window changes state from partially or fully obscured or
not viewable to viewable and completely unobscured, an
event with Unobscured is generated. When a window changes
state from a) viewable and completely unobscured or b) not
viewable, to viewable and partially obscured, an event with
PartiallyObscured is generated. When a window changes state
from a) viewable and completely unobscured or b) viewable and
partially obscured or c) not viewable, to viewable and fully
obscured, an event with FullyObscured is generated.
VisibilityNotify events are never generated on InputOnly
windows.
CreateNotify
parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
override-redirect: BOOL
Reported to clients selecting SubstructureNotify on the
parent. Generated when the window is created. The arguments
are as in the CreateWindow request.
M.I.T. [Page 96]
^L
RFC 1013 June 1987
DestroyNotify
event, window: WINDOW
Reported to clients selecting StructureNotify on the window,
and to clients selecting SubstructureNotify on the parent.
Generated when the window is destroyed. "Event" is the
window on which the event was generated, and "window" is
the window that is destroyed.
UnmapNotify
event, window: WINDOW
from-configure: BOOL
Reported to clients selecting StructureNotify on the window,
and to clients selecting SubstructureNotify on the parent.
Generated when the window changes state from mapped to
unmapped. "Event" is the window on which the event was
generated, and "window" is the window that is unmapped. The
from-configure flag is True if the event was generated as a
result of the window's parent being resized when the window
itself had a win-gravity of Unmap.
MapNotify
event, window: WINDOW
override-redirect: BOOL
Reported to clients selecting StructureNotify on the window,
and to clients selecting SubstructureNotify on the parent.
Generated when the window changes state from unmapped to
mapped. "Event" is the window on which the event was
generated, and "window" is the window that is mapped. The
override-redirect flag is from the window's attribute.
MapRequest
parent, window: WINDOW
Reported to the client selecting SubstructureRedirect on the
parent. Generated when a MapWindow request is issued on an
unmapped window with an override-redirect attribute of False.
ReparentNotify
event, window, parent: WINDOW
x, y: INT16
override-redirect: BOOL
Reported to clients selecting SubstructureNotify on either
the old or the new parent, and to clients selecting
StructureNotify on the window. Generated when the window
is reparented. "Event" is the window on which the event
was generated, "window" is the window that has been
re-rooted, and "parent" specifies the new parent. The x
M.I.T. [Page 97]
^L
RFC 1013 June 1987
and y coordinates are relative to the new parent's origin,
and specify the position of the upper left outer corner of
the window. The override-redirect flag is from the
window's attribute.
ConfigureNotify
event, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
above-sibling: WINDOW or None
override-redirect: BOOL
Reported to clients selecting StructureNotify on the window,
and to clients selecting SubstructureNotify on the parent.
Generated when a ConfigureWindow request actually changes the
state of the window. "Event" is the window on which the event
was generated, and "window" is the window that is changed.
If above-sibling is None, then the window is on the bottom of
the stack with respect to siblings; otherwise, the window is
immediately on top of the specified sibling. The
override-redirect flag is from the window's attribute.
GravityNotify
event, window: WINDOW
x, y: INT16
Reported to clients selecting SubstructureNotify on the
parent, and to clients selecting StructureNotify on the
window. Generated when a window is moved because of a
change in size of the parent. "Event" is the window on
which the event was generated, and "window" is the
window that is moved.
ResizeRequest
window: WINDOW
width, height: CARD16
Reported to the client selecting ResizeRedirect on the
window. Generated when a ConfigureWindow request by some
other client on the window attempts to change the size of the
window. The width and height are the inside size, not
including the border.
ConfigureRequest
parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
above-sibling: WINDOW or None
Reported to the client selecting SubstructureRedirect on the
parent. Generated when a ConfigureWindow request is issued on
M.I.T. [Page 98]
^L
RFC 1013 June 1987
the window by some other client. The geometry is as derived
from the request. The above-sibling is the sibling the
window should be placed directly on top of; if None, then the
window should be placed on the bottom.
CirculateNotify
event, window: WINDOW
place: {Top, Bottom}
Reported to clients selecting StructureNotify on the window,
and to clients selecting SubstructureNotify on the parent.
Generated when the window is actually restacked from a
CirculateWindow request. "Event" is the window on which the
event was generated, and "window" is the window that is
restacked. If place is Top, the window is now on top of all
siblings; otherwise it is below all siblings.
CirculateRequest
parent, window: WINDOW
place: {Top, Bottom}
Reported to the client selecting SubstructureRedirect on the
parent. Generated when a CirculateWindow request is issued on
the parent and a window actually needs to be restacked. The
window specifies the window to be restacked, and place
specifies what the new position in the stacking order should
be.
PropertyNotify
window: WINDOW
atom: ATOM
state: {NewValue, Deleted}
time: TIMESTAMP
Reported to clients selecting PropertyChange on the window.
Generated when a property of the window is changed. The
timestamp indicates the server time when the property was
changed.
SelectionClear
owner: WINDOW
selection: ATOM
time: TIMESTAMP
Reported to the current owner of a selection. Generated on
the window losing ownership when a new owner is being
defined. The timestamp is the last-change time recorded for
the selection.
SelectionRequest
owner: WINDOW
M.I.T. [Page 99]
^L
RFC 1013 June 1987
selection: ATOM
target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime
Reported to the owner of a selection. Generated when a
client issues a ConvertSelection request. The arguments are
as in the request.
The owner should convert the selection based on the specified
target type. If a property is specified, the owner should
store the result as that property on the requestor window,
and then send a SelectionNotify event to the requestor using
SendEvent. If the selection cannot be converted as
requested, the owner should send a SelectionNotify with the
property set to None.
SelectionNotify
requestor: WINDOW
selection, target: ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTime
This event is only generated by clients using SendEvent. The
owner of a selection should send this event to a requestor
when a selection has been converted and stored as a property,
or when a selection conversion could not be performed
(indicated with property None).
ColormapNotify
window: WINDOW
colormap: COLORMAP or None
new: BOOL
state: {Installed, Uninstalled}
Reported to clients selecting ColormapChange on the window.
Generated with value True for new when the colormap attribute
of the window is changed. Generated with value False for new
when the colormap of a window is installed or uninstalled. In
either case, state indicates whether the colormap is
currently installed.
ClientMessage
window: WINDOW
type: ATOM
format: {8, 16, 32}
data: LISTofINT8 or LISTofINT16 or LISTofINT32
This event is only generated by clients using SendEvent. The
type specifies how the data is to be interpreted by the
M.I.T. [Page 100]
^L
RFC 1013 June 1987
receiving client; the server places no interpretation on the
type or the data. The format specifies whether the data
should be viewed as a list of 8-bit, 16-bit, or 32-bit
quantities, so that the server can correctly byte-swap as
necessary. The data always consists of either 20 8-bit values
or 10 16-bit values or 5 32-bit values, although particular
message types might not make use of all of these values.
SECTION 13. FLOW CONTROL AND CONCURRENCY
Whenever the server is writing to a given connection, it is
permissible for the server to stop reading from that connection (but
if the writing would block it must continue to service other
connections). The server is not required to buffer more than a
single request per connection at one time. For a given connection
to the server, a client can block while reading from the connection,
but should undertake to read (events and errors) when writing would
block. Failure on the part of a client to obey this rule could
result in a deadlocked connection, although deadlock is probably
unlikely unless the transport layer has very little buffering, or
unless the client attempts to send large numbers of requests without
ever reading replies or checking for errors and events.
If a server is implemented with internal concurrency, the overall
effect must be as if individual requests are executed to completion
in some serial order, and that requests from a given connection are
executed in delivery order (i.e., the total execution order is a
shuffle of the individual streams). The "execution" of a request
includes validating all arguments, collecting all data for any
reply, and generating (and queueing) all required events, but does
not include the actual transmission of the reply and the events.
In addition, the effect of any other "cause" (e.g., activation of
a grab, pointer motion) that can generate multiple events must
effectively generate (and queue) all required events indivisibly
with respect to all other causes and requests.
M.I.T. [Page 101]
^L
|