1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
|
Network Working Group S. Armstrong
Request for Comments: 1301 Xerox
A. Freier
Apple
K. Marzullo
Cornell
February 1992
Multicast Transport Protocol
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard. Distribution of this memo is
unlimited.
Summary
This memo describes a protocol for reliable transport that utilizes
the multicast capability of applicable lower layer networking
architectures. The transport definition permits an arbitrary number
of transport providers to perform realtime collaborations without
requiring networking clients (aka, applications) to possess detailed
knowledge of the population or geographical dispersion of the
participating members. It is not network architectural specific, but
does implicitly require some form of multicasting (or broadcasting)
at the data link level, as well as some means of communicating that
capability up through the layers to the transport.
Keywords: reliable transport, multicast, broadcast, collaboration,
networking.
Table of Contents
1. Introduction 2
2. Protocol description 3
2.1 Definition of terms 3
2.2 Packet format 6
2.2.1. Protocol version 7
2.2.2. Packet type and modifier 7
2.2.3. Subchannel 9
2.2.4. Source connection identifier 9
2.2.5. Destination connection identifier 10
2.2.6. Message acceptance 10
2.2.7. Heartbeat 12
2.2.8. Window 12
2.2.9. Retention 12
Armstrong, Freier & Marzullo [Page 1]
^L
RFC 1301 Multicast Transport Protocol February 1992
2.3 Transport addresses 12
2.3.1. Unknown transport address 12
2.3.2. Web's multicast address 13
2.3.3. Member addresses 13
3. Protocol behavior 13
3.1. Establishing a transport 13
3.1.1. Join request 14
3.1.2. Join confirm/deny 16
3.2 Maintaining data consistency 17
3.2.1. Transmit tokens 17
3.2.2. Data transmission 20
3.2.3. Empty packets 23
3.2.4. Missed data 26
3.2.5. Retrying operations 26
3.2.6. Retransmission 27
3.2.7. Duplicate suppression 29
3.2.8. Banishment 29
3.3 Terminating the transport 29
3.3.1. Voluntary quits 30
3.3.2. Master quit 30
3.3.3. Banishment 30
3.4 Transport parameters 30
3.4.1. Quality of service 30
3.4.2. Selecting parameter values 31
3.4.3. Caching member information 33
A. Appendix: MTP as an Internet Protocol transport 34
A.1 Internet Protocol multicast addressing 34
A.2 Encapsulation 35
A.3 Fields of the bridge protocol 35
A.4 Relationship to other Internet Transports 36
References 36
Footnotes 37
Security Considerations 37
Authors' Addresses 38
1. Introduction
This document describes a flow controlled, atomic multicasting
transport protocol (MTP). The purpose of this document is to present
sufficient information to implement the protocol.
The MTP design has been influenced by the large body of the
networking and distributed systems literature and technology that has
been introduced during the last decade and a half. Representative
sources include [Xer81], [BSTM79] and [Pos81] for transport design,
and [Bog83] and [DIX82] for general concepts of broadcast and
multicast. [CLZ87] influenced MTP's retransmission mechanisms, and
[Fre84] influenced the transport timings. MTP over IP uses mechanisms
Armstrong, Freier & Marzullo [Page 2]
^L
RFC 1301 Multicast Transport Protocol February 1992
described in [Dee89]. MTP's ordering and agreement protocols were
influenced by work done in [CM87], [JB89] and [Cri88]. Finally, a
description of MTP's philosophy and its motivation can be found in
[AFM91].
2. Protocol description
MTP is a transport in that it is a client of the network layer (as
defined by the OSI networking model) [1]. MTP provides reliable
delivery of client data between one or more communicating processes,
as well as a predefined principal process. The collection of
processes is called a web.
In addition to transporting data reliably and efficiently, MTP
provides the synchronization necessary for web members to agree on
the order of receipt of all messages and can agree on the delivery of
the message even in the face of partitions. This ordering and
agreement protocol uses serialized tokens granted by the master to
producers.
The processes may have any one of three levels of capability. One
member must be the master. The master instantiates and controls the
behavior of the web, including its membership and performance. Non
master members may be either producer/consumers or pure consumers.
The former class of member is permitted to transmit user data to the
entire membership (and expected to logically hear itself), while the
latter is prohibited from transmitting user data.
MTP is a negative acknowledgement protocol, exploiting the highly
reliable delivery of the local area and wide area network
technologies of today. Successful delivery of data is accepted by
consuming stations silently rather than having the successful
delivery noted to the producing process, thus reducing the amount of
reverse traffic required to maintain synchronization.
2.1 Definition of terms
The following terms are used throughout this document. They are
defined here to eliminate ambiguity.
consumer A consumer is a transport that is capable only of
receiving user data. It may transmit control packets,
such as negative acknowledgements, but may never transmit
any requests for the transmit token or any form of data
or empty messages.
heartbeat A heartbeat is an interval of time, nominally measured in
milliseconds. It is a key parameter in the transport's
Armstrong, Freier & Marzullo [Page 3]
^L
RFC 1301 Multicast Transport Protocol February 1992
state and can be adapted to the requirements of the
transport's client to provide the desired quality of
service.
master The master is the principal member of the web. The master
capability is a superset of a producer member. The
master is mainly responsible for giving out transmit
tokens to members who wish to send data, and overseeing
the web's membership and operational parameters.
member A web member is any process that has been permitted to
join the web (by the master) as well as the master
itself.
membership Every member is classified as to its intentions for
class joining the web. Membership classes are defined to be
consumer, producer and master. Each successive class is a
formal superset of the previous.
message An MTP message is a concatenation of the user data
portions of a series of data packets with the last packet
in the series carrying an end of message indication. A
message may contain any number of bytes of user data,
including zero.
NSAP The network service access point. This is the network
address, or the node address of the machine, where a
service is available.
producer Producer is a class of membership that is a formal
superset of a consumer. A producer is permitted (and
expected) to transmit client data as well as consume data
transmitted by other producers.
retention Retention is one of the three fundamental parameters that
make up the transport's state (along with heartbeat and
window). Retention is a number of heartbeats, and though
applied in several different circumstances, is primarily
used as the number of heartbeats a producing client must
maintain buffered data should it need to be
retransmitted.
token In order to transmit, a producer must first be in
possesion of a token. Tokens are granted only by the
master and include the message sequence number.
Consequently, they are fundamental in the operation of
the ordering and agreement protocol used by MTP.
Armstrong, Freier & Marzullo [Page 4]
^L
RFC 1301 Multicast Transport Protocol February 1992
TSAP The transport service access point. This is the address
that uniquely defines particular instantiation of a
service. TSAPs are formed by logically concatenating the
node's NSAP with a transport identifier (and perhaps a
packet/protocol type).
user data User data is the client information carried in MTP data
packets and treated as uninterpreted octets by the
transport. The end of message and subchannel indicators
are also be treated as user data.
web A collection of processes collaborating on the solution
of a single problem.
window The window is one of the fundamental elements of the
transport's state that can be controlled to affect the
quality of service being provided to the client. It
represents the number of user data carrying packets that
may be multicast into the web during a heartbeat by a
single member.
Armstrong, Freier & Marzullo [Page 5]
^L
RFC 1301 Multicast Transport Protocol February 1992
2.2 Packet format
An MTP packet consists of a transport protocol header followed by a
variable amount of data. The protocol header, shown in Figure 1, is
part of every packet. The remainder of the packet is either user data
(packet type = data) or additional transport specific information.
The fields in the header are statically defined as n-bit wide
quantities. There are no undefined fields or fields that may at any
time have undefined values. Reserved fields, if they exist, must
always have a value of zero.
0 7 8 15 16 23 24 31
---------------------------------------------------------- -----
| protocol | packet | type | client | |
| version | type | modifier | channel | |
---------------------------------------------------------- |
| | |
| source connection identifier | |
---------------------------------------------------------- |
| | |
| destination connection identifier |
---------------------------------------------------------- transport
| | header
| message acceptance criteria |
---------------------------------------------------------- |
| | |
| heartbeat | |
---------------------------------------------------------- |
| | | |
| window | retention | |
---------------------------------------------------------- -----
| | |
| | |
| | |
| (data content and format |
| dependent on packet type | data
| and modifier) | fields
| |
| | |
| | |
| | |
---------------------------------------------------------- -----
Figure 1. MTP packet format
Armstrong, Freier & Marzullo [Page 6]
^L
RFC 1301 Multicast Transport Protocol February 1992
2.2.1. Protocol version
The first 8 bits of the packet are the protocol version number. This
document describes version 1 of the Multicast Transport Protocol and
thus the version field has a value of 0x01.
2.2.2. Packet type and modifier
The second byte of the header is the packet type and the following
byte contains the packet type modifier. Typical control message
exchanges are in a request/response pair. The modifier field
simplifies the construction of responses by permitting reuse of the
incoming message with minimal modification. The following table gives
the packet type field values along with their modifiers. The
modifiers are valid only in the context of the type. In the prose of
the definitions and later in the document, the syntax for referring
to one of the entries described in the following table will be
type[modifier]. For example, a reference to data[eow] would be a
packet of type data with an end of window modifier.
type modifier description
data(0) data(0) The packet is one that contains user
information. Only the process possessing a
transmit token is permitted to send data
unless specifically requested to retransmit
previously transmitted data. All packets of
type data are multicast to the entire web.
eow(1) A data packet with the eow (end of window)
modifier set indicates that the transmitter
intends to send no more packets in this
heartbeat either because it has sent as many
as permitted given the window parameter or
simply has no more data to send during the
current heartbeat. This is not client
information but rather a hint to be used by
transport providers to synchronize the
computation and transmission of naks.
eom(2) Data[eom] marks the end of the message to the
consumers, and the surrendering of the
transmit token to the master. And like a
data[eow] a data[eom] packet implies the end
of window.
nak(1) request(0) A nak[request] packet is a consumer
requesting a retransmission of one or more
Armstrong, Freier & Marzullo [Page 7]
^L
RFC 1301 Multicast Transport Protocol February 1992
data packets. The data field contains an
ordered list of packet sequence numbers that
are being requested. Naks of any form are
always unicast.
deny(1) A nak[deny] message indicates that the
producer source of the nak[deny]) cannot
retransmit one or more of the packets
requested. The process receiving the
nak[deny] must report the failure to its
client.
empty(2) dally(0) An empty[dally] packet is multicast to
maintain synchronization when no client data
is available.
cancel(1) If a producer finds itself in possession of a
transmit token and has no data to send, it
may cancel the token[request] by multicasting
an empty[cancel] message.
hibernate(2) If the master possesses all of the web's
transmit tokens and all outstanding messages
have been accepted or rejected, the master
may transmit empty[hibernate] packets at a
rate significantly slower than indicated by
the web's value of heartbeat.
join(3) request(0) A join[request] packet is sent by a process
wishing to join a web to the web's unknown
TSAP (see section 2.2.5).
confirm(1) The join[confirm] packet is the master's
confirmation of the destination's request to
join the web. It will be unicast by the
master (and only the master) to the station
that sent the join[request].
deny(2) A join[deny] packet indicates permission to
join the web was denied. It may only be
transmitted by the master and will be unicast
to the member that sent the join[request].
quit(4) request(0) A quit[request] may be unicast to the master
by any member of the web at any time to
indicate the sending process wishes to
withdraw from the web. Any member may unicast
a quit to another member requesting that the
Armstrong, Freier & Marzullo [Page 8]
^L
RFC 1301 Multicast Transport Protocol February 1992
destination member quit the web due to
intolerable behavior. The master may
multicast a quit[request] requiring that the
entire web disband. The request will be
multicast at regular heartbeat intervals
until there are no responses to retention
requests.
confirm(1) The quit[confirm] packet is the indication
that a quit[request] has been observed and
appropriate local action has been taken.
Quit[confirm] are always unicast.
token(5) request(0) A token[request] is a producing member
requesting a transmit token from the master.
Such packets are unicast to the master.
confirm(1) The token[confirm] packet is sent by the
master to assign the transmit token to a
member that has requested it. token[confirm]
will be unicast to the member being granted
the token.
isMember(6) request(0) An isMember[request] is soliciting
verification that the target member is a
recognized member of the web. All forms of
the isMember packet are unicast to a specific
member.
confirm(1) IsMember[confirm] packets are positive
responses to isMember[requests].
deny(2) If the member receiving the isMember[request]
cannot confirm the target's membership in the
web, it responds with a isMember[deny].
2.2.3. Subchannel
The fourth byte of the transport header contains the client's
subchannel value. The default value of the subchannel field is zero.
Semantics of the subchannel value are defined by the transport client
and therefore are only applicable to packets of type data. All other
packet types must have a subchannel value of zero.
2.2.4. Source connection identifier
The source connection identifier field is a 32 bit field containing a
transmitting system unique value assigned at the time the transport
Armstrong, Freier & Marzullo [Page 9]
^L
RFC 1301 Multicast Transport Protocol February 1992
is created. The field is used in identifying the particular transport
instantiation and is a component of the TSAP. Every packet
transmitted by the transport must have this field set.
2.2.5. Destination connection identifier
The destination connection identifier is the 32 bit identifier of the
target transport. From the point of view of a process sending a
packet, there are three types of destination connection identifiers.
First, there is the unknown connection identifier (0x00000000). The
unknown value is used only as the destination connection identifier
in the join[request] packet.
Second, there is the multicast connection identifier gleaned from the
join[confirm] message sent by the master. The multicast connection
identifier is used in conjunction with the multicast NSAP to form the
destination TSAP of all packets multicast to the entire web [2].
The last class of connection identifier is a unicast identifier and
is used to form the destination TSAP when unicasting packets to
individual members. Every member of the web has associated with it a
unicast connection identifier that is used to form its own unicast
TSAP.
2.2.6. Message acceptance
MTP ensures that all processes agree on which messages are accepted
and in what order they are accepted. The master controls this aspect
of the protocol by controlling allocation of transmit tokens and
setting the status of messages. Once a token for a message has been
assigned (see section 3.2.1) the master sets the status of that
message according to the following rules [AFM91]:
If the master has seen the entire message (i.e., has seen the
data[eom] and all intervening data packets), the status is accepted.
If the master has not seen the entire message but believes the
message sender is still operational and connected to the master (as
determined by the master), the status is pending.
If the master has not seen the entire message and believes the
sender to have failed or partitioned away, the status is rejected.
Message status is carried in the message acceptance record (see
Figure 2) of every packet, and processes learn the status of earlier
messages by processing this information.
The acceptance criteria is a multiple part record that carries the
Armstrong, Freier & Marzullo [Page 10]
^L
RFC 1301 Multicast Transport Protocol February 1992
rules of agreement to determine the message acceptance. The most
significant 8 bits is a flag that, if not zero, indicates
synchronization is required. The field may vary on a per message
basis as directed by producing transport's client. The default is
that no synchronization is required.
The second part of the record is a 12 element vector that represents
the status of the last 12 messages transmitted into the web.
0 7 8 15 16 23 24 31
---------------------------------------------------------
| | |
| synchro | tri-state bitmask[12] |
---------------------------------------------------------
| message | packet sequence |
| sequence number | number |
---------------------------------------------------------
Figure 2. Message acceptance record
Each element of the array is two bits in length and may have one of
three values: accepted(0), pending(1) or rejected(2). Initially, the
bit mask is set to all zeros. When the token for message m is
transmitted, the first (left-most) element of the vector represents
the the state of message m - 1, the second element of the vector is
the status of message m - 2, and so forth. Therefore the status of
the last 12 messages are visible, the status of older messages are
lost, logically by shifting the elements out of the vector. Only the
master is permitted to set the status of messages. The master is not
permitted to shift a status of pending beyond the end of the vector.
If that situation arises, the master must instead not confirm any
token[request] until the oldest message can be marked as either
rejected or accepted.
Message sequence numbers are 16 bit unsigned values. The field is
initialized to zero by the master when the transport is initialized,
and incremented by one after each token is granted. Only the master
is permitted to change the value of the message sequence number. Once
granted, that message sequence number is consumed and the state of
the message must eventually become either accepted or rejected. No
transmit tokens may be granted if the assignment of a message
sequence number that would cause a value of pending to be shifted
beyond the end of the status vector.
Packet sequence numbers are unsigned 16 bit numbers assigned by the
producing process on a per message basis. Packet sequence numbers
start at a value of zero for each new message and are incremented by
one (consumed) for each data packet making up the message. Consumers
Armstrong, Freier & Marzullo [Page 11]
^L
RFC 1301 Multicast Transport Protocol February 1992
detecting missing packet sequence numbers must send a nak[request] to
the appropriate producer to recover the missed data.
Control packets always contain the message acceptance criteria with a
synchronization flag set to zero (0x00), the highest message sequence
number observed and a packet sequence number one greater than
previously observed. Control packets do not consume any sequence
numbers. Since control messages are not reliably delivered, the
acceptance criteria should only be checked to see if they fall within
the proper range of message numbers, relative to the current message
number of the receiving station. The range of acceptable sequence
numbers should be m-11 to m-13, inclusive, where m is the current
message number.
2.2.7. Heartbeat
Heartbeat is an unsigned 32 bit field that has the units of
milliseconds. The value of heartbeat is shared by all members of the
web. By definition at least one packet (either data, empty or quit
from the master) will be multicast into the web within every
heartbeat period.
2.2.8. Window
The allocation window (or simply window) is a 16 bit unsigned field
that indicates the maximum number of data packets that can be
multicasted by a member in a single heartbeat. It is the sum of the
retransmitted and new data packets.
2.2.9. Retention
The retention field is a 16 bit unsigned value that is the number of
heartbeats for which a producer must retain transmitted client data
and state for the purpose of retransmission.
2.3 Transport addresses
Associated with each transport are logically three transport service
access points (TSAP), logically formed by the concatenation of a
network service access point (NSAP) and a transport connection
identifier. These TSAPs are the unknown TSAP, the web's multicast
TSAP and each individual member's TSAP.
2.3.1. Unknown transport address
Stations that are just joining must use the multicast NSAP associated
with the transport, but are not yet aware of either the web's
multicast TSAP the master process' TSAP. Therefore, joining stations
Armstrong, Freier & Marzullo [Page 12]
^L
RFC 1301 Multicast Transport Protocol February 1992
fabricate a temporary TSAP (referred to as a unknown TSAP) by using a
connection identifier reserved to mean unknown (0x00000000). The
join[confirm] message will be sourced from the master's TSAP and will
include the multicast transport connection identifier in the data
field. Those values must be extracted from the join[confirm] and
remembered by the joining process.
2.3.2. Web's multicast address
The multicast TSAP is formed by logically concatenating the multicast
NSAP associated with the transport creation and the transport
connection identifier returned in the data field of the join[confirm]
packet. If more than one network is involved in the web, then the
multicast transport address becomes a list, one for each network
represented. This list is supplied in the data field of
token[confirm] packets.
The multicast TSAP is used as the target for all messages that are
destined to the entire web, such as data and empty. The master's
decision to abandon the transport (quit) is also sent to the
multicast transport address.
2.3.3. Member addresses
The member TSAP is formed by using the process' unicast NSAP
concatenated with a locally generated unique connection identifier.
That TSAP must be the source of every packet transmitted by the
process, regardless of its destination, for the lifetime of the
transport.
Packets unicast to specific members must contain the appropriate
TSAP. For producers and consumers this is not difficult. The only
TSAPs of interest are the master and the station(s) currently
transmitting data.
3. Protocol behavior
This section defines the expectations of the protocol implementation.
These expectations should not be considered guidelines or hints, but
rather part the protocol.
3.1 Establishing a transport
Before any rendezvous can be affected, a process must first acquire
an NSAP that will be the service access point for the instantiation
[3]. The process that first establishes at that NSAP is referred to
as the master of the web. The decision as to what process acts as the
master must be made a priori in order to guarantee unambiguous
Armstrong, Freier & Marzullo [Page 13]
^L
RFC 1301 Multicast Transport Protocol February 1992
creation in the face of network partitions. The process should make a
robust effort to verify that the NSAP being used is not already in
service. It may do so by repeatedly sending join[requests] to the
web's unknown TSAP. If there is no response to repeated transmissions
the process may be relatively confident that the NSAP is not in use
and proceed with the creation of the web. If not, the creation must
be aborted and the situation reported to its client.
3.1.1. Join request
Additional members may join the web at any time after the
establishment of the master by the joining process sending a
join[request] to the unknown TSAP. The joining process should have
already assigned a unique connection identifier to its transport
instantiation that will be used in the source TSAP of the
join[request]. The join[request] must contain zeros in all of the
acceptance fields. The heartbeat, window and retention parameters are
filled in as requested by the transport provider's client. The data
of the message must contain the type, class and quality of service
parameters that the client has requested.
field class definition
membership class master(0) There can be only a single web
master, and that member has all
privileges of a producer class member
plus those acquitted only to the
master.
producer(1) A process that has producer class
membership wishes to transmit data
into the web as well as consume.
consumer(2) A consumer process is a read only
process. It will send naks in order
to reliably receive data but will
never ask for or be permitted to take
possession of a transmit token.
transport class reliable(0) Specifies a reliable transport, i.e.,
one that will generate and process
naks. The implication is that the
data will be reliably delivered or
the failure will be detected and
reported to the client.
unreliable(1) The transport supports best
Armstrong, Freier & Marzullo [Page 14]
^L
RFC 1301 Multicast Transport Protocol February 1992
effort delivery. Such a transport may
still fail if the error rates are too
high, but tolerable loss or
corruption of data will be permitted
[4].
transport type NxN(0) The transport will accept multiple
processes with producing capability.
1xN(1) A 1xN transport permits only a single
producer whose identity was
established a priori.
The client's desire for minimum throughput (expressed in kilobytes
per second) is the lowest value that will be accepted. That
throughput is calculated using the heartbeat and window parameters of
the transport, and the maximum data unit size, not by measuring
actual traffic. Any member that suggests a combination of those
parameters that result in an unacceptable throughput will be ignored
or asked to withdraw from the web.
A joining client may also suggest a maximum data unit size. This
field is expressed as a number of bytes that can be included in a
data packet as client data.
If no response is received in a single heartbeat, the join[request]
should be retransmitted using the same source TSAP so the master can
detect the difference between a new process and a retransmission of a
join[request].
Armstrong, Freier & Marzullo [Page 15]
^L
RFC 1301 Multicast Transport Protocol February 1992
3.1.2. Join confirm/deny
Only the master of the web will respond to join[request]. The
response may either permit the entry of the new process or deny it.
The request to join may be denied because the new member is
specifying service parameters that are in conflict with those
established by the master. If the join is confirmed the
join[confirm] will be unicast by the master with a data field that
contains the web's current operating parameters. If those parameters
are unacceptable to the joining process it may decide to withdraw
from the web. Otherwise the parameters must be accepted as the
current operating values.
0 7 8 15 16 23 24 31
---------------------------------------------------------- -----
| protocol | packet | type | client | |
| version | type | modifier | channel | |
---------------------------------------------------------- |
| | |
| source connection identifier | |
---------------------------------------------------------- |
| | |
| destination connection identifier |
---------------------------------------------------------- transport
| | header
| message acceptance criteria |
---------------------------------------------------------- |
| | |
| heartbeat | |
---------------------------------------------------------- |
| | | |
| window | retention | |
---------------------------------------------------------- -----
| member | transport | transport | | |
| class | class | type | reserved | |
----------------------------------------------------------
| minimum | maximum data | data
| throughput | unit size |
---------------------------------------------------------- |
| multicast connection | |
| identifier | |
---------------------------------------------------------- -----
Figure 3. join packet
The join[confirm] will also contain the multicast connection
identifier. This must be used to form the TSAP that will be the
destination for all multicast messages for the transport. The source
Armstrong, Freier & Marzullo [Page 16]
^L
RFC 1301 Multicast Transport Protocol February 1992
of the join[confirm] message will be the master's TSAP and must be
recorded by the member for later use.
The master must be in possession of all the transmit tokens when it
sends a join[confirm]. Requiring the master to have the transmit
tokens insures that the joining member will enter the web and observe
only complete messages. It also permits a notification of the
master's client of the join so that application state may be
automatically sent to the newly joining member. The newly joined
member may be on a network not previously represented in the web's
membership, thus requiring a new multicast TSAP be added to the
existing list. The entire list will be conveyed in the data field of
all subsequent token[confirm] messages (described later).
3.2 Maintaining data consistency
The transport is responsible for maintaining the consistency of the
data submitted for delivery by producing clients. The actual client
data, while representing the bulk of the information that flows
through the web, is accompanied by significant amounts of protocol
state information. In addition to the state information piggybacked
with the client data, there is a minimum amount of protocol packets
that are purely for use by the transport, invisible to the transport
client.
3.2.1. Transmit tokens
Before any process may transmit client data or state it must first
possess a transmit token. It may acquire the token by transmitting a
token[request] to the master. Requests should be unicast to the
master's TSAP and should be retransmitted at intervals approximately
equal to the heartbeat. Since it is the central source for a transmit
token, the master may apply some fairness algorithms to the passing
of permission to transmit. At a minimum the requests should be queued
in a first in, first out order. Duplicate requests from a single
member should be ignored, keeping instead the first unhonored
request. When appropriate, the master will send a member with a
request pending a token[confirm]. The data field of the response
contains all the multicast TSAPs that are represented in the current
web at that point in time.
If the master detects no data or heartbeat messages being transmitted
into the web it will assume the token is lost, presumably because the
member holding the token has failed or has become partitioned away
from the master. In such cases, the master may attempt to confirm the
state of the process (perhaps by sending isMember[request]). If the
member does not respond it is removed from the active members of the
web, the message is marked as rejected, the token is assumed by the
Armstrong, Freier & Marzullo [Page 17]
^L
RFC 1301 Multicast Transport Protocol February 1992
master.
Figure 4 shows a timing diagram of a token pass. Increasing time is
towards the bottom of the figure. In this figure, process A has a
token, and process B requests a token when there are no free tokens.
A master B
"A" multicasts data | | "B" requests
|\ | | transmit token
| \ | /|
| \ | / |
| \ | / |
"A" multicasts data | \ | / | "B" retransmits
w/eom set |\ \| / | token request
| \ \V /|
| \ |\ / |
| \ | V / |
| \ | / |
| \| / |
| \V |
| |\ |
| | V |
| |\ | Master assigns
| | \ | token to "B"
| | \ |
| | \ |
| | \ |
| | V|
| | |
| | /| "B" multicasts
| | / | data
| | / |
| | / |
| | / |
| |/ |
| / |
| /| |
| V | |
| | |
Figure 4. Acquiring the token
Token packets, like other control packets, do not consume sequence
numbers. Hence, the master must be able to use another mechanism to
determine whether multiple token[request] from a single member are
actually requests for a separate token, or are a retransmission of a
token[request]. To carry out this obligation, the master and the
members must have an implicit understanding of each other's state.
Armstrong, Freier & Marzullo [Page 18]
^L
RFC 1301 Multicast Transport Protocol February 1992
0 7 8 15 16 23 24 31
---------------------------------------------------------- -----
| protocol | packet | type | client | |
| version | type | modifier | channel | |
---------------------------------------------------------- |
| | |
| source connection identifier | |
---------------------------------------------------------- |
| | |
| destination connection identifier |
---------------------------------------------------------- transport
| | header
| message acceptance criteria |
---------------------------------------------------------- |
| | |
| heartbeat | |
---------------------------------------------------------- |
| | | |
| window | retention | |
---------------------------------------------------------- -----
| | |
| | |
| TSAPs of all networks |
| represented in the web | data
| membership |
| | |
| | |
---------------------------------------------------------- -----
Figure 5. token packet
Assume that the token, as viewed by the master, has three states:
idle The token is not currently assigned. Specifically the
message number that it defines is not represented in the
current message acceptance vector.
pending The token has been assigned by the master via a
token[confirm] packet, but the master has not yet seen
any data packets to indicate that the from the producing
member received the notification.
busy The token has been assigned and the master has seen data
packets carrying the assigned message number. The message
comprised by those packets is still represented in the
message acceptance vector.
Furthermore, a token that is not idle also has associated with its
Armstrong, Freier & Marzullo [Page 19]
^L
RFC 1301 Multicast Transport Protocol February 1992
state the TSAP of the process that owns (or owned) the token.
Based on this state, the master will respond to any process that has
a token in pending state with a reassignment of that token. This is
based on the assumption that the original token[confirm] was not
received by the requesting process. The only other possibility is
that the process did receive the token and transmitted data packets
using that token, but the master did not see them. But data messages
are by design multi-packet messages, padded with empty packets if
necessary. The possibility of the master missing all of the packets
of a message is considered less than the possibility of the
requesting process missing a single token[confirm] packet.
The process requesting tokens must consider the actions of the master
and what prompted them. In most cases the assumptions made by the
master will be correct. However, there are two ambiguous situations.
There is the situation that the master is most directly addressing,
not knowing whether the requesting process has failed to observe the
token[confirm] or the master has failed to see data packets
transmitted by the producing process. There is also the possibility
that the requesting process timed out too quickly and the
retransmission of the token[request] passed the token[confirm] in the
night. In any case the producing process may find itself in
possession of a token for which it has no need. These can be
dismissed by sending an empty[cancel] packet.
Another possibility is that the requesting process has actually made
use of the assigned token and is requesting another token. Unless the
master has observed data using the token, the master will still
consider the token pending. Therefore, a process that receives a
duplicate token[confirm] should interpret it as a nak and retransmit
any data packets previously sent using the token's message sequence
number.
3.2.2. Data transmission
Data is provided by the transport client in the form of uninterpreted
bytes. The bytes are encapsulated in packets immediately following
the protocol's fixed overhead fields. The packet may have any number
of data bytes between zero and the maximum number of bytes of a
network protocol packet minus the network overhead and the fixed
transport overhead. Every packet that consumes a sequence number
must contain either client data or client state transitions such as
the end of message indicator or a subchannel transition.
Packets are transmitted in bursts of packets called windows. The
protocol guarantees that no more than the current value of window
data packets will be transmitted by a single process during a
Armstrong, Freier & Marzullo [Page 20]
^L
RFC 1301 Multicast Transport Protocol February 1992
heartbeat. Every packet transmitted always contains the latest
heartbeat, window and retention information. If full packets are
unavailable [5], empty[dally] messages should be transmitted instead.
The only packets that will be transmitted containing less than
maximum capacity will be data[eom] or those containing client
subchannel transitions.
Armstrong, Freier & Marzullo [Page 21]
^L
RFC 1301 Multicast Transport Protocol February 1992
----- | |
| |\ |
| | \ |
|\ \ |
heartbeat | \ \ |
|\ \ \ |
| | \ \ V| data(n)
| | \ \ |
----- | \ V| data(n+1)
|\ \ |
| \ V| data(n+w-1) w/eow
|\ \ |
| \ \ |
|\ \ \ |
| \ \ V| data(n+w)
| \ \ |
----- | \ V| data(n+w+1)
|\ \ |
| \ V| data(n+2w-1) w/eow
w = window = 3 | \ |
r = retention = 2 | \ |
| \ |
| V| empty(n+2w)
| |
----- | |
|\ |
| \ |
| \ |
| \ |
| \ |
| V| data(n+2w) w/eom
| | Packets n..n+w-1 are released,
----- | | token is surrendered.
| |
| |
| |
| |
| |
| |
| |
----- | | Packets n+w..n+2w-1 are released.
Figure 6. Normal data transmission
Figure 6 shows a timing diagram of a process transmitting into a web
(without any complicating naks). Increasing time is towards the
bottom of the figure. The transmitting process is obligated to
Armstrong, Freier & Marzullo [Page 22]
^L
RFC 1301 Multicast Transport Protocol February 1992
retransmit requested packets for at least retention heartbeat
intervals after their first transmission.
0 7 8 15 16 23 24 31
---------------------------------------------------------- -----
| protocol | packet | type | client | |
| version | type | modifier | channel | |
---------------------------------------------------------- |
| | |
| source connection identifier | |
---------------------------------------------------------- |
| | |
| destination connection identifier |
---------------------------------------------------------- transport
| | header
| message acceptance criteria |
---------------------------------------------------------- |
| | |
| heartbeat | |
---------------------------------------------------------- |
| | | |
| window | retention | |
---------------------------------------------------------- -----
| | |
| uninterpreted data |
| | data
| |
| | |
---------------------------------------------------------- -----
Figure 7. data packet
3.2.3. Empty packets
An empty packet is a control packet multicast into the web at regular
intervals by a producer possessing a transmit token when no client
data is available. Empty packets are sent to maintain synchronization
and to advertise the maximum sequence number of the producer. It
provides the opportunity for consuming processes to detect and
request retransmission of missed data as well as identifying the
owner of a transmit token.
Armstrong, Freier & Marzullo [Page 23]
^L
RFC 1301 Multicast Transport Protocol February 1992
0 7 8 15 16 23 24 31
---------------------------------------------------------- -----
| protocol | packet | type | client | |
| version | type | modifier | channel | |
---------------------------------------------------------- |
| | |
| source connection identifier | |
---------------------------------------------------------- |
| | |
| destination connection identifier |
---------------------------------------------------------- transport
| | header
| message acceptance criteria |
---------------------------------------------------------- |
| | |
| heartbeat | |
---------------------------------------------------------- |
| | | |
| window | retention | |
---------------------------------------------------------- -----
Figure 8. empty packet
There are two situations where the empty[dally] packet is used. The
first is when there is insufficient data for a full packet presented
by the client during a heartbeat. Partial packets should not be
transmitted unless there is a client transition to be conveyed, yet
something must be transmitted during a heartbeat or the master may
think the process owning a transmit token has failed. Empty[dally] is
used instead of a data packet until the client provides additional
data to fill a packet or indicates a state transition such as an end
of message or subchannel transition.
The second situation where empty[dally] is used is after the
transmission of short messages. Each message should consist of
multiple packets in order to enhance the possibility that consumers
will observe at least one packet of a message and therefore be able
to identify the producer. The transport parameter retention has
approximately the correct properties for that insurance. Therefore, a
message must consist of at least retention packets. If the client
data does not require that many packets, empty[dally] packets must be
appended. A process that has no transmittable data and is in
possession of a transmit token must send an empty[cancel].
Transmissions of empty[cancel] packets pass the ownership of the
transmit token back to the master. When the master observes the
control packet, it will mark the referenced to message as rejected so
that other consumers do not believe the message lost and attempt to
recover.
Armstrong, Freier & Marzullo [Page 24]
^L
RFC 1301 Multicast Transport Protocol February 1992
During periods of no activity (i.e., after all messages have been
either accepted or rejected and there are no outstanding transmit
tokens) the master may enter hibernation mode by transmitting
empty[hibernate] packets. In that mode the master will increase the
value of the transport parameter heartbeat in order to reduce network
traffic. Such packets are used to indicate that the packet's
heartbeat field should not be used for resource computation by those
processes that observe it.
Armstrong, Freier & Marzullo [Page 25]
^L
RFC 1301 Multicast Transport Protocol February 1992
3.2.4. Missed data
The most common method of detecting data loss will be the reception
of a data or a heartbeat message that has a sequence number greater
than expected from that producer. The second most common method will
be a message fragment (missing the end of message) and seeing no more
data or empty packets from the producer of the fragment for more than
a single heartbeat. In any case the consumer process directs a
negative acknowledgment (nak) to the producer of the incomplete
message. The data field of the nak message contains a list of
ascending sequence number pairs the consumer needs to recover the
missed data.
0 7 8 15 16 23 24 31
---------------------------------------------------------- -----
| protocol | packet | type | client | |
| version | type | modifier | channel | |
---------------------------------------------------------- |
| | |
| source connection identifier | |
---------------------------------------------------------- |
| | |
| destination connection identifier |
---------------------------------------------------------- transport
| | header
| message acceptance criteria |
---------------------------------------------------------- |
| | |
| heartbeat | |
---------------------------------------------------------- |
| | | |
| window | retention | |
---------------------------------------------------------- -----
| | | |
| message sequence (low) | packet sequence (low) |
---------------------------------------------------------- data
| | |
| message sequence (high) | packet sequence (high) | |
---------------------------------------------------------- -----
Figure 9. nak packet
3.2.5. Retrying operations
Operations must be retried in order to assure that a single packet
loss does not cause transport failure. In general the right numbers
to do that with exist in the transport. The proper interval between
retries is the transport's time constant or heartbeat. The proper
Armstrong, Freier & Marzullo [Page 26]
^L
RFC 1301 Multicast Transport Protocol February 1992
number of retries is retention.
Operations that are retriable (and represented by their respective
message types) are join, nak, token, isMember and quit. Another
application for the heartbeat and retention is when transmitting
empty messages. Empty[dally] messages are transmitted any time data
is not available but the data[eom] has not yet been sent. Any process
not observing data or empty for more than retention heartbeat
intervals will assume to have failed or partitioned away and the
transport will be abandoned.
3.2.6. Retransmission
If the producer receives a nak[request] from a consumer process
requesting the retransmission of a packet that is no longer
available, the producer must send a nak[deny] to the source of the
request. If that puts the consumer in a failed state, the consumer
will initiate the withdrawal from the web. If a producer receives a
nak[request] from a consumer requesting the retransmission of one or
more packets, those packets will be multicast to the entire web [6].
All will contain the original client information (such as subchannel
and end of message state) and message and packet sequence number.
However, the retransmitted packets must contain updated protocol
parameter information (heartbeat, window and retention).
Retransmitted packets are subject to the same constraints regarding
heartbeat and window as original transmissions. Therefore the
producer's retransmissions consume a portion of the allocation window
allowing less new data to be transmitted in a single heartbeat.
Retransmitted packets have priority over (i.e., should be transmitted
before) new data packets.
Armstrong, Freier & Marzullo [Page 27]
^L
RFC 1301 Multicast Transport Protocol February 1992
----- | | retransmission count = rx=0
| |\ |
| | \ |
| |\ \ |
| | \ \ |
| |\ \ \ |
| | \ \ V| data(n)
| | \ \ |
| \ *| data(n+1)
heartbeat | \ |
| V| data(n+w-1-rx) w/eow rx=0
| | |
| | /| nak(n') of n+1
| | / |
| | / |
| | / |
| | / |
| |V |
----- | |
|\ |
| \ |
|\ \ |
| \ \ |
|\ \ \ |
w = window = 3 | \ \ *| retransmission(n+1) rx=1
r = retention = 1 | \ \ |
| \ V| data(n+w)
| \ |
| V| data(n+2w-1-rx) w/eow rx=1
| |
| /| nak(n') of n+1
| / |
----- | / |
|\ / |
| / |
|V \ |
|\ \ |
| \ \ |
|\ \ V| data(n+2w-rx) rx=1
| \ \ | Packets n..n+w-1-0 can be released.
| \ \ |
| \ V| nak deny(n+1) rx=2
| \ |
| V| data(n+3w-1-rx) w/eom rx=2
| |
----- | | Packets n+w..n+2w-1-1 are released.
Figure 10. naks and retransmission
Armstrong, Freier & Marzullo [Page 28]
^L
RFC 1301 Multicast Transport Protocol February 1992
3.2.7. Duplicate suppression
The consumer must be prepared to ignore duplicate packets received.
They will invariably be the result of the producer's retransmission
in response to another consumer's nak.
3.2.8. Banishment
If at any time a process detects another in violation of the protocol
it may ask the offending process to withdraw from the web by
unicasting to it a quit[request] that has the target field set to the
value of the offender's TSAP. Any member that exhibits a detectable
and recoverable protocol violation and still responds willingly to
the quit[request] will be noted as having truly correct social
behavior.
0 7 8 15 16 23 24 31
---------------------------------------------------------- -----
| protocol | packet | type | client | |
| version | type | modifier | channel | |
---------------------------------------------------------- |
| | |
| source connection identifier | |
---------------------------------------------------------- |
| | |
| destination connection identifier |
---------------------------------------------------------- transport
| | header
| message acceptance criteria |
---------------------------------------------------------- |
| | |
| heartbeat | |
---------------------------------------------------------- |
| | | |
| window | retention | |
---------------------------------------------------------- -----
| |
| target TSAP |
| |
----------------------------------------------------------
Figure 11. quit packet
3.3 Terminating the transport
Transport termination is an advisory process that may be initiated by
any member of the web. No process should intentionally quit the web
while it has retransmittable data buffered. Stations should make
Armstrong, Freier & Marzullo [Page 29]
^L
RFC 1301 Multicast Transport Protocol February 1992
every reasonable attempt advise the master of their intentions to
withdraw, as their departure may collapse the topology of the web and
eliminate the need to carry multicast messages across network
boundaries.
3.3.1. Voluntary quits
Voluntary quit[requests] are unicast to the master's TSAP. When the
master receives a quit from a member of the web, it responds with a
quit[confirm] packet. At that time the member will be formally
removed from the web. The request should be retransmitted at
heartbeat intervals until the confirmation is received from the
master or as many times as the web's value of retention.
3.3.2. Master quit
If the master initiates the transport termination it effects all
members of the web. The master will retain all transmit tokens and
refuse to assign them. Once the tokens are acquired, the master will
multicast a quit[request] to the entire web. That request should be
acknowledged by every active member. When the master receives no
confirmations for retention transmissions, it may assume every member
has terminated its transport and then may follow suit.
3.3.3. Banishment
If the master receives any message other than a join[request] from a
member that it does not recognize, it should transmit a quit[request]
with that process as a target. This covers cases where the consumer
did not see the termination reply and retransmitted its original quit
request, as well as unannounced and rejected consumers.
3.4 Transport parameters
The following section provides guidelines and rationale for selecting
reasonable transport quality of service parameters. It also describes
some of the reasoning behind the ranges of values presented.
3.4.1. Quality of service
Active members of the web may suggest changes in the transport's
quality of service parameters during the lifetime of the transport.
Producers in general adjust the transport's parameters to encourage a
higher level of throughput. Since consumers are responsible for
certifying reliable delivery, it is expected that they will provide
the force encouraging more reliability and stability. Both are trying
to optimize the quality of service. The negotiation that took place
when members joined the web included the clients' desires with
Armstrong, Freier & Marzullo [Page 30]
^L
RFC 1301 Multicast Transport Protocol February 1992
regards to the worst case behavior that will be tolerated. If a
member cannot maintain the negotiated lower bound, it may asked to
withdraw from the web. That process will be sent a unicast message
(quit[request]) indicating that it should retire. There are
essentially three parameters maintained by the transport that reflect
the client's quality of service requirements: heartbeat, window and
retention. These three parameters can be adapted by the transport to
reflect the capability of the members, the type of application being
supported and the network topology. When members join the web, they
suggest values for the quality of service parameters to the master.
If the parameters are acceptable, the master will respond with the
web's current operating values. During the lifetime of the web, it is
expected that the parameters be modified by its members, though they
may never result in a quality of service less than the lower bounds
established by the joining procedure. Producers may try to improve
performance by reducing the heartbeat interval and increasing the
window size. This will have the effect of increasing the resources
committed to the transport at any time. In order to keep the
resources under control, the producer may also reduce the retention.
Consumers must rely on their clients to consume the data occupying
the resources of the transport. To do so the consumer transport
implementation must monitor the level of committed resources to
insure that it does not exceed its capabilities. Since MTP is a NAK
based protocol, the consumer is required to tell the producer if a
change in parameters is required. The new information must be
delivered to the producer(s) before the consumer's resource situation
becomes critical in order to avoid missing data.
For more stable operation, consumers would try to extend the
heartbeat interval and reduce the window. To a certain degree, they
could also attempt to reduce the value of retention in order to
reduce the amount of resources required to support the transport.
However, that requires a more stringent real-time capability.
3.4.2. Selecting parameter values
The value of heartbeat is approximately the transport time constant.
Assuming that the transport can be modelled as a closed loop system
function, reaction to feedback into the transport should settle out
in three time constants. In a transport that is constrained to a
single network, the dominant cause of processing delay of the
transport will most likely be page fault resolution time.
For example, using a one MIP processor on a ethernet and an industry
standard disk, the worst case page fault resolution requiring two
seeks (one to write out a dirty page, another to swap in the new
page) and an average seek time of 40 milliseconds, page fault
Armstrong, Freier & Marzullo [Page 31]
^L
RFC 1301 Multicast Transport Protocol February 1992
resolution should be less than 80 milliseconds. Allowing for some
additional overhead and scheduling delays, two times the worst case
page fault resolution time would appear to be the minimum suitable
transport time constant one could expect. So,
Heartbeat (minimum) = 160 - 200 milliseconds.
The transmit time for a full (ethernet) packet is approximately 1.2
milliseconds. Processing time should be less than 3 milliseconds
(ignoring possible overlapped processing). Assuming disk access (with
no faulting) is equivalent, and the total time per packet is the sum
of the parts, or 8.4 milliseconds. Therefore, the theoretical maximum
value would be approximately 17 packets per heartbeat. The transport
should be capable of approximately 120 packets per second, or 19.2
packets per heartbeat.
Window (maximum) = 17 - 20 packets per heartbeat.
The (theoretical) throughput with these parameters in effect is 180
kilobytes per second.
Reducing retention may introduce instability because the consumers
will have less opportunity to react to missing data. Data can be
missed for a variety of reasons. If constrained to the local net the
data lost due to data link corruption should be in the neighborhood
of one packet in every 50,000 (bit error rate of approximately 10-9).
Telephony links (between routers, for instance) exhibit similar
characteristics. Several orders of magnitude more packets are lost at
receiving processes, including packet switch routers, than over the
physical links. The losses are usually a result of congestion and
resource starvation at lower layers due to the processing of (nearly)
back to back packets. The incidental packet loss of this type is
virtually unavoidable. One can only require that a receiving process
be capable of receiving some number of back to back packets
successfully, and that number must be at least greater then the value
of window. And beyond that the probability of success can be made as
close to unity as required by providing the receiver the opportunity
to observe the data multiple times.
The receiving process must detect packet loss. The simplest method is
to notice gaps in the received message/packet sequence numbers. Such
detection should be done after receiving an end of window or other
state transition indication. As such, the naks cannot be transmitted,
let alone received, until the following heartbeat. In order to not
have any single packet loss cause transport failure, the naks should
have the opportunity to be transmitted at least twice.
When the loss is detected, the nak must be transmitted and should be
Armstrong, Freier & Marzullo [Page 32]
^L
RFC 1301 Multicast Transport Protocol February 1992
received at the producing process in less than two heartbeats after
the data it references was transmitted. Again, it is the detection
time that dominates, not the transmission of the nak.
Retention (minimum) = 3.
The resources committed to a producing transport using the above
assumptions are buffers sufficient for 80 packets of 1500 bytes each.
Each buffer will be committed for 600 - 800 milliseconds.
Transports that span multiple networks have unique problems. One such
problem is that if a router drops a packet, all the processes on the
remote network may attempt to send a nak[request] at the same time.
That is not likely to enhance the router's quality of service.
Furthermore, it is obvious that any one nak[request] will suffice to
prompt the producer to retransmit the desired packet. To reduce the
number of nak[requests] in this situation, the following scheme might
be employed.
First, extend the value of retention to a minimum value of N. Then
use a randomizing function that returns a value between zero and N -
2, choose how many heartbeat intervals to dally before sending the
nak[request], thus spreading out the transmissions over time. In
order for the method to be meaningful, the minimum value of retention
must be adjusted.
Retention (minimum) = 5 (for internet cases)
3.4.3. Caching member information
In order to reduce transport member interaction and to enhance
performance, a certain amount of caching should be employed by
producing members. These caches may be filled by gleaning information
from reliable sources such as multicast data or, when all else fails,
from responses solicited from the web's master by use of the
isMember[request]. IsMember[request] requests are unicast to a member
that is believed to have an accurate state of the web, at least to
the degree that it can answer the question posed. The destination of
such a message is usually the master. But in cases where a process
(such as the master) wants to verify that a process believes itself
to be valid, it can assign the target TSAP and the destination to be
the same. It is assumed that every process can verify itself.
If the member receiving the isMember[request] can confirm the
target's active membership status in the web, it responds with a
unicast isMember[confirm]. The data field contains the credibility
value of the confirmation, that is the time (in milliseconds) since
the information was confirmed from a reliable source.
Armstrong, Freier & Marzullo [Page 33]
^L
RFC 1301 Multicast Transport Protocol February 1992
Caches are risky as the information stored in them can become stale.
Consequently, with only a few exceptions, the entries should be aged,
and when sufficiently old, discarded. Ideally they may be renewed by
the same gleanable sources alluded to in the previous paragraph. If
not, they are simply discarded and refilled when needed.
Web membership may be gleaned from any packet that does not have a
value of unknown as the destination connection identifier. A
producing transport may extract the TSAP from such packets and either
create or refresh local caches. Then, if in the process of
transmitting and NAK is received from one of the members whose
identity is cached, no explicit request will be needed to verify the
source's membership.
The explicit source of membership information is the master.
Information can be requested by using the isMember message.
Information gathered in that manner should be treated the same as
gleaned information with respect to aging.
The aging is a function of the transport's time constant, or
heartbeat, and the retention. Information about a producing member
must be cached at least as long as that producer has incomplete
messages. It may be cached longer. The namespace for both sequence
numbers and connection identifiers is intentionally long to insure
that reuse of those namespaces will not likely collide.
A. Appendix: MTP as an Internet Protocol transport
MTP is a transport layer protocol, designed to be layered on top of a
number of different network layer protocols. Such a protocol must
provide certain facilities that MTP expects. In particular, the
underlying network level protocol must provide "ports" or "sockets"
to facilitate addressing of processes within a machine, and a
mechanism for multicast addressing of datagrams. These two
addressing facilities are also used to formulate the NSAP for MTP on
IP.
A.1 Internet Protocol multicast addressing
MTP on Internet Protocol uses the Internet Protocol multicast
mechanisms defined in RFC 1112, "Host Extensions for IP
Multicasting". MTP requires "Level 2" conformance described in that
paper, for hosts which need to both send and receive multicast
packets, both on the local net and on an internet. MTP on Internet
Protocol uses the permanent host group address 224.0.1.9.
Armstrong, Freier & Marzullo [Page 34]
^L
RFC 1301 Multicast Transport Protocol February 1992
A.2 Encapsulation
The Internet Protocol does not provide a port mechanism - ports are
defined at the transport level instead. In order to encapsulate MTP
packet within Internet Protocol packets, a simple convergence or
"bridge" protocol must be defined to run on top of Internet Protocol,
which will provide MTP with the mechanism needed to deliver packets
to the proper processes. We will call this protocol the
"MTP/Internet Protocol Bridge Protocol", or just "Bridge". The
protocol header is encapsulated the Internet Protocol data - the
protocol field of the Internet Protocol packet carries the value
indicating this packet is an MTP packet (92 decimal). The MTP packet
itself is encapsulated in the Bridge data. Figure A.1 shows the
positions of the fields within the MTP packet while table A.1 defines
the contents of those fields.
A.3 Fields of the bridge protocol
0 7 8 15 16 23 24 31
----------------------------------------------------------
| | |
| destination port | source port |
----------------------------------------------------------
| | |
| length | checksum |
----------------------------------------------------------
| |
| client data |
----------------------------------------------------------
Figure A.1 MTP bridge protocol header fields
destination port The port to which the packet is destined or sinked.
source port The port from which the packet originates or is sourced.
length The length in octets of the bridged packet, including
header and all data (the MTP packet). The minimum value
in this field is 8, the maximum is 65535. The length
does not include any padding bytes that were used to
compute the checksum. Note that though this field allows
for very long packets, most networks have significantly
shorter maximum frame sizes - the allowable and optimal
packet size must be determined by means beyond the scope
of this specification.
checksum The 16 bit one's compliment of the one's compliment sum
of the entire bridge protocol header and data, padded
Armstrong, Freier & Marzullo [Page 35]
^L
RFC 1301 Multicast Transport Protocol February 1992
with a zero octet (if necessary) to make multiple 16 bit
quanities. A computed checksum of all zeros should be
changed to all ones. The checksum field is optional -
all zeros in the field indicate that checksums are not in
use.
data The data field is the field that carries the actual
transport data. A single MTP packet will be carried the
data field of each bridge packet.
A.4 Relationship to other Internet Protocol Transports
The astute reader might note that the MTP/Bridge Protocol looks much
like the User Datagram Protocol (UDP). UDP itself was not used
because the protocol field in the Internet Protocol packet should
reflect the fact that the higher level protocol of interest is MTP.
References
AFM91 Armstrong, S., A. Freier and K. Marzullo, "MTP: An Atomic
Multicast Transport Protocol", Xerox Webster Research Center
technical report X9100359, March 1991.
Bog83 Boggs, D., "Internet Broadcasting", Xerox PARC technical
report CSL-83-3, October 1983.
BSTM79 Boggs, D., J. Shoch, E. Taft, and R. Metcalfe, "Pup: An
Internetwork Architecture", IEEE Transactions on
Communications, COM-28(4), pages 612-624. April 1980.
DIX82 Digital Equipment Corp., Intel Corp., Xerox Corp., "The
Ethernet, a Local Area Network: Data Link and Physical Layer
Specifications", September 1982.
CLZ87 Clark, D., M. Lambert, and L. Zhang, "NETBLT: A high
throughput transport protocol", In Proceedings of ACM SIGCOMM
'87 Workshop, pages 353-359, 1987.
CM87 Chang J., and M. Maxemchuck. "Atomic broadcast", ACM
Transactions on Computer Systems, 2(3):251-273, August 1987.
Cri88 Cristian, F., "Reaching agreement on processor group
membership in synchronous distributed systems", In
Proceedings of the 18th International Conference on Fault-
Tolerant Computing. IEEE TOCS, 1988.
Dee89 Deering, S., "Host Extensions for IP Multicasting", RFC 1112,
Stanford University, August 1989.
Armstrong, Freier & Marzullo [Page 36]
^L
RFC 1301 Multicast Transport Protocol February 1992
Fre84 Freier, A., "Compatability and interoperability", Open letter
to XNS Interest Group, Xerox Systems Developement Division,
December 13, 1984.
JB89 Joseph T., and K. Birman, "Reliable Broadcast Protocols",
pages 294-318, ACM Press, New York, 1989.
Pos81 Postel, J., "Transmission Control Protocol - DARPA Internet
Program Protocol Specification", RFC 793, DARPA, September
1981.
Xer81 Xerox Corp., "Internet Transport Protocols", Xerox System
Integration Standard 028112, Stamford, Connecticut. December
1981.
Footnotes
[1] The network layer is not specified by MTP. One of the goals is to
specify a transport that can be implemented with equal functionality
on many network architectures.
[2] There's only one such multicast connection identifier per web. If
there are multiple processes on the same machine participating in a
web, the transport must descriminate between those processes by using
the connnection identifier.
[3] Determining the network service access point (NSAP) for a given
instantiation of a web is not addressed by this protocol. This
document may define some policy, but the actual means are left for
other mechanisms.
[4] Best effort delivery is also known as highly reliable delivery.
It is somewhat unique that the qualifying adjective highly weakens
the definition of reliable in this context.
[5] The resource being flow controlled is packets carrying client
data. Consequently, full data units provide the greatest efficiency.
[6] There seems to be an opportunity to suppress retransmissions to
networks that were not represented in the set of naks received.
Security Considerations
Security issues are not discussed in this memo.
Armstrong, Freier & Marzullo [Page 37]
^L
RFC 1301 Multicast Transport Protocol February 1992
Authors' Addresses
Susan M. Armstrong
Xerox Webster Research Center
800 Phillips Rd. MS 128-27E
Webster, NY 14580
Phone: (716) 422-6437
EMail: armstrong@wrc.xerox.com
Alan O. Freier
Apple Computer, Inc.
20525 Mariani Ave. MS 3-PK
Cupertino, CA 95014
Phone: (408) 974-9196
EMail: freier@apple.com
Keith A. Marzullo
Cornell University
Department of Computer Science
Upson Hall
Ithaca, NY 14853-7501
Phone: (607) 255-9188
EMail: marzullo@cs.cornell.edu
Keith Marzullo is supported in part by the Defense Advanced
Research Projects Agency (DoD) under NASA Ames grant number NAG
2-593, Contract N00140-87-C-8904. The views, opinions and
findings contained in this report are those of the authors and
should not be construed as an official Department of Defense
position, policy, or decision.
Armstrong, Freier & Marzullo [Page 38]
^L
|