summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc1329.txt
blob: 2a071687bac28f10077a674f715c35acbca371a2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
Network Working Group                                           P. Kuehn
Request for Comments: 1329                                      May 1992


       Thoughts on Address Resolution for Dual MAC FDDI Networks

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard.  Distribution of this memo is
   unlimited.

1. Abstract

   In this document an idea is submitted how IP and ARP can be used on
   inhomogeneous FDDI networks (FDDI networks with single MAC and dual
   MAC stations) by introducing a new protocol layer in the protocol
   suite of the dual MAC stations.  Thus two dual MAC stations are able
   to do a load splitting across the two rings and use the double
   bandwidth of 200 Mbits/s as single MAC stations.  The new layer is an
   extension of layer 3.  For the user, the higher layer protocols, IP
   and ARP the property "dual MAC" is transparent.  No modification is
   required in the protocol suite of single MAC stations and transparent
   bridges.

2. Acknowledgements

   This paper is a result of a diploma thesis prepared at the Technical
   University of Munich, Lehrstuhl fuer Kommunikationsnetze, in co-
   operation with the Siemens Nixdorf AG.  The author would like to
   thank Jrg Eberspher and Bernhard Edmaier from the university, Andreas
   Thimmel and Jens Horstmeier from the SNI AG at Augsburg for the
   helpful comments and discussions.

3. Conventions

   Primary MAC, P-MAC           MAC, placed on the primary ring
   Secondary MAC, S-MAC         MAC, placed on the secondary ring
   Inhomogeneous ring           configuration of a dual FDDI ring with
                                single MAC and dual MAC stations

   DMARP                        Dual MAC Address Resolution Protocol

4. Assumptions

   When a dual FDDI ring wraps, both MACs in a dual MAC station are
   assumed to remain connected to the ring.  ANSI is just investigating
   whether the Configuration Management in the Station Management of a



Kuehn                                                           [Page 1]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   FDDI station can be modified to allow this.  According to the FDDI
   SMT standard [1], different addresses are required for all MACs on
   the primary and the secondary ring.

   In this paper, the MAC in a single MAC station is assumed to reside
   on the primary ring.  The application of single MAC stations which
   have their MAC attached to the secondary ring is not precluded, but
   therefor additional connectivity between the two rings is required.
   These configurations are beyond the scope of this document.

5. The Application of Transparent Bridges

   Transparent bridges can provide links to other 802 LANs or further
   inhomogeneous FDDI rings.  The connection between two inhomogeneous
   FDDI rings can be realized by one or two transparent bridges. When
   two transparent bridges are used, one transparent bridge links the
   primary rings, the other the secondary rings.  If two secondary rings
   are connected by a transparent bridge, a path of transparent bridges
   must exist between the two primary rings.  No transparent bridges are
   allowed between the primary and the secondary ring.

6. Protocol Layers in Single MAC Stations

   The new protocol layer, named load sharing layer, is drafted to be
   introduced only in dual MAC stations.  In single MAC stations, IP and
   ARP are working on top of the Subnetwork Access Protocol (SNAP) 04]
   and the Logical Link Control protocol (802.2 LLC) [3].  LLC type 1 is
   used because connectionless services are investigated only.























Kuehn                                                           [Page 2]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


      +--------------------------+
      |   IP                     |
      +--------------------------+
      +--------------------------+
      |   ARP                    |
      +--------------------------+
       |             |
       | ARP frames  | IP frames
       |             |
      +--------------------------+
      |   SNAP                   |
      +--------------------------+
      +--------------------------+
      |   LLC                    |
      +--------------------------+
      +--------------------------++-------+
      |   FDDI-MAC               || F     |
      +--------------------------+| D  S  |
      +--------------------------+| D  M  |
      |   FDDI PHY and PMD       || I  T  |
      +--------------------------++-------+

   For the ARP layer, the following model is assumed:
   +-------------------------------------------------------X-----------+
   |  - ARP entity -                                       |           |
   |                                                       | IP frames |
   | +----------------+   +----------------+ read          |           |
   | | Cache          |   |                | entries +-------------+   |
   | | Administration |->-|  Address Cache |------>--| Address     |   |
   | +----------------+   |                |         | Conversion  |   |
   |     |                +----------------+         | Unit        |   |
   |     | ARP frames                                +-------------+   |
   |     |                                               / |           |
   |     | ___________ <- ARP requests _________________/  | IP frames |
   |     |/                                                |           |
   +-----X-------------------------------------------------X-----------+

   The Address Conversion Unit handles the actual conversion of IP
   addresses to hardware addresses.  For this purpose, it uses the
   information in the ARP cache.  The cache administration communicates
   with other ARP entities by ARP and creates, deletes and renews the
   entries in the cache.

7. Protocol Layers in Dual MAC Stations

   The load sharing layer provides the same interface to ARP as SNAP
   does.  To exchange information about addresses and reachability, the
   load sharing entities in dual MAC stations communicate with the Dual



Kuehn                                                           [Page 3]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   MAC Address Resolution Protocol (DMARP).  For the transmission of
   DMARP frames the SNAP SAP of LLC is used, as for IP and ARP, too.
   The Organizationally Unique Identifier (OUI) in the SNAP header is
   set to zero (24 bit), the EtherType field (16 bit) contains a new
   number indicating DMARP, which is not defined yet.

   +---------------------------------------------------------+
   |                         IP                              |
   +---------------------------------------------------------+
   +---------------------------------------------------------+
   |                         ARP                             |
   +---------------------------------------------------------+
             | ARP frames                 | IP frames
   +---------------------------------------------------------+
   |                 Load Sharing Layer                      |
   +---------------------------------------------------------+
    |        |        |          |        |        |
    | ARP    | DMARP  | IP       | ARP    | DMARP  | IP
    | frames | frames | frames   | frames | frames | frames
    |        |        |          |        |        |
   +-------------------------+  +----------------------------+
   |   SNAP 1                |  |    SNAP 2                  |
   +-------------------------+  +----------------------------+
   +-------------------------+  +----------------------------+
   |   LLC 1                 |  |    LLC 2                   |
   +-------------------------+  +----------------------------+
   +-------------------------+  +----------------------------++-------+
   |   Primary MAC           |  |    Secondary MAC           || F     |
   +-------------------------+  +----------------------------+| D  S  |
   +---------------------------------------------------------+| D  M  |
   |                  FDDI PHY and PMD                       || I  T  |
   +---------------------------------------------------------++-------+

8. Running Inhomogeneous FDDI Rings

8.1. Exchange of Primary MAC Addresses between Stations

   IP and higher layer protocols only use the network independent IP
   addresses.  The ARP entity takes upon the conversion of an IP address
   to the appropriate hardware address.  To make the property dual MAC"
   transparent, ARP may only know the addresses of MACs on the primary
   ring. Therefore, the load sharing entity always delivers ARP frames
   to SNAP 1 for transmission.  By this way, communication with ARP is
   done over the primary ring in normal state.  A secondary MAC can
   receive an ARP frame when the dual ring is wrapped and the
   destination hardware address is a multicast or broadcast address.
   These frames will be discarded because they were received twice.




Kuehn                                                           [Page 4]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   By this way, the associations of IP addresses to primary MAC
   addresses for the single MAC and dual MAC stations are stored in the
   ARP cache.  The ARP cache contains no secondary MAC addresses.

8.2. Exchange of Secondary MAC Addresses between Dual MAC Stations

   The load sharing layer needs to know the secondary MAC addresses of
   the other dual MAC stations.  The DMARP is used to get these
   addresses.  Whenever the load sharing entity delivers an ARP frame to
   SNAP 1, a DMARP reply frame will be sent on the secondary ring,
   containing the stations primary and secondary MAC address. The
   destination hardware address in this DMARP frame is the broadcast MAC
   address, the EtherType field in the SNAP header identifies DMARP.
   The IP destination address is copied from the ARP frame.  If the ARP
   frame that was transmitted parallel to the DMARP reply was a request,
   an ARP reply frame will be sent back to the sending station by the
   ARP entity in the receiving station. When the load sharing layer in
   the receiving station delivers this ARP reply frame to SNAP 1, it
   sends a DMARP reply frame on the secondary ring.

   By this way, DMARP exchanges the additionally required secondary MAC
   addresses between the dual MAC stations.  This is done parallel to
   the exchange of the ARP frames.

8.3. Communication of Dual MAC Stations on Different Dual FDDI Rings

   If two inhomogeneous dual FDDI rings are connected by one transparent
   bridge, dual MAC stations placed on different dual FDDI rings cannot
   perform a load sharing.  If both dual FDDI rings remain in normal
   state, no DMARP reply frames get from one secondary ring to the other
   secondary ring.  A dual MAC station realizes another dual MAC station
   placed on the other dual ring as a single MAC station, because it
   only receives ARP frames from it.  If one of the dual rings is
   wrapped, a DMARP reply frame can get on the primary ring of the other
   dual ring.  A target station on the unwrapped ring receives this
   DMARP frame by the primary MAC and the load sharing entity stores the
   contained addresses in an entry in the address cache.  This entry is
   marked with a control bit, named the OR-bit Other ring bit").  No
   load sharing will be done with a station related to an entry with the
   OR-bit set.

   If both dual FDDI rings are wrapped, the MACs of all stations reside
   on one ring.  Now, dual MAC stations placed on different dual rings
   can communicate with DMARP.  If a DMARP reply frame is received by
   the primary MAC and no entry exists for the sending station, a new
   entry with OR-Bit set will be created.  Otherwise, the OR-bit will be
   set in the existing entry.  If a DMARP reply frame is received by the
   secondary MAC and an entry with OR-bit set already exists for the



Kuehn                                                           [Page 5]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   sending station, the bit will not be reset.

   This mechanism provides that no load sharing will be done between
   Dual MAC stations on different dual rings if the dual rings are
   linked with one transparent bridge.  An additional DMARP error frame
   is used to provide against errors when a DMARP reply frame gets lost
   on the ring.

8.4. Timeout of Entries Marked with OR-Bit Set

   If a FDDI ring is wrapped, the DMARP reply frames are received by the
   primary and secondary MACs of the target dual MAC stations.  In that
   case, the entries for dual MAC stations on the same dual ring are
   also marked with the OR-bit, although the load sharing is possible
   between these stations.

   When an OR-bit in an entry is set for the first time, a timer entity
   is started. If the timer entity runs out, a DMARP request frame is
   sent over SNAP 2 to the secondary MAC of the associated target)
   station.  Then the entry will be discarded.

   If the request cannot be received by the target station because the
   network configuration has changed, there is no entry in the address
   cache for this station any more and no load sharing is computed.  If
   the target station receives the DMARP request frame, it sends back a
   DMARP reply frame.

8.5. Problems with the Application of Large FDDI Networks

   With an increasing number of dual FDDI rings, each one linked
   together by two transparent bridges, the probability increases, that
   one of these inhomogeneous dual FDDI rings is wrapped in the moment
   when two dual MAC stations exchange ARP frames and DMARP replies.

   If two dual MAC stations are communicating for the first time, the
   probability decreases that a load sharing is really computed after
   the exchange of DMARP replies, although this would be possible
   according to the network configuration.  It relies upon the fact,
   that DMARP replies get to the primary ring over the wrapped dual ring
   and only entries marked with the OR-bit set are created. To solve
   this problem further expedients are invented:

   At first, entries in the address cache can be marked read-only by the
   setting of the R-bit.  In dual MAC stations, entries can be written
   manually for other dual MAC stations that are frequently talked to or
   that have a special importance.  The control bits of these entries
   cannot be changed by DMARP.




Kuehn                                                           [Page 6]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   Next, additional control bits are introduced.  One of these bits is
   the Hold-bit (H-bit). When two dual MAC stations exchange ARP frames
   and DMARP replies to create entries in their address caches, one
   station starts sending a DMARP reply, first.  According to the
   network state, it sends an additional DMARP error frame, a moment
   later.  Within a maximum period of time (see "Configuring the Timer
   Parameters"), all frames arrive at the neighbour station and are
   received by the primary and/or secondary MAC.  If the OR-bit was not
   set for an entry within this period of time, it is clear, that no
   further DMARP frames will be received, which result in setting the
   OR-bit.  For such an entry the H-bit is set.  As the reception of
   reply and error frames is not sufficient for setting the OR-bit when
   the H-bit is set, the load sharing is assumed to be sure.  The
   correctness of the H-bit will be verified in relatively long time
   periods by queries (query and hold frames) at the station associated.

   For two communicating stations there exists a possibility to get
   information from a third station.  Always, when the OR-bit is set for
   an entry in a dual MAC station, a search frame is transmitted by the
   secondary MAC, containing the own primary MAC address and the primary
   MAC address of the counter station.  If a third station can compute a
   sure load sharing with both stations (the H-bit is set for the
   associated entries), the stations can perform a load sharing between
   them, too.  The third station informs these stations by sending found
   frames to them.

8.6. Multicast and Broadcast Addresses in IP Frames

   If the destination hardware address of an IP frame is a multicast or
   broadcast hardware address, the frame is always delivered to SNAP 1
   and sent on the primary ring, because one of the addressed stations
   could be a single MAC station.  IP frames which are delivered to the
   load sharing entity by SNAP 2 are discarded by the load sharing
   entity.  Thus, the duplication of these frames can be prevented.

9. Internal Structure

   One load Sharing entity exists in the load sharing layer.  This load
   sharing entity consists of the address cache, the cache
   administration and the multiplexer.











Kuehn                                                           [Page 7]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   to ARP                                                     to ARP
   +----X----------------------------------------------------X--------+
   |    |                                                   | IP      |
   |    | ARP frames                            read        | frames  |
   |    |                                       entries     |         |
   | +----------------------------+   +---------+       +----------+  |
   | | Cache Administration       |->-| Address |---->--|  Multi-  |  |
   | +----------------------------|->-| Cache   |       |  plexer  |  |
   |  |        |        |        |    +---------+       |          |  |
   |  |        |        |        |                      +----------+  |
   |  | ARP    | DMARP  | ARP    | DMARP                |        |    |
   |  | frames | frames | frames | frames            IP |     IP |    |
   |  |        |        |        |               frames | frames |    |
   |  |        |        |        |                      |        |    |
   +--X--------X--------X--------X-----------------------X--------X---+
   to SNAP 1         to SNAP 2                    to SNAP 1   to SNAP 2

9.1. The Address Cache

   In the address cache, the associations of primary MAC addresses to
   secondary MAC addresses are stored for other dual MAC stations on the
   network.  There are no entries for single MAC stations.

   Because the OR- and the LS-bit (see table) always have inverted
   values, one of the bits is redundant.  Afterwards the examination of
   an entry state gets easier by the introduction of both bits, they are
   defined together.  The ARP is able to support other protocol address
   formats than the IP format.  To support this ARP property by DMARP,
   the protocol type number as used in the ARP frames is stored in every
   entry of the address cache.  So, a dual MAC station is able to
   communicate with another station with DMARP, even if the other
   station does not use IP.  The numbers used in DMARP frames and the
   address cache for the protocol type and the address length are taken
   over from ARP.

   name               length     comment
   --------------------------------------------------------------------

   P-MAC address      48 bit     Address of the primary MAC
                                 in an other dual MAC station

   S-MAC address      48 bit     Address of the secondary MAC
                                 in that station

   LS-bit             1 bit      A load sharing can be performed
                                 with that station
                                 ("Load sharing bit")




Kuehn                                                           [Page 8]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   OR-bit             1 bit      No load sharing may be done
                                 with that station
                                 ("Other ring bit")

   H-bit              1 bit      The load sharing with that
                                 station is trusty.
                                 ("Hold bit")

   Q-bit              1 bit      A query frame was sent to that
                                 station, no hold frame was
                                 received yet ("Query bit")

   R-bit              1 bit      This entry cannot be changed by
                                 DMARP ("Read-only bit")

   V-bit              1 bit      The entry is valid
                                 ("Valid bit")

   subscript          32 bit     Unique number, identifying this
                                 entry

   protocol type      16 bit     Number of the protocol type
                                 that was last used in that
                                 station

9.2. The Multiplexer

   The multiplexer deals with multiplexing the IP frames upon the two
   FDDI rings.  Broadcast and multicast frames are always sent on the
   primary ring.  Otherwise, the contents of the address cache and a load
   sharing criteria are used to decide on which of the rings an IP frame
   has to be transmitted.  If there is no entry for the primary MAC
   address of the destination station in the cache, the IP frame is
   transmitted on the primary ring.  If there is an entry for the
   destination station and the LS-bit is set, a load sharing can be done
   with this station.  Later on a load sharing criteria, which is beyond
   the scope of this document, decides, which one of the rings is used
   for transmission.  An example for a load sharing criteria is the
   length of the transmit queues in the MACs.  The multiplexer requires an
   abstract function only, which returns the appropriate ring for the
   transmission of an actual IP frame.

   Additionally, the multiplexer filters the received IP frames:
   multicast or broadcast frames received from the secondary MAC are
   discarded.






Kuehn                                                           [Page 9]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


9.3. The Cache Administration

   The cache administration creates and deletes the entries in the
   address cache.  For this purpose, it communicates with other load
   sharing entities in other dual MAC stations with the DMARP.  The
   cache administration handles the delivery of ARP frames to the ARP
   and the SNAP entity in the station, respectively.

   The cache administration needs three timers for the communication with
   the DMARP, which have to be supported by the system environment.  Each
   of these timers must support a timer entity for each entry in the
   address cache, whereby a single one is running at a time.

   Supported timer services:

      TIMER_request(time, name, subscript)
      TIMER_response(name, subscript)
      TIMER_cancel(name, subscript):

   A timer entity is started by the service TIMER_request and cancelled
   by the TIMER_cancel service request. The TIMER_response service
   indicates that a timer entity has run out.  The parameter name is the
   name of a timer: OR-Entry-Timer, Hold-Timer, or Query-Timer.  Each
   entry in the address cache is uniquely identified by a number
   subscript).  This number is also the number of an associated timer
   entity.  How to dispose these numbers is a question of
   implementation.  The parameter time determines the time period when
   the timer runs out.  This parameter has the value OR-set-timeout for
   the OR-Entry-Timer, Hold-time for the Hold-Timer and Query-time for
   the Query-Timer.

9.4. Configuring the Timer Parameters

   The OR-set-timeout parameter for the OR-Entry-Timer

      The period of time, determined by this parameter, should be
      essentially longer than the maximum time for a frame to travel
      around the entire network.  The expression entire network means
      the network which is constituted by the subnetworks linked
      together with transparent bridges.  When entries with OR-bit set
      are created continuously for a dual MAC station by the timeout
      mechanism, this parameter determines the periods of time between
      the consecutive requests that are sent to this station.  If the
      state of the dual FDDI ring changes and an entry with LS-bit set
      could be created, this parameter additionally determines the
      maximum time until the new entry is created.  (If an entry could
      not be created by transmission of search frames.)  Therefore, the
      OR-set-timeout parameter should be set to some 10 seconds.



Kuehn                                                          [Page 10]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   The Hold-time parameter for the Hold-Timer

      The period of time, determined by this parameter, should as well
      be essentially longer than the maximum time for a frame to travel
      around the entire network.  When two stations communicate for the
      first time, they exchange ARP frames and DMARP replies.  The
      Hold-time parameter determines the period of time until the load
      sharing is assumed to be accomplished after the setting of the
      LS-bit.  In this period of time, the frames mentioned above must
      have reached its destination.  If an entry would be marked with
      the H-bit incorrectly, the time until it gets corrected will be
      relatively long (Query time).  Proposed dimension: several
      minutes.

   The Query-time parameter for the Query-Timer

      When an entry is marked with LS- and H-bit it is assumed, that
      load sharing can be performed with the associated station.  To
      allow the correction of a wrong value of the H-bit, the
      correctness of the H-bit is tested in periods of time, determined
      by the parameter Query-time.  It is tested whether a frame is
      received, which was sent by the secondary MAC to the secondary MAC
      address of the target station.  (The target station acknowledges
      the reception of the query frame by a hold frame.)  To limit the
      traffic caused by the query and hold frames, the parameter Query-
      time should be set to several minutes.

9.5. Format of DMARP Frames

   fieldname            length            comment
   --------------------------------------------------------------------

   hardware type        16 bit            1 = "ethernet"

   protocol type        16 bit            2048D = "Internet
                                          Protocol"

   length of hardware   8 bit             Value in octets,
   addresses                              6 for 48 bit MAC addresses

   length of protocol   8 bit             Value in octets,
   addresses                              4 for Internet addresses

   operation            16 bit            1: "reply"
                                          2: "request"
                                          3: "error"
                                          4: "search"
                                          5: "found"



Kuehn                                                          [Page 11]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


                                          6: "query"
                                          7: "hold"

   1. hardware address  ... octets

   2. hardware address  ... octets

   protocol address     ... octets
   sender

   protocol address     ... octets
   receiver

   --------------------------------------------------------------------

   The value for the field "protocol type" is the same as in ARP frames.

9.6. Contents of DMARP Frames

   In the following tables of DMARP frames, the fields containing the
   length and type of protocol and hardware addresses are omitted.

   Format:

   +-------------------------------------------------------------+
   | Operation | 1. hardware | 2. hardware | protocol | protocol |
   |           | address     |    address  | address  | address  |
   |           |             |             | sender   | receiver |
   +-------------------------------------------------------------+

   Operation = 1 (reply), 2 (request), 3 (error):
   +-----------------------------------------------------------------+
   | Operation | P-MAC address | S-MAC address | protocol | protocol |
   |           | sender        | sender        | address  | address  |
   |           |               |               | sender   | receiver |
   +-----------------------------------------------------------------+

   +-------------------------------------------------------------------+
   | Operation=4 | P-MAC        | P-MAC address | protocol | broadcast |
   | (search)    | address      | counter-      | address  | protocol  |
   |             | sender       | station       | sender   | address   |
   +-------------------------------------------------------------------+

   +-------------------------------------------------------------------+
   | Operation=5 | P-MAC        | S-MAC address | protocol | broadcast |
   | (found)     | address      | counter-      | address  | protocol  |
   |             | sender       | station       | sender   | address   |
   +-------------------------------------------------------------------+



Kuehn                                                          [Page 12]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   +-------------------------------------------------------------------+
   | Operation=6 | S-MAC        | P-MAC address | protocol | broadcast |
   | (query)     | address      | counter-      | address  | protocol  |
   |             | sender       | station       | sender   | address   |
   +-------------------------------------------------------------------+

   +-------------------------------------------------------------------+
   | Operation=7 | P-MAC address | S-MAC address | protocol | protocol |
   | (hold)      | sender        | sender        | address  | address  |
   |             |               |               | sender   | receiver |
   +-------------------------------------------------------------------+

   Apart from the error frames all frames are sent on the secondary
   ring.  The reply, error and search frames are addressed to the
   broadcast hardware address.  The request, found, query and hold
   frames are addressed to an individual secondary MAC address.

10. Formal Description

   The following description is written in ESTELLE.

10.1. Global Constants, Variables and Types

default individual queue;

timescale ...;

type

 PDU_type        = ... ; (* format of a Protocol Data Unit:
                             String of variable length               *)
 HW_addr_type    = ... ; (* format of a 48 bit MAC address           *)
 PR_addr_type    = ... ; (* General: format of a protocol address
                            in an ARP or DMARP frame                 *)
 IP_addr_type    = ... ; (* General: format of an IP address         *)
 QoS_type        = ... ; (* General: format of a Quality-of-
                             -Service statement                      *)
 timer_name_type = ... ; (* Type for the name of a system timer      *)

 flag = (reset,set);

var

(*
  The values of these variables are set in the initialization part or
  by external management functions.
*)




Kuehn                                                          [Page 13]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


My_P_MAC_addr      : HW_addr_type; (* Address of the MAC, placed on
                                      the primary ring               *)
My_S_MAC_addr      : HW_addr_type; (* Address of the MAC, placed on
                                      the secondary ring             *)
My_IP_address      : IP_addr_type; (* IP address of this station     *)
Broadcast_HW_addr  : HW_addr_type; (* Broadcast MAC address (48 bit) *)
Broadcast_IP_addr  : IP_addr_type; (* Broadcast IP address           *)
dmarp_QoS          : QoS_type;     (* Quality_of_Service-statement
                                      for DMARP frames               *)

ethernet         : integer; (* Type statement in DMARP frames        *)
ip               : integer; (* Number for IP as protocol type        *)
fddi_addr_length : integer; (* Length of a MAC address in octetts    *)
ip_addr_length   : integer; (* Length of a IP address in octetts     *)

OR_set_timeout   : integer; (* Parameter for the OR-Entry-Timer      *)
Query_time       : integer; (* Parameter for the Hold-Timer          *)
Hold_time        : integer; (* Parameter for the Query-Timer         *)

10.2. Channels

   channel SAPchn(User,Provider);
   by User :
    UNITDATA_request
    (
      Source_addr  : HW_addr_type;
      Dest_addr    : HW_addr_type;
      QoS          : QoS_type;
      PDU          : PDU_type;
    )
   by Provider :
    UNITDATA_indication
    (
      Source_addr  : HW_addr_type;
      Dest_addr    : HW_addr_type;
      QoS          : QoS_type;
      PDU          : PDU_type;
    )

   channel System_Access_Point_chn(User,Provider);
   by User:
    TIMER_request(Time       : integer;
                  Timer_id   : timer_name_type;
                  subscript  : integer);

    TIMER_cancel(Timer_id    : timer_name_type;
                 subscript   : integer);




Kuehn                                                          [Page 14]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   by Provider:
    TIMER_response(Timer_id  : timer_name_type;
                   subscript : integer);


10.3. The Module Header and Interaction Points

   module LS_module systemprocess;
    ip LS_ARPSAP     : SAPchn(Provider);
       LS_IPSAP      : SAPchn(Provider);
       SNAP1_ARPSAP  : SAPchn(User);
       SNAP1_LSSAP   : SAPchn(User);
       SNAP1_IPSAP   : SAPchn(User);
       SNAP2_ARPSAP  : SAPchn(User);
       SNAP2_LSSAP   : SAPchn(User);
       SNAP2_IPSAP   : SAPchn(User);
       LS_System_Access_Point : System_Access_Point_chn(User);
   end;

10.4. The Modulebody of the Load Sharing Entity

   body LS_body for LS_module;

   module multiplexer_module process;
    ip LS_IPSAP    : SAPchn(Provider);
       SNAP1_IPSAP : SAPchn(User);
       SNAP2_IPSAP : SAPchn(User);
   end;

   module cache_administration_module process;
    ip LS_ARPSAP    : SAPchn(Provider);
       SNAP1_ARPSAP : SAPchn(User);
       SNAP1_LSSAP  : SAPchn(User);
       SNAP2_ARPSAP : SAPchn(User);
       SNAP2_LSSAP  : SAPchn(User);
       LS_System_Access_Point : System_Access_Point_chn(User);
   end;

   body cache_administration_body for cache_administration_module;
     (* defined later *)
   end;

   body multiplexer_body for multiplexer_module;
     (* defined later *)
   end;

   modvar
    cache_administration : cache_administration_module;



Kuehn                                                          [Page 15]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


    multiplexer          : multiplexer_module;

   initialize
   begin
    ethernet         := 1;
    ip               := 2048;
    fddi_addr_length := 6;
    ip_addr_length   := 4;
    init cache_administration      with cache_administration_body;
    init multiplexer               with multiplexer_body;
    attach LS_IPSAP                to multiplexer.LS_IPSAP;
    attach SNAP1_IPSAP             to multiplexer.SNAP1_IPSAP;
    attach SNAP2_IPSAP             to multiplexer.SNAP2_IPSAP;
    attach LS_ARPSAP               to cache_administration.LS_ARPSAP;
    attach SNAP1_ARPSAP            to cache_administration.SNAP1_ARPSAP;
    attach SNAP1_LSSAP             to cache_administration.SNAP1_LSSAP;
    attach SNAP2_ARPSAP            to cache_administration.SNAP2_ARPSAP;
    attach SNAP2_LSSAP             to cache_administration.SNAP2_LSSAP;
    attach LS_System_Access_Point  to cache_administration.
                                       LS_System_Access_Point;
   end; end;

10.5. The Modulebody for the Multiplexer

body multiplexer_body for multiplexer_module;

type
  Type_of_addr_type = (individual, multi, broad);
  ring_type         = (primary, secondary);

var
  act_S_MAC_addr : HW_addr_type;

function determ_addrtype(HW_addr: HW_addr_type): Type_of_addr_type;
primitive;
(*
  Returns the type of a hardware address.
  (Individual, multicast or broadcast address)
*)

function get_cacheentry(prtype: integer; P_MAC_addr: HW_addr_type;
 var S_MAC_addr : HW_addr_type): boolean;
primitive;
(*
 Returns the associated secondary MAC address for a given primary MAC
 address and protocol type. If an entry exists, the value TRUE is
 returned.
*)



Kuehn                                                          [Page 16]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


function ls_criteria : ring_type;
(*
 Returns the ring on which the actual frame should be transmitted.
*)
primitive;

trans

when LS_IPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU) begin
 if determ_addrtype(Dest_addr) <> individual then
 output SNAP1_IPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU);
 else begin
  if get_cacheentry(ip,Dest_addr,act_S_MAC_addr) and
   (ls_criteria=secondary) then
  output SNAP2_IPSAP.UNITDATA_request(My_S_MAC_addr,
   act_S_MAC_addr,QoS,PDU);
  else
  output SNAP1_IPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU);
 end;
end;

when SNAP1_IPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
 output LS_IPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU);
end;

when SNAP2_IPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
 if determ_addrtype(Dest_addr) = individual then begin
  Dest_addr := My_P_MAC_addr;
  output LS_IPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU);
 end;
end;

10.6. The Modulebody for the Cache Administration

body cache_administration_body for cache_administration_module;

type
 arp_pdu_type = record
  hwtype        : integer;
  prtype        : integer;
  HW_length     : integer;
  PR_length     : integer;
  operation     : (request,reply);
  HW_sender     : HW_addr_type;
  PR_sender     : PR_addr_type;
  HW_receiver   : HW_addr_type;



Kuehn                                                          [Page 17]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  PR_receiver   : PR_addr_type;
 end;

 dmarp_operation_type = (request,reply,error,search,found,query,hold);

 dmarp_pdu_type = record
  hwtype        : integer;
  prtype        : integer;
  HW_length     : integer;
  PR_length     : integer;
  operation     : dmarpoperation_type;
  HW_1          : HW_addr_type;
  HW_2          : HW_addr_type;
  PR_sender     : PR_addr_type;
  PR_receiver   : PR_addr_type;
 end;

var
 arp_pdu        : arp_pdu_type;
 dmarp_pdu      : dmarp_pdu_type;
 send_pdu       : dmarp_pdu_type;
 act_P_MAC_addr : HW_addr_type;

function my_pr_address(prtype : integer ; praddr : PR_addr_type):
boolean;
(*
 Returns TRUE, if praddr is my station address, the protocol type is
 prtype. (2048d for the Internet protocol)
*)
primitive;

function get_my_pr_addr(prtype : integer) : PR_addr_type;
(*
 Returns my station address, the protocol has the number prtype.
*)

function extract_arp_pdu(PDU : PDU_type) : arp_pdu_type;
(*
 Returns the data contained in an ARP PDU as a record.
*)
primitive;

function extract_dmarp_pdu(PDU : PDU_type) : dmarp_pdu_type;
(*
 Returns the data contained in an DMARP PDU as a record.
*)
primitive;




Kuehn                                                          [Page 18]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


function assemble_dmarp_pdu(dmarp_pdu : dmarp_pdu_type): PDU;
(*
 Returns a DMARP PDU from the data in the record.
*)
primitive;

procedure create_entry(prtype: integer; P_MAC_addr: HW_addr_type;
 S_MAC_addr: HW_addr_type; LS_Bit: flag; OR_Bit: flag;
 H_Bit: flag; Q_Bit: flag; R_Bit: flag; V_Bit: flag);
(*
 Creates a new entry in the address cache, if no entry with the given
 primary MAC address or R-bit set to one exists. The protocol type has
 the number prtype. The control bits are set as given in the parameters,
 the LS-bit is set last.
*)
primitive;

function search_entry(prtype : integer; P_MAC_addr : HW_addr_type):
boolean;
(*
 Returns TRUE if an entry with the primary MAC address P_MAC_addr and
 the given protocol type was found in the address cache.
*)
primitive;

procedure update_entry(prtype: integer; P_MAC_addr: HW_addr_type;
 S_MAC_addr: HW_addr_type);
(*
 Searches an entry with the given primary MAC address P_MAC_address and
 updates the secondary MAC address in the entry if the R-bit is set to
 zero.
*)
primitive;

procedure reset_LS_bit(prtype: integer; P_MAC_addr : HW_addr_type);
(*
 Searches an entry with the given primary MAC address P_MAC_address and
 resets the LS-bit if the R-bit is reset.
*)
primitive;

procedure set_Q_bit(prtype: integer; P_MAC_addr : HW_addr_type);
(*
 Searches an entry with the given primary MAC address P_MAC_address and
 sets the Q-bit if the R-bit is reset.
*)
primitive;




Kuehn                                                          [Page 19]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


function H_bit_set(prtype: integer; P_MAC_addr : HW_addr_type):
boolean;
(*
 Returns TRUE if an entry exists with H-bit set to one and the given
 P-MAC address.
*)
primitive;

function OR_bit_set(prtype: integer; P_MAC_addr : HW_addr_type):
boolean;
(*
 Returns TRUE if an entry exists with OR-bit set to one and the given
 P-MAC address.
*)
primitive;

function LS_bit_set(prtype: integer; P_MAC_addr : HW_addr_type):
boolean;
(*
 Returns TRUE if an entry exists with LS-bit set to one and the given
 P-MAC address.
*)
primitive;

function Q_bit_set(prtype: integer; P_MAC_addr : HW_addr_type):
boolean;
(*
 Returns TRUE if an entry exists with Q-bit set to one and the given
 P-MAC address.
*)
primitive;

function get_subscript(prtype: integer; P_MAC_addr : HW_addr_type):
integer;
(*
 Returns the subscipt number of an entry with the given primary MAC
 address.
*)
primitive;

function get_broadcast_addr(prtype : integer): PR_addr_type;
(*
 Returns the broadcast protocol address for the given protocol type.
*)

function get_P_MAC_addr(subscript : integer) : HW_addr_type;
(*
 Returns the primary MAC address of the entry with the given subscript



Kuehn                                                          [Page 20]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


 number.
*)
primitive;

function get_S_MAC_addr(prtype: integer; P_MAC_addr: HW_addr_type):
 HW_addr_type;
(*
 Returns the secondary MAC address of the station with the given primary
 MAC address.
*)
primitive;

procedure delete_entry(subscript : integer);
(*
 Deletes the entry with the given subscript number if the R-bit is
 reset.
*)
primitive;

function get_pr_type(subscript : integer) : integer;
(*
 Returns the protocol type for the entry with the given subscript
 number.
*)
primitive;

function get_pr_length(prtype : integer) : integer;
(*
 Returns the length of a protocol address.
*)
primitive;


trans

when LS_ARPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU)
begin
 arp_pdu := extract_arp_pdu(PDU);
 output SNAP1_ARPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU);
 dmarp_pdu.hwtype               := ethernet;
 dmarp_pdu.prtype               := arp_pdu.prtype;
 dmarp_pdu.HW_length            := fddi_addr_length;
 dmarp_pdu.PR_length            := arp_pdu.PR_length;
 dmarp_pdu.operation            := reply;
 dmarp_pdu.HW_1                 := My_P_MAC_addr;
 dmarp_pdu.HW_2                 := My_S_MAC_addr;
 dmarp_pdu.PR_sender            := arp_pdu.PR_sender;
 dmarp_pdu.PR_receiver          := arp_pdu.PR_receiver;



Kuehn                                                          [Page 21]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


 PDU := assemble_dmarp_pdu(dmarp_pdu);
 output SNAP2_LSSAP.UNITDATA_request(My_S_MAC_addr,Broadcast_HW_addr,
  dmarp_QoS,PDU);
end;


when SNAP1_ARPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
 output LS_ARPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU);
end;

when SNAP2_ARPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin end;

when SNAP1_LSSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
 dmarp_pdu := extract_dmarp_pdu(PDU);
 if ((dmarp_pdu.operation = error) or (dmarp_pdu.operation = reply))
 then begin
  if my_pr_address(dmarp_pdu.prtype,dmarp_pdu.PR_receiver) then begin
   if not H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
    if not OR_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
     if LS_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
      output LS_System_Access_point.TIMER_cancel(
       "Hold_Timer",get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
      create_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2,
       reset,set,reset,reset,reset,set);
     end;
     output LS_System_Access_point.TIMER_request(
      OR_set_timeout,"OR_Entry_Timer",
      get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
     send_pdu.hwtype    := ethernet;
     send_pdu.prtype    := dmarp_pdu.prtype;
     send_pdu.HW_length := fddi_addr_length;
     send_pdu.PR_length := dmarp_pdu.PR_length;
     send_pdu.operation := search;
     send_pdu.HW_1      := My_P_MAC_addr;
     send_pdu.HW_2      := dmarp_pdu.HW_1;
     send_pdu.PR_sender := get_my_pr_addr(dmarp_pdu.prtype);
     send_pdu.PR_receiver := get_broadcast_addr(dmarp_pdu.prtype);
     PDU := assemble_dmarp_pdu(dmarp_pdu);
     output SNAP2_LSSAP.UNITDATA_request(
      My_S_MAC_addr,Broadcast_HW_addr,dmarp_QoS,PDU);
    end else begin
     if dmarp_pdu.operation=error then
     update_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2);
    end;
   end else begin



Kuehn                                                          [Page 22]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


    if dmarp_pdu.operation = error then
    update_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2);
   end;
  end else begin
   if my_pr_address(dmarp_pdu.prtype,dmarp_pdu.PR_sender) and
    (dmarp_pdu.operation = reply) then begin
    dmarp_pdu.operation := error;
    PDU := assemble_dmarp_pdu(dmarp_pdu);
    output SNAP1_LSSAP.UNITDATA_request(
     My_P_MAC_addr,Broadcast_HW_addr,dmarp_QoS,PDU);
   end else begin
    if dmarp_pdu.operation=error and
     search_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1) then
    update_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2);
end; end; end; end;


when SNAP2_LSSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
 dmarp_pdu := extract_dmarp_pdu(PDU);
 if (dmarp_pdu.operation = found) and
  my_pr_address(dmarp_pdu.prtype,dmarp_pdu.PR_receiver) then begin
  if not H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
   if OR_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
    output LS_System_Access_Point.
     TIMER_cancel("OR_Entry_Timer",
     get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
   end;
   if LS_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
    output LS_System_Access_Point.
     TIMER_cancel("Hold_Timer",
     get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
   end;
   create_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2,
    set,reset,set,reset,reset,set);
   output LS_System_Access_Point.TIMER_request(Query_time,"Query_Timer",
    get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
  end;
 end else begin
  if (dmarp_pdu.operation = reply) or
   (dmarp_pdu.operation = request) then begin
   if search_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1) then
    update_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2);
  end;
  if (dmarp_pdu.operation=request) and
   my_pr_address(dmarp_pdu.prtype,dmarp_pdu.PR_receiver) then begin
   send_pdu.hwtype      := dmarp_pdu.hwtype;
   send_pdu.prtype      := dmarp_pdu.prtype;



Kuehn                                                          [Page 23]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   send_pdu.HW_length   := fddi_addr_length;
   send_pdu.PR_length   := dmarp_pdu.PR_length;
   send_pdu.operation   := reply;
   send_pdu.HW_1        := My_P_MAC_addr;
   send_pdu.HW_2        := My_S_MAC_addr;
   send_pdu.PR_sender   := get_my_pr_addr(dmarp_pdu.prtype);
   send_pdu.PR_receiver := dmarp_pdu.PR_sender;
   PDU := assemble_dmarp_pdu(dmarp_pdu);
   output SNAP2_LSSAP.UNITDATA_request(
    My_S_MAC_addr,Broadcast_HW_addr,dmarp_QoS,PDU);
  end else begin
   if my_pr_address(dmarp_pdu.prtype,dmarp_pdu.pr_receiver) then begin
    case dmarp_pdu.operation of
     reply: begin
      if not ( OR_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) or
       LS_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) )then begin
       create_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2,
        set,reset,reset,reset,reset,set);
       output LS_System_Access_Point.TIMER_request(Hold_time,
        "Hold_Timer",get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
      end;
     end;

     error: begin
      if not ( OR_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) or
       H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) ) then begin
       if LS_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then
       output LS_System_access_point.TIMER_cancel(
        "Hold_Timer",get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
       create_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2,
        reset,set,reset,reset,reset,set);
       output LS_System_access_point.TIMER_request(
        OR_set_timeout,"OR_Entry_Timer",
        get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
       send_pdu.hwtype          := ethernet;
       send_pdu.prtype          := dmarp_pdu.prtype;
       send_pdu.HW_length       := fddi_addr_length;
       send_pdu.PR_length       := dmarp_pdu.PR_length;
       send_pdu.operation       := search;
       send_pdu.HW_1            := My_P_MAC_addr;
       send_pdu.HW_2            := dmarp_pdu.HW_1;
       send_pdu.PR_sender       := get_my_pr_addr(dmarp_pdu.prtype);
       send_pdu.PR_receiver     := get_broadcast_addr(dmarp_pdu.prtype);
       PDU := assemble_dmarp_pdu(dmarp_pdu);
       output SNAP2_LSSAP.UNITDATA_request(
        My_S_MAC_addr,Broadcast_HW_addr,dmarp_QoS,PDU);
      end;
     end;



Kuehn                                                          [Page 24]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


     search: begin
      if not (dmarp_pdu.HW_1=My_P_MAC_addr or
       dmarp_pdu.HW_2=My_P_MAC_addr) then begin
       if H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) and
        H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_2) then begin
        send_pdu.hwtype      := ethernet;
        send_pdu.prtype      := dmarp_pdu.prtype;
        send_pdu.HW_length   := fddi_addr_length;
        send_pdu.PR_length   := dmarp_pdu.PR_length;
        send_pdu.operation   := found;
        send_pdu.HW_1        := dmarp_pdu.HW_2;
        send_pdu.HW_2        := get_S_MAC_addr(dmarp_pdu.prtype,
                                 dmarp_pdu.HW_2);
        send_pdu.PR_sender   := get_my_pr_addr(dmarp_pdu.prtype);
        send_pdu.PR_receiver := get_broadcast_addr(dmarp_pdu.prtype);
        PDU := assemble_dmarp_pdu(send_pdu);
        output SNAP2_LSSAP.UNITDATA_request(My_S_MAC_addr,
         get_S_MAC_addr(dmarp_pdu.prtype,dmarp_pdu.HW_1),dmarp_QoS,PDU);
        send_pdu.HW_1 := dmarp_pdu.HW_1;
        send_pdu.HW_2 := get_S_MAC_addr(dmarp_pdu.prtype,
         dmarp_pdu.HW_1);
        PDU := assemble_dmarp_pdu(send_pdu);
        output SNAP2_LSSAP.UNITDATA_request(My_S_MAC_addr,
         get_S_MAC_addr(dmarp_pdu.prtype,dmarp_pdu.HW_2),dmarp_QoS,PDU);
       end;
      end;
     end;


     Query: begin
      if dmarp_pdu.HW_2 = My_P_MAC_addr then begin
       send_pdu.hwtype          := ethernet;
       send_pdu.prtype          := dmarp_pdu.prtype;
       send_pdu.HW_length       := dmarp_pdu.HW_length;
       send_pdu.PR_length       := dmarp_pdu.PR_length;
       send_pdu.operation       := hold;
       send_pdu.HW_1            := My_P_MAC_addr;
       send_pdu.HW_2            := My_S_MAC_addr;
       send_pdu.PR_sender       := get_my_pr_addr(dmarp_pdu.prtype);
       send_pdu.PR_receiver     := dmarp_pdu.PR_sender;
       PDU := assemble_dmarp_pdu(send_pdu);
       output SNAP2_LSSAP.UNITDATA_request(
        My_S_MAC_addr,dmarp_pdu.HW_1,dmarp_QoS,PDU);
      end;
     end;
     Hold: begin
      if H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then
      reset_Q_bit(dmarp_pdu.prtype,dmarp_pdu.HW_1);



Kuehn                                                          [Page 25]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


     end;
    end;
   end;
  end;
 end;
end;


when LS_System_Access_Point.TIMER_response(Timer_name,subscript) begin
case Timer_name of
 "OR_Entry_Timer": begin
  act_P_MAC_addr := get_P_MAC_addr(subscript);
  if OR_bit_set(get_pr_type(subscript),act_P_MAC_addr) then begin
   send_pdu.hwtype      := ethernet;
   send_pdu.prtype      := get_pr_type(subscript);
   send_pdu.HW_length   := fddi_addr_length;
   send_pdu.PR_length   := get_pr_length(send_pdu.prtype);
   send_pdu.operation   := request;
   send_pdu.HW_1        := My_P_MAC_addr;
   send_pdu.HW_2        := My_S_MAC_addr;
   send_pdu.PR_sender   := get_my_pr_addr(send_pdu.prtype);
   send_pdu.PR_receiver := get_broadcast_addr(send_pdu.prtype);
   PDU := assemble_dmarp_pdu(send_pdu);
   output SNAP2_LSSAP.UNITDATA_request(
    My_S_MAC_addr,get_S_MAC_addr(send_pdu.prtype,act_P_MAC_addr),
    dmarp_QoS,PDU);
   delete_entry(subscript);
  end;
 end;
 "Hold_Timer": begin
  act_P_MAC_addr := get_P_MAC_addr(subscript);
  if (not H_bit_set(get_pr_type(subscript),act_P_MAC_addr)) and
   LS_bit_set(get_pr_type(subscript),act_P_MAC_addr) then begin
   set_H_bit(get_pr_type(subscript),act_P_MAC_addr);
   output LS_System_Access_point.TIMER_request(
    Query_time,"Query_Timer",subscript);
  end;
 end;
 "Query_Timer": begin
  act_P_MAC_addr       := get_P_MAC_addr(subscript);
  send_pdu.hwtype      := ethernet;
  send_pdu.prtype      := get_pr_type(subscript);
  send_pdu.HW_length   := fddi_addr_length;
  send_pdu.PR_length   := get_pr_length(send_pdu.prtype);
  send_pdu.PR_sender   := get_my_pr_addr(send_pdu.prtype);
  send_pdu.PR_receiver := get_broadcast_addr(send_pdu.prtype);
  if Q_bit_set(get_pr_type(subscript),act_P_MAC_addr) then begin
   send_pdu.HW_1      := My_P_MAC_addr;



Kuehn                                                          [Page 26]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   send_pdu.HW_2      := My_S_MAC_addr;
   send_pdu.operation := request;
   PDU := assemble_dmarp_pdu(send_pdu);
   output SNAP2_LSSAP.UNITDATA_request(
    My_S_MAC_addr,get_S_MAC_addr(send_pdu.prtype,act_P_MAC_addr),
    dmarp_QoS,PDU);
   delete_entry(subscript);
  end else begin
   send_pdu.HW_1      := My_S_MAC_addr;
   send_pdu.HW_2      := get_P_MAC_addr(subscript);
   send_pdu.operation := query;
   PDU := assemble_dmarp_pdu(send_pdu);
   output SNAP2_LSSAP.UNITDATA_request(
    My_S_MAC_addr,get_S_MAC_addr(send_pdu.prtype,send_pdu.HW_2),
    dmarp_QoS,PDU);
   set_Q_bit(send_pdu.prtype,send_pdu.HW_2);
end; end; end; end; end; (* body *)

11. Summary

   The introduction of the load sharing layer in the protocol layering
   of the dual MAC stations allows the application of IP and ARP on
   inhomogeneous FDDI rings. The protocol suite of single MAC stations
   needs no modification.

   By the load sharing layer, the property "dual MAC" is transparent for
   ARP, IP and the higher layer protocols.

   In dual MAC stations, any load sharing criteria may be implemented in
   the multiplexer of the load sharing entity.  The conversion of
   addresses, the exchange of address and reachability information
   between dual MAC stations and the proper transmission of multicast
   and broadcast frames is taken upon by the load sharing entity.

12. References

    [1] ANSI, "FDDI Station Management (SMT)", ANSI
        X3T9/90-X3T9.5/84-49 Rev 6.2, May 1990.

    [2] ANSI, "FDDI Media Access Control (MAC-2)",
        X3T9/90-X3T9.5/88-139 Rev 3.2, June 1990.

    [3] ISO, "Information processing systems- Local area networks-
        Part 2: Logical link control", ISO 8802-2:1989, August 1989.

    [4] IEEE, "Draft Standard P802.1A Overview and Architecture",
        P802.1A/D9-89/74, September 1989.




Kuehn                                                          [Page 27]
^L
RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


    [5] Plummer, C., "An Ethernet Address Resolution Protocol --or--
        Converting Network Protocol Addresses to 48.bit Ethernet
        Address for Transmission on Ethernet Hardware", RFC 826, MIT,
        November 1982.

    [6] Reynolds, J., and Postel, J., "Assigned Numbers", RFC 1060,
        USC/Information Sciences Institute, March 1990.

    [7] Postel, J., "Internet Protocol", RFC 791, USC/Information
        Sciences Institute, September 1981.

    [8] Katz, D., "A Proposed Standard for the Transmission of IP
        Datagrams over FDDI Networks", RFC 1188, Merit/NSFNET,
        October 1990.

    [9] Internet Engineering Task Force, Braden, R., Editor,
        "Requirements for Internet Hosts -- Communication Layers",
        RFC 1122, IETF, October 1989.

   [10] Katz, D., "The Use of Connectionless Network Layer Protocols
        over FDDI Networks", Merit/NSFNET, 1990.

13.  Security Considerations

   Security issues are not discussed in this memo.

14. Author's Address

   Peter Kuehn
   Raiffeisenstrasse 9b
   8933 Untermeitingen
   Germany

   Phone: .. 82 32 / 7 46 02
   EMail: thimmela@sniabg.wa.sni.de
















Kuehn                                                          [Page 28]
^L