summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc1449.txt
blob: d8c43b43a8fa9b8caf2fa018bd7a3fe6056c4632 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
          Network Working Group                                  J. Case
          Request for Comments: 1449                 SNMP Research, Inc.
                                                           K. McCloghrie
                                                      Hughes LAN Systems
                                                                 M. Rose
                                            Dover Beach Consulting, Inc.
                                                           S. Waldbusser
                                              Carnegie Mellon University
                                                              April 1993


                                Transport Mappings
                               for version 2 of the
                   Simple Network Management Protocol (SNMPv2)


          Status of this Memo

          This RFC specifes an IAB standards track protocol for the
          Internet community, and requests discussion and suggestions
          for improvements.  Please refer to the current edition of the
          "IAB Official Protocol Standards" for the standardization
          state and status of this protocol.  Distribution of this memo
          is unlimited.


          Table of Contents


          1 Introduction ..........................................    2
          1.1 A Note on Terminology ...............................    2
          2 Definitions ...........................................    3
          3 SNMPv2 over UDP .......................................    7
          3.1 Serialization .......................................    7
          3.2 Well-known Values ...................................    7
          4 SNMPv2 over OSI .......................................    8
          4.1 Serialization .......................................    8
          4.2 Well-known Values ...................................    8
          5 SNMPv2 over DDP .......................................    9
          5.1 Serialization .......................................    9
          5.2 Well-known Values ...................................    9
          5.3 Discussion of AppleTalk Addressing ..................    9
          5.3.1 How to Acquire NBP names ..........................   10
          5.3.2 When to Turn NBP names into DDP addresses .........   11
          5.3.3 How to Turn NBP names into DDP addresses ..........   11
          5.3.4 What if NBP is broken .............................   12
          6 SNMPv2 over IPX .......................................   13
          6.1 Serialization .......................................   13
          6.2 Well-known Values ...................................   13
          7 Proxy to SNMPv1 .......................................   14
          7.1 Transport Domain: rfc1157Domain .....................   14
          7.2 Authentication Algorithm: rfc1157noAuth .............   14


          Case, McCloghrie, Rose & Waldbusser                   [Page i]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          8 Serialization using the Basic Encoding Rules ..........   16
          8.1 Usage Example .......................................   17
          9 Acknowledgements ......................................   18
          10 References ...........................................   22
          11 Security Considerations ..............................   24
          12 Authors' Addresses ...................................   24
          13 Security Considerations ..............................   25
          14 Authors' Addresses ...................................   25










































          Case, McCloghrie, Rose & Waldbusser                   [Page 1]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          1.  Introduction

          A network management system contains: several (potentially
          many) nodes, each with a processing entity, termed an agent,
          which has access to management instrumentation; at least one
          management station; and, a management protocol, used to convey
          management information between the agents and management
          stations.  Operations of the protocol are carried out under an
          administrative framework which defines both authentication and
          authorization policies.

          Network management stations execute management applications
          which monitor and control network elements.  Network elements
          are devices such as hosts, routers, terminal servers, etc.,
          which are monitored and controlled through access to their
          management information.

          The management protocol, version 2 of the Simple Network
          Management Protocol [1], may be used over a variety of
          protocol suites.  It is the purpose of this document to define
          how the SNMPv2 maps onto an initial set of transport domains.
          Other mappings may be defined in the future.

          Although several mappings are defined, the mapping onto UDP is
          the preferred mapping.  As such, to provide for the greatest
          level of interoperability, systems which choose to deploy
          other mappings should also provide for proxy service to the
          UDP mapping.


          1.1.  A Note on Terminology

          For the purpose of exposition, the original Internet-standard
          Network Management Framework, as described in RFCs 1155, 1157,
          and 1212, is termed the SNMP version 1 framework (SNMPv1).
          The current framework is termed the SNMP version 2 framework
          (SNMPv2).













          Case, McCloghrie, Rose & Waldbusser                   [Page 2]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          2.  Definitions

          SNMPv2-TM DEFINITIONS ::= BEGIN

          IMPORTS
              snmpDomains, snmpProxys
                  FROM SNMPv2-SMI
              TEXTUAL-CONVENTION
                  FROM SNMPv2-TC;

          -- SNMPv2 over UDP

          snmpUDPDomain  OBJECT IDENTIFIER ::= { snmpDomains 1 }
          -- for a SnmpUDPAddress of length 6:
          --
          -- octets   contents        encoding
          --  1-4     IP-address      network-byte order
          --  5-6     UDP-port        network-byte order
          --
          SnmpUDPAddress ::= TEXTUAL-CONVENTION
              DISPLAY-HINT "1d.1d.1d.1d/2d"
              STATUS       current
              DESCRIPTION
                      "Represents a UDP address."
              SYNTAX       OCTET STRING (SIZE (6))

























          Case, McCloghrie, Rose & Waldbusser                   [Page 3]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          -- SNMPv2 over OSI

          snmpCLNSDomain OBJECT IDENTIFIER ::= { snmpDomains 2 }
          snmpCONSDomain OBJECT IDENTIFIER ::= { snmpDomains 3 }
          -- for a SnmpOSIAddress of length m:
          --
          -- octets   contents            encoding
          --    1     length of NSAP      "n" as an unsigned-integer
          --                                (either 0 or from 3 to 20)
          -- 2..(n+1) NSAP                concrete binary representation
          -- (n+2)..m TSEL                string of (up to 64) octets
          --
          SnmpOSIAddress ::= TEXTUAL-CONVENTION
              DISPLAY-HINT "*1x:/1x:"
              STATUS       current
              DESCRIPTION
                      "Represents an OSI transport-address."
              SYNTAX       OCTET STRING (SIZE (1 | 4..85))
































          Case, McCloghrie, Rose & Waldbusser                   [Page 4]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          -- SNMPv2 over DDP

          snmpDDPDomain  OBJECT IDENTIFIER ::= { snmpDomains 4 }
          -- for a SnmpNBPAddress of length m:
          --
          --    octets      contents         encoding
          --       1        length of object "n" as an unsigned integer
          --     2..(n+1)   object           string of (up to 32) octets
          --      n+2       length of type   "p" as an unsigned integer
          -- (n+3)..(n+2+p) type             string of (up to 32) octets
          --     n+3+p      length of zone   "q" as an unsigned integer
          -- (n+4+p)..m     zone             string of (up to 32) octets
          --
          -- for comparison purposes, strings are case-insensitive
          --
          -- all strings may contain any octet other than 255 (hex ff)
          --
          SnmpNBPAddress ::= TEXTUAL-CONVENTION
              STATUS       current
              DESCRIPTION
                      "Represents an NBP name."
              SYNTAX       OCTET STRING (SIZE (3..99))


          -- SNMPv2 over IPX

          snmpIPXDomain  OBJECT IDENTIFIER ::= { snmpDomains 5 }
          -- for a SnmpIPXAddress of length 12:
          --
          -- octets   contents            encoding
          --  1-4     network-number      network-byte order
          --  5-10    physical-address    network-byte order
          -- 11-12    socket-number       network-byte order
          --
          SnmpIPXAddress ::= TEXTUAL-CONVENTION
              DISPLAY-HINT "4x.1x:1x:1x:1x:1x:1x.2d"
              STATUS       current
              DESCRIPTION
                      "Represents an IPX address."
              SYNTAX       OCTET STRING (SIZE (12))










          Case, McCloghrie, Rose & Waldbusser                   [Page 5]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          -- for proxy to community-based SNMPv1 (RFC 1157)

          rfc1157Proxy   OBJECT IDENTIFIER ::= { snmpProxys 1 }

          -- uses SnmpUDPAddress
          rfc1157Domain  OBJECT IDENTIFIER ::= { rfc1157Proxy 1 }

          -- the community-based noAuth
          rfc1157noAuth  OBJECT IDENTIFIER ::= { rfc1157Proxy 2 }


          END






































          Case, McCloghrie, Rose & Waldbusser                   [Page 6]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          3.  SNMPv2 over UDP

          This is the preferred transport mapping.


          3.1.  Serialization

          Each instance of a message is serialized onto a single UDP[2]
          datagram, using the algorithm specified in Section 8.


          3.2.  Well-known Values

          Although the partyTable gives transport addressing information
          for an SNMPv2 party, it is suggested that administrators
          configure their SNMPv2 entities acting in an agent role to
          listen on UDP port 161.  Further, it is suggested that
          notification sinks be configured to listen on UDP port 162.

          The partyTable also lists the maximum message size which a
          SNMPv2 party is willing to accept.  This value must be at
          least 484 octets.  Implementation of larger values is
          encouraged whenever possible.



























          Case, McCloghrie, Rose & Waldbusser                   [Page 7]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          4.  SNMPv2 over OSI

          This is an optional transport mapping.


          4.1.  Serialization

          Each instance of a message is serialized onto a single TSDU
          [3,4] for the OSI Connectionless-mode Transport Service
          (CLTS), using the algorithm specified in Section 8.


          4.2.  Well-known Values

          Although the partyTable gives transport addressing information
          for an SNMPv2 party, it is suggested that administrators
          configure their SNMPv2 entities acting in an agent role to
          listen on transport selector "snmp-l" (which consists of six
          ASCII characters), when using a CL-mode network service to
          realize the CLTS.  Further, it is suggested that notification
          sinks be configured to listen on transport selector "snmpt-l"
          (which consists of seven ASCII characters) when using a CL-
          mode network service to realize the CLTS.  Similarly, when
          using a CO-mode network service to realize the CLTS, the
          suggested transport selectors are "snmp-o"  and "snmpt-o", for
          agent and notification sink, respectively.

          The partyTable also lists the maximum message size which a
          SNMPv2 party is willing to accept.  This value must be at
          least 484 octets.  Implementation of larger values is
          encouraged whenever possible.



















          Case, McCloghrie, Rose & Waldbusser                   [Page 8]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          5.  SNMPv2 over DDP

          This is an optional transport mapping.


          5.1.  Serialization

          Each instance of a message is serialized onto a single DDP
          datagram [5], using the algorithm specified in Section 8.


          5.2.  Well-known Values

          SNMPv2 messages are sent using DDP protocol type 8.  SNMPv2
          entities acting in an agent role listens on DDP socket number
          8, whilst notification sinks listen on DDP socket number 9.

          Although the partyTable gives transport addressing information
          for an SNMPv2 party, administrators must configure their
          SNMPv2 entities acting in an agent role to use NBP type "SNMP
          Agent" (which consists of ten ASCII characters), whilst
          notification sinks must be configured to use NBP type "SNMP
          Trap Handler" (which consists of seventeen ASCII characters).

          The NBP name for agents and notification sinks should be
          stable - NBP names should not change any more often than the
          IP address of a typical TCP/IP node.  It is suggested that the
          NBP name be stored in some form of stable storage.

          The partyTable also lists the maximum message size which a
          SNMPv2 party is willing to accept.  This value must be at
          least 484 octets.  Implementation of larger values is
          encouraged whenever possible.


          5.3.  Discussion of AppleTalk Addressing

          The AppleTalk protocol suite has certain features not manifest
          in the TCP/IP suite.  AppleTalk's naming strategy and the
          dynamic nature of address assignment can cause problems for
          SNMPv2 entities that wish to manage AppleTalk networks.
          TCP/IP nodes have an associated IP address which distinguishes
          each from the other.  In contrast, AppleTalk nodes generally
          have no such characteristic.  The network-level address, while
          often relatively stable, can change at every reboot (or more





          Case, McCloghrie, Rose & Waldbusser                   [Page 9]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          frequently).

          Thus, when SNMPv2 is mapped over DDP, nodes are identified by
          a "name", rather than by an "address".  Hence, all AppleTalk
          nodes that implement this mapping are required to respond to
          NBP lookups and confirms (e.g., implement the NBP protocol
          stub), which guarantees that a mapping from NBP name to DDP
          address will be possible.

          In determining the SNMP identity to register for an SNMPv2
          entity, it is suggested that the SNMP identity be a name which
          is associated with other network services offered by the
          machine.

          NBP lookups, which are used to map NBP names into DDP
          addresses, can cause large amounts of network traffic as well
          as consume CPU resources.  It is also the case that the
          ability to perform an NBP lookup is sensitive to certain
          network disruptions (such as zone table inconsistencies) which
          would not prevent direct AppleTalk communications between two
          SNMPv2 entities.

          Thus, it is recommended that NBP lookups be used infrequently,
          primarily to create a cache of name-to-address mappings.
          These cached mappings should then be used for any further SNMP
          traffic.  It is recommended that SNMPv2 entities acting in a
          manager role should maintain this cache between reboots.  This
          caching can help minimize network traffic, reduce CPU load on
          the network, and allow for (some amount of) network trouble
          shooting when the basic name-to-address translation mechanism
          is broken.


          5.3.1.  How to Acquire NBP names

          An SNMPv2 entity acting in a manager role may have a pre-
          configured list of names of "known" SNMPv2 entities acting in
          an agent role.  Similarly, an SNMPv2 entity acting in a
          manager role might interact with an operator.  Finally, an
          SNMPv2 entity acting in a manager role might communicate with
          all SNMPv2 entities acting in an agent role in a set of zones
          or networks.








          Case, McCloghrie, Rose & Waldbusser                  [Page 10]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          5.3.2.  When to Turn NBP names into DDP addresses

          When an SNMPv2 entity uses a cache entry to address an SNMP
          packet, it should attempt to confirm the validity mapping, if
          the mapping hasn't been confirmed within the last T1 seconds.
          This cache entry lifetime, T1, has a minimum, default value of
          60 seconds, and should be configurable.

          An SNMPv2 entity acting in a manager role may decide to prime
          its cache of names prior to actually communicating with
          another SNMPv2 entity.  In general, it is expected that such
          an entity may want to keep certain mappings "more current"
          than other mappings, e.g., those nodes which represent the
          network infrastructure (e.g., routers) may be deemed "more
          important".

          Note that an SNMPv2 entity acting in a manager role should not
          prime its entire cache upon initialization - rather, it should
          attempt resolutions over an extended period of time (perhaps
          in some pre-determined or configured priority order).  Each of
          these resolutions might, in fact, be a wildcard lookup in a
          given zone.

          An SNMPv2 entity acting in an agent role must never prime its
          cache.  Such an entity should do NBP lookups (or confirms)
          only when it needs to send an SNMP trap.  When generating a
          response, such an entity does not need to confirm a cache
          entry.


          5.3.3.  How to Turn NBP names into DDP addresses

          If the only piece of information available is the NBP name,
          then an NBP lookup should be performed to turn that name into
          a DDP address.  However, if there is a piece of stale
          information, it can be used as a hint to perform an NBP
          confirm (which sends a unicast to the network address which is
          presumed to be the target of the name lookup) to see if the
          stale information is, in fact, still valid.

          An NBP name to DDP address mapping can also be confirmed
          implicitly using only SNMP transactions.  For example, an
          SNMPv2 entity acting in a manager role issuing a retrieval
          operation could also retrieve the relevant objects from the
          NBP group [6] for the SNMPv2 entity acting in an agent role.





          Case, McCloghrie, Rose & Waldbusser                  [Page 11]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          This information can then be correlated with the source DDP
          address of the response.


          5.3.4.  What if NBP is broken

          Under some circumstances, there may be connectivity between
          two SNMPv2 entities, but the NBP mapping machinery may be
          broken, e.g.,

          o    the NBP FwdReq (forward NBP lookup onto local attached
               network) mechanism might be broken at a router on the
               other entity's network; or,

          o    the NBP BrRq (NBP broadcast request) mechanism might be
               broken at a router on the entity's own network; or,

          o    NBP might be broken on the other entity's node.

          An SNMPv2 entity acting in a manager role which is dedicated
          to AppleTalk management might choose to alleviate some of
          these failures by directly implementing the router portion of
          NBP.  For example, such an entity might already know all the
          zones on the AppleTalk internet and the networks on which each
          zone appears.  Given an NBP lookup which fails, the entity
          could send an NBP FwdReq to the network in which the agent was
          last located.  If that failed, the station could then send an
          NBP LkUp (NBP lookup packet) as a directed (DDP) multicast to
          each network number on that network.  Of the above (single)
          failures, this combined approach will solve the case where
          either the local router's BrRq-to-FwdReq mechanism is broken
          or the remote router's FwdReq-to-LkUp mechanism is broken.


















          Case, McCloghrie, Rose & Waldbusser                  [Page 12]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          6.  SNMPv2 over IPX

          This is an optional transport mapping.


          6.1.  Serialization

          Each instance of a message is serialized onto a single IPX
          datagram [7], using the algorithm specified in Section 8.


          6.2.  Well-known Values

          SNMPv2 messages are sent using IPX packet type 4 (i.e., Packet
          Exchange Packet).

          Although the partyTable gives transport addressing information
          for an SNMPv2 party, it is suggested that administrators
          configure their SNMPv2 entities acting in an agent role to
          listen on IPX socket 36879 (900f hexadecimal).  Further, it is
          suggested that notification sinks be configured to listen on
          IPX socket 36880 (9010 hexadecimal)

          The partyTable also lists the maximum message size which a
          SNMPv2 party is willing to accept.  This value must be at
          least 546 octets.  Implementation of larger values is
          encouraged whenever possible.























          Case, McCloghrie, Rose & Waldbusser                  [Page 13]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          7.  Proxy to SNMPv1

          In order to provide proxy to community-based SNMP [8], some
          definitions are necessary for both transport domains and
          authentication protocols.


          7.1.  Transport Domain: rfc1157Domain

          The transport domain, rfc1157Domain, indicates the transport
          mapping for community-based SNMP messages defined in RFC 1157.
          When a party's transport domain (partyTDomain) is
          rfc1157Domain:

          (1)  the party's transport address (partyTAddress) shall be 6
               octets long, the initial 4 octets containing the IP-
               address in network-byte order, and the last two octets
               containing the UDP port in network-byte order; and,

          (2)  the party's authentication protocol (partyAuthProtocol)
               shall be rfc1157noAuth.

          When a proxy relationship identifies a proxy destination party
          which has rfc1157Domain as its transport domain:

          (1)  the proxy source party (contextSrcPartyIndex) and proxy
               context (contextProxyContext) components of the proxy
               relationship are irrelevant; and,

          (2)  Section 3.1 of [9] specifies the behavior of the proxy
               agent.


          7.2.  Authentication Algorithm: rfc1157noAuth

          A party's authentication protocol (partyAuthProtocol)
          specifies the protocol and mechanism by which the party
          authenticates the integrity and origin of the SNMPv1 or SNMPv2
          PDUs it generates.  When a party's authentication protocol is
          rfc1157noAuth:

          (1)  the party's public authentication key (partyAuthPublic),
               clock (partyAuthClock), and lifetime (partyAuthLifetime)
               are irrelevant; and,






          Case, McCloghrie, Rose & Waldbusser                  [Page 14]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          (2)  the party's private authentication key
               (partySecretsAuthPrivate) shall be used as the 1157
               community for the proxy destination, and shall be at
               least one octet in length.  (No maximum length is
               specified.)

          Note that when setting the party's private authentication key,
          the exclusive-OR semantics specified in [10] still apply.










































          Case, McCloghrie, Rose & Waldbusser                  [Page 15]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          8.  Serialization using the Basic Encoding Rules

          When the Basic Encoding Rules [11] are used for serialization:

          (1)  When encoding the length field, only the definite form is
               used; use of the indefinite form encoding is prohibited.
               Note that when using the definite-long form, it is
               permissible to use more than the minimum number of length
               octets necessary to encode the length field.

          (2)  When encoding the value field, the primitive form shall
               be used for all simple types, i.e., INTEGER, OCTET
               STRING, OBJECT IDENTIFIER, and BIT STRING (either
               IMPLICIT or explicit).  The constructed form of encoding
               shall be used only for structured types, i.e., a SEQUENCE
               or an IMPLICIT SEQUENCE.

          (3)  When a BIT STRING is serialized, all named-bits are
               transferred regardless of their truth-value.  Further, if
               the number of named-bits is not an integral multiple of
               eight, then the fewest number of additional zero-valued
               bits are transferred so that an integral multiple of
               eight bits is transferred.

          These restrictions apply to all aspects of ASN.1 encoding,
          including the message wrappers, protocol data units, and the
          data objects they contain.























          Case, McCloghrie, Rose & Waldbusser                  [Page 16]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          8.1.  Usage Example

          As an example of applying the Basic Encoding Rules, suppose
          one wanted to encode an instance of the GetBulkRequest-PDU
          [1]:

               [5] IMPLICIT SEQUENCE {
                       request-id      1414684022,
                       non-repeaters   1,
                       max-repetitions 2,
                       variable-bindings {
                           { name sysUpTime,
                             value { unspecified NULL } },
                           { name ipNetToMediaPhysAddress,
                             value { unspecified NULL } },
                           { name ipNetToMediaType,
                             value { unspecified NULL } }
                       }
                   }

          Applying the BER, this would be encoded (in hexadecimal) as:

          [5] IMPLICIT SEQUENCE          a5 82 00 39
              INTEGER                    02 04 52 54 5d 76
              INTEGER                    02 01 01
              INTEGER                    02 01 02
              SEQUENCE                   30 2b
                  SEQUENCE               30 0b
                      OBJECT IDENTIFIER  06 07 2b 06 01 02 01 01 03
                      NULL               05 00
                  SEQUENCE               30 0d
                      OBJECT IDENTIFIER  06 09 2b 06 01 02 01 04 16 01 02
                      NULL               05 00
                  SEQUENCE               30 0d
                      OBJECT IDENTIFIER  06 09 2b 06 01 02 01 04 16 01 04
                      NULL               05 00

          Note that the initial SEQUENCE is not encoded using the
          minimum number of length octets.  (The first octet of the
          length, 82, indicates that the length of the content is
          encoded in the next two octets.)









          Case, McCloghrie, Rose & Waldbusser                  [Page 17]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          9.  Acknowledgements

          The UDP-based mapping is based, in part, on RFC 1157.

          The OSI-based mapping is based, in part, on RFC 1283.

          The DDP-based mapping is based, in part, on earlier work by
          Greg Minshall of Novell, Inc., and Mike Ritter of Apple
          Computer, Inc.

          The IPX-based mapping is based, in part, on RFC 1298.

          The section on proxy to community-based SNMP is based on
          earlier work that was based in part on a suggestion by
          Jonathan Biggar of Netlabs, Inc.

          Finally, the comments of the SNMP version 2 working group are
          gratefully acknowledged:

               Beth Adams, Network Management Forum
               Steve Alexander, INTERACTIVE Systems Corporation
               David Arneson, Cabletron Systems
               Toshiya Asaba
               Fred Baker, ACC
               Jim Barnes, Xylogics, Inc.
               Brian Bataille
               Andy Bierman, SynOptics Communications, Inc.
               Uri Blumenthal, IBM Corporation
               Fred Bohle, Interlink
               Jack Brown
               Theodore Brunner, Bellcore
               Stephen F. Bush, GE Information Services
               Jeffrey D. Case, University of Tennessee, Knoxville
               John Chang, IBM Corporation
               Szusin Chen, Sun Microsystems
               Robert Ching
               Chris Chiotasso, Ungermann-Bass
               Bobby A. Clay, NASA/Boeing
               John Cooke, Chipcom
               Tracy Cox, Bellcore
               Juan Cruz, Datability, Inc.
               David Cullerot, Cabletron Systems
               Cathy Cunningham, Microcom
               James R. (Chuck) Davin, Bellcore
               Michael Davis, Clearpoint





          Case, McCloghrie, Rose & Waldbusser                  [Page 18]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


               Mike Davison, FiberCom
               Cynthia DellaTorre, MITRE
               Taso N. Devetzis, Bellcore
               Manual Diaz, DAVID Systems, Inc.
               Jon Dreyer, Sun Microsystems
               David Engel, Optical Data Systems
               Mike Erlinger, Lexcel
               Roger Fajman, NIH
               Daniel Fauvarque, Sun Microsystems
               Karen Frisa, CMU
               Shari Galitzer, MITRE
               Shawn Gallagher, Digital Equipment Corporation
               Richard Graveman, Bellcore
               Maria Greene, Xyplex, Inc.
               Michel Guittet, Apple
               Robert Gutierrez, NASA
               Bill Hagerty, Cabletron Systems
               Gary W. Haney, Martin Marietta Energy Systems
               Patrick Hanil, Nokia Telecommunications
               Matt Hecht, SNMP Research, Inc.
               Edward A. Heiner, Jr., Synernetics Inc.
               Susan E. Hicks, Martin Marietta Energy Systems
               Geral Holzhauer, Apple
               John Hopprich, DAVID Systems, Inc.
               Jeff Hughes, Hewlett-Packard
               Robin Iddon, Axon Networks, Inc.
               David Itusak
               Kevin M. Jackson, Concord Communications, Inc.
               Ole J. Jacobsen, Interop Company
               Ronald Jacoby, Silicon Graphics, Inc.
               Satish Joshi, SynOptics Communications, Inc.
               Frank Kastenholz, FTP Software
               Mark Kepke, Hewlett-Packard
               Ken Key, SNMP Research, Inc.
               Zbiginew Kielczewski, Eicon
               Jongyeoi Kim
               Andrew Knutsen, The Santa Cruz Operation
               Michael L. Kornegay, VisiSoft
               Deirdre C. Kostik, Bellcore
               Cheryl Krupczak, Georgia Tech
               Mark S. Lewis, Telebit
               David Lin
               David Lindemulder, AT&T/NCR
               Ben Lisowski, Sprint
               David Liu, Bell-Northern Research





          Case, McCloghrie, Rose & Waldbusser                  [Page 19]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


               John Lunny, The Wollongong Group
               Robert C. Lushbaugh Martin, Marietta Energy Systems
               Michael Luufer, BBN
               Carl Madison, Star-Tek, Inc.
               Keith McCloghrie, Hughes LAN Systems
               Evan McGinnis, 3Com Corporation
               Bill McKenzie, IBM Corporation
               Donna McMaster, SynOptics Communications, Inc.
               John Medicke, IBM Corporation
               Doug Miller, Telebit
               Dave Minnich, FiberCom
               Mohammad Mirhakkak, MITRE
               Rohit Mital, Protools
               George Mouradian, AT&T Bell Labs
               Patrick Mullaney, Cabletron Systems
               Dan Myers, 3Com Corporation
               Rina Nathaniel, Rad Network Devices Ltd.
               Hien V. Nguyen, Sprint
               Mo Nikain
               Tom Nisbet
               William B. Norton, MERIT
               Steve Onishi, Wellfleet Communications, Inc.
               David T. Perkins, SynOptics Communications, Inc.
               Carl Powell, BBN
               Ilan Raab, SynOptics Communications, Inc.
               Richard Ramons, AT&T
               Venkat D. Rangan, Metric Network Systems, Inc.
               Louise Reingold, Sprint
               Sam Roberts, Farallon Computing, Inc.
               Kary Robertson, Concord Communications, Inc.
               Dan Romascanu, Lannet Data Communications Ltd.
               Marshall T. Rose, Dover Beach Consulting, Inc.
               Shawn A. Routhier, Epilogue Technology Corporation
               Chris Rozman
               Asaf Rubissa, Fibronics
               Jon Saperia, Digital Equipment Corporation
               Michael Sapich
               Mike Scanlon, Interlan
               Sam Schaen, MITRE
               John Seligson, Ultra Network Technologies
               Paul A. Serice, Corporation for Open Systems
               Chris Shaw, Banyan Systems
               Timon Sloane
               Robert Snyder, Cisco Systems
               Joo Young Song





          Case, McCloghrie, Rose & Waldbusser                  [Page 20]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


               Roy Spitier, Sprint
               Einar Stefferud, Network Management Associates
               John Stephens, Cayman Systems, Inc.
               Robert L. Stewart, Xyplex, Inc. (chair)
               Kaj Tesink, Bellcore
               Dean Throop, Data General
               Ahmet Tuncay, France Telecom-CNET
               Maurice Turcotte, Racal Datacom
               Warren Vik, INTERACTIVE Systems Corporation
               Yannis Viniotis
               Steven L. Waldbusser, Carnegie Mellon Universitty
               Timothy M. Walden, ACC
               Alice Wang, Sun Microsystems
               James Watt, Newbridge
               Luanne Waul, Timeplex
               Donald E. Westlake III, Digital Equipment Corporation
               Gerry White
               Bert Wijnen, IBM Corporation
               Peter Wilson, 3Com Corporation
               Steven Wong, Digital Equipment Corporation
               Randy Worzella, IBM Corporation
               Daniel Woycke, MITRE
               Honda Wu
               Jeff Yarnell, Protools
               Chris Young, Cabletron
               Kiho Yum, 3Com Corporation
























          Case, McCloghrie, Rose & Waldbusser                  [Page 21]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          10.  References

          [1]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
               "Protocol Operations for version 2 of the Simple Network
               Management Protocol (SNMPv2)", RFC 1448, SNMP Research,
               Inc., Hughes LAN Systems, Dover Beach Consulting, Inc.,
               Carnegie Mellon University, April 1993.

          [2]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
               USC/Information Sciences Institute, August 1980.

          [3]  Information processing systems - Open Systems
               Interconnection - Transport Service Definition,
               International Organization for Standardization.
               International Standard 8072, (June, 1986).

          [4]  Information processing systems - Open Systems
               Interconnection - Transport Service Definition - Addendum
               1: Connectionless-mode Transmission, International
               Organization for Standardization.  International Standard
               8072/AD 1, (December, 1986).

          [5]  G. Sidhu, R. Andrews, A. Oppenheimer, Inside AppleTalk
               (second edition).  Addison-Wesley, 1990.

          [6]  Waldbusser, S., "AppleTalk Management Information Base",
               RFC 1243, Carnegie Mellon University, July 1991.

          [7]  Network System Technical Interface Overview.  Novell,
               Inc, (June, 1989).

          [8]  Case, J., Fedor, M., Schoffstall, M., Davin, J., "Simple
               Network Management Protocol", STD 15, RFC 1157, SNMP
               Research, Performance Systems International, MIT
               Laboratory for Computer Science, May 1990.

          [9]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
               "Coexistence between version 1 and version 2 of the
               Internet-standard Network Management Framework", RFC
               1452, SNMP Research, Inc., Hughes LAN Systems, Dover
               Beach Consulting, Inc., Carnegie Mellon University, April
               1993.

          [10] McCloghrie, K., and Galvin, J., "Party MIB for version 2
               of the Simple Network Management Protocol (SNMPv2)", RFC





          Case, McCloghrie, Rose & Waldbusser                  [Page 22]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


               1447, Hughes LAN Systems, Trusted Information Systems,
               April 1993.

          [11] Information processing systems - Open Systems
               Interconnection - Specification of Basic Encoding Rules
               for Abstract Syntax Notation One (ASN.1), International
               Organization for Standardization.  International Standard
               8825, (December, 1987).










































          Case, McCloghrie, Rose & Waldbusser                  [Page 23]
^L




          RFC 1449        Transport Mappings for SNMPv2       April 1993


          11.  Security Considerations

          Security issues are not discussed in this memo.


          12.  Authors' Addresses

               Jeffrey D. Case
               SNMP Research, Inc.
               3001 Kimberlin Heights Rd.
               Knoxville, TN  37920-9716
               US

               Phone: +1 615 573 1434
               Email: case@snmp.com


               Keith McCloghrie
               Hughes LAN Systems
               1225 Charleston Road
               Mountain View, CA  94043
               US

               Phone: +1 415 966 7934
               Email: kzm@hls.com


               Marshall T. Rose
               Dover Beach Consulting, Inc.
               420 Whisman Court
               Mountain View, CA  94043-2186
               US

               Phone: +1 415 968 1052
               Email: mrose@dbc.mtview.ca.us

               Steven Waldbusser
               Carnegie Mellon University
               4910 Forbes Ave
               Pittsburgh, PA  15213
               US

               Phone: +1 412 268 6628
               Email: waldbusser@cmu.edu






          Case, McCloghrie, Rose & Waldbusser                  [Page 24]
^L