1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
|
Network Working Group M. Allen
Request For Comments: 1634 Novell, Inc.
Obsoletes: 1551, 1362 May 1994
Category: Informational
Novell IPX Over Various WAN Media (IPXWAN)
Status of this Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
Abstract
This document describes how Novell IPX operates over various WAN
media. Specifically, it describes the common "IPX WAN" protocol
Novell uses to exchange necessary router to router information prior
to exchanging standard IPX routing information and traffic over WAN
datalinks. This document supercedes RFC 1362 and RFC 1551. The
changes from RFC 1551 are to correct a problem in the wording when an
RFC 1362 router talks to an RFC 1551 router and to allow numbers to
be specified in a Router Name.
Table of Contents
1. Introduction ................................................. 2
1.1 Operation Over PPP ........................................... 2
1.2 Operation Over X.25 Switched Virtual Circuits ................ 2
1.3 Operation Over X.25 Permanent Virtual Circuits ............... 3
1.4 Operation Over Frame Relay ................................... 3
1.5 Operation Over Other WAN Media ............................... 3
2. Glossary Of Terms ............................................ 4
3. IPX WAN Protocol Description ................................. 4
3.1 The Initial Negotiation ...................................... 5
3.2 Information Exchange ......................................... 9
3.3 NAK Packets .................................................. 10
4. Information Exchange Packet Formats .......................... 10
4.1 Timer Request Packet ......................................... 12
4.2 Timer Response Packet ........................................ 15
4.3 Information Request Packet ................................... 16
4.4 Information Response Packet .................................. 19
5. Running Unnumbered RIP ....................................... 20
6. Workstation Connectivity ..................................... 20
7. On-demand, Statically Routed Links ........................... 20
8. References ................................................... 22
9. Security Considerations ...................................... 22
10. Author's Address.............................................. 23
Allen [Page 1]
^L
RFC 1634 IPXWAN May 1994
1. Introduction
This document describes how Novell IPX operates over various WAN
media. It is strongly motivated by a desire for IPX to treat ALL wide
area links in the same manner. Sections 3 and 4 describe this common
"IPX WAN" protocol.
The IPX WAN protocol operation begins immediately after link
establishment. While IPX is a connectionless datagram protocol, WANs
are often connection-oriented. Different WANs have different methods
of link establishment. The subsections of section 1 of this document
describe what link establishment means to IPX for different media.
They also describe other WAN-media-dependent aspects of IPX
operation, such as protocol identification, frame encapsulation, and
link tear down.
1.1 Operation Over PPP
IPX uses PPP [1] when operating over point-to-point synchronous and
asynchronous networks.
With PPP, link establishment means the IPX NCP [4] reaches the Open
state. NetWare IPX will negotiate down to a null set of NCP options,
and uses normal frame encapsulation as defined by PPP. The IPXWAN
protocol MUST NOT occur until the IPX NCP reaches the Open state.
Options negotiated by the IPXWAN protocol MUST supercede any options
negotiated by the IPXCP.
PPP allows either side of a connection to stop forwarding IPX if one
end sends an IPXCP or an LCP Terminate-Request. When a router detects
this, it will immediately reflect the lost connectivity in its
routing information database instead of naturally aging it out.
1.2 Operation over X.25 Switched Virtual Circuits
With X.25, link establishment means successfully opening an X.25
virtual circuit. As specified in RFC-1356, "Multiprotocol
Interconnect on X.25 and ISDN in the Packet Mode" [2], the protocol
identifier 0x800000008137 is used in the X.25 Call User Data field of
the Call Request frame, and indicates that the virtual circuit will
be devoted to IPX.
Furthermore, each IPX packet is encapsulated directly in X.25 data
frame sequences without additional framing.
Either side of the virtual circuit may close it, thereby tearing down
the IPX link. When a router detects this, it will immediately reflect
the lost connectivity in its routing information database instead of
Allen [Page 2]
^L
RFC 1634 IPXWAN May 1994
naturally aging it out.
1.3 Operation over X.25 Permanent Virtual Circuits
The nature of X.25 PVC's is that no call request is made. When the
router is informed that X.25 Layer 2 is up, the router should assume
that link establishment is complete.
Each IPX packet is encapsulated in an X.25 data frame sequence
without additional framing. Novell IPX assumes a particular X.25
permanent circuit is devoted to the use of IPX.
If a router receives a layer 2 error condition (e.g., X.25 Restart),
it should reflect lost connectivity for the permanent circuits in its
routing information database and re-perform the necessary steps to
obtain a full IPX connection.
1.4 Operation over Frame Relay Permanent Virtual Circuits
To determine when a permanent virtual circuit (PVC) has become active
or inactive, the router interacts periodically with either a private
Frame Relay switch or a public Frame Relay network. The method used
depends on the switch or service provider. Some support [7], section
6l others support [3], Annex D. Novell supports both methods.
When a router is restarted, IPXWAN exchanges over active Frame Relay
PVCs (that is, PVCs that have remained active before and after
restart) can begin immediately.
Each IPX packet is encapsulated in a Frame Relay frame sequence as
defined in [3] without additional framing.
When a router detects that a Frame Relay PVC has transitioned from an
inactive to an active state, link establishment is considered
complete and IPXWAN exchange over this newly activated link begins.
When an active PVC becomes inactive, the router reflects the lost
connectivity in its routing information database.
1.5 Operation over other WAN media
Additional WAN media will be added here as specifications are
developed.
Allen [Page 3]
^L
RFC 1634 IPXWAN May 1994
2. Glossary Of Terms
Primary Network Number:
Every IPX WAN router has a "primary network number". This is an
IPX network number unique to the entire internet. This number
will be a permanently assigned network number for the router.
Those readers familiar with NetWare 3.x servers should realize
that this is the "Internal" network number.
Router Name:
Every IPX WAN router must have a "Router Name". This is a symbolic
name given to the router. Its purpose is to allow routers to know
who they are connected to after link establishment - particularly
for network management purposes. A symbolic name conveys more
information to an operator than a set of numbers. The symbolic
name should be between 1 and 47 characters in length containing
the characters 'A' through 'Z', '0' through '9', underscore (_),
hyphen (-) and "at" sign (@). The string of characters should be
followed by a null character (byte of zero) and padded to 48
characters using the null character. Those readers familiar with
NetWare 3.x servers should realize that the file server name is
the Router Name.
For workstation (client) connectivity, it is useful if the client
connection software is configured with a symbolic name reflecting
the name of the client. This allows a router management utility to
determine which connection connects with which client/router. If
no name is configured, it is recommended that a default string
such as "DIAL-IN-CLIENT" is used.
3. IPX WAN Protocol Description
After the underlying data link connection is established as described
in the preceding media dependant description, the IPXWAN protocol is
activated to exchange identities and determine certain operational
charactaristics of the link.
There are two steps in the IPXWAN operation:
- Negotiating master/slave role and choice of routing protocol.
The master/slave roles persist for the IPXWAN exchanges only;
- Information exchange of final router configuration.
After these steps are concluded, transmission of IPX routing packets
begins - using the routing protocol negotiated - as well as
Allen [Page 4]
^L
RFC 1634 IPXWAN May 1994
transmission of IPX data traffic.
3.1 The Initial Negotiation
The first exchange of packets decides the master/slave roles and the
routing protocol to be used on the link and gauges the link delay for
the routing metrics. The initial negotiation is the same for all
protocols.
+---------------+ +---------------+
| Timer Request | | Timer Request |
+---------------+ +---------------+
\---->\ /<----/
\ /
x
/ \
/\ /<----/ \---->\ /\
/ \ / \
/ \ / \
/ My primary \ / My primary \
/ network address\ / network address\
\ is larger / \ is smaller /
\ / \ /
\ / \ /
\ / \ /
\/ \/
MASTER SLAVE
+----------------+
<----------------+ Timer Response +
+----------------+
After link establishment, both sides of the link send Timer Request
packets and start a timer waiting for a Timer Response. These Timer
Requests are sent every 20 seconds until a response is received or a
descision is made that the remote node is not responding. This could
be after a predefined time (min. 60 seconds) or a number of retries
(e.g., 16).
In composing the Timer Request, the router or workstation takes into
consideration:
- Which types of routing protocols it supports;
- Whether it is prepared to assign a network address to the link;
- For workstations, whether they require the ability to specify
their network/NIC address on a reconnect;
Allen [Page 5]
^L
RFC 1634 IPXWAN May 1994
- Whether it is able to support IPX header compression [6].
For each routing protocol supported, place an option in the Timer
Request packet. The Routing Type options should be added in the
originator's order of preference with the most preferred option
first.
Some of the newer (or modified) IPX routing protocols do not have the
requirement to allocate a network number on a WAN link. This type of
routing protocol has the advantage of potentially simpler
configuration as no network number pools are necessary for WAN links.
However, these router implementations may still wish to interoperate
with the older IPXWAN implementations which are able to allocate
network numbers for the WAN link. In this case, the following method
is used to force the older implementation to become the link master.
It should be noted that a router implementation capable of supporting
workstation dial-in MUST be able to supply AT LEAST ONE network
number on which the workstation can reside.
If the router is prepared to assign an IPX network number to the
link, it sends its primary network number in the Timer Request
WNodeID field, and omits the Extended Node ID option. On the other
hand, if the router is NOT prepared to assign an IPX network number
to the link, it sets the Timer Request WNodeID field to zero, and
includes its primary network number in an Extended Node ID option.
Workstations follow a similar, but slightly different set of rules
for setting the WNodeID field. If this is the first time the work-
station is connecting to the router, the workstation will set the
WNodeID to zero indicating the router should be the link master and
allocate a network number for the new link. In this case, the work-
station will respond to the router's Timer Request and acknowledge
only the Workstation Routing Type option. Note that a workstation
does NOT include an Extended Node ID option in it's timer request.
If the workstation is reconnecting a link after an earlier inactivity
disconnect, it is necessary for the workstation to be able to specify
its network, NIC address and "Router Name" field (so that file server
connections can be maintained after the reconnect). In this case,
the workstation will set its WNodeID field to FFFFFFFFh forcing
itself to be the link master. In this case, the router will respond
to the workstation's Timer Request with only the Workstation Router
Type acknowledged.
Further packets in the IPXWAN exchange MUST use the correct WNodeID
(workstations will always use zero).
Allen [Page 6]
^L
RFC 1634 IPXWAN May 1994
On receiving a Timer Request packet, a router determines its role -
master or slave - for the remainder of the IPXWAN exchanges. The
master role does not denote special privileges, it merely means that
the router is the requestor in the ensuing request/response
exchanges. The descision is made as follows:
a) If the WNodeID field is zero in the sent and the received Timer
Requests
i) If both Timer Requests include an Extended Node ID, the
router with the higher numeric value of this field is the
Master. If the two Extended Node ID fields are equal, a
configuration error has occurred. After reporting the error,
the router issues a disconnect on the underlying data-link
connection. Manual intervention is needed to correct the
error condition.
ii) If only one Timer Request includes the Extended Node ID,
the router sending it is the Master.
iii) If neither Timer Request includes the Extended Node ID, a
connection cannot be established. The data-link circuit is
cleared by the system that initiated it.
b) If either the sent or received Timer Request (or both) contains
a nonzero WNodeID field, the router with the higher WNodeID is
the Master.
c) If the two WNodeID fields are equal and nonzero, a
configuration error has occurred. After reporting the error,
the router issues a disconnect on the underlying data-link
connection. Manual intervention is needed to correct the error
condition.
Note: The Primary Network Number for a workstation when
determining master/slave roles depends on whether the workstation
requires itself to be the master of slave. It should compare the
received WNodeID to that sent in it's own Timer Request.
The numeric comparisons are done by considering each byte of the
WNodeID or Extended Node ID fields as an unsigned integer, and the
first byte as most significant.
The link slave responds to the Timer Request with a Timer Response.
To do so, each option in the received Timer Request is parsed. If an
option is not supported (or recognized), that option is rejected by
changing the WAccept field to "NO" for that option.
Allen [Page 7]
^L
RFC 1634 IPXWAN May 1994
When selecting the router type which will be used on the link, the
first option in the Timer Request which can be supported should be
accepted. All other router types should have the WAccept field set to
"NO". A router MUST NOT accept workstation connectivity to a node
which is another router.
Note: It is permitted for a router to support a numbered routing
type, but not be able to assign the network number. In this case,
that routing type can be selected only if the other router supports
it and is able to assign the network number. This can be determined
by the value of the received WNodeID field. If the router is unable
to assign a network number to the link, it MUST support Unnumbered
RIP and include this option in the Timer Requests.
If a router wishes to provide WAN Client access without supporting
other WAN routing types, a potential problem arises since a router
and WAN client would both just be sending a single Routing Type
option indicating the use of WAN Client. The IPXWAN specification
does not allow a WAN workstation to connect to another WAN
workstation. The method for detecting this is that the sent and
received Timer Requests have a single Routing Type defined of WAN
Client. To overcome this problem, IPXWAN defines that a router MUST
NOT send a single Routing Type if that type is just WAN Client. The
router MUST additionally include one (or more) of the defined routing
types (like WAN RIP) with the WAccept option set to NO. This is so
that a workstation may detect that this is actually a router sending
the Timer Request and not just another workstation trying to call a
workstation. The extra option will serve to be a counted Routing Type
that will be ignored. If a workstation detects it is connecting to
another workstation, it should disconnect the link.
Note that a router supporting a workstation will need to be able to
supply AT LEAST one network number for workstations. All dial-in
workstations could share the same network, and be assigned unique
node numbers by the router, or each workstation could be assigned a
different network number. This is a router specific implementation
detail. Use of a single network for all clients is prefered, however,
this does involve extra work by the router when dealing with
broadcast frames. When the router is the link master and allocating
NIC addresses on a single network,it should ALWAYS use a unique value
- by incrementing the NIC address for each client connection. This
allows a workstation which is reconnecting the ability to specify his
old network and NIC address. It is unlikely with a 6 byte NIC
address, that there will be wrap-around in the numbers that would
cause a problem. Router Node Number allocation should follow a few
simple rules. The six byte NIC address SHOULD have the first byte set
to 2.
Allen [Page 8]
^L
RFC 1634 IPXWAN May 1994
Byte # +--1----2----3----4----5----6-+
| 02 | XX | XX | XX | XX | XX |
+-----------------------------+
In an IEEE address space, this would represent a non-multicast,
locally defined address. Node numbers of zero or -1 are not allowed.
If a slave determines it cannot support any of the supplied routing
protocols in the received Timer Request, it MUST issue a disconnect
on the connection being established. The master of the link
(determined when a Timer Response packet is received) is responsible
for defining the network number that is to be used as a common
network number for the new WAN link, and for calculating the RIP
transport time that will be advertized to other RIP routers for the
new link. This is calculated by stopping the timer which was started
when a Timer Request was initiated and applying the algorithm in
section 4.3.
3.2 Information Exchange
After exchanging Timer Request packets, the link master and slave
have been determined, and the Routing Protocol to be used on the link
is negotiated. The link master is now responsible for sending an
Information Request packet to the slave specifying the network number
to be used on the new link (zero for unnumbered RIP and On Demand),
the calculated transport time to be used in the routing metric, the
Router Name (for management purposes), and for a workstation
connection, the NIC address the workstation will be adopting. The NIC
address option is a separate option added in the Information
Request/Response for workstation connectivity. It is NOT present for
router to router connections.
If a router receives an inappropriate Information Request from a
workstation trying to set the common network number and NIC address
the router MUST overwrite these values with preferred values. When
the workstation receives the Information Response, it MUST note the
new values. If the workstation is unable to adjust to the new values,
it MUST issue a disconnect on the link. If a workstation is the link
master (i.e., it is reconnecting), the router is additionally
responsible for ensuring the "Router Name" field matches that of the
original connection. If the values differ, the call should be
disconnected.
If a router detects an error for which no suitable protocol response
exists (e.g., unable to allocate a network number), the link should
be terminated according to the relevant media specification.
Allen [Page 9]
^L
RFC 1634 IPXWAN May 1994
Under certain circumstances, particularly on X.25 permanent circuits,
it is only possible to detect the remote router went away when it
comes back up again. In this case, one side of the link receives a
Timer Request packet when IPX is in a fully connected state. The
side receiving the Timer Request MUST realize that a problem
occurred, and revert to the IPX link establishment phase.
Furthermore, the routing information learned from this connection
should be immediately discarded.
When Unnumbered RIP, On-demand or Workstation options are negotiated,
Information Request packets are repeated every 20 seconds until a
response is received. For the Numbered RIP links, the Information
Request is NOT resent. Instead, the link is disconnected after a
suitable delay (min. 60 seconds) - this requirement ensures
interoperabilty with earlier versions of IPXWAN. When Information
Requests are repeated, they should continue for a preconfigured time
(min. 60 seconds) or a preconfigured number of retries (e.g., 16).
Each retry uses an incremented sequence number.
3.3 NAK Packets
The IPXWAN protocol uses a NAK packet to indicate the received IPXWAN
packet was not acceptable. A NAK packet is an exact copy of the
received packet with the WPacketType field set to NAK. There are two
anticipated uses of this packet.
- The received WPacketType is invalid or not recognized;
- A badly formed IPXWAN packet is received.
Returning a NAK packet allows the sender a chance to work out what
was wrong. If the sender was unable to determine the problem, the
call can then be disconnected.
The value of the NAK WPacketType is FFh.
4. Information Exchange Packet Formats
All IPX WAN protocol exchanges utilize the standard Novell IPX packet
format. The packets use the IPX defined packet type 04 defining a
Packet Exchange Packet. The socket number 0x9004 is a Novell reserved
socket number for exclusive use with IPX WAN protocol exchange. IPX
defines that a network number of zero (0) is interpreted as being a
local network of unknown number that requires no routing. This
feature is of use to us in transferring these packets before the
common network number is exchanged. Some routers need to know a "Node
Number" (or MAC address) for each node on a link. Node numbers will
Allen [Page 10]
^L
RFC 1634 IPXWAN May 1994
be formed from the "WNode ID" field. The node number will be the 4
bytes of WNode ID followed by 2 bytes of zero. For a workstation, the
node number will be explicitly assigned by the router and notified to
the workstation in the Information Request packet.
Router Type number assignment. Other vendors IPX routing protocols
can make use of the IPXWAN protocol definition by obtaining Router
Types from Novell. This document will then include the new Router
Types (with the references to vendor protocol description documents).
Current Routing Types are:
00 Numbered RIP/SAP
01 NLSP (no RIP/SAP - defined in [8])
02 Unnumbered RIP/SAP
03 On Demand, static routing (no RIP/SAP or NLSP)
04 Workstation (no RIP/SAP)
05-FF Currently undefined
WOption Number assignment. These numbers only need to be assigned
from Novell for the "Timer Request" and "Timer Response" packets.
Packet Types also need to be assigned by Novell. However, the options
within these packets are dependant on the "Router Type" negotiated.
WOption numbers in these packets are then defined by the vendor
defining the Routing Type. The same packet format should still be
maintained.
Router Type 01 will not be described in this document since it
involves knowledge of the NLSP protocol to implement. Please refer to
[8] for a complete specification of these NLSP IPXWAN exchanges and
the NLSP protocol.
Allen [Page 11]
^L
RFC 1634 IPXWAN May 1994
4.1 Timer Request Packet
+---------------------------------------------------------------+
| Checksum | FF FF | Always FFFF |
| Packet Length | 02 40 | Max IPX size (576 bytes|
| | | Hi Lo order) |
| Trans Control | 00 | Hops traversed |
| Packet Type | 04 | Packet Exchange Packet |
| Dest Net # | 00 00 00 00 | Local Network |
| Dest Node # | FF FF FF FF FF FF | Broadcast |
| Dest Socket # | 90 04 | Reserved WAN socket |
| Source Net # | 00 00 00 00 | Local Network |
| Source Node # | 00 00 00 00 00 00 | Set to zero |
| Source Socket # | 90 04 | Reserved WAN socket |
|------------------+-------------------+------------------------|
| WIdentifier | 57 41 53 4D | Confidence identifier |
| WPacket Type | 00 | Timer Request |
| WNode ID | xx xx xx xx | Primary Net # of |
| | | sending router |
| | | (Hi Lo order) |
| WSequence # | xx | Sequence start at 0 |
| WNum Options | xx | Number of options |
|------------------+-------------------+------------------------|
| WOption Number | xx | Option Identifier |
| WAccept Option | xx | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | xx xx | Number of following |
| | | option bytes (Hi Lo) |
| WOption Data | nn | Option specific data |
+---------------------------------------------------------------+
Routing Type Option:
One or more of the following router type options should be included
in a Timer Request packet. A router should ALWAYS include Routing
Type zero (0) if full interoperability is required with an older
implementation. The router types MUST be included in the senders
order of preference. If a router receives a Timer Response with more
than one Router Type having WAccept set to Yes, the link MUST be
disconnected.
+---------------------------------------------------------------+
| WOption Number | 00 | Define Routing Type |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 01 | Option length (Hi Lo) |
| WOption Data | 00 | IPX RIP/SAP Routing |
+---------------------------------------------------------------+
Allen [Page 12]
^L
RFC 1634 IPXWAN May 1994
+---------------------------------------------------------------+
| WOption Number | 00 | Define Routing Type |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 01 | Option length (Hi Lo) |
| WOption Data | 01 | NLSP |
+---------------------------------------------------------------+
+---------------------------------------------------------------+
| WOption Number | 00 | Define Routing Type |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 01 | Option length (Hi Lo) |
| WOption Data | 02 | Unnumbered RIP/SAP |
+---------------------------------------------------------------+
+---------------------------------------------------------------+
| WOption Number | 00 | Define Routing Type |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 01 | Option length (Hi Lo) |
| WOption Data | 03 | On-demand, static Rting|
+---------------------------------------------------------------+
+---------------------------------------------------------------+
| WOption Number | 00 | Define Routing Type |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 01 | Option length (Hi Lo) |
| WOption Data | 04 | Client - No RIP/SAP |
| | | except on request |
+---------------------------------------------------------------+
Extended Node ID Option:
The extended node ID should only be included if the WNodeID field is
set to zero AND the node constructing the packet is a router. Note
that an older version of IPXWAN will just reject this option and
automatically become the link master as the WNodeID is zero.
+---------------------------------------------------------------+
| WOption Number | 04 | Extended Node ID |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 04 | Pad data length (Hi Lo)|
| WOption Data | xx xx xx xx | Real primary network # |
| | | of this router (Hi-Lo) |
+---------------------------------------------------------------+
Header Compression Option:
Although more than one header compression option may be specified in
a Timer Request packet, it is important that a MAXIMUM of ONE header
compression option is accepted. If an implementation receives a
Timer Response with more than one header compression option with the
accept option set to Yes, the link MUST be disconnected. [Ref 6]
defines the full Telebit Header Compression method.
Allen [Page 13]
^L
RFC 1634 IPXWAN May 1994
+---------------------------------------------------------------+
| WOption Number | 80 | Header Compression |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 03 | Variable - at least 1 |
| WOption Data | 00 | 0 = Telebit Hdr Compr. |
| | xx | Compression Options |
| | xx | Compression Slots |
+---------------------------------------------------------------+
PAD Option:
The PAD option is used to fill the Timer Request up to the 576 byte
limit. This field will be of variable length depending on the number
of other options in the packet. This option will normally be the
last entry in the packet. Its sole purpose is to fill the IPX
packet to be 576 bytes. The pad option data should be filled with a
selection of totally random numbers to avoid compression modems or
PPP data compression from destroying the link delay calculation.
Note that this is different from the original RFC 1362
specification. This should not affect implementations.
Implementations should not attempt to verify the contents of a PAD
option.
+---------------------------------------------------------------+
| WOption Number | FF | Pad option |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | xx xx | Pad data length (Hi Lo)|
| | | (enough to fill packet)|
| WOption Data | Random numbers | |
+---------------------------------------------------------------+
Note:
Timer Request packets will always be 576 bytes. However,
there should be no assumption made about the number of
options specified in this packet.
After link establishment, Timer Request packets are sent by both
sides of the link. Each end starts their sequence number at zero.
Subsequent retries (every 20 seconds) will increment the value of
this sequence number. Only a Timer Response packet with a sequence
number matching the last sent sequence number will be acted upon.
As mentioned earlier, the WNodeID field may be set to zero for a
router if it is unable to provide a network number for the link. If
a router ONLY supports the Numbered RIP/SAP option, it MUST be
capable of proving a network number for a WAN link.
Allen [Page 14]
^L
RFC 1634 IPXWAN May 1994
Packets received on the reserved socket number not having the
WIdentifier set to the hexadecimal values noted above should be
discarded.
4.2 Timer Response Packet
+---------------------------------------------------------------+
| Checksum | FF FF | Always FFFF |
| Packet Length | 02 40 | Max IPX size (576 bytes|
| | | Hi Lo order) |
| Trans Control | 00 | Hops traversed |
| Packet Type | 04 | Packet Exchange Packet |
| Dest Net # | 00 00 00 00 | Local Network |
| Dest Node # | FF FF FF FF FF FF | Broadcast |
| Dest Socket # | 90 04 | Reserved WAN socket |
| Source Net # | 00 00 00 00 | Local Network |
| Source Node # | 00 00 00 00 00 00 | Set to zero |
| Source Socket # | 90 04 | Reserved WAN socket |
|------------------+-------------------+------------------------|
| WIdentifier | 57 41 53 4D | Confidence identifier |
| WPacket Type | 01 | Timer Response |
| WNode ID | xx xx xx xx | Primary Net # of |
| | | sending router |
| | | (Hi Lo order) |
| WSequence # | xx | Same as Timer Request |
| | | received |
| WNum Options | xx | Number of options |
|------------------+-------------------+------------------------|
| WOption Number | xx | Option Identifier |
| WAccept Option | xx | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | xx xx | Number of following |
| | | option bytes (Hi Lo) |
| WOption Data | nn | Option specific data |
+---------------------------------------------------------------+
The options contained within this packet are as described in section
4.1 Any unknown options or not supported options within the Timer
Request MUST have the WAccept Option set to NO in the Timer Response.
If the Timer Request packet contained more than one Router Type
option and the "Slave" supports all the options, the "Slave" MUST set
the WAccept Option to YES on the FIRST Router Type supported and NO
to ALL other Router Types. This is the Router Type which is to be
adopted by both ends of the link. Information exchanges will then
proceed by the link master based on the accepted Router Type.
This packet must contain the same sequence number as the received
Timer Request. This packet should ONLY be sent by the router or
Allen [Page 15]
^L
RFC 1634 IPXWAN May 1994
workstation determining themselves to be the "Slave" of the link.
(Workstations are ALWAYS the link slave).
Routers MUST set the WNodeID to their correct value when responding
with the Timer Response. A value of zero must NOT be used.
4.3 Information Request Packet
+---------------------------------------------------------------+
| Checksum | FF FF | Always FFFF |
| Packet Length | 00 63 | Size of header+data |
| | | (Hi Lo order) |
| Trans Control | 00 | Hops traversed |
| Packet Type | 04 | Packet Exchange Packet |
| Dest Net # | 00 00 00 00 | Local Network |
| Dest Node # | FF FF FF FF FF FF | Broadcast |
| Dest Socket # | 90 04 | Reserved WAN socket |
| Source Net # | 00 00 00 00 | Local Network |
| Source Node # | 00 00 00 00 00 00 | Set to zero |
| Source Socket # | 90 04 | Reserved WAN socket |
|------------------+-------------------+------------------------|
| WIdentifier | 57 41 53 4D | Confidence identifier |
| WPacket Type | 02 | Information Request |
| WNode ID | xx xx xx xx | Primary Net # of |
| | | sending router |
| | | (Hi Lo order) |
| WSequence # | 00 | Sequence start at 0 |
| WNum Options | 01 | 1 Option to follow |
| WOption Number | 01 | Define IPX RIP/SAP |
| | | info exchange |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 36 | Option length (Hi Lo) |
| WOption Data | | |
| Link Delay | xx xx | Hi Lo link delay in |
| | | milli seconds (see |
| | | below for calculation) |
| Common Net # | xx xx xx xx | Hi Lo Common Network # |
| Router Name | xx (x 48 decimal) | Router name - as defned|
| | | in section 2. |
+---------------------------------------------------------------+
Routers MUST set the WNodeID to their correct value when sending an
Information Request. A value of zero must NOT be used.
A workstation should replace the Router Name with the configured
name, or a constant descriptor string as described in section 2.
Allen [Page 16]
^L
RFC 1634 IPXWAN May 1994
For a Workstation Information Request, an extra option is added which
specifies the NIC address for the workstation. In this case, the
number of options will be set to two (2).
+---------------------------------------------------------------+
| WOption Number | 05 | Define NIC Address |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 06 | Option length (Hi Lo) |
| WOption Data | 02 xx xx xx xx xx | NIC Address for W/S |
+---------------------------------------------------------------+
Routers or workstations should not refuse to use a NIC address having
a first byte with a value other than 02.
Calculation of link delay is performed as follows:
// Start_time is a time stamp when Timer Request sent out
// End_time is a time stamp when a Timer Response is
// received.
link_delay = end_time - start_time; // 1/18th second
if (link_delay < 1)
{
link_delay = 1;
}/*IF*/
// We are on a slow net, so add some biasing to help stop
// multiple workstation sessions timing out on the link
link_delay *= 6; /* Add the biasing for multiple sessions */
link_delay *= 55; /* Convert link delay to milliseconds */
If a higher resolution timer is available, better results may be
obtained using the following algorithm:
conversion_factor = number of timer units in 1/18th second;
link_delay = ((end_time - start_time) * 6) / conversion_factor;
if (link_delay == 0)
{
link_delay = 1;
}/*IF*/
link_delay *= 55; /* Convert link delay to milliseconds */
The "Link Delay" is used as the network transport time when
advertized in the IPX RIP packet tuple for the network entry "Common
Net #". For a consistent network, a common link delay is required at
both ends of the link and is calculated by the link "Master". Link
Delay is specified in milli seconds.
Allen [Page 17]
^L
RFC 1634 IPXWAN May 1994
The Common Net # is supplied by the link "Master". This number must
be unique in the connected internetwork. Each WAN call requires a
separate number. If the negotiated Router Type was Unnumbered RIP,
On-demand, or NLSP, the specified Common Net # will be zero.
This packet should contain a sequence number starting at zero. This
packet should ONLY be sent by the router or workstation determining
themselves to be the "Slave" of the link.
If extra options are included in this packet, they should be silently
discarded.If the information option is missing, the link MUST be
disconnected.
Allen [Page 18]
^L
RFC 1634 IPXWAN May 1994
4.4 Information Response Packet
+---------------------------------------------------------------+
| Checksum | FF FF | Always FFFF |
| Packet Length | 00 63 | Size of header+data |
| | | (Hi Lo Order) |
| Trans Control | 00 | Hops traversed |
| Packet Type | 04 | Packet Exchange Packet |
| Dest Net # | 00 00 00 00 | Local Network |
| Dest Node # | FF FF FF FF FF FF | Broadcast |
| Dest Socket # | 90 04 | Reserved WAN socket |
| Source Net # | 00 00 00 00 | Local Network |
| Source Node # | 00 00 00 00 00 00 | Set to zero |
| Source Socket # | 90 04 | Reserved WAN socket |
|------------------+-------------------+------------------------|
| WIdentifier | 57 41 53 4D | Confidence identifier |
| WPacket Type | 03 | Information Response |
| WNode ID | xx xx xx xx | Primary Net # of |
| | | sending router |
| | | (Hi Lo order) |
| WSequence # | 00 | Same as Info Request |
| WNum Options | 01 | 1 Option to follow |
| WOption Number | 01 | Define IPX RIP/SAP |
| | | info exchange |
| WAccept Option | 01 | 0=No,1=Yes,3=Not Applic|
| WOption Data Len | 00 36 | Option length (Hi Lo) |
| WOption Data | | |
| Link Delay | xx xx | Hi Lo link delay (as |
| | | received in Info Requ) |
| Common Net # | xx xx xx xx | Hi Lo Common Network # |
| | | (as received in Info |
| | | request) |
| Router Name | xx (x 48 decimal) | Router name - as defned|
| | | in section 2. |
+---------------------------------------------------------------+
The responses contained within this packet are as described in
section 4.3.
A link slave will additionally respond with the received NIC address
option as a confirmation of receipt. A workstation should replace the
Router Name with the configured name, or a constant descriptor string
as described in section 2. If the Information Request contained an
inappropriate Common Net # or NIC address, the Information Response
may set new values. The receiver of the Information Response is
responsible for checking on the value and terminating the connection
if the new values cannot be used.
Allen [Page 19]
^L
RFC 1634 IPXWAN May 1994
Routers MUST set the WNodeID to their correct value when sending an
Information Response. A value of zero must NOT be used.
5. Running Unnumbered RIP
Unnumbered RIP refers to the case where two WAN routers are
communicating using the RIP protocol across a link with NO physical
IPX network address. The premise for this ability is that there is no
need to address a packet to anything on that WAN link. RIP and SAP
run in exactly the same way as before, except the source and
destination network numbers should be set to zero.
The advantage to running unnumbered RIP links is that it is not
necessary to allocate/configure a pool of usable IPX network numbers
which can be used on the WAN links. The other advantage is that when
there is a large number of WAN links, it is not necessary to flood
the network with an unnecessary set of extra RIP information.
6. Workstation Connectivity
Workstations MUST reside on a network and have a unique NIC address
on that network to be individually addressable. However, workstations
do not need to periodically receive RIP and SAP broadcasts as they
play no part in the routing process. This allows routers to reduce
background traffic on the workstation link by not sending any
periodic RIP and SAP data. Note that it will not cause a problem if
the RIP and SAP is sent. It will just slow down the workstation
access times.
RIP and SAP information should ONLY be sent if the workstation makes
a specific request for information - like a service or route request.
It should also be noted that if multiple workstations are attached to
a single WAN workstation network (per router), broadcasts on that
network - whether originated from a workstation or the router - MUST
reach ALL other workstations. This will involve the router
duplicating the packet to all WAN workstation connections.
7. On-demand, Statically Routed Links
On-demand, Static Routing serves two purposes. The "on-demand" part
means that a router initiates communication to a destination only
when there is data to be forwarded to that destination. "Inititating
comunication" includes making a datalink call (where necessary) and
performing the IPXWAN exchange. A transient connection is closed
after a period of inactivity.
Allen [Page 20]
^L
RFC 1634 IPXWAN May 1994
The "static routing" part means that no routing information is sent
over the link - no RIP, no SAP, and no NLSP. Instead, the router at
each end is configured with the routes and services accessible
through the link.
With on-demand, static routing, the called router must be able to
identify the calling router so that statically configured routes and
services can be attached to that connection. For example, with X.25
switched virtual circuits, the calling DTE address can be used; with
PPP, the PPP authentication can be used; after IPXWAN has completed,
the "Router Name" can be used; with a persistent datalink connection,
the physical port identifier or a permanent virtual circuit
identifier can be used. The choice of identifier is an implementation
decision. Whatever value the called router uses is called a Remote
System Identifier, or RSI. For PPP links, Novell uses PPP PAP or CHAP
authentication to determine the caller.
A router implementing on-demand, static routing must maintain a
database of RSIs, and lists describing the network numbers and
services reachable through each RSI. These lists determine the
reachability information it transmits to other routers in a routing
area. Other routers treat each on-demand, static routing link as
though it were permanently available.
The on-demand exchange has a slight variation on the IPXWAN protocol.
The differences are as follows.
In the Timer Request, the calling router offers only the "On-demand,
static routing" Routing Type. If the called router is capable of On-
demand static routing, it offers "On-demand, static routing" in the
Timer Request, along with any additional routing types it is willing
to support on the link. The Master/Slave election and choice of
routing type proceeds as described previously. If the Slave detects a
mismatch in routing types, it disconnects the link.
For a persistent datalink (like X.25 PVCs), there may be no
descerable "link establishemnt" event. For such media, arrival of a
Timer Request plays the role of detecting link establishment.
As with Unnumbered RIP, there is no network number assigned to the
link. NLSP Packets are not sent on the link. Moreover, periodic RIP
and SAP packets are not sent on the link. However, a router must
respond to RIP and SAP queries received on the link.
Allen [Page 21]
^L
RFC 1634 IPXWAN May 1994
8. References
[1] Simpson, W., Editor, "The Point-to-Point Protocol (PPP) for the
Transmission of Multi-protocol Datagrams over Point-to-Point
Links", RFC 1548, Daydreamer, December 1993.
[2] Malis, A., Robinson, D., and R. Ullman, "Multiprotocol
Interconnect on X.25 and ISDN in the Packet Mode", RFC 1356,
August 1992.
[3] Bradley, T., Brown, C., and A. Malis, "Multiprotocol Interconnect
over Frame Relay", RFC 1490, Wellfleet Communications, Inc.,
Ascom Timeplex, Inc., July 1993.
[4] Simpson, W., "The PPP Internetwork Packet Exchange Control
Protocol (IPXCP)", RFC 1552, Daydreamer, December 1993.
[5] Novell IPX Router Specification. Novell Part Number 107-000029-
001. This document may be retrieved via Anonymous FTP to SJF-LWP
(130.57.11.140) under /sys/ftpguest/dev_docs/ipx_rtr/ipxrtr.zip
[6] Mathur, S., and M. Lewis, "Compressing IPX Headers Over WAN Media
(CIPX)", RFC 1553, Telebit Corporation, December 1993.
[7] ANSI, "Integrated Services Digital Network (ISDN) - Digital
Subscriber Signalling System Number 1 (DSS1) - Signalling
Specification for Frame Relay", ANSI T1.617-1991, June 1991.
[8] Novell NetWare Link Services Protocol (NLSP) Specification.
Novell part number 100-001708-002. This document may be retrieved
via Anonymous FTP to SJF-LWP (130.57.11.140) under
/sys/ftpguest/dev_docs/ipx_rtr/nlsp.zip.
9. Security Considerations
Security issues are not discussed in this memo.
Allen [Page 22]
^L
RFC 1634 IPXWAN May 1994
10. Author's Address
Michael Allen
Novell, Inc.
2180 Fortune Drive
San Jose, CA 95131
EMail: mallen@novell.com
The working group can be contacted via the current chair:
Fred Baker
Advanced Computer Communications
315 Bollay Drive
Santa Barbara, California, 93111
EMail: fbaker@acc.com
Allen [Page 23]
^L
|