1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
|
Network Working Group P. Almquist, Author
Request for Comments: 1716 Consultant
Category: Informational F. Kastenholz, Editor
FTP Software, Inc.
November 1994
Towards Requirements for IP Routers
Status of this Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
Almquist & Kastenholz [Page i]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Table of Contents
0. PREFACE ....................................................... 1
1. INTRODUCTION .................................................. 2
1.1 Reading this Document ........................................ 4
1.1.1 Organization ............................................... 4
1.1.2 Requirements ............................................... 5
1.1.3 Compliance ................................................. 6
1.2 Relationships to Other Standards ............................. 7
1.3 General Considerations ....................................... 8
1.3.1 Continuing Internet Evolution .............................. 8
1.3.2 Robustness Principle ....................................... 9
1.3.3 Error Logging .............................................. 9
1.3.4 Configuration .............................................. 10
1.4 Algorithms ................................................... 11
2. INTERNET ARCHITECTURE ......................................... 13
2.1 Introduction ................................................. 13
2.2 Elements of the Architecture ................................. 14
2.2.1 Protocol Layering .......................................... 14
2.2.2 Networks ................................................... 16
2.2.3 Routers .................................................... 17
2.2.4 Autonomous Systems ......................................... 18
2.2.5 Addresses and Subnets ...................................... 18
2.2.6 IP Multicasting ............................................ 20
2.2.7 Unnumbered Lines and Networks and Subnets .................. 20
2.2.8 Notable Oddities ........................................... 22
2.2.8.1 Embedded Routers ......................................... 22
2.2.8.2 Transparent Routers ...................................... 23
2.3 Router Characteristics ....................................... 24
2.4 Architectural Assumptions .................................... 27
3. LINK LAYER .................................................... 29
3.1 INTRODUCTION ................................................. 29
3.2 LINK/INTERNET LAYER INTERFACE ................................ 29
3.3 SPECIFIC ISSUES .............................................. 30
3.3.1 Trailer Encapsulation ...................................... 30
3.3.2 Address Resolution Protocol - ARP .......................... 31
3.3.3 Ethernet and 802.3 Coexistence ............................. 31
3.3.4 Maximum Transmission Unit - MTU ............................ 31
3.3.5 Point-to-Point Protocol - PPP .............................. 32
3.3.5.1 Introduction ............................................. 32
3.3.5.2 Link Control Protocol (LCP) Options ...................... 33
3.3.5.3 IP Control Protocol (ICP) Options ........................ 34
3.3.6 Interface Testing .......................................... 35
4. INTERNET LAYER - PROTOCOLS .................................... 36
4.1 INTRODUCTION ................................................. 36
4.2 INTERNET PROTOCOL - IP ....................................... 36
Almquist & Kastenholz [Page ii]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
4.2.1 INTRODUCTION ............................................... 36
4.2.2 PROTOCOL WALK-THROUGH ...................................... 37
4.2.2.1 Options: RFC-791 Section 3.2 ............................. 37
4.2.2.2 Addresses in Options: RFC-791 Section 3.1 ................ 40
4.2.2.3 Unused IP Header Bits: RFC-791 Section 3.1 ............... 40
4.2.2.4 Type of Service: RFC-791 Section 3.1 ..................... 41
4.2.2.5 Header Checksum: RFC-791 Section 3.1 ..................... 41
4.2.2.6 Unrecognized Header Options: RFC-791 Section 3.1 ......... 41
4.2.2.7 Fragmentation: RFC-791 Section 3.2 ....................... 42
4.2.2.8 Reassembly: RFC-791 Section 3.2 .......................... 43
4.2.2.9 Time to Live: RFC-791 Section 3.2 ........................ 43
4.2.2.10 Multi-subnet Broadcasts: RFC-922 ........................ 43
4.2.2.11 Addressing: RFC-791 Section 3.2 ......................... 43
4.2.3 SPECIFIC ISSUES ............................................ 47
4.2.3.1 IP Broadcast Addresses ................................... 47
4.2.3.2 IP Multicasting .......................................... 48
4.2.3.3 Path MTU Discovery ....................................... 48
4.2.3.4 Subnetting ............................................... 49
4.3 INTERNET CONTROL MESSAGE PROTOCOL - ICMP ..................... 50
4.3.1 INTRODUCTION ............................................... 50
4.3.2 GENERAL ISSUES ............................................. 50
4.3.2.1 Unknown Message Types .................................... 50
4.3.2.2 ICMP Message TTL ......................................... 51
4.3.2.3 Original Message Header .................................. 51
4.3.2.4 ICMP Message Source Address .............................. 51
4.3.2.5 TOS and Precedence ....................................... 51
4.3.2.6 Source Route ............................................. 52
4.3.2.7 When Not to Send ICMP Errors ............................. 53
4.3.2.8 Rate Limiting ............................................ 54
4.3.3 SPECIFIC ISSUES ............................................ 55
4.3.3.1 Destination Unreachable .................................. 55
4.3.3.2 Redirect ................................................. 55
4.3.3.3 Source Quench ............................................ 56
4.3.3.4 Time Exceeded ............................................ 56
4.3.3.5 Parameter Problem ........................................ 57
4.3.3.6 Echo Request/Reply ....................................... 57
4.3.3.7 Information Request/Reply ................................ 58
4.3.3.8 Timestamp and Timestamp Reply ............................ 58
4.3.3.9 Address Mask Request/Reply ............................... 59
4.3.3.10 Router Advertisement and Solicitations .................. 61
4.4 INTERNET GROUP MANAGEMENT PROTOCOL - IGMP .................... 61
5. INTERNET LAYER - FORWARDING ................................... 62
5.1 INTRODUCTION ................................................. 62
5.2 FORWARDING WALK-THROUGH ...................................... 62
5.2.1 Forwarding Algorithm ....................................... 62
5.2.1.1 General .................................................. 63
5.2.1.2 Unicast .................................................. 64
Almquist & Kastenholz [Page iii]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.2.1.3 Multicast ................................................ 65
5.2.2 IP Header Validation ....................................... 66
5.2.3 Local Delivery Decision .................................... 68
5.2.4 Determining the Next Hop Address ........................... 70
5.2.4.1 Immediate Destination Address ............................ 71
5.2.4.2 Local/Remote Decision .................................... 71
5.2.4.3 Next Hop Address ......................................... 72
5.2.4.4 Administrative Preference ................................ 77
5.2.4.6 Load Splitting ........................................... 78
5.2.5 Unused IP Header Bits: RFC-791 Section 3.1 ................. 79
5.2.6 Fragmentation and Reassembly: RFC-791 Section 3.2 .......... 79
5.2.7 Internet Control Message Protocol - ICMP ................... 80
5.2.7.1 Destination Unreachable .................................. 80
5.2.7.2 Redirect ................................................. 82
5.2.7.3 Time Exceeded ............................................ 84
5.2.8 INTERNET GROUP MANAGEMENT PROTOCOL - IGMP .................. 84
5.3 SPECIFIC ISSUES .............................................. 84
5.3.1 Time to Live (TTL) ......................................... 84
5.3.2 Type of Service (TOS) ...................................... 85
5.3.3 IP Precedence .............................................. 87
5.3.3.1 Precedence-Ordered Queue Service ......................... 88
5.3.3.2 Lower Layer Precedence Mappings .......................... 88
5.3.3.3 Precedence Handling For All Routers ...................... 89
5.3.4 Forwarding of Link Layer Broadcasts ........................ 92
5.3.5 Forwarding of Internet Layer Broadcasts .................... 92
5.3.5.1 Limited Broadcasts ....................................... 94
5.3.5.2 Net-directed Broadcasts .................................. 94
5.3.5.3 All-subnets-directed Broadcasts .......................... 95
5.3.5.4 Subnet-directed Broadcasts ............................... 97
5.3.6 Congestion Control ......................................... 97
5.3.7 Martian Address Filtering .................................. 99
5.3.8 Source Address Validation .................................. 99
5.3.9 Packet Filtering and Access Lists .......................... 100
5.3.10 Multicast Routing ......................................... 101
5.3.11 Controls on Forwarding .................................... 101
5.3.12 State Changes ............................................. 101
5.3.12.1 When a Router Ceases Forwarding ......................... 102
5.3.12.2 When a Router Starts Forwarding ......................... 102
5.3.12.3 When an Interface Fails or is Disabled .................. 103
5.3.12.4 When an Interface is Enabled ............................ 103
5.3.13 IP Options ................................................ 103
5.3.13.1 Unrecognized Options .................................... 103
5.3.13.2 Security Option ......................................... 104
5.3.13.3 Stream Identifier Option ................................ 104
5.3.13.4 Source Route Options .................................... 104
5.3.13.5 Record Route Option ..................................... 104
5.3.13.6 Timestamp Option ........................................ 105
Almquist & Kastenholz [Page iv]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
6. TRANSPORT LAYER ............................................... 106
6.1 USER DATAGRAM PROTOCOL - UDP ................................. 106
6.2 TRANSMISSION CONTROL PROTOCOL - TCP .......................... 106
7. APPLICATION LAYER - ROUTING PROTOCOLS ......................... 109
7.1 INTRODUCTION ................................................. 109
7.1.1 Routing Security Considerations ............................ 109
7.1.2 Precedence ................................................. 110
7.2 INTERIOR GATEWAY PROTOCOLS ................................... 110
7.2.1 INTRODUCTION ............................................... 110
7.2.2 OPEN SHORTEST PATH FIRST - OSPF ............................ 111
7.2.2.1 Introduction ............................................. 111
7.2.2.2 Specific Issues .......................................... 111
7.2.2.3 New Version of OSPF ...................................... 112
7.2.3 INTERMEDIATE SYSTEM TO INTERMEDIATE SYSTEM - DUAL IS-IS
.............................................................. 112
7.2.4 ROUTING INFORMATION PROTOCOL - RIP ......................... 113
7.2.4.1 Introduction ............................................. 113
7.2.4.2 Protocol Walk-Through .................................... 113
7.2.4.3 Specific Issues .......................................... 118
7.2.5 GATEWAY TO GATEWAY PROTOCOL - GGP .......................... 119
7.3 EXTERIOR GATEWAY PROTOCOLS ................................... 119
7.3.1 INTRODUCTION ............................................... 119
7.3.2 BORDER GATEWAY PROTOCOL - BGP .............................. 120
7.3.2.1 Introduction ............................................. 120
7.3.2.2 Protocol Walk-through .................................... 120
7.3.3 EXTERIOR GATEWAY PROTOCOL - EGP ............................ 121
7.3.3.1 Introduction ............................................. 121
7.3.3.2 Protocol Walk-through .................................... 122
7.3.4 INTER-AS ROUTING WITHOUT AN EXTERIOR PROTOCOL .............. 124
7.4 STATIC ROUTING ............................................... 125
7.5 FILTERING OF ROUTING INFORMATION ............................. 127
7.5.1 Route Validation ........................................... 127
7.5.2 Basic Route Filtering ...................................... 127
7.5.3 Advanced Route Filtering ................................... 128
7.6 INTER-ROUTING-PROTOCOL INFORMATION EXCHANGE .................. 129
8. APPLICATION LAYER - NETWORK MANAGEMENT PROTOCOLS .............. 131
8.1 The Simple Network Management Protocol - SNMP ................ 131
8.1.1 SNMP Protocol Elements ..................................... 131
8.2 Community Table .............................................. 132
8.3 Standard MIBS ................................................ 133
8.4 Vendor Specific MIBS ......................................... 134
8.5 Saving Changes ............................................... 135
9. APPLICATION LAYER - MISCELLANEOUS PROTOCOLS ................... 137
9.1 BOOTP ........................................................ 137
9.1.1 Introduction ............................................... 137
9.1.2 BOOTP Relay Agents ......................................... 137
10. OPERATIONS AND MAINTENANCE ................................... 139
Almquist & Kastenholz [Page v]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
10.1 Introduction ................................................ 139
10.2 Router Initialization ....................................... 140
10.2.1 Minimum Router Configuration .............................. 140
10.2.2 Address and Address Mask Initialization ................... 141
10.2.3 Network Booting using BOOTP and TFTP ...................... 142
10.3 Operation and Maintenance ................................... 143
10.3.1 Introduction .............................................. 143
10.3.2 Out Of Band Access ........................................ 144
10.3.2 Router O&M Functions ...................................... 144
10.3.2.1 Maintenance - Hardware Diagnosis ........................ 144
10.3.2.2 Control - Dumping and Rebooting ......................... 145
10.3.2.3 Control - Configuring the Router ........................ 145
10.3.2.4 Netbooting of System Software ........................... 146
10.3.2.5 Detecting and responding to misconfiguration ............ 146
10.3.2.6 Minimizing Disruption ................................... 147
10.3.2.7 Control - Troubleshooting Problems ...................... 148
10.4 Security Considerations ..................................... 149
10.4.1 Auditing and Audit Trails ................................. 149
10.4.2 Configuration Control ..................................... 150
11. REFERENCES ................................................... 152
APPENDIX A. REQUIREMENTS FOR SOURCE-ROUTING HOSTS ................ 162
APPENDIX B. GLOSSARY ............................................. 164
APPENDIX C. FUTURE DIRECTIONS .................................... 169
APPENDIX D. Multicast Routing Protocols .......................... 172
D.1 Introduction ................................................. 172
D.2 Distance Vector Multicast Routing Protocol - DVMRP ........... 172
D.3 Multicast Extensions to OSPF - MOSPF ......................... 173
APPENDIX E Additional Next-Hop Selection Algorithms .............. 174
E.1. Some Historical Perspective .................................. 174
E.2. Additional Pruning Rules ..................................... 176
E.3 Some Route Lookup Algorithms ................................. 177
E.3.1 The Revised Classic Algorithm ............................... 178
E.3.2 The Variant Router Requirements Algorithm ................... 179
E.3.3 The OSPF Algorithm .......................................... 179
E.3.4 The Integrated IS-IS Algorithm .............................. 180
Security Considerations ........................................... 182
Acknowledgments ................................................... 183
Editor's Address .................................................. 186
Almquist & Kastenholz [Page vi]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
0. PREFACE
This document is a snapshot of the work of the Router Requirements
working group as of November 1991. At that time, the working group had
essentially finished its task. There were some final technical matters
to be nailed down, and a great deal of editing needed to be done in
order to get the document ready for publication. Unfortunately, these
tasks were never completed.
At the request of the Internet Area Director, the current editor took
the last draft of the document and, after consulting the mailing list
archives, meeting minutes, notes, and other members of the working
group, edited the document to its current form. This effort included
the following tasks: 1) Deleting all the parenthetical material (such as
editor's comments). Useful information was turned into DISCUSSION
sections, the rest was deleted. 2) Completing the tasks listed in the
last draft's To be Done sections. As a part of this task, a new "to be
done" list was developed and included as an appendix to the current
document. 3) Rolling Philip Almquist's "Ruminations on the Next Hop"
and "Ruminations on Route Leaking" into this document. These represent
significant work and should be kept. 4) Fulfilling the last intents of
the working group as determined from the archival material. The intent
of this effort was to get the document into a form suitable for
publication as an Historical RFC so that the significant work which went
into the creation of this document would be preserved.
The content and form of this document are due, in large part, to the
working group's chair, and document's original editor and author: Philip
Almquist. Without his efforts, this document would not exist.
Almquist & Kastenholz [Page 1]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
1. INTRODUCTION
The goal of this work is to replace RFC-1009, Requirements for Internet
Gateways ([INTRO:1]) with a new document.
This memo is an intermediate step toward that goal. It defines and
discusses requirements for devices which perform the network layer
forwarding function of the Internet protocol suite. The Internet
community usually refers to such devices as IP routers or simply
routers; The OSI community refers to such devices as intermediate
systems. Many older Internet documents refer to these devices as
gateways, a name which more recently has largely passed out of favor to
avoid confusion with application gateways.
An IP router can be distinguished from other sorts of packet switching
devices in that a router examines the IP protocol header as part of the
switching process. It generally has to modify the IP header and to
strip off and replace the Link Layer framing.
The authors of this memo recognize, as should its readers, that many
routers support multiple protocol suites, and that support for multiple
protocol suites will be required in increasingly large parts of the
Internet in the future. This memo, however, does not attempt to specify
Internet requirements for protocol suites other than TCP/IP.
This document enumerates standard protocols that a router connected to
the Internet must use, and it incorporates by reference the RFCs and
other documents describing the current specifications for these
protocols. It corrects errors in the referenced documents and adds
additional discussion and guidance for an implementor.
For each protocol, this final version of this memo also contains an
explicit set of requirements, recommendations, and options. The reader
must understand that the list of requirements in this memo is incomplete
by itself; the complete set of requirements for an Internet protocol
router is primarily defined in the standard protocol specification
documents, with the corrections, amendments, and supplements contained
in this memo.
This memo should be read in conjunction with the Requirements for
Internet Hosts RFCs ([INTRO:2] and [INTRO:3]). Internet hosts and
routers must both be capable of originating IP datagrams and receiving
IP datagrams destined for them. The major distinction between Internet
hosts and routers is that routers are required to implement forwarding
algorithms and Internet hosts do not require forwarding capabilities.
Any Internet host acting as a router must adhere to the requirements
contained in the final version of this memo.
Almquist & Kastenholz [Page 2]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
The goal of open system interconnection dictates that routers must
function correctly as Internet hosts when necessary. To achieve this,
this memo provides guidelines for such instances. For simplification
and ease of document updates, this memo tries to avoid overlapping
discussions of host requirements with [INTRO:2] and [INTRO:3] and
incorporates the relevant requirements of those documents by reference.
In some cases the requirements stated in [INTRO:2] and [INTRO:3] are
superseded by the final version of this document.
A good-faith implementation of the protocols produced after careful
reading of the RFCs, with some interaction with the Internet technical
community, and that follows good communications software engineering
practices, should differ from the requirements of this memo in only
minor ways. Thus, in many cases, the requirements in this document are
already stated or implied in the standard protocol documents, so that
their inclusion here is, in a sense, redundant. However, they were
included because some past implementation has made the wrong choice,
causing problems of interoperability, performance, and/or robustness.
This memo includes discussion and explanation of many of the
requirements and recommendations. A simple list of requirements would
be dangerous, because:
o Some required features are more important than others, and some
features are optional.
o Some features are critical in some applications of routers but
irrelevant in others.
o There may be valid reasons why particular vendor products that are
designed for restricted contexts might choose to use different
specifications.
However, the specifications of this memo must be followed to meet the
general goal of arbitrary router interoperation across the diversity and
complexity of the Internet. Although most current implementations fail
to meet these requirements in various ways, some minor and some major,
this specification is the ideal towards which we need to move.
These requirements are based on the current level of Internet
architecture. This memo will be updated as required to provide
additional clarifications or to include additional information in those
areas in which specifications are still evolving.
Almquist & Kastenholz [Page 3]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
1.1 Reading this Document
1.1.1 Organization
This memo emulates the layered organization used by [INTRO:2] and
[INTRO:3]. Thus, Chapter 2 describes the layers found in the
Internet architecture. Chapter 3 covers the Link Layer. Chapters
4 and 5 are concerned with the Internet Layer protocols and
forwarding algorithms. Chapter 6 covers the Transport Layer.
Upper layer protocols are divided between Chapter 7, which
discusses the protocols which routers use to exchange routing
information with each other, Chapter 8, which discusses network
management, and Chapter 9, which discusses other upper layer
protocols. The final chapter covers operations and maintenance
features. This organization was chosen for simplicity, clarity,
and consistency with the Host Requirements RFCs. Appendices to
this memo include a bibliography, a glossary, and some conjectures
about future directions of router standards.
In describing the requirements, we assume that an implementation
strictly mirrors the layering of the protocols. However, strict
layering is an imperfect model, both for the protocol suite and
for recommended implementation approaches. Protocols in different
layers interact in complex and sometimes subtle ways, and
particular functions often involve multiple layers. There are
many design choices in an implementation, many of which involve
creative breaking of strict layering. Every implementor is urged
to read [INTRO:4] and [INTRO:5].
In general, each major section of this memo is organized into the
following subsections:
(1) Introduction
(2) Protocol Walk-Through - considers the protocol specification
documents section-by-section, correcting errors, stating
requirements that may be ambiguous or ill-defined, and
providing further clarification or explanation.
(3) Specific Issues - discusses protocol design and
implementation issues that were not included in the walk-
through.
Under many of the individual topics in this memo, there is
parenthetical material labeled DISCUSSION or IMPLEMENTATION. This
material is intended to give a justification, clarification or
Almquist & Kastenholz [Page 4]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
explanation to the preceding requirements text. The
implementation material contains suggested approaches that an
implementor may want to consider. The DISCUSSION and
IMPLEMENTATION sections are not part of the standard.
1.1.2 Requirements
In this memo, the words that are used to define the significance
of each particular requirement are capitalized. These words are:
o MUST
This word means that the item is an absolute requirement of the
specification.
o MUST IMPLEMENT
This phrase means that this specification requires that the
item be implemented, but does not require that it be enabled by
default.
o MUST NOT
This phrase means that the item is an absolute prohibition of
the specification.
o SHOULD
This word means that there may exist valid reasons in
particular circumstances to ignore this item, but the full
implications should be understood and the case carefully
weighed before choosing a different course.
o SHOULD IMPLEMENT
This phrase is similar in meaning to SHOULD, but is used when
we recommend that a particular feature be provided but does not
necessarily recommend that it be enabled by default.
o SHOULD NOT
This phrase means that there may exist valid reasons in
particular circumstances when the described behavior is
acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing
any behavior described with this label.
o MAY
This word means that this item is truly optional. One vendor
may choose to include the item because a particular marketplace
requires it or because it enhances the product, for example;
another vendor may omit the same item.
Almquist & Kastenholz [Page 5]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
1.1.3 Compliance
Some requirements are applicable to all routers. Other
requirements are applicable only to those which implement
particular features or protocols. In the following paragraphs,
Relevant refers to the union of the requirements applicable to all
routers and the set of requirements applicable to a particular
router because of the set of features and protocols it has
implemented.
Note that not all Relevant requirements are stated directly in
this memo. Various parts of this memo incorporate by reference
sections of the Host Requirements specification, [INTRO:2] and
[INTRO:3]. For purposes of determining compliance with this memo,
it does not matter whether a Relevant requirement is stated
directly in this memo or merely incorporated by reference from one
of those documents.
An implementation is said to be conditionally compliant if it
satisfies all of the Relevant MUST, MUST IMPLEMENT, and MUST NOT
requirements. An implementation is said to be unconditionally
compliant if it is conditionally compliant and also satisfies all
of the Relevant SHOULD, SHOULD IMPLEMENT, and SHOULD NOT
requirements. An implementation is not compliant if it is not
conditionally compliant (i.e., it fails to satisfy one or more of
the Relevant MUST, MUST IMPLEMENT, or MUST NOT requirements).
For any of the SHOULD and SHOULD NOT requirements, a router may
provide a configuration option that will cause the router to act
other than as specified by the requirement. Having such a
configuration option does not void a router's claim to
unconditional compliance as long as the option has a default
setting, and that leaving the option at its default setting causes
the router to operate in a manner which conforms to the
requirement.
Likewise, routers may provide, except where explicitly prohibited
by this memo, options which cause them to violate MUST or MUST NOT
requirements. A router which provides such options is compliant
(either fully or conditionally) if and only if each such option
has a default setting which causes the router to conform to the
requirements of this memo. Please note that the authors of this
memo, although aware of market realities, strongly recommend
against provision of such options. Requirements are labeled MUST
or MUST NOT because experts in the field have judged them to be
particularly important to interoperability or proper functioning
in the Internet. Vendors should weigh carefully the customer
Almquist & Kastenholz [Page 6]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
support costs of providing options which violate those rules.
Of course, this memo is not a complete specification of an IP
router, but rather is closer to what in the OSI world is called a
profile. For example, this memo requires that a number of
protocols be implemented. Although most of the contents of their
protocol specifications are not repeated in this memo,
implementors are nonetheless required to implement the protocols
according to those specifications.
1.2 Relationships to Other Standards
There are several reference documents of interest in checking the
current status of protocol specifications and standardization:
o INTERNET OFFICIAL PROTOCOL STANDARDS
This document describes the Internet standards process and lists
the standards status of the protocols. As of this writing, the
current version of this document is STD 1, RFC 1610, [ARCH:7].
This document is periodically re-issued. You should always
consult an RFC repository and use the latest version of this
document.
o Assigned Numbers
This document lists the assigned values of the parameters used
in the various protocols. For example, IP protocol codes, TCP
port numbers, Telnet Option Codes, ARP hardware types, and
Terminal Type names. As of this writing, the current version of
this document is STD 2, RFC 1700, [INTRO:7]. This document is
periodically re-issued. You should always consult an RFC
repository and use the latest version of this document.
o Host Requirements
This pair of documents reviews the specifications that apply to
hosts and supplies guidance and clarification for any
ambiguities. Note that these requirements also apply to
routers, except where otherwise specified in this memo. As of
this writing (December, 1993) the current versions of these
documents are RFC 1122 and RFC 1123, (STD 3) [INTRO:2], and
[INTRO:3] respectively.
o Router Requirements (formerly Gateway Requirements)
This memo.
Note that these documents are revised and updated at different
times; in case of differences between these documents, the most
recent must prevail.
Almquist & Kastenholz [Page 7]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
These and other Internet protocol documents may be obtained from
the:
The InterNIC
DS.INTERNIC.NET
InterNIC Directory and Database Service
+1 (800) 444-4345 or +1 (619) 445-4600
info@internic.net
1.3 General Considerations
There are several important lessons that vendors of Internet software
have learned and which a new vendor should consider seriously.
1.3.1 Continuing Internet Evolution
The enormous growth of the Internet has revealed problems of
management and scaling in a large datagram-based packet
communication system. These problems are being addressed, and as
a result there will be continuing evolution of the specifications
described in this memo. New routing protocols, algorithms, and
architectures are constantly being developed. New and additional
internet-layer protocols are also constantly being devised.
Because routers play such a crucial role in the Internet, and
because the number of routers deployed in the Internet is much
smaller than the number of hosts, vendors should expect that
router standards will continue to evolve much more quickly than
host standards. These changes will be carefully planned and
controlled since there is extensive participation in this planning
by the vendors and by the organizations responsible for operation
of the networks.
Development, evolution, and revision are characteristic of
computer network protocols today, and this situation will persist
for some years. A vendor who develops computer communications
software for the Internet protocol suite (or any other protocol
suite!) and then fails to maintain and update that software for
changing specifications is going to leave a trail of unhappy
customers. The Internet is a large communication network, and the
users are in constant contact through it. Experience has shown
that knowledge of deficiencies in vendor software propagates
quickly through the Internet technical community.
Almquist & Kastenholz [Page 8]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
1.3.2 Robustness Principle
At every layer of the protocols, there is a general rule (from
[TRANS:2] by Jon Postel) whose application can lead to enormous
benefits in robustness and interoperability:
Be conservative in what you do,
be liberal in what you accept from others.
Software should be written to deal with every conceivable error,
no matter how unlikely; sooner or later a packet will come in with
that particular combination of errors and attributes, and unless
the software is prepared, chaos can ensue. In general, it is best
to assume that the network is filled with malevolent entities that
will send packets designed to have the worst possible effect.
This assumption will lead to suitably protective design. The most
serious problems in the Internet have been caused by unforeseen
mechanisms triggered by low probability events; mere human malice
would never have taken so devious a course!
Adaptability to change must be designed into all levels of router
software. As a simple example, consider a protocol specification
that contains an enumeration of values for a particular header
field - e.g., a type field, a port number, or an error code; this
enumeration must be assumed to be incomplete. If the protocol
specification defines four possible error codes, the software must
not break when a fifth code shows up. An undefined code might be
logged, but it must not cause a failure.
The second part of the principle is almost as important: software
on hosts or other routers may contain deficiencies that make it
unwise to exploit legal but obscure protocol features. It is
unwise to stray far from the obvious and simple, lest untoward
effects result elsewhere. A corollary of this is watch out for
misbehaving hosts; router software should be prepared to survive
in the presence of misbehaving hosts. An important function of
routers in the Internet is to limit the amount of disruption such
hosts can inflict on the shared communication facility.
1.3.3 Error Logging
The Internet includes a great variety of systems, each
implementing many protocols and protocol layers, and some of these
contain bugs and misfeatures in their Internet protocol software.
As a result of complexity, diversity, and distribution of
function, the diagnosis of problems is often very difficult.
Almquist & Kastenholz [Page 9]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Problem diagnosis will be aided if routers include a carefully
designed facility for logging erroneous or strange events. It is
important to include as much diagnostic information as possible
when an error is logged. In particular, it is often useful to
record the header(s) of a packet that caused an error. However,
care must be taken to ensure that error logging does not consume
prohibitive amounts of resources or otherwise interfere with the
operation of the router.
There is a tendency for abnormal but harmless protocol events to
overflow error logging files; this can be avoided by using a
circular log, or by enabling logging only while diagnosing a known
failure. It may be useful to filter and count duplicate
successive messages. One strategy that seems to work well is to
both:
o Always count abnormalities and make such counts accessible
through the management protocol (see Chapter 8); and
o Allow the logging of a great variety of events to be
selectively enabled. For example, it might useful to be able
to log everything or to log everything for host X.
This topic is further discussed in [MGT:5].
1.3.4 Configuration
In an ideal world, routers would be easy to configure, and perhaps
even entirely self-configuring. However, practical experience in
the real world suggests that this is an impossible goal, and that
in fact many attempts by vendors to make configuration easy
actually cause customers more grief than they prevent. As an
extreme example, a router designed to come up and start routing
packets without requiring any configuration information at all
would almost certainly choose some incorrect parameter, possibly
causing serious problems on any networks unfortunate enough to be
connected to it.
Often this memo requires that a parameter be a configurable
option. There are several reasons for this. In a few cases there
currently is some uncertainty or disagreement about the best value
and it may be necessary to update the recommended value in the
future. In other cases, the value really depends on external
factors - e.g., the distribution of its communication load, or the
speeds and topology of nearby networks - and self-tuning
algorithms are unavailable and may be insufficient. In some
cases, configurability is needed because of administrative
requirements.
Almquist & Kastenholz [Page 10]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Finally, some configuration options are required to communicate
with obsolete or incorrect implementations of the protocols,
distributed without sources, that persist in many parts of the
Internet. To make correct systems coexist with these faulty
systems, administrators must occasionally misconfigure the correct
systems. This problem will correct itself gradually as the faulty
systems are retired, but cannot be ignored by vendors.
When we say that a parameter must be configurable, we do not
intend to require that its value be explicitly read from a
configuration file at every boot time. For many parameters, there
is one value that is appropriate for all but the most unusual
situations. In such cases, it is quite reasonable that the
parameter default to that value if not explicitly set.
This memo requires a particular value for such defaults in some
cases. The choice of default is a sensitive issue when the
configuration item controls accommodation of existing, faulty,
systems. If the Internet is to converge successfully to complete
interoperability, the default values built into implementations
must implement the official protocol, not misconfigurations to
accommodate faulty implementations. Although marketing
considerations have led some vendors to choose misconfiguration
defaults, we urge vendors to choose defaults that will conform to
the standard.
Finally, we note that a vendor needs to provide adequate
documentation on all configuration parameters, their limits and
effects.
1.4 Algorithms
In several places in this memo, specific algorithms that a router
ought to follow are specified. These algorithms are not, per se,
required of the router. A router need not implement each algorithm
as it is written in this document. Rather, an implementation must
present a behavior to the external world that is the same as a
strict, literal, implementation of the specified algorithm.
Algorithms are described in a manner that differs from the way a good
implementor would implement them. For expository purposes, a style
that emphasizes conciseness, clarity, and independence from
implementation details has been chosen. A good implementor will
choose algorithms and implementation methods which produce the same
results as these algorithms, but may be more efficient or less
general.
Almquist & Kastenholz [Page 11]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
We note that the art of efficient router implementation is outside of
the scope of this memo.
Almquist & Kastenholz [Page 12]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
2. INTERNET ARCHITECTURE
This chapter does not contain any requirements. However, it does
contain useful background information on the general architecture of the
Internet and of routers.
General background and discussion on the Internet architecture and
supporting protocol suite can be found in the DDN Protocol Handbook
[ARCH:1]; for background see for example [ARCH:2], [ARCH:3], and
[ARCH:4]. The Internet architecture and protocols are also covered in
an ever-growing number of textbooks, such as [ARCH:5] and [ARCH:6].
2.1 Introduction
The Internet system consists of a number of interconnected packet
networks supporting communication among host computers using the
Internet protocols. These protocols include the Internet Protocol
(IP), the Internet Control Message Protocol (ICMP), the Internet
Group Management Protocol (IGMP), and a variety transport and
application protocols that depend upon them. As was described in
Section [1.2], the Internet Engineering Steering Group periodically
releases an Official Protocols memo listing all of the Internet
protocols.
All Internet protocols use IP as the basic data transport mechanism.
IP is a datagram, or connectionless, internetwork service and
includes provision for addressing, type-of-service specification,
fragmentation and reassembly, and security. ICMP and IGMP are
considered integral parts of IP, although they are architecturally
layered upon IP. ICMP provides error reporting, flow control,
first-hop router redirection, and other maintenance and control
functions. IGMP provides the mechanisms by which hosts and routers
can join and leave IP multicast groups.
Reliable data delivery is provided in the Internet protocol suite by
Transport Layer protocols such as the Transmission Control Protocol
(TCP), which provides end-end retransmission, resequencing and
connection control. Transport Layer connectionless service is
provided by the User Datagram Protocol (UDP).
Almquist & Kastenholz [Page 13]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
2.2 Elements of the Architecture
2.2.1 Protocol Layering
To communicate using the Internet system, a host must implement
the layered set of protocols comprising the Internet protocol
suite. A host typically must implement at least one protocol from
each layer.
The protocol layers used in the Internet architecture are as
follows [ARCH:7]:
o Application Layer
The Application Layer is the top layer of the Internet protocol
suite. The Internet suite does not further subdivide the
Application Layer, although some application layer protocols do
contain some internal sub-layering. The application layer of
the Internet suite essentially combines the functions of the
top two layers - Presentation and Application - of the OSI
Reference Model [ARCH:8]. The Application Layer in the
Internet protocol suite also includes some of the function
relegated to the Session Layer in the OSI Reference Model.
We distinguish two categories of application layer protocols:
user protocols that provide service directly to users, and
support protocols that provide common system functions. The
most common Internet user protocols are:
- Telnet (remote login)
- FTP (file transfer)
- SMTP (electronic mail delivery)
There are a number of other standardized user protocols and
many private user protocols.
Support protocols, used for host name mapping, booting, and
management, include SNMP, BOOTP, TFTP, the Domain Name System
(DNS) protocol, and a variety of routing protocols.
Application Layer protocols relevant to routers are discussed
in chapters 7, 8, and 9 of this memo.
o Transport Layer
The Transport Layer provides end-to-end communication services.
This layer is roughly equivalent to the Transport Layer in the
OSI Reference Model, except that it also incorporates some of
OSI's Session Layer establishment and destruction functions.
Almquist & Kastenholz [Page 14]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
There are two primary Transport Layer protocols at present:
- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)
TCP is a reliable connection-oriented transport service that
provides end-to-end reliability, resequencing, and flow
control. UDP is a connectionless (datagram) transport service.
Other transport protocols have been developed by the research
community, and the set of official Internet transport protocols
may be expanded in the future.
Transport Layer protocols relevant to routers are discussed in
Chapter 6.
o Internet Layer
All Internet transport protocols use the Internet Protocol (IP)
to carry data from source host to destination host. IP is a
connectionless or datagram internetwork service, providing no
end-to-end delivery guarantees. IP datagrams may arrive at the
destination host damaged, duplicated, out of order, or not at
all. The layers above IP are responsible for reliable delivery
service when it is required. The IP protocol includes
provision for addressing, type-of-service specification,
fragmentation and reassembly, and security.
The datagram or connectionless nature of IP is a fundamental
and characteristic feature of the Internet architecture.
The Internet Control Message Protocol (ICMP) is a control
protocol that is considered to be an integral part of IP,
although it is architecturally layered upon IP, i.e., it uses
IP to carry its data end-to-end. ICMP provides error
reporting, congestion reporting, and first-hop router
redirection.
The Internet Group Management Protocol (IGMP) is an Internet
layer protocol used for establishing dynamic host groups for IP
multicasting.
The Internet layer protocols IP, ICMP, and IGMP are discussed
in chapter 4.
o Link Layer
To communicate on its directly-connected network, a host must
implement the communication protocol used to interface to that
network. We call this a Link Layer layer protocol.
Almquist & Kastenholz [Page 15]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Some older Internet documents refer to this layer as the
Network Layer, but it is not the same as the Network Layer in
the OSI Reference Model.
This layer contains everything below the Internet Layer.
Protocols in this Layer are generally outside the scope of
Internet standardization; the Internet (intentionally) uses
existing standards whenever possible. Thus, Internet Link
Layer standards usually address only address resolution and
rules for transmitting IP packets over specific Link Layer
protocols. Internet Link Layer standards are discussed in
chapter 3.
2.2.2 Networks
The constituent networks of the Internet system are required to
provide only packet (connectionless) transport. According to the
IP service specification, datagrams can be delivered out of order,
be lost or duplicated, and/or contain errors.
For reasonable performance of the protocols that use IP (e.g.,
TCP), the loss rate of the network should be very low. In
networks providing connection-oriented service, the extra
reliability provided by virtual circuits enhances the end-end
robustness of the system, but is not necessary for Internet
operation.
Constituent networks may generally be divided into two classes:
o Local-Area Networks (LANs)
LANs may have a variety of designs. In general, a LAN will
cover a small geographical area (e.g., a single building or
plant site) and provide high bandwidth with low delays. LANs
may be passive (similar to Ethernet) or they may be active
(such as ATM).
o Wide-Area Networks (WANs)
Geographically-dispersed hosts and LANs are interconnected by
wide-area networks, also called long-haul networks. These
networks may have a complex internal structure of lines and
packet-switches, or they may be as simple as point-to-point
lines.
Almquist & Kastenholz [Page 16]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
2.2.3 Routers
In the Internet model, constituent networks are connected together
by IP datagram forwarders which are called routers or IP routers.
In this document, every use of the term router is equivalent to IP
router. Many older Internet documents refer to routers as
gateways.
Historically, routers have been realized with packet-switching
software executing on a general-purpose CPU. However, as custom
hardware development becomes cheaper and as higher throughput is
required, but special-purpose hardware is becoming increasingly
common. This specification applies to routers regardless of how
they are implemented.
A router is connected to two or more networks, appearing to each
of these networks as a connected host. Thus, it has (at least)
one physical interface and (at least) one IP address on each of
the connected networks (this ignores the concept of un-numbered
links, which is discussed in section [2.2.7]). Forwarding an IP
datagram generally requires the router to choose the address of
the next-hop router or (for the final hop) the destination host.
This choice, called routing, depends upon a routing database
within the router. The routing database is also sometimes known
as a routing table or forwarding table.
The routing database should be maintained dynamically to reflect
the current topology of the Internet system. A router normally
accomplishes this by participating in distributed routing and
reachability algorithms with other routers.
Routers provide datagram transport only, and they seek to minimize
the state information necessary to sustain this service in the
interest of routing flexibility and robustness.
Packet switching devices may also operate at the Link Layer; such
devices are usually called bridges. Network segments which are
connected by bridges share the same IP network number, i.e., they
logically form a single IP network. These other devices are
outside of the scope of this document.
Another variation on the simple model of networks connected with
routers sometimes occurs: a set of routers may be interconnected
with only serial lines, to form a network in which the packet
switching is performed at the Internetwork (IP) Layer rather than
the Link Layer.
Almquist & Kastenholz [Page 17]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
2.2.4 Autonomous Systems
For technical, managerial, and sometimes political reasons, the
routers of the Internet system are grouped into collections called
autonomous systems. The routers included in a single autonomous
system (AS) are expected to:
o Be under the control of a single operations and maintenance
(O&M) organization;
o Employ common routing protocols among themselves, to
dynamically maintain their routing databases.
A number of different dynamic routing protocols have been
developed (see Section [7.2]); the routing protocol within a
single AS is generically called an interior gateway protocol or
IGP.
An IP datagram may have to traverse the routers of two or more ASs
to reach its destination, and the ASs must provide each other with
topology information to allow such forwarding. An exterior
gateway protocol (generally BGP or EGP) is used for this purpose.
2.2.5 Addresses and Subnets
An IP datagram carries 32-bit source and destination addresses,
each of which is partitioned into two parts - a constituent
network number and a host number on that network. Symbolically:
IP-address ::= { <Network-number>, <Host-number> }
To finally deliver the datagram, the last router in its path must
map the Host-number (or rest) part of an IP address into the
physical address of a host connection to the constituent network.
This simple notion has been extended by the concept of subnets,
which were introduced in order to allow arbitrary complexity of
interconnected LAN structures within an organization, while
insulating the Internet system against explosive growth in network
numbers and routing complexity. Subnets essentially provide a
multi-level hierarchical routing structure for the Internet
system. The subnet extension, described in [INTERNET:2], is now a
required part of the Internet architecture. The basic idea is to
partition the <Host-number> field into two parts: a subnet number,
and a true host number on that subnet:
IP-address ::=
Almquist & Kastenholz [Page 18]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
{ <Network-number>, <Subnet-number>, <Host-number> }
The interconnected physical networks within an organization will
be given the same network number but different subnet numbers.
The distinction between the subnets of such a subnetted network is
normally not visible outside of that network. Thus, routing in
the rest of the Internet will be based only upon the <Network-
number> part of the IP destination address; routers outside the
network will combine <Subnet-number> and <Host-number> together to
form an uninterpreted rest part of the 32-bit IP address. Within
the subnetted network, the routers must route on the basis of an
extended network number:
{ <Network-number>, <Subnet-number> }
Under certain circumstances, it may be desirable to support
subnets of a particular network being interconnected only via a
path which is not part of the subnetted network. Even though many
IGP's and no EGP's currently support this configuration
effectively, routers need to be able to support this configuration
of subnetting (see Section [4.2.3.4]). In general, routers should
not make assumptions about what are subnets and what are not, but
simply ignore the concept of Class in networks, and treat each
route as a { network, mask }-tuple.
DISCUSSION:
It is becoming clear that as the Internet grows larger and
larger, the traditional uses of Class A, B, and C networks will
be modified in order to achieve better use of IP's 32-bit
address space. Classless Interdomain Routing (CIDR)
[INTERNET:15] is a method currently being deployed in the
Internet backbones to achieve this added efficiency. CIDR
depends on the ability of assigning and routing to networks
that are not based on Class A, B, or C networks. Thus, routers
should always treat a route as a network with a mask.
Furthermore, for similar reasons, a subnetted network need not
have a consistent subnet mask through all parts of the network.
For example, one subnet may use an 8 bit subnet mask, another 10
bit, and another 6 bit. Routers need to be able to support this
type of configuration (see Section [4.2.3.4]).
The bit positions containing this extended network number are
indicated by a 32-bit mask called the subnet mask; it is
recommended but not required that the <Subnet-number> bits be
contiguous and fall between the <Network-number> and the <Host-
number> fields. No subnet should be assigned the value zero or -1
Almquist & Kastenholz [Page 19]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(all one bits).
Although the inventors of the subnet mechanism probably expected
that each piece of an organization's network would have only a
single subnet number, in practice it has often proven necessary or
useful to have several subnets share a single physical cable.
There are special considerations for the router when a connected
network provides a broadcast or multicast capability; these will
be discussed later.
2.2.6 IP Multicasting
IP multicasting is an extension of Link Layer multicast to IP
internets. Using IP multicasts, a single datagram can be
addressed to multiple hosts. This collection of hosts is called a
multicast group. Each multicast group is represented as a Class D
IP address. An IP datagram sent to the group is to be delivered
to each group member with the same best-effort delivery as that
provided for unicast IP traffic. The sender of the datagram does
not itself need to be a member of the destination group.
The semantics of IP multicast group membership are defined in
[INTERNET:4]. That document describes how hosts and routers join
and leave multicast groups. It also defines a protocol, the
Internet Group Management Protocol (IGMP), that monitors IP
multicast group membership.
Forwarding of IP multicast datagrams is accomplished either
through static routing information or via a multicast routing
protocol. Devices that forward IP multicast datagrams are called
multicast routers. They may or may not also forward IP unicasts.
In general, multicast datagrams are forwarded on the basis of both
their source and destination addresses. Forwarding of IP
multicast packets is described in more detail in Section [5.2.1].
Appendix D discusses multicast routing protocols.
2.2.7 Unnumbered Lines and Networks and Subnets
Traditionally, each network interface on an IP host or router has
its own IP address. Over the years, people have observed that
this can cause inefficient use of the scarce IP address space,
since it forces allocation of an IP network number, or at least a
subnet number, to every point-to-point link.
To solve this problem, a number of people have proposed and
implemented the concept of unnumbered serial lines. An unnumbered
Almquist & Kastenholz [Page 20]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
serial line does not have any IP network or subnet number
associated with it. As a consequence, the network interfaces
connected to an unnumbered serial line do not have IP addresses.
Because the IP architecture has traditionally assumed that all
interfaces had IP addresses, these unnumbered interfaces cause
some interesting dilemmas. For example, some IP options (e.g.
Record Route) specify that a router must insert the interface
address into the option, but an unnumbered interface has no IP
address. Even more fundamental (as we shall see in chapter 5) is
that routes contain the IP address of the next hop router. A
router expects that that IP address will be on an IP (sub)net that
the router is connected to. That assumption is of course violated
if the only connection is an unnumbered serial line.
To get around these difficulties, two schemes have been invented.
The first scheme says that two routers connected by an unnumbered
serial line aren't really two routers at all, but rather two
half-routers which together make up a single (virtual) router.
The unnumbered serial line is essentially considered to be an
internal bus in the virtual router. The two halves of the virtual
router must coordinate their activities in such a way that they
act exactly like a single router.
This scheme fits in well with the IP architecture, but suffers
from two important drawbacks. The first is that, although it
handles the common case of a single unnumbered serial line, it is
not readily extensible to handle the case of a mesh of routers and
unnumbered serial lines. The second drawback is that the
interactions between the half routers are necessarily complex and
are not standardized, effectively precluding the connection of
equipment from different vendors using unnumbered serial lines.
Because of these drawbacks, this memo has adopted an alternative
scheme, which has been invented multiple times but which is
probably originally attributable to Phil Karn. In this scheme, a
router which has unnumbered serial lines also has a special IP
address, called a router-id in this memo. The router-id is one of
the router's IP addresses (a router is required to have at least
one IP address). This router-id is used as if it is the IP
address of all unnumbered interfaces.
Almquist & Kastenholz [Page 21]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
2.2.8 Notable Oddities
2.2.8.1 Embedded Routers
A router may be a stand-alone computer system, dedicated to its
IP router functions. Alternatively, it is possible to embed
router functions within a host operating system which supports
connections to two or more networks. The best-known example of
an operating system with embedded router code is the Berkeley
BSD system. The embedded router feature seems to make
internetting easy, but it has a number of hidden pitfalls:
(1) If a host has only a single constituent-network interface,
it should not act as a router.
For example, hosts with embedded router code that
gratuitously forward broadcast packets or datagrams on the
same net often cause packet avalanches.
(2) If a (multihomed) host acts as a router, it must implement
ALL the relevant router requirements contained in this
document.
For example, the routing protocol issues and the router
control and monitoring problems are as hard and important
for embedded routers as for stand-alone routers.
Since Internet router requirements and specifications may
change independently of operating system changes, an
administration that operates an embedded router in the
Internet is strongly advised to have the ability to
maintain and update the router code (e.g., this might
require router code source).
(3) Once a host runs embedded router code, it becomes part of
the Internet system. Thus, errors in software or
configuration can hinder communication between other
hosts. As a consequence, the host administrator must lose
some autonomy.
In many circumstances, a host administrator will need to
disable router code embedded in the operating system, and
any embedded router code must be organized so that it can
be easily disabled.
(4) If a host running embedded router code is concurrently
Almquist & Kastenholz [Page 22]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
used for other services, the O&M (Operation and
Maintenance) requirements for the two modes of use may be
in serious conflict.
For example, router O&M will in many cases be performed
remotely by an operations center; this may require
privileged system access which the host administrator
would not normally want to distribute.
2.2.8.2 Transparent Routers
There are two basic models for interconnecting local-area
networks and wide-area (or long-haul) networks in the Internet.
In the first, the local-area network is assigned a network
number and all routers in the Internet must know how to route
to that network. In the second, the local-area network shares
(a small part of) the address space of the wide-area network.
Routers that support this second model are called address
sharing routers or transparent routers. The focus of this memo
is on routers that support the first model, but this is not
intended to exclude the use of transparent routers.
The basic idea of a transparent router is that the hosts on the
local-area network behind such a router share the address space
of the wide-area network in front of the router. In certain
situations this is a very useful approach and the limitations
do not present significant drawbacks.
The words in front and behind indicate one of the limitations
of this approach: this model of interconnection is suitable
only for a geographically (and topologically) limited stub
environment. It requires that there be some form of logical
addressing in the network level addressing of the wide-area
network. All of the IP addresses in the local environment map
to a few (usually one) physical address in the wide-area
network. This mapping occurs in a way consistent with the { IP
address <-> network address } mapping used throughout the
wide-area network.
Multihoming is possible on one wide-area network, but may
present routing problems if the interfaces are geographically
or topologically separated. Multihoming on two (or more)
wide-area networks is a problem due to the confusion of
addresses.
The behavior that hosts see from other hosts in what is
apparently the same network may differ if the transparent
Almquist & Kastenholz [Page 23]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
router cannot fully emulate the normal wide-area network
service. For example, the ARPANET used a Link Layer protocol
that provided a Destination Dead indication in response to an
attempt to send to a host which was powered off. However, if
there were a transparent router between the ARPANET and an
Ethernet, a host on the ARPANET would not receive a Destination
Dead indication if it sent a datagram to a host that was
powered off and was connected to the ARPANET via the
transparent router instead of directly.
2.3 Router Characteristics
An Internet router performs the following functions:
(1) Conforms to specific Internet protocols specified in this
document, including the Internet Protocol (IP), Internet Control
Message Protocol (ICMP), and others as necessary.
(2) Interfaces to two or more packet networks. For each connected
network the router must implement the functions required by that
network. These functions typically include:
o Encapsulating and decapsulating the IP datagrams with the
connected network framing (e.g., an Ethernet header and
checksum),
o Sending and receiving IP datagrams up to the maximum size
supported by that network, this size is the network's Maximum
Transmission Unit or MTU,
o Translating the IP destination address into an appropriate
network-level address for the connected network (e.g., an
Ethernet hardware address), if needed, and
o Responding to the network flow control and error indication,
if any.
See chapter 3 (Link Layer).
(3) Receives and forwards Internet datagrams. Important issues in
this process are buffer management, congestion control, and
fairness.
o Recognizes various error conditions and generates ICMP error
and information messages as required.
o Drops datagrams whose time-to-live fields have reached zero.
Almquist & Kastenholz [Page 24]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
o Fragments datagrams when necessary to fit into the MTU of the
next network.
See chapter 4 (Internet Layer - Protocols) and chapter 5
(Internet Layer - Forwarding) for more information.
(4) Chooses a next-hop destination for each IP datagram, based on
the information in its routing database. See chapter 5
(Internet Layer - Forwarding) for more information.
(5) (Usually) supports an interior gateway protocol (IGP) to carry
out distributed routing and reachability algorithms with the
other routers in the same autonomous system. In addition, some
routers will need to support an exterior gateway protocol (EGP)
to exchange topological information with other autonomous
systems. See chapter 7 (Application Layer - Routing Protocols)
for more information.
(6) Provides network management and system support facilities,
including loading, debugging, status reporting, exception
reporting and control. See chapter 8 (Application Layer -
Network Management Protocols) and chapter 10 (Operation and
Maintenance) for more information.
A router vendor will have many choices on power, complexity, and
features for a particular router product. It may be helpful to
observe that the Internet system is neither homogeneous nor fully-
connected. For reasons of technology and geography it is growing
into a global interconnect system plus a fringe of LANs around the
edge. More and more these fringe LANs are becoming richly
interconnected, thus making them less out on the fringe and more
demanding on router requirements.
o The global interconnect system is comprised of a number of wide-
area networks to which are attached routers of several Autonomous
Systems (AS); there are relatively few hosts connected directly to
the system.
o Most hosts are connected to LANs. Many organizations have
clusters of LANs interconnected by local routers. Each such
cluster is connected by routers at one or more points into the
global interconnect system. If it is connected at only one point,
a LAN is known as a stub network.
Routers in the global interconnect system generally require:
o Advanced Routing and Forwarding Algorithms
Almquist & Kastenholz [Page 25]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
These routers need routing algorithms which are highly dynamic and
also offer type-of-service routing. Congestion is still not a
completely resolved issue (see Section [5.3.6]). Improvements in
these areas are expected, as the research community is actively
working on these issues.
o High Availability
These routers need to be highly reliable, providing 24 hours a
day, 7 days a week service. Equipment and software faults can
have a wide-spread (sometimes global) effect. In case of failure,
they must recover quickly. In any environment, a router must be
highly robust and able to operate, possibly in a degraded state,
under conditions of extreme congestion or failure of network
resources.
o Advanced O&M Features
Internet routers normally operate in an unattended mode. They
will typically be operated remotely from a centralized monitoring
center. They need to provide sophisticated means for monitoring
and measuring traffic and other events and for diagnosing faults.
o High Performance
Long-haul lines in the Internet today are most frequently 56 Kbps,
DS1 (1.4Mbps), and DS3 (45Mbps) speeds. LANs are typically
Ethernet (10Mbps) and, to a lesser degree, FDDI (100Mbps).
However, network media technology is constantly advancing and even
higher speeds are likely in the future. Full-duplex operation is
provided at all of these speeds.
The requirements for routers used in the LAN fringe (e.g., campus
networks) depend greatly on the demands of the local networks. These
may be high or medium-performance devices, probably competitively
procured from several different vendors and operated by an internal
organization (e.g., a campus computing center). The design of these
routers should emphasize low average latency and good burst
performance, together with delay and type-of-service sensitive
resource management. In this environment there may be less formal O&M
but it will not be less important. The need for the routing
mechanism to be highly dynamic will become more important as networks
become more complex and interconnected. Users will demand more out
of their local connections because of the speed of the global
interconnects.
As networks have grown, and as more networks have become old enough
Almquist & Kastenholz [Page 26]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
that they are phasing out older equipment, it has become increasingly
imperative that routers interoperate with routers from other vendors.
Even though the Internet system is not fully interconnected, many
parts of the system need to have redundant connectivity. Rich
connectivity allows reliable service despite failures of
communication lines and routers, and it can also improve service by
shortening Internet paths and by providing additional capacity.
Unfortunately, this richer topology can make it much more difficult
to choose the best path to a particular destination.
2.4 Architectural Assumptions
The current Internet architecture is based on a set of assumptions
about the communication system. The assumptions most relevant to
routers are as follows:
o The Internet is a network of networks.
Each host is directly connected to some particular network(s); its
connection to the Internet is only conceptual. Two hosts on the
same network communicate with each other using the same set of
protocols that they would use to communicate with hosts on distant
networks.
o Routers don't keep connection state information.
To improve the robustness of the communication system, routers are
designed to be stateless, forwarding each IP packet independently
of other packets. As a result, redundant paths can be exploited
to provide robust service in spite of failures of intervening
routers and networks.
All state information required for end-to-end flow control and
reliability is implemented in the hosts, in the transport layer or
in application programs. All connection control information is
thus co-located with the end points of the communication, so it
will be lost only if an end point fails. Routers effect flow
control only indirectly, by dropping packets or increasing network
delay.
Note that future protocol developments may well end up putting
some more state into routers. This is especially likely for
resource reservation and flows.
Almquist & Kastenholz [Page 27]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
o Routing complexity should be in the routers.
Routing is a complex and difficult problem, and ought to be
performed by the routers, not the hosts. An important objective
is to insulate host software from changes caused by the inevitable
evolution of the Internet routing architecture.
o The system must tolerate wide network variation.
A basic objective of the Internet design is to tolerate a wide
range of network characteristics - e.g., bandwidth, delay, packet
loss, packet reordering, and maximum packet size. Another
objective is robustness against failure of individual networks,
routers, and hosts, using whatever bandwidth is still available.
Finally, the goal is full open system interconnection: an Internet
router must be able to interoperate robustly and effectively with
any other router or Internet host, across diverse Internet paths.
Sometimes implementors have designed for less ambitious goals.
For example, the LAN environment is typically much more benign
than the Internet as a whole; LANs have low packet loss and delay
and do not reorder packets. Some vendors have fielded
implementations that are adequate for a simple LAN environment,
but work badly for general interoperation. The vendor justifies
such a product as being economical within the restricted LAN
market. However, isolated LANs seldom stay isolated for long;
they are soon connected to each other, to organization-wide
internets, and eventually to the global Internet system. In the
end, neither the customer nor the vendor is served by incomplete
or substandard routers.
The requirements spelled out in this document are designed for a
full-function router. It is intended that fully compliant routers
will be usable in almost any part of the Internet.
Almquist & Kastenholz [Page 28]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
3. LINK LAYER
Although [INTRO:1] covers Link Layer standards (IP over foo, ARP,
etc.), this document anticipates that Link-Layer material will be
covered in a separate Link Layer Requirements document. A Link-Layer
requirements document would be applicable to both hosts and routers.
Thus, this document will not obsolete the parts of [INTRO:1] that deal
with link-layer issues.
3.1 INTRODUCTION
Routers have essentially the same Link Layer protocol requirements as
other sorts of Internet systems. These requirements are given in
chapter 3 of Requirements for Internet Gateways [INTRO:1]. A router
MUST comply with its requirements and SHOULD comply with its
recommendations. Since some of the material in that document has
become somewhat dated, some additional requirements and explanations
are included below.
DISCUSSION:
It is expected that the Internet community will produce a
Requirements for Internet Link Layer standard which will supersede
both this chapter and chapter 3 of [INTRO:1].
3.2 LINK/INTERNET LAYER INTERFACE
Although this document does not attempt to specify the interface
between the Link Layer and the upper layers, it is worth noting here
that other parts of this document, particularly chapter 5, require
various sorts of information to be passed across this layer boundary.
This section uses the following definitions:
o Source physical address
The source physical address is the Link Layer address of the host
or router from which the packet was received.
o Destination physical address
The destination physical address is the Link Layer address to
which the packet was sent.
The information that must pass from the Link Layer to the
Internetwork Layer for each received packet is:
Almquist & Kastenholz [Page 29]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(1) The IP packet [5.2.2],
(2) The length of the data portion (i.e., not including the Link-
Layer framing) of the Link Layer frame [5.2.2],
(3) The identity of the physical interface from which the IP packet
was received [5.2.3], and
(4) The classification of the packet's destination physical address
as a Link Layer unicast, broadcast, or multicast [4.3.2],
[5.3.4].
In addition, the Link Layer also should provide:
(5) The source physical address.
The information that must pass from the Internetwork Layer to the
Link Layer for each transmitted packet is:
(1) The IP packet [5.2.1]
(2) The length of the IP packet [5.2.1]
(3) The destination physical interface [5.2.1]
(4) The next hop IP address [5.2.1]
In addition, the Internetwork Layer also should provide:
(5) The Link Layer priority value [5.3.3.2]
The Link Layer must also notify the Internetwork Layer if the packet
to be transmitted causes a Link Layer precedence-related error
[5.3.3.3].
3.3 SPECIFIC ISSUES
3.3.1 Trailer Encapsulation
Routers which can connect to 10Mb Ethernets MAY be able to receive
and forward Ethernet packets encapsulated using the trailer
encapsulation described in [LINK:1]. However, a router SHOULD NOT
originate trailer encapsulated packets. A router MUST NOT
originate trailer encapsulated packets without first verifying,
using the mechanism described in section 2.3.1 of [INTRO:2], that
the immediate destination of the packet is willing and able to
Almquist & Kastenholz [Page 30]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
accept trailer-encapsulated packets. A router SHOULD NOT agree
(using these same mechanisms) to accept trailer-encapsulated
packets.
3.3.2 Address Resolution Protocol - ARP
Routers which implement ARP MUST be compliant and SHOULD be
unconditionally compliant with the requirements in section 2.3.2
of [INTRO:2].
The link layer MUST NOT report a Destination Unreachable error to
IP solely because there is no ARP cache entry for a destination.
A router MUST not believe any ARP reply which claims that the Link
Layer address of another host or router is a broadcast or
multicast address.
3.3.3 Ethernet and 802.3 Coexistence
Routers which can connect to 10Mb Ethernets MUST be compliant and
SHOULD be unconditionally compliant with the requirements of
Section [2.3.3] of [INTRO:2].
3.3.4 Maximum Transmission Unit - MTU
The MTU of each logical interface MUST be configurable.
Many Link Layer protocols define a maximum frame size that may be
sent. In such cases, a router MUST NOT allow an MTU to be set
which would allow sending of frames larger than those allowed by
the Link Layer protocol. However, a router SHOULD be willing to
receive a packet as large as the maximum frame size even if that
is larger than the MTU.
DISCUSSION:
Note that this is a stricter requirement than imposed on hosts
by [INTRO:2], which requires that the MTU of each physical
interface be configurable.
If a network is using an MTU smaller than the maximum frame
size for the Link Layer, a router may receive packets larger
than the MTU from hosts which are in the process of
initializing themselves, or which have been misconfigured.
In general, the Robustness Principle indicates that these
packets should be successfully received, if at all possible.
Almquist & Kastenholz [Page 31]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
3.3.5 Point-to-Point Protocol - PPP
Contrary to [INTRO:1], the Internet does have a standard serial
line protocol: the Point-to-Point Protocol (PPP), defined in
[LINK:2], [LINK:3], [LINK:4], and [LINK:5].
A serial line interface is any interface which is designed to send
data over a telephone, leased, dedicated or direct line (either 2
or 4 wire) using a standardized modem or bit serial interface
(such as RS-232, RS-449 or V.35), using either synchronous or
asynchronous clocking.
A general purpose serial interface is a serial line interface
which is not solely for use as an access line to a network for
which an alternative IP link layer specification exists (such as
X.25 or Frame Relay).
Routers which contain such general purpose serial interfaces MUST
implement PPP.
PPP MUST be supported on all general purpose serial interfaces on
a router. The router MAY allow the line to be configured to use
serial line protocols other than PPP, all general purpose serial
interfaces MUST default to using PPP.
3.3.5.1 Introduction
This section provides guidelines to router implementors so that
they can ensure interoperability with other routers using PPP
over either synchronous or asynchronous links.
It is critical that an implementor understand the semantics of
the option negotiation mechanism. Options are a means for a
local device to indicate to a remote peer what the local device
will *accept* from the remote peer, not what it wishes to send.
It is up to the remote peer to decide what is most convenient
to send within the confines of the set of options that the
local device has stated that it can accept. Therefore it is
perfectly acceptable and normal for a remote peer to ACK all
the options indicated in an LCP Configuration Request (CR) even
if the remote peer does not support any of those options.
Again, the options are simply a mechanism for either device to
indicate to its peer what it will accept, not necessarily what
it will send.
Almquist & Kastenholz [Page 32]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
3.3.5.2 Link Control Protocol (LCP) Options
The PPP Link Control Protocol (LCP) offers a number of options
that may be negotiated. These options include (among others)
address and control field compression, protocol field
compression, asynchronous character map, Maximum Receive Unit
(MRU), Link Quality Monitoring (LQM), magic number (for
loopback detection), Password Authentication Protocol (PAP),
Challenge Handshake Authentication Protocol (CHAP), and the
32-bit Frame Check Sequence (FCS).
A router MAY do address/control field compression on either
synchronous or asynchronous links. A router MAY do protocol
field compression on either synchronous or asynchronous links.
A router MAY indicate that it can accept these compressions,
but MUST be able to accept uncompressed PPP header information
even if it has indicated a willingness to receive compressed
PPP headers.
DISCUSSION:
These options control the appearance of the PPP header.
Normally the PPP header consists of the address field (one
byte containing the value 0xff), the control field (one byte
containing the value 0x03), and the two-byte protocol field
that identifies the contents of the data area of the frame.
If a system negotiates address and control field compression
it indicates to its peer that it will accept PPP frames that
have or do not have these fields at the front of the header.
It does not indicate that it will be sending frames with
these fields removed. The protocol field may also be
compressed from two to one byte in most cases.
IMPLEMENTATION:
Some hardware does not deal well with variable length header
information. In those cases it makes most sense for the
remote peer to send the full PPP header. Implementations
may ensure this by not sending the address/control field and
protocol field compression options to the remote peer. Even
if the remote peer has indicated an ability to receive
compressed headers there is no requirement for the local
router to send compressed headers.
A router MUST negotiate the Async Control Character Map (ACCM)
for asynchronous PPP links, but SHOULD NOT negotiate the ACCM
for synchronous links. If a router receives an attempt to
negotiate the ACCM over a synchronous link, it MUST ACKnowledge
Almquist & Kastenholz [Page 33]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
the option and then ignore it.
DISCUSSION:
There are implementations that offer both sync and async
modes of operation and may use the same code to implement
the option negotiation. In this situation it is possible
that one end or the other may send the ACCM option on a
synchronous link.
A router SHOULD properly negotiate the maximum receive unit
(MRU). Even if a system negotiates an MRU smaller than 1,500
bytes, it MUST be able to receive a 1,500 byte frame.
A router SHOULD negotiate and enable the link quality
monitoring (LQM) option.
DISCUSSION:
This memo does not specify a policy for deciding whether the
link's quality is adequate. However, it is important (see
Section [3.3.6]) that a router disable failed links.
A router SHOULD implement and negotiate the magic number option
for loopback detection.
A router MAY support the authentication options (PAP - password
authentication protocol, and/or CHAP - challenge handshake
authentication protocol).
A router MUST support 16-bit CRC frame check sequence (FCS) and
MAY support the 32-bit CRC.
3.3.5.3 IP Control Protocol (ICP) Options
A router MAY offer to perform IP address negotiation. A router
MUST accept a refusal (REJect) to perform IP address
negotiation from the peer.
A router SHOULD NOT perform Van Jacobson header compression of
TCP/IP packets if the link speed is in excess of 64 Kbps.
Below that speed the router MAY perform Van Jacobson (VJ)
header compression. At link speeds of 19,200 bps or less the
router SHOULD perform VJ header compression.
Almquist & Kastenholz [Page 34]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
3.3.6 Interface Testing
A router MUST have a mechanism to allow routing software to
determine whether a physical interface is available to send
packets or not. A router SHOULD have a mechanism to allow routing
software to judge the quality of a physical interface. A router
MUST have a mechanism for informing the routing software when a
physical interface becomes available or unavailable to send
packets because of administrative action. A router MUST have a
mechanism for informing the routing software when it detects a
Link level interface has become available or unavailable, for any
reason.
DISCUSSION:
It is crucial that routers have workable mechanisms for
determining that their network connections are functioning
properly, since failure to do so (or failure to take the proper
actions when a problem is detected) can lead to black holes.
The mechanisms available for detecting problems with network
connections vary considerably, depending on the Link Layer
protocols in use and also in some cases on the interface
hardware chosen by the router manufacturer. The intent is to
maximize the capability to detect failures within the Link-
Layer constraints.
Almquist & Kastenholz [Page 35]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
4. INTERNET LAYER - PROTOCOLS
4.1 INTRODUCTION
This chapter and chapter 5 discuss the protocols used at the Internet
Layer: IP, ICMP, and IGMP. Since forwarding is obviously a crucial
topic in a document discussing routers, chapter 5 limits itself to
the aspects of the protocols which directly relate to forwarding.
The current chapter contains the remainder of the discussion of the
Internet Layer protocols.
4.2 INTERNET PROTOCOL - IP
4.2.1 INTRODUCTION
Routers MUST implement the IP protocol, as defined by
[INTERNET:1]. They MUST also implement its mandatory extensions:
subnets (defined in [INTERNET:2]), and IP broadcast (defined in
[INTERNET:3]).
A router MUST be compliant, and SHOULD be unconditionally
compliant, with the requirements of sections 3.2.1 and 3.3 of
[INTRO:2], except that:
o Section 3.2.1.1 may be ignored, since it duplicates
requirements found in this memo.
o Section 3.2.1.2 may be ignored, since it duplicates
requirements found in this memo.
o Section 3.2.1.3 should be ignored, since it is superseded by
Section [4.2.2.11] of this memo.
o Section 3.2.1.4 may be ignored, since it duplicates
requirements found in this memo.
o Section 3.2.1.6 should be ignored, since it is superseded by
Section [4.2.2.4] of this memo.
o Section 3.2.1.8 should be ignored, since it is superseded by
Section [4.2.2.1] of this memo.
In the following, the action specified in certain cases is to
silently discard a received datagram. This means that the
datagram will be discarded without further processing and that the
Almquist & Kastenholz [Page 36]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
router will not send any ICMP error message (see Section [4.3]) as
a result. However, for diagnosis of problems a router SHOULD
provide the capability of logging the error (see Section [1.3.3]),
including the contents of the silently-discarded datagram, and
SHOULD record the event in a statistics counter.
4.2.2 PROTOCOL WALK-THROUGH
RFC 791 is [INTERNET:1], the specification for the Internet
Protocol.
4.2.2.1 Options: RFC-791 Section 3.2
In datagrams received by the router itself, the IP layer MUST
interpret those IP options that it understands and preserve the
rest unchanged for use by higher layer protocols.
Higher layer protocols may require the ability to set IP
options in datagrams they send or examine IP options in
datagrams they receive. Later sections of this document
discuss specific IP option support required by higher layer
protocols.
DISCUSSION:
Neither this memo nor [INTRO:2] define the order in which a
receiver must process multiple options in the same IP
header. Hosts and routers originating datagrams containing
multiple options must be aware that this introduces an
ambiguity in the meaning of certain options when combined
with a source-route option.
Here are the requirements for specific IP options:
(a) Security Option
Some environments require the Security option in every
packet originated or received. Routers SHOULD IMPLEMENT
the revised security option described in [INTERNET:5].
DISCUSSION:
Note that the security options described in
[INTERNET:1] and RFC 1038 ([INTERNET:16]) are obsolete.
(b) Stream Identifier Option
This option is obsolete; routers SHOULD NOT place this
option in a datagram that the router originates. This
Almquist & Kastenholz [Page 37]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
option MUST be ignored in datagrams received by the
router.
(c) Source Route Options
A router MUST be able to act as the final destination of a
source route. If a router receives a packet containing a
completed source route (i.e., the pointer points beyond
the last field and the destination address in the IP
header addresses the router), the packet has reached its
final destination; the option as received (the recorded
route) MUST be passed up to the transport layer (or to
ICMP message processing).
In order to respond correctly to source-routed datagrams
it receives, a router MUST provide a means whereby
transport protocols and applications can reverse the
source route in a received datagram and insert the
reversed source route into datagrams they originate (see
Section 4 of [INTRO:2] for details).
Some applications in the router MAY require that the user
be able to enter a source route.
A router MUST NOT originate a datagram containing multiple
source route options. What a router should do if asked to
forward a packet containing multiple source route options
is described in Section [5.2.4.1].
When a source route option is created, it MUST be
correctly formed even if it is being created by reversing
a recorded route that erroneously includes the source host
(see case (B) in the discussion below).
DISCUSSION:
Suppose a source routed datagram is to be routed from
source S to destination D via routers G1, G2, ... Gn.
Source S constructs a datagram with G1's IP address as
its destination address, and a source route option to
get the datagram the rest of the way to its
destination. However, there is an ambiguity in the
specification over whether the source route option in a
datagram sent out by S should be (A) or (B):
(A): {>>G2, G3, ... Gn, D} <--- CORRECT
(B): {S, >>G2, G3, ... Gn, D} <---- WRONG
Almquist & Kastenholz [Page 38]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(where >> represents the pointer). If (A) is sent, the
datagram received at D will contain the option: {G1,
G2, ... Gn >>}, with S and D as the IP source and
destination addresses. If (B) were sent, the datagram
received at D would again contain S and D as the same
IP source and destination addresses, but the option
would be: {S, G1, ...Gn >>}; i.e., the originating host
would be the first hop in the route.
(d) Record Route Option
Routers MAY support the Record Route option in datagrams
originated by the router.
(e) Timestamp Option
Routers MAY support the timestamp option in datagrams
originated by the router. The following rules apply:
o When originating a datagram containing a Timestamp
Option, a router MUST record a timestamp in the option
if
- Its Internet address fields are not pre-specified or
- Its first pre-specified address is the IP address of
the logical interface over which the datagram is
being sent (or the router's router-id if the
datagram is being sent over an unnumbered
interface).
o If the router itself receives a datagram containing a
Timestamp Option, the router MUST insert the current
timestamp into the Timestamp Option (if there is space
in the option to do so) before passing the option to
the transport layer or to ICMP for processing.
o A timestamp value MUST follow the rules given in
Section [3.2.2.8] of [INTRO:2].
IMPLEMENTATION:
To maximize the utility of the timestamps contained in
the timestamp option, it is suggested that the
timestamp inserted be, as nearly as practical, the time
at which the packet arrived at the router. For
datagrams originated by the router, the timestamp
inserted should be, as nearly as practical, the time at
which the datagram was passed to the Link Layer for
Almquist & Kastenholz [Page 39]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
transmission.
4.2.2.2 Addresses in Options: RFC-791 Section 3.1
When a router inserts its address into a Record Route, Strict
Source and Record Route, Loose Source and Record Route, or
Timestamp, it MUST use the IP address of the logical interface
on which the packet is being sent. Where this rule cannot be
obeyed because the output interface has no IP address (i.e., is
an unnumbered interface), the router MUST instead insert its
router-id. The router's router-id is one of the router's IP
addresses. Which of the router's addresses is used as the
router-id MUST NOT change (even across reboots) unless changed
by the network manager or unless the configuration of the
router is changed such that the IP address used as the router-
id ceases to be one of the router's IP addresses. Routers with
multiple unnumbered interfaces MAY have multiple router-id's.
Each unnumbered interface MUST be associated with a particular
router-id. This association MUST NOT change (even across
reboots) without reconfiguration of the router.
DISCUSSION:
This specification does not allow for routers which do not
have at least one IP address. We do not view this as a
serious limitation, since a router needs an IP address to
meet the manageability requirements of Chapter [8] even if
the router is connected only to point-to-point links.
IMPLEMENTATION:
One possible method of choosing the router-id that fulfills
this requirement is to use the numerically smallest (or
greatest) IP address (treating the address as a 32-bit
integer) that is assigned to the router.
4.2.2.3 Unused IP Header Bits: RFC-791 Section 3.1
The IP header contains two reserved bits: one in the Type of
Service byte and the other in the Flags field. A router MUST
NOT set either of these bits to one in datagrams originated by
the router. A router MUST NOT drop (refuse to receive or
forward) a packet merely because one or more of these reserved
bits has a non-zero value.
Almquist & Kastenholz [Page 40]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
Future revisions to the IP protocol may make use of these
unused bits. These rules are intended to ensure that these
revisions can be deployed without having to simultaneously
upgrade all routers in the Internet.
4.2.2.4 Type of Service: RFC-791 Section 3.1
The Type-of-Service byte in the IP header is divided into three
sections: the Precedence field (high-order 3 bits), a field
that is customarily called Type of Service or TOS (next 4
bits), and a reserved bit (the low order bit).
Rules governing the reserved bit were described in Section
[4.2.2.3].
A more extensive discussion of the TOS field and its use can be
found in [ROUTE:11].
The description of the IP Precedence field is superseded by
Section [5.3.3]. RFC-795, Service Mappings, is obsolete and
SHOULD NOT be implemented.
4.2.2.5 Header Checksum: RFC-791 Section 3.1
As stated in Section [5.2.2], a router MUST verify the IP
checksum of any packet which is received. The router MUST NOT
provide a means to disable this checksum verification.
IMPLEMENTATION:
A more extensive description of the IP checksum, including
extensive implementation hints, can be found in [INTERNET:6]
and [INTERNET:7].
4.2.2.6 Unrecognized Header Options: RFC-791 Section 3.1
A router MUST ignore IP options which it does not recognize. A
corollary of this requirement is that a router MUST implement
the End of Option List option and the No Operation option,
since neither contains an explicit length.
Almquist & Kastenholz [Page 41]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
All future IP options will include an explicit length.
4.2.2.7 Fragmentation: RFC-791 Section 3.2
Fragmentation, as described in [INTERNET:1], MUST be supported
by a router.
When a router fragments an IP datagram, it SHOULD minimize the
number of fragments. When a router fragments an IP datagram,
it MUST send the fragments in order. A fragmentation method
which may generate one IP fragment which is significantly
smaller than the other MAY cause the first IP fragment to be
the smaller one.
DISCUSSION:
There are several fragmentation techniques in common use in
the Internet. One involves splitting the IP datagram into
IP fragments with the first being MTU sized, and the others
being approximately the same size, smaller than the MTU.
The reason for this is twofold. The first IP fragment in
the sequence will be the effective MTU of the current path
between the hosts, and the following IP fragments are sized
to hopefully minimize the further fragmentation of the IP
datagram. Another technique is to split the IP datagram
into MTU sized IP fragments, with the last fragment being
the only one smaller, as per page 26 of [INTERNET:1].
A common trick used by some implementations of TCP/IP is to
fragment an IP datagram into IP fragments that are no larger
than 576 bytes when the IP datagram is to travel through a
router. In general, this allows the resulting IP fragments
to pass the rest of the path without further fragmentation.
This would, though, create more of a load on the destination
host, since it would have a larger number of IP fragments to
reassemble into one IP datagram. It would also not be
efficient on networks where the MTU only changes once, and
stays much larger than 576 bytes (such as an 802.5 network
with a MTU of 2048 or an Ethernet network with an MTU of
1536).
One other fragmentation technique discussed was splitting
the IP datagram into approximately equal sized IP fragments,
with the size being smaller than the next hop network's MTU.
This is intended to minimize the number of fragments that
would result from additional fragmentation further down the
Almquist & Kastenholz [Page 42]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
path.
In most cases, routers should try and create situations that
will generate the lowest number of IP fragments possible.
Work with slow machines leads us to believe that if it is
necessary to send small packets in a fragmentation scheme,
sending the small IP fragment first maximizes the chance of
a host with a slow interface of receiving all the fragments.
4.2.2.8 Reassembly: RFC-791 Section 3.2
As specified in Section 3.3.2 of [INTRO:2], a router MUST
support reassembly of datagrams which it delivers to itself.
4.2.2.9 Time to Live: RFC-791 Section 3.2
Time to Live (TTL) handling for packets originated or received
by the router is governed by [INTRO:2]. Note in particular
that a router MUST NOT check the TTL of a packet except when
forwarding it.
4.2.2.10 Multi-subnet Broadcasts: RFC-922
All-subnets broadcasts (called multi-subnet broadcasts in
[INTERNET:3]) have been deprecated. See Section [5.3.5.3].
4.2.2.11 Addressing: RFC-791 Section 3.2
There are now five classes of IP addresses: Class A through
Class E. Class D addresses are used for IP multicasting
[INTERNET:4], while Class E addresses are reserved for
experimental use.
A multicast (Class D) address is a 28-bit logical address that
stands for a group of hosts, and may be either permanent or
transient. Permanent multicast addresses are allocated by the
Internet Assigned Number Authority [INTRO:7], while transient
addresses may be allocated dynamically to transient groups.
Group membership is determined dynamically using IGMP
[INTERNET:4].
We now summarize the important special cases for Unicast (that
is class A, B, and C) IP addresses, using the following
notation for an IP address:
Almquist & Kastenholz [Page 43]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
{ <Network-number>, <Host-number> }
or
{ <Network-number>, <Subnet-number>, <Host-number> }
and the notation -1 for a field that contains all 1 bits and
the notation 0 for a field that contains all 0 bits. This
notation is not intended to imply that the 1-bits in a subnet
mask need be contiguous.
(a) { 0, 0 }
This host on this network. It MUST NOT be used as a
source address by routers, except the router MAY use this
as a source address as part of an initialization procedure
(e.g., if the router is using BOOTP to load its
configuration information).
Incoming datagrams with a source address of { 0, 0 } which
are received for local delivery (see Section [5.2.3]),
MUST be accepted if the router implements the associated
protocol and that protocol clearly defines appropriate
action to be taken. Otherwise, a router MUST silently
discard any locally-delivered datagram whose source
address is { 0, 0 }.
DISCUSSION:
Some protocols define specific actions to take in
response to a received datagram whose source address is
{ 0, 0 }. Two examples are BOOTP and ICMP Mask
Request. The proper operation of these protocols often
depends on the ability to receive datagrams whose
source address is { 0, 0 }. For most protocols,
however, it is best to ignore datagrams having a source
address of { 0, 0 } since they were probably generated
by a misconfigured host or router. Thus, if a router
knows how to deal with a given datagram having a { 0, 0
} source address, the router MUST accept it.
Otherwise, the router MUST discard it.
See also Section [4.2.3.1] for a non-standard use of { 0,
0 }.
(b) { 0, <Host-number> }
Specified host on this network. It MUST NOT be sent by
Almquist & Kastenholz [Page 44]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
routers except that the router MAY uses this as a source
address as part of an initialization procedure by which
the it learns its own IP address.
(c) { -1, -1 }
Limited broadcast. It MUST NOT be used as a source
address.
A datagram with this destination address will be received
by every host and router on the connected physical
network, but will not be forwarded outside that network.
(d) { <Network-number>, -1 }
Network Directed Broadcast - a broadcast directed to the
specified network. It MUST NOT be used as a source
address. A router MAY originate Network Directed
Broadcast packets. A router MUST receive Network Directed
Broadcast packets; however a router MAY have a
configuration option to prevent reception of these
packets. Such an option MUST default to allowing
reception.
(e) { <Network-number>, <Subnet-number>, -1 }
Subnetwork Directed Broadcast - a broadcast sent to the
specified subnet. It MUST NOT be used as a source
address. A router MAY originate Network Directed
Broadcast packets. A router MUST receive Network Directed
Broadcast packets; however a router MAY have a
configuration option to prevent reception of these
packets. Such an option MUST default to allowing
reception.
(f) { <Network-number>, -1, -1 }
All Subnets Directed Broadcast - a broadcast sent to all
subnets of the specified subnetted network. It MUST NOT
be used as a source address. A router MAY originate
Network Directed Broadcast packets. A router MUST receive
Network Directed Broadcast packets; however a router MAY
have a configuration option to prevent reception of these
packets. Such an option MUST default to allowing
reception.
Almquist & Kastenholz [Page 45]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(g) { 127, <any> }
Internal host loopback address. Addresses of this form
MUST NOT appear outside a host.
The <Network-number> is administratively assigned so that its
value will be unique in the entire world.
IP addresses are not permitted to have the value 0 or -1 for
any of the <Host-number>, <Network-number>, or <Subnet-number>
fields (except in the special cases listed above). This
implies that each of these fields will be at least two bits
long.
For further discussion of broadcast addresses, see Section
[4.2.3.1].
Since (as described in Section [4.2.1]) a router must support
the subnet extensions to IP, there will be a subnet mask of the
form: { -1, -1, 0 } associated with each of the host's local IP
addresses; see Sections [4.3.3.9], [5.2.4.2], and [10.2.2].
When a router originates any datagram, the IP source address
MUST be one of its own IP addresses (but not a broadcast or
multicast address). The only exception is during
initialization.
For most purposes, a datagram addressed to a broadcast or
multicast destination is processed as if it had been addressed
to one of the router's IP addresses; that is to say:
o A router MUST receive and process normally any packets with
a broadcast destination address.
o A router MUST receive and process normally any packets sent
to a multicast destination address which the router is
interested in.
The term specific-destination address means the equivalent
local IP address of the host. The specific-destination address
is defined to be the destination address in the IP header
unless the header contains a broadcast or multicast address, in
which case the specific-destination is an IP address assigned
to the physical interface on which the datagram arrived.
A router MUST silently discard any received datagram containing
an IP source address that is invalid by the rules of this
Almquist & Kastenholz [Page 46]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
section. This validation could be done either by the IP layer
or by each protocol in the transport layer.
DISCUSSION:
A misaddressed datagram might be caused by a Link Layer
broadcast of a unicast datagram or by another router or host
that is confused or misconfigured.
4.2.3 SPECIFIC ISSUES
4.2.3.1 IP Broadcast Addresses
For historical reasons, there are a number of IP addresses
(some standard and some not) which are used to indicate that an
IP packet is an IP broadcast. A router
(1) MUST treat as IP broadcasts packets addressed to
255.255.255.255, { <Network-number>, -1 }, { <Network-
number>, <Subnet-number>, -1 }, and { <Network-number>,
-1, -1 }.
(2) SHOULD silently discard on receipt (i.e., don't even
deliver to applications in the router) any packet
addressed to 0.0.0.0, { <Network-number>, 0 }, {
<Network-number>, <Subnet-number>, 0 }, or { <Network-
number>, 0, 0 }; if these packets are not silently
discarded, they MUST be treated as IP broadcasts (see
Section [5.3.5]). There MAY be a configuration option to
allow receipt of these packets. This option SHOULD
default to discarding them.
(3) SHOULD (by default) use the limited broadcast address
(255.255.255.255) when originating an IP broadcast
destined for a connected network or subnet (except when
sending an ICMP Address Mask Reply, as discussed in
Section [4.3.3.9]). A router MUST receive limited
broadcasts.
(4) SHOULD NOT originate datagrams addressed to 0.0.0.0, {
<Network-number>, 0 }, { <Network-number>, <Subnet-
number>, 0 }, or { <Network-number>, 0, 0 }. There MAY be
a configuration option to allow generation of these
packets (instead of using the relevant 1s format
broadcast). This option SHOULD default to not generating
them.
Almquist & Kastenholz [Page 47]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
In the second bullet, the router obviously cannot recognize
addresses of the form { <Network-number>, <Subnet-number>, 0
} if the router does not know how the particular network is
subnetted. In that case, the rules of the second bullet do
not apply because, from the point of view of the router, the
packet is not an IP broadcast packet.
4.2.3.2 IP Multicasting
An IP router SHOULD satisfy the Host Requirements with respect
to IP multicasting, as specified in Section 3.3.7 of [INTRO:2].
An IP router SHOULD support local IP multicasting on all
connected networks for which a mapping from Class D IP
addresses to link-layer addresses has been specified (see the
various IP-over-xxx specifications), and on all connected
point-to-point links. Support for local IP multicasting
includes originating multicast datagrams, joining multicast
groups and receiving multicast datagrams, and leaving multicast
groups. This implies support for all of [INTERNET:4] including
IGMP (see Section [4.4]).
DISCUSSION:
Although [INTERNET:4] is entitled Host Extensions for IP
Multicasting, it applies to all IP systems, both hosts and
routers. In particular, since routers may join multicast
groups, it is correct for them to perform the host part of
IGMP, reporting their group memberships to any multicast
routers that may be present on their attached networks
(whether or not they themselves are multicast routers).
Some router protocols may specifically require support for
IP multicasting (e.g., OSPF [ROUTE:1]), or may recommend it
(e.g., ICMP Router Discovery [INTERNET:13]).
4.2.3.3 Path MTU Discovery
In order to eliminate fragmentation or minimize it, it is
desirable to know what is the path MTU along the path from the
source to destination. The path MTU is the minimum of the MTUs
of each hop in the path. [INTERNET:14] describes a technique
for dynamically discovering the maximum transmission unit (MTU)
of an arbitrary internet path. For a path that passes through
a router that does not support [INTERNET:14], this technique
might not discover the correct Path MTU, but it will always
Almquist & Kastenholz [Page 48]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
choose a Path MTU as accurate as, and in many cases more
accurate than, the Path MTU that would be chosen by older
techniques or the current practice.
When a router is originating an IP datagram, it SHOULD use the
scheme described in [INTERNET:14] to limit the datagram's size.
If the router's route to the datagram's destination was learned
from a routing protocol that provides Path MTU information, the
scheme described in [INTERNET:14] is still used, but the Path
MTU information from the routing protocol SHOULD be used as the
initial guess as to the Path MTU and also as an upper bound on
the Path MTU.
4.2.3.4 Subnetting
Under certain circumstances, it may be desirable to support
subnets of a particular network being interconnected only via a
path which is not part of the subnetted network. This is known
as discontiguous subnetwork support.
Routers MUST support discontiguous subnetworks.
IMPLEMENTATION:
In general, a router should not make assumptions about what
are subnets and what are not, but simply ignore the concept
of Class in networks, and treat each route as a { network,
mask }-tuple.
DISCUSSION:
The Internet has been growing at a tremendous rate of late.
This has been placing severe strains on the IP addressing
technology. A major factor in this strain is the strict IP
Address class boundaries. These make it difficult to
efficiently size network numbers to their networks and
aggregate several network numbers into a single route
advertisement. By eliminating the strict class boundaries
of the IP address and treating each route as a {network
number, mask}-tuple these strains may be greatly reduced.
The technology for currently doing this is Classless
Interdomain Routing (CIDR) [INTERNET:15].
Furthermore, for similar reasons, a subnetted network need not
have a consistent subnet mask through all parts of the network.
For example, one subnet may use an 8 bit subnet mask, another
10 bit, and another 6 bit. This is known as variable subnet-
Almquist & Kastenholz [Page 49]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
masks.
Routers MUST support variable subnet-masks.
4.3 INTERNET CONTROL MESSAGE PROTOCOL - ICMP
4.3.1 INTRODUCTION
ICMP is an auxiliary protocol, which provides routing, diagnostic
and and error functionality for IP. It is described in
[INTERNET:8]. A router MUST support ICMP.
ICMP messages are grouped in two classes which are discussed in
the following sections:
ICMP error messages:
Destination Unreachable Section 4.3.3.1
Redirect Section 4.3.3.2
Source Quench Section 4.3.3.3
Time Exceeded Section 4.3.3.4
Parameter Problem Section 4.3.3.5
ICMP query messages:
Echo Section 4.3.3.6
Information Section 4.3.3.7
Timestamp Section 4.3.3.8
Address Mask Section 4.3.3.9
Router Discovery Section 4.3.3.10
General ICMP requirements and discussion are in the next section.
4.3.2 GENERAL ISSUES
4.3.2.1 Unknown Message Types
If an ICMP message of unknown type is received, it MUST be
passed to the ICMP user interface (if the router has one) or
silently discarded (if the router doesn't have one).
Almquist & Kastenholz [Page 50]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
4.3.2.2 ICMP Message TTL
When originating an ICMP message, the router MUST initialize
the TTL. The TTL for ICMP responses must not be taken from the
packet which triggered the response.
4.3.2.3 Original Message Header
Every ICMP error message includes the Internet header and at
least the first 8 data bytes of the datagram that triggered the
error. More than 8 bytes MAY be sent, but the resulting ICMP
datagram SHOULD have a length of less than or equal to 576
bytes. The returned IP header (and user data) MUST be
identical to that which was received, except that the router is
not required to undo any modifications to the IP header that
are normally performed in forwarding that were performed before
the error was detected (e.g., decrementing the TTL, updating
options). Note that the requirements of Section [4.3.3.5]
supersede this requirement in some cases (i.e., for a Parameter
Problem message, if the problem is in a modified field, the
router must undo the modification). See Section [4.3.3.5])
4.3.2.4 ICMP Message Source Address
Except where this document specifies otherwise, the IP source
address in an ICMP message originated by the router MUST be one
of the IP addresses associated with the physical interface over
which the ICMP message is transmitted. If the interface has no
IP addresses associated with it, the router's router-id (see
Section [5.2.5]) is used instead.
4.3.2.5 TOS and Precedence
ICMP error messages SHOULD have their TOS bits set to the same
value as the TOS bits in the packet which provoked the sending
of the ICMP error message, unless setting them to that value
would cause the ICMP error message to be immediately discarded
because it could not be routed to its destination. Otherwise,
ICMP error messages MUST be sent with a normal (i.e. zero) TOS.
An ICMP reply message SHOULD have its TOS bits set to the same
value as the TOS bits in the ICMP request that provoked the
reply.
EDITOR'S COMMENTS:
The following paragraph originally read:
ICMP error messages MUST have their IP Precedence field
Almquist & Kastenholz [Page 51]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
set to the same value as the IP Precedence field in the
packet which provoked the sending of the ICMP error
message, except that the precedence value MUST be 6
(INTERNETWORK CONTROL) or 7 (NETWORK CONTROL), SHOULD be
7, and MAY be settable for the following types of ICMP
error messages: Unreachable, Redirect, Time Exceeded, and
Parameter Problem.
I believe that the following paragraph is equivalent and
easier for humans to parse (Source Quench is the only other
ICMP Error message). Other interpretations of the original
are sought.
ICMP Source Quench error messages MUST have their IP Precedence
field set to the same value as the IP Precedence field in the
packet which provoked the sending of the ICMP Source Quench
message. All other ICMP error messages (Destination
Unreachable, Redirect, Time Exceeded, and Parameter Problem)
MUST have their precedence value set to 6 (INTERNETWORK
CONTROL) or 7 (NETWORK CONTROL), SHOULD be 7. The IP
Precedence value for these error messages MAY be settable.
An ICMP reply message MUST have its IP Precedence field set to
the same value as the IP Precedence field in the ICMP request
that provoked the reply.
4.3.2.6 Source Route
If the packet which provokes the sending of an ICMP error
message contains a source route option, the ICMP error message
SHOULD also contain a source route option of the same type
(strict or loose), created by reversing the portion before the
pointer of the route recorded in the source route option of the
original packet UNLESS the ICMP error message is an ICMP
Parameter Problem complaining about a source route option in
the original packet.
DISCUSSION:
In environments which use the U.S. Department of Defense
security option (defined in [INTERNET:5]), ICMP messages may
need to include a security option. Detailed information on
this topic should be available from the Defense
Communications Agency.
Almquist & Kastenholz [Page 52]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
4.3.2.7 When Not to Send ICMP Errors
An ICMP error message MUST NOT be sent as the result of
receiving:
o An ICMP error message, or
o A packet which fails the IP header validation tests
described in Section [5.2.2] (except where that section
specifically permits the sending of an ICMP error message),
or
o A packet destined to an IP broadcast or IP multicast
address, or
o A packet sent as a Link Layer broadcast or multicast, or
o A packet whose source address has a network number of zero
or is an invalid source address (as defined in Section
[5.3.7]), or
o Any fragment of a datagram other then the first fragment
(i.e., a packet for which the fragment offset in the IP
header is nonzero).
Furthermore, an ICMP error message MUST NOT be sent in any case
where this memo states that a packet is to be silently
discarded.
NOTE: THESE RESTRICTIONS TAKE PRECEDENCE OVER ANY REQUIREMENT
ELSEWHERE IN THIS DOCUMENT FOR SENDING ICMP ERROR MESSAGES.
DISCUSSION:
These rules aim to prevent the broadcast storms that have
resulted from routers or hosts returning ICMP error messages
in response to broadcast packets. For example, a broadcast
UDP packet to a non-existent port could trigger a flood of
ICMP Destination Unreachable datagrams from all devices that
do not have a client for that destination port. On a large
Ethernet, the resulting collisions can render the network
useless for a second or more.
Every packet that is broadcast on the connected network
should have a valid IP broadcast address as its IP
destination (see Section [5.3.4] and [INTRO:2]). However,
some devices violate this rule. To be certain to detect
broadcast packets, therefore, routers are required to check
Almquist & Kastenholz [Page 53]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
for a link-layer broadcast as well as an IP-layer address.
IMPLEMENTATION:
This requires that the link layer inform the IP layer when a
link-layer broadcast packet has been received; see Section
[3.1].
4.3.2.8 Rate Limiting
A router which sends ICMP Source Quench messages MUST be able
to limit the rate at which the messages can be generated. A
router SHOULD also be able to limit the rate at which it sends
other sorts of ICMP error messages (Destination Unreachable,
Redirect, Time Exceeded, Parameter Problem). The rate limit
parameters SHOULD be settable as part of the configuration of
the router. How the limits are applied (e.g., per router or
per interface) is left to the implementor's discretion.
DISCUSSION:
Two problems for a router sending ICMP error message are:
(1) The consumption of bandwidth on the reverse path, and
(2) The use of router resources (e.g., memory, CPU time)
To help solve these problems a router can limit the
frequency with which it generates ICMP error messages. For
similar reasons, a router may limit the frequency at which
some other sorts of messages, such as ICMP Echo Replies, are
generated.
IMPLEMENTATION:
Various mechanisms have been used or proposed for limiting
the rate at which ICMP messages are sent:
(1) Count-based - for example, send an ICMP error message
for every N dropped packets overall or per given source
host. This mechanism might be appropriate for ICMP
Source Quench, but probably not for other types of ICMP
messages.
(2) Timer-based - for example, send an ICMP error message
to a given source host or overall at most once per T
milliseconds.
(3) Bandwidth-based - for example, limit the rate at which
Almquist & Kastenholz [Page 54]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
ICMP messages are sent over a particular interface to
some fraction of the attached network's bandwidth.
4.3.3 SPECIFIC ISSUES
4.3.3.1 Destination Unreachable
If a route can not forward a packet because it has no routes at
all to the destination network specified in the packet then the
router MUST generate a Destination Unreachable, Code 0 (Network
Unreachable) ICMP message. If the router does have routes to
the destination network specified in the packet but the TOS
specified for the routes is neither the default TOS (0000) nor
the TOS of the packet that the router is attempting to route,
then the router MUST generate a Destination Unreachable, Code
11 (Network Unreachable for TOS) ICMP message.
If a packet is to be forwarded to a host on a network that is
directly connected to the router (i.e., the router is the
last-hop router) and the router has ascertained that there is
no path to the destination host then the router MUST generate a
Destination Unreachable, Code 1 (Host Unreachable) ICMP
message. If a packet is to be forwarded to a host that is on a
network that is directly connected to the router and the router
cannot forward the packet because because no route to the
destination has a TOS that is either equal to the TOS requested
in the packet or is the default TOS (0000) then the router MUST
generate a Destination Unreachable, Code 12 (Host Unreachable
for TOS) ICMP message.
DISCUSSION:
The intent is that a router generates the "generic"
host/network unreachable if it has no path at all (including
default routes) to the destination. If the router has one
or more paths to the destination, but none of those paths
have an acceptable TOS, then the router generates the
"unreachable for TOS" message.
4.3.3.2 Redirect
The ICMP Redirect message is generated to inform a host on the
same subnet that the router used by the host to route certain
packets should be changed.
Almquist & Kastenholz [Page 55]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Contrary to section 3.2.2.2 of [INTRO:2], a router MAY ignore
ICMP Redirects when choosing a path for a packet originated by
the router if the router is running a routing protocol or if
forwarding is enabled on the router and on the interface over
which the packet is being sent.
4.3.3.3 Source Quench
A router SHOULD NOT originate ICMP Source Quench messages. As
specified in Section [4.3.2], a router which does originate
Source Quench messages MUST be able to limit the rate at which
they are generated.
DISCUSSION:
Research seems to suggest that Source Quench consumes
network bandwidth but is an ineffective (and unfair)
antidote to congestion. See, for example, [INTERNET:9] and
[INTERNET:10]. Section [5.3.6] discusses the current
thinking on how routers ought to deal with overload and
network congestion.
A router MAY ignore any ICMP Source Quench messages it
receives.
DISCUSSION:
A router itself may receive a Source Quench as the result of
originating a packet sent to another router or host. Such
datagrams might be, e.g., an EGP update sent to another
router, or a telnet stream sent to a host. A mechanism has
been proposed ([INTERNET:11], [INTERNET:12]) to make the IP
layer respond directly to Source Quench by controlling the
rate at which packets are sent, however, this proposal is
currently experimental and not currently recommended.
4.3.3.4 Time Exceeded
When a router is forwarding a packet and the TTL field of the
packet is reduced to 0, the requirements of section [5.2.3.8]
apply.
When the router is reassembling a packet that is destined for
the router, it MUST fulfill requirements of [INTRO:2], section
[3.3.2] apply.
When the router receives (i.e., is destined for the router) a
Time Exceeded message, it MUST comply with section 3.2.2.4 of
Almquist & Kastenholz [Page 56]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
[INTRO:2].
4.3.3.5 Parameter Problem
A router MUST generate a Parameter Problem message for any
error not specifically covered by another ICMP message. The IP
header field or IP option including the byte indicated by the
pointer field MUST be included unchanged in the IP header
returned with this ICMP message. Section [4.3.2] defines an
exception to this requirement.
A new variant of the Parameter Problem message was defined in
[INTRO:2]:
Code 1 = required option is missing.
DISCUSSION:
This variant is currently in use in the military community
for a missing security option.
4.3.3.6 Echo Request/Reply
A router MUST implement an ICMP Echo server function that
receives Echo Requests and sends corresponding Echo Replies. A
router MUST be prepared to receive, reassemble and echo an ICMP
Echo Request datagram at least as large as the maximum of 576
and the MTUs of all the connected networks.
The Echo server function MAY choose not to respond to ICMP echo
requests addressed to IP broadcast or IP multicast addresses.
A router SHOULD have a configuration option which, if enabled,
causes the router to silently ignore all ICMP echo requests; if
provided, this option MUST default to allowing responses.
DISCUSSION:
The neutral provision about responding to broadcast and
multicast Echo Requests results from the conclusions reached
in section [3.2.2.6] of [INTRO:2].
As stated in Section [10.3.3], a router MUST also implement an
user/application-layer interface for sending an Echo Request
and receiving an Echo Reply, for diagnostic purposes. All ICMP
Echo Reply messages MUST be passed to this interface.
The IP source address in an ICMP Echo Reply MUST be the same as
the specific-destination address of the corresponding ICMP Echo
Almquist & Kastenholz [Page 57]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Request message.
Data received in an ICMP Echo Request MUST be entirely included
in the resulting Echo Reply.
If a Record Route and/or Timestamp option is received in an
ICMP Echo Request, this option (these options) SHOULD be
updated to include the current router and included in the IP
header of the Echo Reply message, without truncation. Thus,
the recorded route will be for the entire round trip.
If a Source Route option is received in an ICMP Echo Request,
the return route MUST be reversed and used as a Source Route
option for the Echo Reply message.
4.3.3.7 Information Request/Reply
A router SHOULD NOT originate or respond to these messages.
DISCUSSION:
The Information Request/Reply pair was intended to support
self-configuring systems such as diskless workstations, to
allow them to discover their IP network numbers at boot
time. However, these messages are now obsolete. The RARP
and BOOTP protocols provide better mechanisms for a host to
discover its own IP address.
4.3.3.8 Timestamp and Timestamp Reply
A router MAY implement Timestamp and Timestamp Reply. If they
are implemented then:
o The ICMP Timestamp server function MUST return a Timestamp
Reply to every Timestamp message that is received. It
SHOULD be designed for minimum variability in delay.
o An ICMP Timestamp Request message to an IP broadcast or IP
multicast address MAY be silently discarded.
o The IP source address in an ICMP Timestamp Reply MUST be the
same as the specific-destination address of the
corresponding Timestamp Request message.
o If a Source Route option is received in an ICMP Timestamp
Request, the return route MUST be reversed and used as a
Source Route option for the Timestamp Reply message.
Almquist & Kastenholz [Page 58]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
o If a Record Route and/or Timestamp option is received in a
Timestamp Request, this (these) option(s) SHOULD be updated
to include the current router and included in the IP header
of the Timestamp Reply message.
o If the router provides an application-layer interface for
sending Timestamp Request messages then incoming Timestamp
Reply messages MUST be passed up to the ICMP user interface.
The preferred form for a timestamp value (the standard value)
is milliseconds since midnight, Universal Time. However, it
may be difficult to provide this value with millisecond
resolution. For example, many systems use clocks that update
only at line frequency, 50 or 60 times per second. Therefore,
some latitude is allowed in a standard value:
(a) A standard value MUST be updated at least 16 times per
second (i.e., at most the six low-order bits of the value
may be undefined).
(b) The accuracy of a standard value MUST approximate that of
operator-set CPU clocks, i.e., correct within a few
minutes.
IMPLEMENTATION:
To meet the second condition, a router may need to query
some time server when the router is booted or restarted. It
is recommended that the UDP Time Server Protocol be used for
this purpose. A more advanced implementation would use the
Network Time Protocol (NTP) to achieve nearly millisecond
clock synchronization; however, this is not required.
4.3.3.9 Address Mask Request/Reply
A router MUST implement support for receiving ICMP Address Mask
Request messages and responding with ICMP Address Mask Reply
messages. These messages are defined in [INTERNET:2].
A router SHOULD have a configuration option for each logical
interface specifying whether the router is allowed to answer
Address Mask Requests for that interface; this option MUST
default to allowing responses. A router MUST NOT respond to an
Address Mask Request before the router knows the correct subnet
mask.
A router MUST NOT respond to an Address Mask Request which has
Almquist & Kastenholz [Page 59]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
a source address of 0.0.0.0 and which arrives on a physical
interface which has associated with it multiple logical
interfaces and the subnet masks for those interfaces are not
all the same.
A router SHOULD examine all ICMP Address Mask Replies which it
receives to determine whether the information it contains
matches the router's knowledge of the subnet mask. If the ICMP
Address Mask Reply appears to be in error, the router SHOULD
log the subnet mask and the sender's IP address. A router MUST
NOT use the contents of an ICMP Address Mask Reply to determine
the correct subnet mask.
Because hosts may not be able to learn the subnet mask if a
router is down when the host boots up, a router MAY broadcast a
gratuitous ICMP Address Mask Reply on each of its logical
interfaces after it has configured its own subnet masks.
However, this feature can be dangerous in environments which
use variable length subnet masks. Therefore, if this feature
is implemented, gratuitous Address Mask Replies MUST NOT be
broadcast over any logical interface(s) which either:
o Are not configured to send gratuitous Address Mask Replies.
Each logical interface MUST have a configuration parameter
controlling this, and that parameter MUST default to not
sending the gratuitous Address Mask Replies.
o Share the same IP network number and physical interface but
have different subnet masks.
The { <Network-number>, -1, -1 } form (on subnetted networks)
or the { <Network-number>, -1 } form (on non-subnetted
networks) of the IP broadcast address MUST be used for
broadcast Address Mask Replies.
DISCUSSION:
The ability to disable sending Address Mask Replies by
routers is required at a few sites which intentionally lie
to their hosts about the subnet mask. The need for this is
expected to go away as more and more hosts become compliant
with the Host Requirements standards.
The reason for both the second bullet above and the
requirement about which IP broadcast address to use is to
prevent problems when multiple IP networks or subnets are in
use on the same physical network.
Almquist & Kastenholz [Page 60]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
4.3.3.10 Router Advertisement and Solicitations
An IP router MUST support the router part of the ICMP Router
Discovery Protocol [INTERNET:13] on all connected networks on
which the router supports either IP multicast or IP broadcast
addressing. The implementation MUST include all of the
configuration variables specified for routers, with the
specified defaults.
DISCUSSION:
Routers are not required to implement the host part of the
ICMP Router Discovery Protocol, but might find it useful for
operation while IP forwarding is disabled (i.e., when
operating as a host).
DISCUSSION:
We note that it is quite common for hosts to use RIP as the
router discovery protocol. Such hosts listen to RIP traffic
and use and use information extracted from that traffic to
discover routers and to make decisions as to which router to
use as a first-hop router for a given destination. While
this behavior is discouraged, it is still common and
implementors should be aware of it.
4.4 INTERNET GROUP MANAGEMENT PROTOCOL - IGMP
IGMP [INTERNET:4] is a protocol used between hosts and multicast
routers on a single physical network to establish hosts' membership
in particular multicast groups. Multicast routers use this
information, in conjunction with a multicast routing protocol, to
support IP multicast forwarding across the Internet.
A router SHOULD implement the host part of IGMP.
Almquist & Kastenholz [Page 61]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5. INTERNET LAYER - FORWARDING
5.1 INTRODUCTION
This section describes the process of forwarding packets.
5.2 FORWARDING WALK-THROUGH
There is no separate specification of the forwarding function in IP.
Instead, forwarding is covered by the protocol specifications for the
internet layer protocols ([INTERNET:1], [INTERNET:2], [INTERNET:3],
[INTERNET:8], and [ROUTE:11]).
5.2.1 Forwarding Algorithm
Since none of the primary protocol documents describe the
forwarding algorithm in any detail, we present it here. This is
just a general outline, and omits important details, such as
handling of congestion, that are dealt with in later sections.
It is not required that an implementation follow exactly the
algorithms given in sections [5.2.1.1], [5.2.1.2], and [5.2.1.3].
Much of the challenge of writing router software is to maximize
the rate at which the router can forward packets while still
achieving the same effect of the algorithm. Details of how to do
that are beyond the scope of this document, in part because they
are heavily dependent on the architecture of the router. Instead,
we merely point out the order dependencies among the steps:
(1) A router MUST verify the IP header, as described in section
[5.2.2], before performing any actions based on the contents
of the header. This allows the router to detect and discard
bad packets before the expenditure of other resources.
(2) Processing of certain IP options requires that the router
insert its IP address into the option. As noted in Section
[5.2.4], the address inserted MUST be the address of the
logical interface on which the packet is sent or the router's
router-id if the packet is sent over an unnumbered interface.
Thus, processing of these options cannot be completed until
after the output interface is chosen.
(3) The router cannot check and decrement the TTL before checking
whether the packet should be delivered to the router itself,
for reasons mentioned in Section [4.2.2.9].
Almquist & Kastenholz [Page 62]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(4) More generally, when a packet is delivered locally to the
router, its IP header MUST NOT be modified in any way (except
that a router may be required to insert a timestamp into any
Timestamp options in the IP header). Thus, before the router
determines whether the packet is to be delivered locally to
the router, it cannot update the IP header in any way that it
is not prepared to undo.
5.2.1.1 General
This section covers the general forwarding algorithm. This
algorithm applies to all forms of packets to be forwarded:
unicast, multicast, and broadcast.
(1) The router receives the IP packet (plus additional
information about it, as described in Section [3.1]) from
the Link Layer.
(2) The router validates the IP header, as described in
Section [5.2.2]. Note that IP reassembly is not done,
except on IP fragments to be queued for local delivery in
step (4).
(3) The router performs most of the processing of any IP
options. As described in Section [5.2.4], some IP options
require additional processing after the routing decision
has been made.
(4) The router examines the destination IP address of the IP
datagram, as described in Section [5.2.3], to determine
how it should continue to process the IP datagram. There
are three possibilities:
o The IP datagram is destined for the router, and should
be queued for local delivery, doing reassembly if
needed.
o The IP datagram is not destined for the router, and
should be queued for forwarding.
o The IP datagram should be queued for forwarding, but (a
copy) must also be queued for local delivery.
Almquist & Kastenholz [Page 63]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.2.1.2 Unicast
Since the local delivery case is well-covered by [INTRO:2], the
following assumes that the IP datagram was queued for
forwarding. If the destination is an IP unicast address:
(5) The forwarder determines the next hop IP address for the
packet, usually by looking up the packet's destination in
the router's routing table. This procedure is described
in more detail in Section [5.2.4]. This procedure also
decides which network interface should be used to send the
packet.
(6) The forwarder verifies that forwarding the packet is
permitted. The source and destination addresses should be
valid, as described in Section [5.3.7] and Section [5.3.4]
If the router supports administrative constraints on
forwarding, such as those described in Section [5.3.9],
those constraints must be satisfied.
(7) The forwarder decrements (by at least one) and checks the
packet's TTL, as described in Section [5.3.1].
(8) The forwarder performs any IP option processing that could
not be completed in step 3.
(9) The forwarder performs any necessary IP fragmentation, as
described in Section [4.2.2.7]. Since this step occurs
after outbound interface selection (step 5), all fragments
of the same datagram will be transmitted out the same
interface.
(10) The forwarder determines the Link Layer address of the
packet's next hop. The mechanisms for doing this are Link
Layer-dependent (see chapter 3).
(11) The forwarder encapsulates the IP datagram (or each of the
fragments thereof) in an appropriate Link Layer frame and
queues it for output on the interface selected in step 5.
(12) The forwarder sends an ICMP redirect if necessary, as
described in Section [4.3.3.2].
Almquist & Kastenholz [Page 64]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.2.1.3 Multicast
If the destination is an IP multicast, the following steps are
taken.
Note that the main differences between the forwarding of IP
unicasts and the forwarding of IP multicasts are
o IP multicasts are usually forwarded based on both the
datagram's source and destination IP addresses,
o IP multicast uses an expanding ring search,
o IP multicasts are forwarded as Link Level multicasts, and
o ICMP errors are never sent in response to IP multicast
datagrams.
Note that the forwarding of IP multicasts is still somewhat
experimental. As a result, the algorithm presented below is not
mandatory, and is provided as an example only.
(5a) Based on the IP source and destination addresses found in
the datagram header, the router determines whether the
datagram has been received on the proper interface for
forwarding. If not, the datagram is dropped silently. The
method for determining the proper receiving interface
depends on the multicast routing algorithm(s) in use. In
one of the simplest algorithms, reverse path forwarding
(RPF), the proper interface is the one that would be used
to forward unicasts back to the datagram source.
(6a) Based on the IP source and destination addresses found in
the datagram header, the router determines the datagram's
outgoing interfaces. In order to implement IP multicast's
expanding ring search (see [INTERNET:4]) a minimum TTL
value is specified for each outgoing interface. A copy of
the multicast datagram is forwarded out each outgoing
interface whose minimum TTL value is less than or equal to
the TTL value in the datagram header, by separately
applying the remaining steps on each such interface.
(7a) The router decrements the packet's TTL by one.
(8a) The forwarder performs any IP option processing that could
not be completed in step (3).
Almquist & Kastenholz [Page 65]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(9a) The forwarder performs any necessary IP fragmentation, as
described in Section [4.2.2.7].
(10a) The forwarder determines the Link Layer address to use in
the Link Level encapsulation. The mechanisms for doing
this are Link Layer-dependent. On LANs a Link Level
multicast or broadcast is selected, as an algorithmic
translation of the datagrams' class D destination address.
See the various IP-over-xxx specifications for more
details.
(11a) The forwarder encapsulates the packet (or each of the
fragments thereof) in an appropriate Link Layer frame and
queues it for output on the appropriate interface.
5.2.2 IP Header Validation
Before a router can process any IP packet, it MUST perform a the
following basic validity checks on the packet's IP header to
ensure that the header is meaningful. If the packet fails any of
the following tests, it MUST be silently discarded, and the error
SHOULD be logged.
(1) The packet length reported by the Link Layer must be large
enough to hold the minimum length legal IP datagram (20
bytes).
(2) The IP checksum must be correct.
(3) The IP version number must be 4. If the version number is
not 4 then the packet may well be another version of IP, such
as ST-II.
(4) The IP header length field must be at least 5.
(5) The IP total length field must be at least 4 * IP header
length field.
A router MUST NOT have a configuration option which allows
disabling any of these tests.
If the packet passes the second and third tests, the IP header
length field is at least 4, and both the IP total length field and
the packet length reported by the Link Layer are at least 16 then,
despite the above rule, the router MAY respond with an ICMP
Parameter Problem message, whose pointer points at the IP header
length field (if it failed the fourth test) or the IP total length
Almquist & Kastenholz [Page 66]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
field (if it failed the fifth test). However, it still MUST
discard the packet and still SHOULD log the error.
These rules (and this entire document) apply only to version 4 of
the Internet Protocol. These rules should not be construed as
prohibiting routers from supporting other versions of IP.
Furthermore, if a router can truly classify a packet as being some
other version of IP then it ought not treat that packet as an
error packet within the context of this memo.
IMPLEMENTATION:
It is desirable for purposes of error reporting, though not
always entirely possible, to determine why a header was
invalid. There are four possible reasons:
o The Link Layer truncated the IP header
o The datagram is using a version of IP other than the
standard one (version 4).
o The IP header has been corrupted in transit.
o The sender generated an illegal IP header.
It is probably desirable to perform the checks in the order
listed, since we believe that this ordering is most likely to
correctly categorize the cause of the error. For purposes of
error reporting, it may also be desirable to check if a packet
which fails these tests has an IP version number equal to 6.
If it does, the packet is probably an ST-II datagram and should
be treated as such. ST-II is described in [FORWARD:1].
Additionally, the router SHOULD verify that the packet length
reported by the Link Layer is at least as large as the IP total
length recorded in the packet's IP header. If it appears that the
packet has been truncated, the packet MUST be discarded, the error
SHOULD be logged, and the router SHOULD respond with an ICMP
Parameter Problem message whose pointer points at the IP total
length field.
DISCUSSION:
Because any higher layer protocol which concerns itself with
data corruption will detect truncation of the packet data when
it reaches its final destination, it is not absolutely
necessary for routers to perform the check suggested above in
order to maintain protocol correctness. However, by making
this check a router can simplify considerably the task of
Almquist & Kastenholz [Page 67]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
determining which hop in the path is truncating the packets.
It will also reduce the expenditure of resources down-stream
from the router in that down-stream systems will not need to
deal with the packet.
Finally, if the destination address in the IP header is not one of
the addresses of the router, the router SHOULD verify that the
packet does not contain a Strict Source and Record Route option.
If a packet fails this test, the router SHOULD log the error and
SHOULD respond with an ICMP Parameter Problem error with the
pointer pointing at the offending packet's IP destination address.
DISCUSSION:
Some people might suggest that the router should respond with a
Bad Source Route message instead of a Parameter Problem
message. However, when a packet fails this test, it usually
indicates a protocol error by the previous hop router, whereas
Bad Source Route would suggest that the source host had
requested a nonexistent or broken path through the network.
5.2.3 Local Delivery Decision
When a router receives an IP packet, it must decide whether the
packet is addressed to the router (and should be delivered
locally) or the packet is addressed to another system (and should
be handled by the forwarder). There is also a hybrid case, where
certain IP broadcasts and IP multicasts are both delivered locally
and forwarded. A router MUST determine which of the these three
cases applies using the following rules:
o An unexpired source route option is one whose pointer value
does not point past the last entry in the source route. If the
packet contains an unexpired source route option, the pointer
in the option is advanced until either the pointer does point
past the last address in the option or else the next address is
not one of the router's own addresses. In the latter (normal)
case, the packet is forwarded (and not delivered locally)
regardless of the rules below.
o The packet is delivered locally and not considered for
forwarding in the following cases:
- The packet's destination address exactly matches one of the
router's IP addresses,
- The packet's destination address is a limited broadcast
Almquist & Kastenholz [Page 68]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
address ({-1, -1}), and
- The packet's destination is an IP multicast address which is
limited to a single subnet (such as 224.0.0.1 or 224.0.0.2)
and (at least) one of the logical interfaces associated with
the physical interface on which the packet arrived is a
member of the destination multicast group.
o The packet is passed to the forwarder AND delivered locally in
the following cases:
- The packet's destination address is an IP broadcast address
that addresses at least one of the router's logical
interfaces but does not address any of the logical
interfaces associated with the physical interface on which
the packet arrived
- The packet's destination is an IP multicast address which is
not limited to a single subnetwork (such as 224.0.0.1 and
224.0.0.2 are) and (at least) one of the logical interfaces
associated with the physical interface on which the packet
arrived is a member of the destination multicast group.
o The packet is delivered locally if the packet's destination
address is an IP broadcast address (other than a limited
broadcast address) that addresses at least one of the logical
interfaces associated with the physical interface on which the
packet arrived. The packet is ALSO passed to the forwarder
unless the link on which the packet arrived uses an IP
encapsulation that does not encapsulate broadcasts differently
than unicasts (e.g. by using different Link Layer destination
addresses).
o The packet is passed to the forwarder in all other cases.
DISCUSSION:
The purpose of the requirement in the last sentence of the
fourth bullet is to deal with a directed broadcast to another
net or subnet on the same physical cable. Normally, this works
as expected: the sender sends the broadcast to the router as a
Link Layer unicast. The router notes that it arrived as a
unicast, and therefore must be destined for a different logical
net (or subnet) than the sender sent it on. Therefore, the
router can safely send it as a Link Layer broadcast out the
same (physical) interface over which it arrived. However, if
the router can't tell whether the packet was received as a Link
Layer unicast, the sentence ensures that the router does the
Almquist & Kastenholz [Page 69]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
safe but wrong thing rather than the unsafe but right thing.
IMPLEMENTATION:
As described in Section [5.3.4], packets received as Link Layer
broadcasts are generally not forwarded. It may be advantageous
to avoid passing to the forwarder packets it would later
discard because of the rules in that section.
Some Link Layers (either because of the hardware or because of
special code in the drivers) can deliver to the router copies
of all Link Layer broadcasts and multicasts it transmits. Use
of this feature can simplify the implementation of cases where
a packet has to both be passed to the forwarder and delivered
locally, since forwarding the packet will automatically cause
the router to receive a copy of the packet that it can then
deliver locally. One must use care in these circumstances in
order to prevent treating a received loop-back packet as a
normal packet that was received (and then being subject to the
rules of forwarding, etc etc).
Even in the absence of such a Link Layer, it is of course
hardly necessary to make a copy of an entire packet in order to
queue it both for forwarding and for local delivery, though
care must be taken with fragments, since reassembly is
performed on locally delivered packets but not on forwarded
packets. One simple scheme is to associate a flag with each
packet on the router's output queue which indicates whether it
should be queued for local delivery after it has been sent.
5.2.4 Determining the Next Hop Address
When a router is going to forward a packet, it must determine
whether it can send it directly to its destination, or whether it
needs to pass it through another router. If the latter, it needs
to determine which router to use. This section explains how these
determinations are made.
This section makes use of the following definitions:
o LSRR - IP Loose Source and Record Route option
o SSRR - IP Strict Source and Record Route option
o Source Route Option - an LSRR or an SSRR
o Ultimate Destination Address - where the packet is being sent
Almquist & Kastenholz [Page 70]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
to: the last address in the source route of a source-routed
packet, or the destination address in the IP header of a non-
source-routed packet
o Adjacent - reachable without going through any IP routers
o Next Hop Address - the IP address of the adjacent host or
router to which the packet should be sent next
o Immediate Destination Address - the ultimate destination
address, except in source routed packets, where it is the next
address specified in the source route
o Immediate Destination - the node, system, router, end-system,
or whatever that is addressed by the Immediate Destination
Address.
5.2.4.1 Immediate Destination Address
If the destination address in the IP header is one of the
addresses of the router and the packet contains a Source Route
Option, the Immediate Destination Address is the address
pointed at by the pointer in that option if the pointer does
not point past the end of the option. Otherwise, the Immediate
Destination Address is the same as the IP destination address
in the IP header.
A router MUST use the Immediate Destination Address, not the
Ultimate Destination Address, when determining how to handle a
packet.
It is an error for more than one source route option to appear
in a datagram. If it receives one, it SHOULD discard the
packet and reply with an ICMP Parameter Problem message whose
pointer points at the beginning of the second source route
option.
5.2.4.2 Local/Remote Decision
After it has been determined that the IP packet needs to be
forwarded in accordance with the rules specified in Section
[5.2.3], the following algorithm MUST be used to determine if
the Immediate Destination is directly accessible (see
[INTERNET:2]):
(1) For each network interface that has not been assigned any
IP address (the unnumbered lines as described in Section
Almquist & Kastenholz [Page 71]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
[2.2.7]), compare the router-id of the other end of the
line to the Immediate Destination Address. If they are
exactly equal, the packet can be transmitted through this
interface.
DISCUSSION:
In other words, the router or host at the remote end of
the line is the destination of the packet or is the
next step in the source route of a source routed
packet.
(2) If no network interface has been selected in the first
step, for each IP address assigned to the router:
(a) Apply the subnet mask associated with the address to
this IP address.
IMPLEMENTATION:
The result of this operation will usually have
been computed and saved during initialization.
(b) Apply the same subnet mask to the Immediate
Destination Address of the packet.
(c) Compare the resulting values. If they are equal to
each other, the packet can be transmitted through the
corresponding network interface.
(3) If an interface has still not been selected, the Immediate
Destination is accessible only through some other router.
The selection of the router and the next hop IP address is
described in Section [5.2.4.3].
5.2.4.3 Next Hop Address
EDITOR'S COMMENTS:
Note that this section has been extensively rewritten. The
original document indicated that Phil Almquist wished to
revise this section to conform to his "Ruminations on the
Next Hop" document. I am under the assumption that the
working group generally agreed with this goal; there was an
editor's note from Phil that remained in this document to
that effect, and the RoNH document contains a "mandatory
RRWG algorithm".
So, I have taken said algorithm from RoNH and moved it into
here.
Almquist & Kastenholz [Page 72]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Additional useful or interesting information from RoNH has
been extracted and placed into an appendix to this note.
The router applies the algorithm in the previous section to
determine if the Immediate Destination Address is adjacent. If
so, the next hop address is the same as the Immediate
Destination Address. Otherwise, the packet must be forwarded
through another router to reach its Immediate Destination. The
selection of this router is the topic of this section.
If the packet contains an SSRR, the router MUST discard the
packet and reply with an ICMP Bad Source Route error.
Otherwise, the router looks up the Immediate Destination
Address in its routing table to determine an appropriate next
hop address.
DISCUSSION:
Per the IP specification, a Strict Source Route must specify
a sequence of nodes through which the packet must traverse;
the packet must go from one node of the source route to the
next, traversing intermediate networks only. Thus, if the
router is not adjacent to the next step of the source route,
the source route can not be fulfilled. Therefore, the ICMP
Bad Source Route error.
The goal of the next-hop selection process is to examine the
entries in the router's Forwarding Information Base (FIB) and
select the best route (if there is one) for the packet from
those available in the FIB.
Conceptually, any route lookup algorithm starts out with a set
of candidate routes which consists of the entire contents of
the FIB. The algorithm consists of a series of steps which
discard routes from the set. These steps are referred to as
Pruning Rules. Normally, when the algorithm terminates there
is exactly one route remaining in the set. If the set ever
becomes empty, the packet is discarded because the destination
is unreachable. It is also possible for the algorithm to
terminate when more than one route remains in the set. In this
case, the router may arbitrarily discard all but one of them,
or may perform "load-splitting" by choosing whichever of the
routes has been least recently used.
With the exception of rule 3 (Weak TOS), a router MUST use the
following Pruning Rules when selecting a next hop for a packet.
If a router does consider TOS when making next-hop decisions,
the Rule 3 must be applied in the order indicated below. These
Almquist & Kastenholz [Page 73]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
rules MUST be (conceptually) applied to the FIB in the order
that they are presented. (For some historical perspective,
additional pruning rules, and other common algorithms in use,
see Appendix E).
DISCUSSION:
Rule 3 is optional in that Section [5.3.2] says that a
router only SHOULD consider TOS when making forwarding
decisions.
(1) Basic Match
This rule discards any routes to destinations other than
the Immediate Destination Address of the packet. For
example, if a packet's Immediate Destination Address is
36.144.2.5, this step would discard a route to net
128.12.0.0 but would retain any routes to net 36.0.0.0,
any routes to subnet 36.144.0.0, and any default routes.
More precisely, we assume that each route has a
destination attribute, called route.dest, and a
corresponding mask, called route.mask, to specify which
bits of route.dest are significant. The Immediate
Destination Address of the packet being forwarded is
ip.dest. This rule discards all routes from the set of
candidate routes except those for which (route.dest &
route.mask) = (ip.dest & route.mask).
(2) Longest Match
Longest Match is a refinement of Basic Match, described
above. After Basic Match pruning is performed, the
remaining routes are examined to determine the maximum
number of bits set in any of their route.mask attributes.
The step then discards from the set of candidate routes
any routes which have fewer than that maximum number of
bits set in their route.mask attributes.
For example, if a packet's Immediate Destination Address
is 36.144.2.5 and there are {route.dest, route.mask}
pairs of {36.144.2.0, 255.255.255.0}, {36.144.0.5,
255.255.0.255}, {36.144.0.0, 255.255.0.0}, and {36.0.0.0,
255.0.0.0}, then this rule would keep only the first two
pairs; {36.144.2.0, 255.255.255.0} and {36.144.0.5,
255.255.0.255}.
Almquist & Kastenholz [Page 74]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(3) Weak TOS
Each route has a type of service attribute, called
route.tos, whose possible values are assumed to be
identical to those used in the TOS field of the IP header.
Routing protocols which distribute TOS information fill in
route.tos appropriately in routes they add to the FIB;
routes from other routing protocols are treated as if they
have the default TOS (0000). The TOS field in the IP
header of the packet being routed is called ip.tos.
The set of candidate routes is examined to determine if it
contains any routes for which route.tos = ip.tos. If so,
all routes except those for which route.tos = ip.tos are
discarded. If not, all routes except those for which
route.tos = 0000 are discarded from the set of candidate
routes.
Additional discussion of routing based on Weak TOS may be
found in [ROUTE:11].
DISCUSSION:
The effect of this rule is to select only those routes
which have a TOS that matches the TOS requested in the
packet. If no such routes exist then routes with the
default TOS are considered. Routes with a non-default
TOS that is not the TOS requested in the packet are
never used, even if such routes are the only available
routes that go to the packet's destination.
(4) Best Metric
Each route has a metric attribute, called route.metric,
and a routing domain identifier, called route.domain.
Each member of the set of candidate routes is compared
with each other member of the set. If route.domain is
equal for the two routes and route.metric is strictly
inferior for one when compared with the other, then the
one with the inferior metric is discarded from the set.
The determination of inferior is usually by a simple
arithmetic comparison, though some protocols may have
structured metrics requiring more complex comparisons.
(5) Vendor Policy
Vendor Policy is sort of a catch-all to make up for the
fact that the previously listed rules are often inadequate
to chose from among the possible routes. Vendor Policy
pruning rules are extremely vendor-specific. See section
[5.2.4.4].
Almquist & Kastenholz [Page 75]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
This algorithm has two distinct disadvantages. Presumably, a
router implementor might develop techniques to deal with these
disadvantages and make them a part of the Vendor Policy pruning
rule.
(1) IS-IS and OSPF route classes are not directly handled.
(2) Path properties other than type of service (e.g. MTU) are
ignored.
It is also worth noting a deficiency in the way that TOS is
supported: routing protocols which support TOS are implicitly
preferred when forwarding packets which have non-zero TOS
values.
The Basic Match and Longest Match pruning rules generalize the
treatment of a number of particular types of routes. These
routes are selected in the following, decreasing, order of
preference:
(1) Host Route: This is a route to a specific end system.
(2) Subnetwork Route: This is a route to a particular subnet
of a network.
(3) Default Subnetwork Route: This is a route to all subnets
of a particular net for which there are not (explicit)
subnet routes.
(4) Network Route: This is a route to a particular network.
(5) Default Network Route (also known as the default route):
This is a route to all networks for which there are no
explicit routes to the net or any of its subnets.
If, after application of the pruning rules, the set of routes
is empty (i.e., no routes were found), the packet MUST be
discarded and an appropriate ICMP error generated (ICMP Bad
Source Route if the Immediate Destination Address came from a
source route option; otherwise, whichever of ICMP Destination
Host Unreachable or Destination Network Unreachable is
appropriate, as described in Section [4.3.3.1]).
Almquist & Kastenholz [Page 76]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.2.4.4 Administrative Preference
One suggested mechanism for the Vendor Policy Pruning Rule is
to use administrative preference.
Each route has associated with it a preference value, based on
various attributes of the route (specific mechanisms for
assignment of preference values are suggested below). This
preference value is an integer in the range [0..255], with zero
being the most preferred and 254 being the least preferred.
255 is a special value that means that the route should never
be used. The first step in the Vendor Policy pruning rule
discards all but the most preferable routes (and always
discards routes whose preference value is 255).
This policy is not safe in that it can easily be misused to
create routing loops. Since no protocol ensures that the
preferences configured for a router are consistent with the
preferences configured in its neighbors, network managers must
exercise care in configuring preferences.
o Address Match
It is useful to be able to assign a single preference value
to all routes (learned from the same routing domain) to any
of a specified set of destinations, where the set of
destinations is all destinations that match a specified
address/mask pair.
o Route Class
For routing protocols which maintain the distinction, it is
useful to be able to assign a single preference value to all
routes (learned from the same routing domain) which have a
particular route class (intra-area, inter-area, external
with internal metrics, or external with external metrics).
o Interface
It is useful to be able to assign a single preference value
to all routes (learned from a particular routing domain)
that would cause packets to be routed out a particular
logical interface on the router (logical interfaces
generally map one-to-one onto the router's network
interfaces, except that any network interface which has
multiple IP addresses will have multiple logical interfaces
associated with it).
o Source router
It is useful to be able to assign a single preference value
Almquist & Kastenholz [Page 77]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
to all routes (learned from the same routing domain) which
were learned from any of a set of routers, where the set of
routers are those whose updates have a source address which
match a specified address/mask pair.
o Originating AS
For routing protocols which provide the information, it is
useful to be able to assign a single preference value to all
routes (learned from a particular routing domain) which
originated in another particular routing domain. For BGP
routes, the originating AS is the first AS listed in the
route's AS_PATH attribute. For OSPF external routes, the
originating AS may be considered to be the low order 16 bits
of the route's external route tag if the tag's Automatic bit
is set and the tag's PathLength is not equal to 3.
o External route tag
It is useful to be able to assign a single preference value
to all OSPF external routes (learned from the same routing
domain) whose external route tags match any of a list of
specified values. Because the external route tag may
contain a structured value, it may be useful to provide the
ability to match particular subfields of the tag.
o AS path
It may be useful to be able to assign a single preference
value to all BGP routes (learned from the same routing
domain) whose AS path "matches" any of a set of specified
values. It is not yet clear exactly what kinds of matches
are most useful. A simple option would be to allow matching
of all routes for which a particular AS number appears (or
alternatively, does not appear) anywhere in the route's
AS_PATH attribute. A more general but somewhat more
difficult alternative would be to allow matching all routes
for which the AS path matches a specified regular
expression.
5.2.4.6 Load Splitting
At the end of the Next-hop selection process, multiple routes
may still remain. A router has several options when this
occurs. It may arbitrarily discard some of the routes. It may
reduce the number of candidate routes by comparing metrics of
routes from routing domains which are not considered
equivalent. It may retain more than one route and employ a
load-splitting mechanism to divide traffic among them. Perhaps
the only thing that can be said about the relative merits of
Almquist & Kastenholz [Page 78]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
the options is that load-splitting is useful in some situations
but not in others, so a wise implementor who implements load-
splitting will also provide a way for the network manager to
disable it.
5.2.5 Unused IP Header Bits: RFC-791 Section 3.1
The IP header contains several reserved bits, in the Type of
Service field and in the Flags field. Routers MUST NOT drop
packets merely because one or more of these reserved bits has a
non-zero value.
Routers MUST ignore and MUST pass through unchanged the values of
these reserved bits. If a router fragments a packet, it MUST copy
these bits into each fragment.
DISCUSSION:
Future revisions to the IP protocol may make use of these
unused bits. These rules are intended to ensure that these
revisions can be deployed without having to simultaneously
upgrade all routers in the Internet.
5.2.6 Fragmentation and Reassembly: RFC-791 Section 3.2
As was discussed in Section [4.2.2.7], a router MUST support IP
fragmentation.
A router MUST NOT reassemble any datagram before forwarding it.
DISCUSSION:
A few people have suggested that there might be some topologies
where reassembly of transit datagrams by routers might improve
performance. In general, however, the fact that fragments may
take different paths to the destination precludes safe use of
such a feature.
Nothing in this section should be construed to control or limit
fragmentation or reassembly performed as a link layer function
by the router.
Almquist & Kastenholz [Page 79]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.2.7 Internet Control Message Protocol - ICMP
General requirements for ICMP were discussed in Section [4.3].
This section discusses ICMP messages which are sent only by
routers.
5.2.7.1 Destination Unreachable
The ICMP Destination Unreachable message is sent by a router in
response to a packet which it cannot forward because the
destination (or next hop) is unreachable or a service is
unavailable
A router MUST be able to generate ICMP Destination Unreachable
messages and SHOULD choose a response code that most closely
matches the reason why the message is being generated.
The following codes are defined in [INTERNET:8] and [INTRO:2]:
0 = Network Unreachable - generated by a router if a
forwarding path (route) to the destination network is not
available;
1 = Host Unreachable - generated by a router if a forwarding
path (route) to the destination host on a directly
connected network is not available;
2 = Protocol Unreachable - generated if the transport protocol
designated in a datagram is not supported in the transport
layer of the final destination;
3 = Port Unreachable - generated if the designated transport
protocol (e.g. UDP) is unable to demultiplex the datagram
in the transport layer of the final destination but has no
protocol mechanism to inform the sender;
4 = Fragmentation Needed and DF Set - generated if a router
needs to fragment a datagram but cannot since the DF flag
is set;
5 = Source Route Failed - generated if a router cannot forward
a packet to the next hop in a source route option;
6 = Destination Network Unknown - This code SHOULD NOT be
generated since it would imply on the part of the router
that the destination network does not exist (net
unreachable code 0 SHOULD be used in place of code 6);
Almquist & Kastenholz [Page 80]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
7 = Destination Host Unknown - generated only when a router
can determine (from link layer advice) that the
destination host does not exist;
11 = Network Unreachable For Type Of Service - generated by a
router if a forwarding path (route) to the destination
network with the requested or default TOS is not
available;
12 = Host Unreachable For Type Of Service - generated if a
router cannot forward a packet because its route(s) to the
destination do not match either the TOS requested in the
datagram or the default TOS (0).
The following additional codes are hereby defined:
13 = Communication Administratively Prohibited - generated if a
router cannot forward a packet due to administrative
filtering;
14 = Host Precedence Violation. Sent by the first hop router
to a host to indicate that a requested precedence is not
permitted for the particular combination of
source/destination host or network, upper layer protocol,
and source/destination port;
15 = Precedence cutoff in effect. The network operators have
imposed a minimum level of precedence required for
operation, the datagram was sent with a precedence below
this level;
NOTE: [INTRO:2] defined Code 8 for source host isolated.
Routers SHOULD NOT generate Code 8; whichever of Codes 0
(Network Unreachable) and 1 (Host Unreachable) is appropriate
SHOULD be used instead. [INTRO:2] also defined Code 9 for
communication with destination network administratively
prohibited and Code 10 for communication with destination host
administratively prohibited. These codes were intended for use
by end-to-end encryption devices used by U.S military agencies.
Routers SHOULD use the newly defined Code 13 (Communication
Administratively Prohibited) if they administratively filter
packets.
Routers MAY have a configuration option that causes Code 13
(Communication Administratively Prohibited) messages not to be
generated. When this option is enabled, no ICMP error message
is sent in response to a packet which is dropped because its
Almquist & Kastenholz [Page 81]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
forwarding is administratively prohibited.
Similarly, routers MAY have a configuration option that causes
Code 14 (Host Precedence Violation) and Code 15 (Precedence
Cutoff in Effect) messages not to be generated. When this
option is enabled, no ICMP error message is sent in response to
a packet which is dropped because of a precedence violation.
Routers MUST use Host Unreachable or Destination Host Unknown
codes whenever other hosts on the same destination network
might be reachable; otherwise, the source host may erroneously
conclude that all hosts on the network are unreachable, and
that may not be the case.
[INTERNET:14] describes a slight modification the form of
Destination Unreachable messages containing Code 4
(Fragmentation needed and DF set). A router MUST use this
modified form when originating Code 4 Destination Unreachable
messages.
5.2.7.2 Redirect
The ICMP Redirect message is generated to inform a host on the
same subnet that the router used by the host to route certain
packets should be changed.
Routers MUST NOT generate the Redirect for Network or Redirect
for Network and Type of Service messages (Codes 0 and 2)
specified in [INTERNET:8]. Routers MUST be able to generate
the Redirect for Host message (Code 1) and SHOULD be able to
generate the Redirect for Type of Service and Host message
(Code 3) specified in [INTERNET:8].
DISCUSSION:
If the directly-connected network is not subnetted, a router
can normally generate a network Redirect which applies to
all hosts on a specified remote network. Using a network
rather than a host Redirect may economize slightly on
network traffic and on host routing table storage. However,
the savings are not significant, and subnets create an
ambiguity about the subnet mask to be used to interpret a
network Redirect. In a general subnet environment, it is
difficult to specify precisely the cases in which network
Redirects can be used. Therefore, routers must send only
host (or host and type of service) Redirects.
A Code 3 (Redirect for Host and Type of Service) message is
Almquist & Kastenholz [Page 82]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
generated when the packet provoking the redirect has a
destination for which the path chosen by the router would
depend (in part) on the TOS requested.
Routers which can generate Code 3 redirects (Host and Type of
Service) MUST have a configuration option (which defaults to
on) to enable Code 1 (Host) redirects to be substituted for
Code 3 redirects. A router MUST send a Code 1 Redirect in
place of a Code 3 Redirect if it has been configured to do so.
If a router is not able to generate Code 3 Redirects then it
MUST generate Code 1 Redirects in situations where a Code 3
Redirect is called for.
Routers MUST NOT generate a Redirect Message unless all of the
following conditions are met:
o The packet is being forwarded out the same physical
interface that it was received from,
o The IP source address in the packet is on the same Logical
IP (sub)network as the next-hop IP address, and
o The packet does not contain an IP source route option.
The source address used in the ICMP Redirect MUST belong to the
same logical (sub)net as the destination address.
A router using a routing protocol (other than static routes)
MUST NOT consider paths learned from ICMP Redirects when
forwarding a packet. If a router is not using a routing
protocol, a router MAY have a configuration which, if set,
allows the router to consider routes learned via ICMP Redirects
when forwarding packets.
DISCUSSION:
ICMP Redirect is a mechanism for routers to convey routing
information to hosts. Routers use other mechanisms to learn
routing information, and therefore have no reason to obey
redirects. Believing a redirect which contradicted the
router's other information would likely create routing
loops.
On the other hand, when a router is not acting as a router,
it MUST comply with the behavior required of a host.
Almquist & Kastenholz [Page 83]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.2.7.3 Time Exceeded
A router MUST generate a Time Exceeded message Code 0 (In
Transit) when it discards a packet due to an expired TTL field.
A router MAY have a per-interface option to disable origination
of these messages on that interface, but that option MUST
default to allowing the messages to be originated.
5.2.8 INTERNET GROUP MANAGEMENT PROTOCOL - IGMP
IGMP [INTERNET:4] is a protocol used between hosts and multicast
routers on a single physical network to establish hosts'
membership in particular multicast groups. Multicast routers use
this information, in conjunction with a multicast routing
protocol, to support IP multicast forwarding across the Internet.
A router SHOULD implement the multicast router part of IGMP.
5.3 SPECIFIC ISSUES
5.3.1 Time to Live (TTL)
The Time-to-Live (TTL) field of the IP header is defined to be a
timer limiting the lifetime of a datagram. It is an 8-bit field
and the units are seconds. Each router (or other module) that
handles a packet MUST decrement the TTL by at least one, even if
the elapsed time was much less than a second. Since this is very
often the case, the TTL is effectively a hop count limit on how
far a datagram can propagate through the Internet.
When a router forwards a packet, it MUST reduce the TTL by at
least one. If it holds a packet for more than one second, it MAY
decrement the TTL by one for each second.
If the TTL is reduced to zero (or less), the packet MUST be
discarded, and if the destination is not a multicast address the
router MUST send an ICMP Time Exceeded message, Code 0 (TTL
Exceeded in Transit) message to the source. Note that a router
MUST NOT discard an IP unicast or broadcast packet with a non-zero
TTL merely because it can predict that another router on the path
to the packet's final destination will decrement the TTL to zero.
However, a router MAY do so for IP multicasts, in order to more
efficiently implement IP multicast's expanding ring search
algorithm (see [INTERNET:4]).
Almquist & Kastenholz [Page 84]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
The IP TTL is used, somewhat schizophrenically, as both a hop
count limit and a time limit. Its hop count function is
critical to ensuring that routing problems can't melt down the
network by causing packets to loop infinitely in the network.
The time limit function is used by transport protocols such as
TCP to ensure reliable data transfer. Many current
implementations treat TTL as a pure hop count, and in parts of
the Internet community there is a strong sentiment that the
time limit function should instead be performed by the
transport protocols that need it.
In this specification, we have reluctantly decided to follow
the strong belief among the router vendors that the time limit
function should be optional. They argued that implementation
of the time limit function is difficult enough that it is
currently not generally done. They further pointed to the lack
of documented cases where this shortcut has caused TCP to
corrupt data (of course, we would expect the problems created
to be rare and difficult to reproduce, so the lack of
documented cases provides little reassurance that there haven't
been a number of undocumented cases).
IP multicast notions such as the expanding ring search may not
work as expected unless the TTL is treated as a pure hop count.
The same thing is somewhat true of traceroute.
ICMP Time Exceeded messages are required because the traceroute
diagnostic tool depends on them.
Thus, the tradeoff is between severely crippling, if not
eliminating, two very useful tools vs. a very rare and
transient data transport problem (which may not occur at all).
5.3.2 Type of Service (TOS)
The Type-of-Service byte in the IP header is divided into three
sections: the Precedence field (high-order 3 bits), a field that
is customarily called Type of Service or "TOS (next 4 bits), and a
reserved bit (the low order bit). Rules governing the reserved
bit were described in Section [4.2.2.3]. The Precedence field
will be discussed in Section [5.3.3]. A more extensive discussion
of the TOS field and its use can be found in [ROUTE:11].
A router SHOULD consider the TOS field in a packet's IP header
when deciding how to forward it. The remainder of this section
Almquist & Kastenholz [Page 85]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
describes the rules that apply to routers that conform to this
requirement.
A router MUST maintain a TOS value for each route in its routing
table. Routes learned via a routing protocol which does not
support TOS MUST be assigned a TOS of zero (the default TOS).
To choose a route to a destination, a router MUST use an algorithm
equivalent to the following:
(1) The router locates in its routing table all available routes
to the destination (see Section [5.2.4]).
(2) If there are none, the router drops the packet because the
destination is unreachable. See section [5.2.4].
(3) If one or more of those routes have a TOS that exactly
matches the TOS specified in the packet, the router chooses
the route with the best metric.
(4) Otherwise, the router repeats the above step, except looking
at routes whose TOS is zero.
(5) If no route was chosen above, the router drops the packet
because the destination is unreachable. The router returns
an ICMP Destination Unreachable error specifying the
appropriate code: either Network Unreachable with Type of
Service (code 11) or Host Unreachable with Type of Service
(code 12).
DISCUSSION:
Although TOS has been little used in the past, its use by hosts
is now mandated by the Requirements for Internet Hosts RFCs
([INTRO:2] and [INTRO:3]). Support for TOS in routers may
become a MUST in the future, but is a SHOULD for now until we
get more experience with it and can better judge both its
benefits and its costs.
Various people have proposed that TOS should affect other
aspects of the forwarding function. For example:
(1) A router could place packets which have the Low Delay bit
set ahead of other packets in its output queues.
(2) a router is forced to discard packets, it could try to
avoid discarding those which have the High Reliability bit
set.
Almquist & Kastenholz [Page 86]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
These ideas have been explored in more detail in [INTERNET:17]
but we don't yet have enough experience with such schemes to
make requirements in this area.
5.3.3 IP Precedence
This section specifies requirements and guidelines for appropriate
processing of the IP Precedence field in routers. Precedence is a
scheme for allocating resources in the network based on the
relative importance of different traffic flows. The IP
specification defines specific values to be used in this field for
various types of traffic.
The basic mechanisms for precedence processing in a router are
preferential resource allocation, including both precedence-
ordered queue service and precedence-based congestion control, and
selection of Link Layer priority features. The router also
selects the IP precedence for routing, management and control
traffic it originates. For a more extensive discussion of IP
Precedence and its implementation see [FORWARD:6].
Precedence-ordered queue service, as discussed in this section,
includes but is not limited to the queue for the forwarding
process and queues for outgoing links. It is intended that a
router supporting precedence should also use the precedence
indication at whatever points in its processing are concerned with
allocation of finite resources, such as packet buffers or Link
Layer connections. The set of such points is implementation-
dependent.
DISCUSSION:
Although the Precedence field was originally provided for use
in DOD systems where large traffic surges or major damage to
the network are viewed as inherent threats, it has useful
applications for many non-military IP networks. Although the
traffic handling capacity of networks has grown greatly in
recent years, the traffic generating ability of the users has
also grown, and network overload conditions still occur at
times. Since IP-based routing and management protocols have
become more critical to the successful operation of the
Internet, overloads present two additional risks to the
network:
(1) High delays may result in routing protocol packets being
lost. This may cause the routing protocol to falsely
deduce a topology change and propagate this false
Almquist & Kastenholz [Page 87]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
information to other routers. Not only can this cause
routes to oscillate, but an extra processing burden may be
placed on other routers.
(2) High delays may interfere with the use of network
management tools to analyze and perhaps correct or relieve
the problem in the network that caused the overload
condition to occur.
Implementation and appropriate use of the Precedence mechanism
alleviates both of these problems.
5.3.3.1 Precedence-Ordered Queue Service
Routers SHOULD implement precedence-ordered queue service.
Precedence-ordered queue service means that when a packet is
selected for output on a (logical) link, the packet of highest
precedence that has been queued for that link is sent. Routers
that implement precedence-ordered queue service MUST also have
a configuration option to suppress precedence-ordered queue
service in the Internet Layer.
Any router MAY implement other policy-based throughput
management procedures that result in other than strict
precedence ordering, but it MUST be configurable to suppress
them (i.e., use strict ordering).
As detailed in Section [5.3.6], routers that implement
precedence-ordered queue service discard low precedence packets
before discarding high precedence packets for congestion
control purposes.
Preemption (interruption of processing or transmission of a
packet) is not envisioned as a function of the Internet Layer.
Some protocols at other layers may provide preemption features.
5.3.3.2 Lower Layer Precedence Mappings
Routers that implement precedence-ordered queueing MUST
IMPLEMENT, and other routers SHOULD IMPLEMENT, Lower Layer
Precedence Mapping.
A router which implements Lower Layer Precedence Mapping:
o MUST be able to map IP Precedence to Link Layer priority
mechanisms for link layers that have such a feature defined.
Almquist & Kastenholz [Page 88]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
o MUST have a configuration option to select the Link Layer's
default priority treatment for all IP traffic
o SHOULD be able to configure specific nonstandard mappings of
IP precedence values to Link Layer priority values for each
interface.
DISCUSSION:
Some research questions the workability of the priority
features of some Link Layer protocols, and some networks may
have faulty implementations of the link layer priority
mechanism. It seems prudent to provide an escape mechanism
in case such problems show up in a network.
On the other hand, there are proposals to use novel queueing
strategies to implement special services such as low-delay
service. Special services and queueing strategies to
support them need further research and experimentation
before they are put into widespread use in the Internet.
Since these requirements are intended to encourage (but not
force) the use of precedence features in the hope of
providing better Internet service to all users, routers
supporting precedence-ordered queue service should default
to maintaining strict precedence ordering regardless of the
type of service requested.
Implementors may wish to consider that correct link layer
mapping of IP precedence is required by DOD policy for
TCP/IP systems used on DOD networks.
5.3.3.3 Precedence Handling For All Routers
A router (whether or not it employs precedence-ordered queue
service):
(1) MUST accept and process incoming traffic of all precedence
levels normally, unless it has been administratively
configured to do otherwise.
(2) MAY implement a validation filter to administratively
restrict the use of precedence levels by particular
traffic sources. If provided, this filter MUST NOT filter
out or cut off the following sorts of ICMP error messages:
Destination Unreachable, Redirect, Time Exceeded, and
Parameter Problem. If this filter is provided, the
procedures required for packet filtering by addresses are
Almquist & Kastenholz [Page 89]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
required for this filter also.
DISCUSSION:
Precedence filtering should be applicable to specific
source/destination IP Address pairs, specific
protocols, specific ports, and so on.
An ICMP Destination Unreachable message with code 14
SHOULD be sent when a packet is dropped by the validation
filter, unless this has been suppressed by configuration
choice.
(3) MAY implement a cutoff function which allows the router to
be set to refuse or drop traffic with precedence below a
specified level. This function may be activated by
management actions or by some implementation dependent
heuristics, but there MUST be a configuration option to
disable any heuristic mechanism that operates without
human intervention. An ICMP Destination Unreachable
message with code 15 SHOULD be sent when a packet is
dropped by the cutoff function, unless this has been
suppressed by configuration choice.
A router MUST NOT refuse to forward datagrams with IP
precedence of 6 (Internetwork Control) or 7 (Network
Control) solely due to precedence cutoff. However, other
criteria may be used in conjunction with precedence cutoff
to filter high precedence traffic.
DISCUSSION:
Unrestricted precedence cutoff could result in an
unintentional cutoff of routing and control traffic.
In general, host traffic should be restricted to a
value of 5 (CRITIC/ECP) or below although this is not a
requirement and may not be valid in certain systems.
(4) MUST NOT change precedence settings on packets it did not
originate.
(5) SHOULD be able to configure distinct precedence values to
be used for each routing or management protocol supported
(except for those protocols, such as OSPF, which specify
which precedence value must be used).
(6) MAY be able to configure routing or management traffic
precedence values independently for each peer address.
Almquist & Kastenholz [Page 90]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(7) MUST respond appropriately to Link Layer precedence-
related error indications where provided. An ICMP
Destination Unreachable message with code 15 SHOULD be
sent when a packet is dropped because a link cannot accept
it due to a precedence-related condition, unless this has
been suppressed by configuration choice.
DISCUSSION:
The precedence cutoff mechanism described in (3) is
somewhat controversial. Depending on the topological
location of the area affected by the cutoff, transit
traffic may be directed by routing protocols into the
area of the cutoff, where it will be dropped. This is
only a problem if another path which is unaffected by
the cutoff exists between the communicating points.
Proposed ways of avoiding this problem include
providing some minimum bandwidth to all precedence
levels even under overload conditions, or propagating
cutoff information in routing protocols. In the
absence of a widely accepted (and implemented) solution
to this problem, great caution is recommended in
activating cutoff mechanisms in transit networks.
A transport layer relay could legitimately provide the
function prohibited by (4) above. Changing precedence
levels may cause subtle interactions with TCP and
perhaps other protocols; a correct design is a non-
trivial task.
The intent of (5) and (6) (and the discussion of IP
Precedence in ICMP messages in Section [4.3.2]) is that
the IP precedence bits should be appropriately set,
whether or not this router acts upon those bits in any
other way. We expect that in the future specifications
for routing protocols and network management protocols
will specify how the IP Precedence should be set for
messages sent by those protocols.
The appropriate response for (7) depends on the link
layer protocol in use. Typically, the router should
stop trying to send offensive traffic to that
destination for some period of time, and should return
an ICMP Destination Unreachable message with code 15
(service not available for precedence requested) to the
traffic source. It also should not try to reestablish
a preempted Link Layer connection for some period of
time.
Almquist & Kastenholz [Page 91]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.3.4 Forwarding of Link Layer Broadcasts
The encapsulation of IP packets in most Link Layer protocols
(except PPP) allows a receiver to distinguish broadcasts and
multicasts from unicasts simply by examining the Link Layer
protocol headers (most commonly, the Link Layer destination
address). The rules in this section which refer to Link Layer
broadcasts apply only to Link Layer protocols which allow
broadcasts to be distinguished; likewise, the rules which refer to
Link Layer multicasts apply only to Link Layer protocols which
allow multicasts to be distinguished.
A router MUST NOT forward any packet which the router received as
a Link Layer broadcast (even if the IP destination address is also
some form of broadcast address) unless the packet is an all-
subnets-directed broadcast being forwarded as specified in
[INTERNET:3].
DISCUSSION:
As noted in Section [5.3.5.3], forwarding of all-subnets-
directed broadcasts in accordance with [INTERNET:3] is optional
and is not something that routers do by default.
A router MUST NOT forward any packet which the router received as
a Link Layer multicast unless the packet's destination address is
an IP multicast address.
A router SHOULD silently discard a packet that is received via a
Link Layer broadcast but does not specify an IP multicast or IP
broadcast destination address.
When a router sends a packet as a Link Layer broadcast, the IP
destination address MUST be a legal IP broadcast or IP multicast
address.
5.3.5 Forwarding of Internet Layer Broadcasts
There are two major types of IP broadcast addresses; limited
broadcast and directed broadcast. In addition, there are three
subtypes of directed broadcast; a broadcast directed to a
specified network, a broadcast directed to a specified subnetwork,
and a broadcast directed to all subnets of a specified network.
Classification by a router of a broadcast into one of these
categories depends on the broadcast address and on the router's
understanding (if any) of the subnet structure of the destination
network. The same broadcast will be classified differently by
different routers.
Almquist & Kastenholz [Page 92]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
A limited IP broadcast address is defined to be all-ones: { -1, -1
} or 255.255.255.255.
A net-directed broadcast is composed of the network portion of the
IP address with a local part of all-ones, { <Network-number>, -1
}. For example, a Class A net broadcast address is
net.255.255.255, a Class B net broadcast address is
net.net.255.255 and a Class C net broadcast address is
net.net.net.255 where net is a byte of the network address.
An all-subnets-directed broadcast is composed of the network part
of the IP address with a subnet and a host part of all-ones, {
<Network-number>, -1, -1 }. For example, an all-subnets broadcast
on a subnetted class B network is net.net.255.255. A network must
be known to be subnetted and the subnet part must be all-ones
before a broadcast can be classified as all-subnets-directed.
A subnet-directed broadcast address is composed of the network and
subnet part of the IP address with a host part of all-ones, {
<Network-number>, <Subnet-number>, -1 }. For example, a subnet-
directed broadcast to subnet 2 of a class B network might be
net.net.2.255 (if the subnet mask was 255.255.255.0) or
net.net.1.127 (if the subnet mask was 255.255.255.128). A network
must be known to be subnetted and the net and subnet part must not
be all-ones before an IP broadcast can be classified as subnet-
directed.
As was described in Section [4.2.3.1], a router may encounter
certain non-standard IP broadcast addresses:
o 0.0.0.0 is an obsolete form of the limited broadcast address
o { broadcast address.
o { broadcast address.
o { form of a subnet-directed broadcast address.
As was described in that section, packets addressed to any of
these addresses SHOULD be silently discarded, but if they are not,
they MUST be treated in accordance with the same rules that apply
to packets addressed to the non-obsolete forms of the broadcast
addresses described above. These rules are described in the next
few sections.
Almquist & Kastenholz [Page 93]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.3.5.1 Limited Broadcasts
Limited broadcasts MUST NOT be forwarded. Limited broadcasts
MUST NOT be discarded. Limited broadcasts MAY be sent and
SHOULD be sent instead of directed broadcasts where limited
broadcasts will suffice.
DISCUSSION:
Some routers contain UDP servers which function by resending
the requests (as unicasts or directed broadcasts) to other
servers. This requirement should not be interpreted as
prohibiting such servers. Note, however, that such servers
can easily cause packet looping if misconfigured. Thus,
providers of such servers would probably be well-advised to
document their setup carefully and to consider carefully the
TTL on packets which are sent.
5.3.5.2 Net-directed Broadcasts
A router MUST classify as net-directed broadcasts all valid,
directed broadcasts destined for a remote network or an
attached nonsubnetted network. A router MUST forward net-
directed broadcasts. Net-directed broadcasts MAY be sent.
A router MAY have an option to disable receiving net-directed
broadcasts on an interface and MUST have an option to disable
forwarding net-directed broadcasts. These options MUST default
to permit receiving and forwarding net-directed broadcasts.
DISCUSSION:
There has been some debate about forwarding or not
forwarding directed broadcasts. In this memo we have made
the forwarding decision depend on the router's knowledge of
the subnet mask for the destination network. Forwarding
decisions for subnetted networks should be made by routers
with an understanding of the subnet structure. Therefore,
in general, routers must forward directed broadcasts for
networks they are not attached to and for which they do not
understand the subnet structure. One router may interpret
and handle the same IP broadcast packet differently than
another, depending on its own understanding of the structure
of the destination (sub)network.
Almquist & Kastenholz [Page 94]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.3.5.3 All-subnets-directed Broadcasts
A router MUST classify as all-subnets-directed broadcasts all
valid directed broadcasts destined for a directly attached
subnetted network which have all-ones in the subnet part of the
address. If the destination network is not subnetted, the
broadcast MUST be treated as a net-directed broadcast.
A router MUST forward an all-subnets-directed broadcast as a
link level broadcast out all physical interfaces connected to
the IP network addressed by the broadcast, except that:
o A router MUST NOT forward an all-subnet-directed broadcast
that was received by the router as a Link Layer broadcast,
unless the router is forwarding the broadcast in accordance
with [INTERNET:3] (see below).
o If a router receives an all-subnets-directed broadcast over
a network which does not indicate via Link Layer framing
whether the frame is a broadcast or a unicast, the packet
MUST NOT be forwarded to any network which likewise does not
indicate whether a frame is a broadcast.
o A router MUST NOT forward an all-subnets-directed broadcast
if the router is configured not to forward such broadcasts.
A router MUST have a configuration option to deny forwarding
of all-subnets-directed broadcasts. The configuration
option MUST default to permit forwarding of all-subnets-
directed broadcasts.
EDITOR'S COMMENTS:
The algorithm presented here is broken. The working group
explicitly desired this algorithm, knowing its failures.
The second bullet, above, prevents All Subnets Directed
Broadcasts from traversing more than one PPP (or other
serial) link in a row. Such a topology is easily conceived.
Suppose that some corporation builds its corporate backbone
out of PPP links, connecting routers at geographically
dispersed locations. Suppose that this corporation has 3
sites (S1, S2, and S3) and there is a router at each site
(R1, R2, and R3). At each site there are also several LANs
connected to the local router. Let there be a PPP link
connecting S1 to S2 and one connecting S2 to S3 (i.e. the
links are R1-R2 and R2-R3). So, if a host on a LAN at S1
sends a All Subnets Directed Broadcast, R1 will forward the
broadcast over the R1-R2 link to R2. R2 will forward the
Almquist & Kastenholz [Page 95]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
broadcast to the LAN(s) connected to R2. Since the PPP does
not differentiate broadcast from non-broadcast frames, R2
will NOT forward the broadcast onto the R2-R3 link.
Therefore, the broadcast will not reach S3.
[INTERNET:3] describes an alternative set of rules for
forwarding of all-subnets-directed broadcasts (called multi-
subnet-broadcasts in that document). A router MAY IMPLEMENT
that alternative set of rules, but MUST use the set of rules
described above unless explicitly configured to use the
[INTERNET:3] rules. If routers will do [INTERNET:3]-style
forwarding, then the router MUST have a configuration option
which MUST default to doing the rules presented in this
document.
DISCUSSION:
As far as we know, the rules for multi-subnet broadcasts
described in [INTERNET:3] have never been implemented,
suggesting that either they are too complex or the utility
of multi-subnet broadcasts is low. The rules described in
this section match current practice. In the future, we
expect that IP multicast (see [INTERNET:4]) will be used to
better solve the sorts of problems that multi-subnets
broadcasts were intended to address.
We were also concerned that hosts whose system managers
neglected to configure with a subnet mask could
unintentionally send multi-subnet broadcasts.
A router SHOULD NOT originate all-subnets broadcasts, except as
required by Section [4.3.3.9] when sending ICMP Address Mask
Replies on subnetted networks.
DISCUSSION:
The current intention is to decree that (like 0-filled IP
broadcasts) the notion of the all-subnets broadcast is
obsolete. It should be treated as a directed broadcast to
the first subnet of the net in question that it appears on.
Routers may implement a switch (default off) which if turned
on enables the [INTERNET:3] behavior for all-subnets
broadcasts.
If a router has a configuration option to allow for
forwarding all-subnet broadcasts, it should use a spanning
tree, RPF, or other multicast forwarding algorithm (which
may be computed for other purposes such as bridging or OSPF)
Almquist & Kastenholz [Page 96]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
to distribute the all-subnets broadcast efficiently. In
general, it is better to use an IP multicast address rather
than an all-subnets broadcast.
5.3.5.4 Subnet-directed Broadcasts
A router MUST classify as subnet-directed broadcasts all valid
directed broadcasts destined for a directly attached subnetted
network in which the subnet part is not all-ones. If the
destination network is not subnetted, the broadcast MUST be
treated as a net-directed broadcast.
A router MUST forward subnet-directed broadcasts.
A router MUST have a configuration option to prohibit
forwarding of subnet-directed broadcasts. Its default setting
MUST permit forwarding of subnet-directed broadcasts.
A router MAY have a configuration option to prohibit forwarding
of subnet-directed broadcasts from a source on a network on
which the router has an interface. If such an option is
provided, its default setting MUST permit forwarding of
subnet-directed broadcasts.
5.3.6 Congestion Control
Congestion in a network is loosely defined as a condition where
demand for resources (usually bandwidth or CPU time) exceeds
capacity. Congestion avoidance tries to prevent demand from
exceeding capacity, while congestion recovery tries to restore an
operative state. It is possible for a router to contribute to
both of these mechanisms. A great deal of effort has been spent
studying the problem. The reader is encouraged to read
[FORWARD:2] for a survey of the work. Important papers on the
subject include [FORWARD:3], [FORWARD:4], [FORWARD:5], and
[INTERNET:10], among others.
The amount of storage that router should have available to handle
peak instantaneous demand when hosts use reasonable congestion
policies, such as described in [FORWARD:5], is a function of the
product of the bandwidth of the link times the path delay of the
flows using the link, and therefore storage should increase as
this Bandwidth*Delay product increases. The exact function
relating storage capacity to probability of discard is not known.
When a router receives a packet beyond its storage capacity it
Almquist & Kastenholz [Page 97]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
must (by definition, not by decree) discard it or some other
packet or packets. Which packet to discard is the subject of much
study but, unfortunately, little agreement so far.
A router MAY discard the packet it has just received; this is the
simplest but not the best policy. It is considered better policy
to randomly pick some transit packet on the queue and discard it
(see [FORWARD:2]). A router MAY use this Random Drop algorithm to
determine which packet to discard.
If a router implements a discard policy (such as Random Drop)
under which it chooses a packet to discard from among a pool of
eligible packets:
o If precedence-ordered queue service (described in Section
[5.3.3.1]) is implemented and enabled, the router MUST NOT
discard a packet whose IP precedence is higher than that of a
packet which is not discarded.
o A router MAY protect packets whose IP headers request the
maximize reliability TOS, except where doing so would be in
violation of the previous rule.
o A router MAY protect fragmented IP packets, on the theory that
dropping a fragment of a datagram may increase congestion by
causing all fragments of the datagram to be retransmitted by
the source.
o To help prevent routing perturbations or disruption of
management functions, the router MAY protect packets used for
routing control, link control, or network management from being
discarded. Dedicated routers (i.e.. routers which are not also
general purpose hosts, terminal servers, etc.) can achieve an
approximation of this rule by protecting packets whose source
or destination is the router itself.
Advanced methods of congestion control include a notion of
fairness, so that the 'user' that is penalized by losing a packet
is the one that contributed the most to the congestion. No matter
what mechanism is implemented to deal with bandwidth congestion
control, it is important that the CPU effort expended be
sufficiently small that the router is not driven into CPU
congestion also.
As described in Section [4.3.3.3], this document recommends that a
router should not send a Source Quench to the sender of the packet
that it is discarding. ICMP Source Quench is a very weak
Almquist & Kastenholz [Page 98]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
mechanism, so it is not necessary for a router to send it, and
host software should not use it exclusively as an indicator of
congestion.
5.3.7 Martian Address Filtering
An IP source address is invalid if it is an IP broadcast address
or is not a class A, B, or C address.
An IP destination address is invalid if it is not a class A, B, C,
or D address.
A router SHOULD NOT forward any packet which has an invalid IP
source address or a source address on network 0. A router SHOULD
NOT forward, except over a loopback interface, any packet which
has a source address on network 127. A router MAY have a switch
which allows the network manager to disable these checks. If such
a switch is provided, it MUST default to performing the checks.
A router SHOULD NOT forward any packet which has an invalid IP
destination address or a destination address on network 0. A
router SHOULD NOT forward, except over a loopback interface, any
packet which has a destination address on network 127. A router
MAY have a switch which allows the network manager to disable
these checks. If such a switch is provided, it MUST default to
performing the checks.
If a router discards a packet because of these rules, it SHOULD
log at least the IP source address, the IP destination address,
and, if the problem was with the source address, the physical
interface on which the packet was received and the Link Layer
address of the host or router from which the packet was received.
5.3.8 Source Address Validation
A router SHOULD IMPLEMENT the ability to filter traffic based on a
comparison of the source address of a packet and the forwarding
table for a logical interface on which the packet was received.
If this filtering is enabled, the router MUST silently discard a
packet if the interface on which the packet was received is not
the interface on which a packet would be forwarded to reach the
address contained in the source address. In simpler terms, if a
router wouldn't route a packet containing this address through a
particular interface, it shouldn't believe the address if it
appears as a source address in a packet read from this interface.
If this feature is implemented, it MUST be disabled by default.
Almquist & Kastenholz [Page 99]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
This feature can provide useful security improvements in some
situations, but can erroneously discard valid packets in
situations where paths are asymmetric.
5.3.9 Packet Filtering and Access Lists
As a means of providing security and/or limiting traffic through
portions of a network a router SHOULD provide the ability to
selectively forward (or filter) packets. If this capability is
provided, filtering of packets MUST be configurable either to
forward all packets or to selectively forward them based upon the
source and destination addresses. Each source and destination
address SHOULD allow specification of an arbitrary mask.
If supported, a router MUST be configurable to allow one of an
o Include list - specification of a list of address pairs to be
forwarded, or an
o Exclude list - specification of a list of address pairs NOT to
be forwarded.
A router MAY provide a configuration switch which allows a choice
between specifying an include or an exclude list.
A value matching any address (e.g. a keyword any or an address
with a mask of all 0's) MUST be allowed as a source and/or
destination address.
In addition to address pairs, the router MAY allow any combination
of transport and/or application protocol and source and
destination ports to be specified.
The router MUST allow packets to be silently discarded (i.e..
discarded without an ICMP error message being sent).
The router SHOULD allow an appropriate ICMP unreachable message to
be sent when a packet is discarded. The ICMP message SHOULD
specify Communication Administratively Prohibited (code 13) as the
reason for the destination being unreachable.
The router SHOULD allow the sending of ICMP destination
unreachable messages (code 13) to be configured for each
combination of address pairs, protocol types, and ports it allows
to be specified.
Almquist & Kastenholz [Page 100]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
The router SHOULD count and SHOULD allow selective logging of
packets not forwarded.
5.3.10 Multicast Routing
An IP router SHOULD support forwarding of IP multicast packets,
based either on static multicast routes or on routes dynamically
determined by a multicast routing protocol (e.g., DVMRP
[ROUTE:9]). A router that forwards IP multicast packets is called
a multicast router.
5.3.11 Controls on Forwarding
For each physical interface, a router SHOULD have a configuration
option which specifies whether forwarding is enabled on that
interface. When forwarding on an interface is disabled, the
router:
o MUST silently discard any packets which are received on that
interface but are not addressed to the router
o MUST NOT send packets out that interface, except for datagrams
originated by the router
o MUST NOT announce via any routing protocols the availability of
paths through the interface
DISCUSSION:
This feature allows the network manager to essentially turn off
an interface but leaves it accessible for network management.
Ideally, this control would apply to logical rather than
physical interfaces, but cannot because there is no known way
for a router to determine which logical interface a packet
arrived on when there is not a one-to-one correspondence
between logical and physical interfaces.
5.3.12 State Changes
During the course of router operation, interfaces may fail or be
manually disabled, or may become available for use by the router.
Similarly, forwarding may be disabled for a particular interface
or for the entire router or may be (re)enabled. While such
transitions are (usually) uncommon, it is important that routers
handle them correctly.
Almquist & Kastenholz [Page 101]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.3.12.1 When a Router Ceases Forwarding
When a router ceases forwarding it MUST stop advertising all
routes, except for third party routes. It MAY continue to
receive and use routes from other routers in its routing
domains. If the forwarding database is retained, the router
MUST NOT cease timing the routes in the forwarding database.
If routes that have been received from other routers are
remembered, the router MUST NOT cease timing the routes which
it has remembered. It MUST discard any routes whose timers
expire while forwarding is disabled, just as it would do if
forwarding were enabled.
DISCUSSION:
When a router ceases forwarding, it essentially ceases being
a router. It is still a host, and must follow all of the
requirements of Host Requirements [INTRO: 2]. The router
may still be a passive member of one or more routing
domains, however. As such, it is allowed to maintain its
forwarding database by listening to other routers in its
routing domain. It may not, however, advertise any of the
routes in its forwarding database, since it itself is doing
no forwarding. The only exception to this rule is when the
router is advertising a route which uses only some other
router, but which this router has been asked to advertise.
A router MAY send ICMP destination unreachable (host
unreachable) messages to the senders of packets that it is
unable to forward. It SHOULD NOT send ICMP redirect messages.
DISCUSSION:
Note that sending an ICMP destination unreachable (host
unreachable) is a router action. This message should not be
sent by hosts. This exception to the rules for hosts is
allowed so that packets may be rerouted in the shortest
possible time, and so that black holes are avoided.
5.3.12.2 When a Router Starts Forwarding
When a router begins forwarding, it SHOULD expedite the sending
of new routing information to all routers with which it
normally exchanges routing information.
Almquist & Kastenholz [Page 102]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.3.12.3 When an Interface Fails or is Disabled
If an interface fails or is disabled a router MUST remove and
stop advertising all routes in its forwarding database which
make use of that interface. It MUST disable all static routes
which make use of that interface. If other routes to the same
destination and TOS are learned or remembered by the router,
the router MUST choose the best alternate, and add it to its
forwarding database. The router SHOULD send ICMP destination
unreachable or ICMP redirect messages, as appropriate, in reply
to all packets which it is unable to forward due to the
interface being unavailable.
5.3.12.4 When an Interface is Enabled
If an interface which had not been available becomes available,
a router MUST reenable any static routes which use that
interface. If routes which would use that interface are
learned by the router, then these routes MUST be evaluated
along with all of the other learned routes, and the router MUST
make a decision as to which routes should be placed in the
forwarding database. The implementor is referred to Chapter
[7], Application Layer - Routing Protocols for further
information on how this decision is made.
A router SHOULD expedite the sending of new routing information
to all routers with which it normally exchanges routing
information.
5.3.13 IP Options
Several options, such as Record Route and Timestamp, contain slots
into which a router inserts its address when forwarding the
packet. However, each such option has a finite number of slots,
and therefore a router may find that there is not free slot into
which it can insert its address. No requirement listed below
should be construed as requiring a router to insert its address
into an option that has no remaining slot to insert it into.
Section [5.2.5] discusses how a router must choose which of its
addresses to insert into an option.
5.3.13.1 Unrecognized Options
Unrecognized IP options in forwarded packets MUST be passed
through unchanged.
Almquist & Kastenholz [Page 103]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
5.3.13.2 Security Option
Some environments require the Security option in every packet;
such a requirement is outside the scope of this document and
the IP standard specification. Note, however, that the
security options described in [INTERNET:1] and [INTERNET:16]
are obsolete. Routers SHOULD IMPLEMENT the revised security
option described in [INTERNET:5].
5.3.13.3 Stream Identifier Option
This option is obsolete. If the Stream Identifier option is
present in a packet forwarded by the router, the option MUST be
ignored and passed through unchanged.
5.3.13.4 Source Route Options
A router MUST implement support for source route options in
forwarded packets. A router MAY implement a configuration
option which, when enabled, causes all source-routed packets to
be discarded. However, such an option MUST NOT be enabled by
default.
DISCUSSION:
The ability to source route datagrams through the Internet
is important to various network diagnostic tools. However,
in a few rare cases, source routing may be used to bypass
administrative and security controls within a network.
Specifically, those cases where manipulation of routing
tables is used to provide administrative separation in lieu
of other methods such as packet filtering may be vulnerable
through source routed packets.
5.3.13.5 Record Route Option
Routers MUST support the Record Route option in forwarded
packets.
A router MAY provide a configuration option which, if enabled,
will cause the router to ignore (i.e. pass through unchanged)
Record Route options in forwarded packets. If provided, such
an option MUST default to enabling the record-route. This
option does not affect the processing of Record Route options
in datagrams received by the router itself (in particular,
Record Route options in ICMP echo requests will still be
processed in accordance with Section [4.3.3.6]).
Almquist & Kastenholz [Page 104]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
There are some people who believe that Record Route is a
security problem because it discloses information about the
topology of the network. Thus, this document allows it to
be disabled.
5.3.13.6 Timestamp Option
Routers MUST support the timestamp option in forwarded packets.
A timestamp value MUST follow the rules given in Section
[3.2.2.8] of [INTRO:2].
If the flags field = 3 (timestamp and prespecified address),
the router MUST add its timestamp if the next prespecified
address matches any of the router's IP addresses. It is not
necessary that the prespecified address be either the address
of the interface on which the packet arrived or the address of
the interface over which it will be sent.
IMPLEMENTATION:
To maximize the utility of the timestamps contained in the
timestamp option, it is suggested that the timestamp
inserted be, as nearly as practical, the time at which the
packet arrived at the router. For datagrams originated by
the router, the timestamp inserted should be, as nearly as
practical, the time at which the datagram was passed to the
network layer for transmission.
A router MAY provide a configuration option which, if enabled,
will cause the router to ignore (i.e. pass through unchanged)
Timestamp options in forwarded datagrams when the flag word is
set to zero (timestamps only) or one (timestamp and registering
IP address). If provided, such an option MUST default to off
(that is, the router does not ignore the timestamp). This
option does not affect the processing of Timestamp options in
datagrams received by the router itself (in particular, a
router will insert timestamps into Timestamp options in
datagrams received by the router, and Timestamp options in ICMP
echo requests will still be processed in accordance with
Section [4.3.3.6]).
DISCUSSION:
Like the Record Route option, the Timestamp option can
reveal information about a network's topology. Some people
consider this to be a security concern.
Almquist & Kastenholz [Page 105]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
6. TRANSPORT LAYER
A router is not required to implement any Transport Layer protocols
except those required to support Application Layer protocols supported
by the router. In practice, this means that most routers implement both
the Transmission Control Protocol (TCP) and the User Datagram Protocol
(UDP).
6.1 USER DATAGRAM PROTOCOL - UDP
The User Datagram Protocol (UDP) is specified in [TRANS:1].
A router which implements UDP MUST be compliant, and SHOULD be
unconditionally compliant, with the requirements of section 4.1.3 of
[INTRO:2], except that:
o This specification does not specify the interfaces between the
various protocol layers. Thus, a router need not comply with
sections 4.1.3.2, 4.1.3.3, and 4.1.3.5 of [INTRO:2] (except of
course where compliance is required for proper functioning of
Application Layer protocols supported by the router).
o Contrary to section 4.1.3.4 of [INTRO:2], an application MUST NOT
be able to disable to generation of UDP checksums.
DISCUSSION:
Although a particular application protocol may require that UDP
datagrams it receives must contain a UDP checksum, there is no
general requirement that received UDP datagrams contain UDP
checksums. Of course, if a UDP checksum is present in a received
datagram, the checksum must be verified and the datagram discarded
if the checksum is incorrect.
6.2 TRANSMISSION CONTROL PROTOCOL - TCP
The Transmission Control Protocol (TCP) is specified in [TRANS:2].
A router which implements TCP MUST be compliant, and SHOULD be
unconditionally compliant, with the requirements of section 4.2 of
[INTRO:2], except that:
o This specification does not specify the interfaces between the
various protocol layers. Thus, a router need not comply with the
following requirements of [INTRO:2] (except of course where
compliance is required for proper functioning of Application Layer
Almquist & Kastenholz [Page 106]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
protocols supported by the router):
Section 4.2.2.2:
Passing a received PSH flag to the application layer is now
OPTIONAL.
Section 4.2.2.4:
A TCP MUST inform the application layer asynchronously
whenever it receives an Urgent pointer and there was
previously no pending urgent data, or whenever the Urgent
pointer advances in the data stream. There MUST be a way for
the application to learn how much urgent data remains to be
read from the connection, or at least to determine whether or
not more urgent data remains to be read.
Section 4.2.3.5:
An application MUST be able to set the value for R2 for a
particular connection. For example, an interactive
application might set R2 to ``infinity,'' giving the user
control over when to disconnect.
Section 4.2.3.7:
If an application on a multihomed host does not specify the
local IP address when actively opening a TCP connection, then
the TCP MUST ask the IP layer to select a local IP address
before sending the (first) SYN. See the function
GET_SRCADDR() in Section 3.4.
Section 4.2.3.8:
An application MUST be able to specify a source route when it
actively opens a TCP connection, and this MUST take
precedence over a source route received in a datagram.
o For similar reasons, a router need not comply with any of the
requirements of section 4.2.4 of [INTRO:2].
o The requirements of section 4.2.2.6 of [INTRO:2] are amended as
follows: a router which implements the host portion of MTU
discovery (discussed in Section [4.2.3.3] of this memo) uses 536
as the default value of SendMSS only if the path MTU is unknown;
if the path MTU is known, the default value for SendMSS is the
path MTU - 40.
o The requirements of section 4.2.2.6 of [INTRO:2] are amended as
follows: ICMP Destination Unreachable codes 11 and 12 are
additional soft error conditions. Therefore, these message MUST
NOT cause TCP to abort a connection.
Almquist & Kastenholz [Page 107]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
It should particularly be noted that a TCP implementation in a
router must conform to the following requirements of [INTRO:2]:
o Providing a configurable TTL. [4.2.2.1]
o Providing an interface to configure keep-alive behavior, if
keep-alives are used at all. [4.2.3.6]
o Providing an error reporting mechanism, and the ability to
manage it. [4.2.4.1]
o Specifying type of service. [4.2.4.2]
The general paradigm applied is that if a particular interface is
visible outside the router, then all requirements for the
interface must be followed. For example, if a router provides a
telnet function, then it will be generating traffic, likely to be
routed in the external networks. Therefore, it must be able to
set the type of service correctly or else the telnet traffic may
not get through.
Almquist & Kastenholz [Page 108]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
7. APPLICATION LAYER - ROUTING PROTOCOLS
7.1 INTRODUCTION
An Autonomous System (AS) is defined as a set of routers all
belonging under the same authority and all subject to a consistent
set of routing policies. Interior gateway protocols (IGPs) are used
to distribute routing information inside of an AS (i.e. intra-AS
routing). Exterior gateway protocols are used to exchange routing
information between ASs (i.e. inter-AS routing).
7.1.1 Routing Security Considerations
Routing is one of the few places where the Robustness Principle
(be liberal in what you accept) does not apply. Routers should be
relatively suspicious in accepting routing data from other routing
systems.
A router SHOULD provide the ability to rank routing information
sources from most trustworthy to least trustworthy and to accept
routing information about any particular destination from the most
trustworthy sources first. This was implicit in the original
core/stub autonomous system routing model using EGP and various
interior routing protocols. It is even more important with the
demise of a central, trusted core.
A router SHOULD provide a mechanism to filter out obviously
invalid routes (such as those for net 127).
Routers MUST NOT by default redistribute routing data they do not
themselves use, trust or otherwise consider invalid. In rare
cases, it may be necessary to redistribute suspicious information,
but this should only happen under direct intercession by some
human agency.
In general, routers must be at least a little paranoid about
accepting routing data from anyone, and must be especially careful
when they distribute routing information provided to them by
another party. See below for specific guidelines.
Routers SHOULD IMPLEMENT peer-to-peer authentication for those
routing protocols that support them.
Almquist & Kastenholz [Page 109]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
7.1.2 Precedence
Except where the specification for a particular routing protocol
specifies otherwise, a router SHOULD set the IP Precedence value
for IP datagrams carrying routing traffic it originates to 6
(INTERNETWORK CONTROL).
DISCUSSION:
Routing traffic with VERY FEW exceptions should be the highest
precedence traffic on any network. If a system's routing
traffic can't get through, chances are nothing else will.
7.2 INTERIOR GATEWAY PROTOCOLS
7.2.1 INTRODUCTION
An Interior Gateway Protocol (IGP) is used to distribute routing
information between the various routers in a particular AS.
Independent of the algorithm used to implement a particular IGP,
it should perform the following functions:
(1) Respond quickly to changes in the internal topology of an AS
(2) Provide a mechanism such that circuit flapping does not cause
continuous routing updates
(3) Provide quick convergence to loop-free routing
(4) Utilize minimal bandwidth
(5) Provide equal cost routes to enable load-splitting
(6) Provide a means for authentication of routing updates
Current IGPs used in the internet today are characterized as
either being being based on a distance-vector or a link-state
algorithm.
Several IGPs are detailed in this section, including those most
commonly used and some recently developed protocols which may be
widely used in the future. Numerous other protocols intended for
use in intra-AS routing exist in the Internet community.
A router which implements any routing protocol (other than static
routes) MUST IMPLEMENT OSPF (see Section [7.2.2]) and MUST
Almquist & Kastenholz [Page 110]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
IMPLEMENT RIP (see Section [7.2.4]). A router MAY implement
additional IGPs.
7.2.2 OPEN SHORTEST PATH FIRST - OSPF
7.2.2.1 Introduction
Shortest Path First (SPF) based routing protocols are a class
of link-state algorithms which are based on the shortest-path
algorithm of Dijkstra. Although SPF based algorithms have been
around since the inception of the ARPANet, it is only recently
that they have achieved popularity both inside both the IP and
the OSI communities. In an SPF based system, each router
obtains an exact replica of the entire topology database via a
process known as flooding. Flooding insures a reliable
transfer of the information. Each individual router then runs
the SPF algorithm on its database to build the IP routing
table. The OSPF routing protocol is an implementation of an
SPF algorithm. The current version, OSPF version 2, is
specified in [ROUTE:1]. Note that RFC-1131, which describes
OSPF version 1, is obsolete.
Note that to comply with Section [8.3] of this memo, a router
which implements OSPF MUST implement the OSPF MIB [MGT:14].
7.2.2.2 Specific Issues
Virtual Links
There is a minor error in the specification that can cause
routing loops when all of the following conditions are
simultaneously true:
(1) A virtual link is configured through a transit area,
(2) Two separate paths exist, each having the same
endpoints, but one utilizing only non-virtual
backbone links, and the other using links in the
transit area, and
(3) The latter path is part of the (underlying physical
representation of the) configured virtual link,
routing loops may occur.
To prevent this, an implementation of OSPF SHOULD invoke
Almquist & Kastenholz [Page 111]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
the calculation in Section 16.3 of [ROUTE:1] whenever any
part of the path to the destination is a virtual link (the
specification only says this is necessary when the first
hop is a virtual link).
7.2.2.3 New Version of OSPF
As of this writing (4/4/94) there is a new version of the OSPF
specification that is winding its way through the Internet
standardization process. A prudent implementor will be aware
of this and develop an implementation accordingly.
The new version fixes several errors in the current
specification [ROUTE:1]. For this reason, implementors and
vendors ought to expect to upgrade to the new version
relatively soon. In particular, the following problems exist
in [ROUTE:1] that the new version fixes:
o In [ROUTE:1], certain configurations of virtual links can
lead to incorrect routing and/or routing loops. A fix for
this is specified in the new specification.
o In [ROUTE:1], OSPF external routes to For example, a router
cannot import into an OSPF domain external routes both for
192.2.0.0, 255.255.0.0 and 192.2.0.0, 255.255.255.0. Routes
such as these may become common with the deployment of CIDR
[INTERNET:15]. This has been addressed in the new OSPF
specification.
o In [ROUTE:1], OSPF Network-LSAs originated before a router
changes its OSPF Router ID can confuse the Dijkstra
calculation if the router again becomes Designated Router
for the network. This has been fixed.
7.2.3 INTERMEDIATE SYSTEM TO INTERMEDIATE SYSTEM - DUAL IS-IS
The American National Standards Institute (ANSI) X3S3.3 committee
has defined an intra-domain routing protocol. This protocol is
titled Intermediate System to Intermediate System Routeing
Exchange Protocol.
Its application to an IP network has been defined in [ROUTE:2],
and is referred to as Dual IS-IS (or sometimes as Integrated IS-
IS). IS-IS is based on a link-state (SPF) routing algorithm and
shares all the advantages for this class of protocols.
Almquist & Kastenholz [Page 112]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
7.2.4 ROUTING INFORMATION PROTOCOL - RIP
7.2.4.1 Introduction
RIP is specified in [ROUTE:3]. Although RIP is still quite
important in the Internet, it is being replaced in
sophisticated applications by more modern IGPs such as the ones
described above.
Another common use for RIP is as a router discovery protocol.
Section [4.3.3.10] briefly touches upon this subject.
7.2.4.2 Protocol Walk-Through
Dealing with changes in topology: [ROUTE:3], pp. 11
An implementation of RIP MUST provide a means for timing
out routes. Since messages are occasionally lost,
implementations MUST NOT invalidate a route based on a
single missed update.
Implementations MUST by default wait six times the update
interval before invalidating a route. A router MAY have
configuration options to alter this value.
DISCUSSION:
It is important to routing stability that all routers
in a RIP autonomous system use similar timeout value
for invalidating routes, and therefore it is important
that an implementation default to the timeout value
specified in the RIP specification. However, that
timeout value is overly conservative in environments
where packet loss is reasonably rare. In such an
environment, a network manager may wish to be able to
decrease the timeout period in order to promote faster
recovery from failures.
IMPLEMENTATION:
There is a very simple mechanism which a router may use
to meet the requirement to invalidate routes promptly
after they time out. Whenever the router scans the
routing table to see if any routes have timed out, it
also notes the age of the least recently updated route
which has not yet timed out. Subtracting this age from
Almquist & Kastenholz [Page 113]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
the timeout period gives the amount of time until the
router again needs to scan the table for timed out
routes.
Split Horizon: [ROUTE:3], pp. 14-15
An implementation of RIP MUST implement split horizon, a
scheme used for avoiding problems caused by including
routes in updates sent to the router from which they were
learned.
An implementation of RIP SHOULD implement Split horizon
with poisoned reverse, a variant of split horizon which
includes routes learned from a router sent to that router,
but sets their metric to infinity. Because of the routing
overhead which may be incurred by implementing split
horizon with poisoned reverse, implementations MAY include
an option to select whether poisoned reverse is in effect.
An implementation SHOULD limit the period of time in which
it sends reverse routes at an infinite metric.
IMPLEMENTATION:
Each of the following algorithms can be used to limit
the period of time for which poisoned reverse is
applied to a route. The first algorithm is more
complex but does a more complete job of limiting
poisoned reverse to only those cases where it is
necessary.
The goal of both algorithms is to ensure that poison
reverse is done for any destination whose route has
changed in the last Route Lifetime (typically 180
seconds), unless it can be sure that the previous route
used the same output interface. The Route Lifetime is
used because that is the amount of time RIP will keep
around an old route before declaring it stale.
The time intervals (and derived variables) used in the
following algorithms are as follows:
Tu The Update Timer; the number of seconds between
RIP updates. This typically defaults to 30
seconds.
Rl The Route Lifetime, in seconds. This is the
amount of time that a route is presumed to be
Almquist & Kastenholz [Page 114]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
good, without requiring an update. This typically
defaults to 180 seconds.
Ul The Update Loss; the number of consecutive updates
that have to be lost or fail to mention a route
before RIP deletes the route. Ul is calculated to
be (Rl/Tu)+1. The +1 is to account for the fact
that the first time the ifcounter is decremented
will be less than Tu seconds after it is
initialized. Typically, Ul will be 7: (180/30)+1.
In The value to set ifcounter to when a destination
is newly learned. This value is Ul-4, where the 4
is RIP's garbage collection timer/30
The first algorithm is:
- Associated with each destination is a counter, called
the ifcounter below. Poison reverse is done for any
route whose destination's ifcounter is greater than
zero.
- After a regular (not triggered or in response to a
request) update is sent, all of the non-zero
ifcounters are decremented by one.
- When a route to a destination is created, its
ifcounter is set as follows:
- If the new route is superseding a valid route, and
the old route used a different (logical) output
interface, then the ifcounter is set to Ul.
- If the new route is superseding a stale route, and
the old route used a different (logical) output
interface, then the ifcounter is set to MAX(0, Ul
- INT(seconds that the route has been stale/Ut).
- If there was no previous route to the destination,
the ifcounter is set to In.
- Otherwise, the ifcounter is set to zero
- RIP also maintains a timer, called the resettimer
below. Poison reverse is done on all routes
whenever resettimer has not expired (regardless of
Almquist & Kastenholz [Page 115]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
the ifcounter values).
- When RIP is started, restarted, reset, or otherwise
has its routing table cleared, it sets the
resettimer to go off in Rl seconds.
The second algorithm is identical to the first except
that:
- The rules which set the ifcounter to non-zero values
are changed to always set it to Rl/Tu, and
- The resettimer is eliminated.
Triggered updates: [ROUTE:3], pp. 15-16; pp. 29
Triggered updates (also called flash updates) are a
mechanism for immediately notifying a router's
neighbors when the router adds or deletes routes or
changes their metrics. A router MUST send a triggered
update when routes are deleted or their metrics are
increased. A router MAY send a triggered update when
routes are added or their metrics decreased.
Since triggered updates can cause excessive routing
overhead, implementations MUST use the following
mechanism to limit the frequency of triggered updates:
(1) When a router sends a triggered update, it sets a
timer to a random time between one and five
seconds in the future. The router must not
generate additional triggered updates before this
timer expires.
(2) If the router would generate a triggered update
during this interval it sets a flag indicating
that a triggered update is desired. The router
also logs the desired triggered update.
(3) When the triggered update timer expires, the
router checks the triggered update flag. If the
flag is set then the router sends a single
triggered update which includes all of the changes
that were logged. The router then clears the flag
and, since a triggered update was sent, restarts
this algorithm.
Almquist & Kastenholz [Page 116]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(4) The flag is also cleared whenever a regular update
is sent.
Triggered updates SHOULD include all routes that have
changed since the most recent regular (non-triggered)
update. Triggered updates MUST NOT include routes that
have not changed since the most recent regular update.
DISCUSSION:
Sending all routes, whether they have changed
recently or not, is unacceptable in triggered
updates because the tremendous size of many Internet
routing tables could otherwise result in
considerable bandwidth being wasted on triggered
updates.
Use of UDP: [ROUTE:3], pp. 18-19.
RIP packets sent to an IP broadcast address SHOULD have
their initial TTL set to one.
Note that to comply with Section [6.1] of this memo, a
router MUST use UDP checksums in RIP packets which it
originates, MUST discard RIP packets received with
invalid UDP checksums, but MUST not discard received
RIP packets simply because they do not contain UDP
checksums.
Addressing Considerations: [ROUTE:3], pp. 22
A RIP implementation SHOULD support host routes. If it
does not, it MUST (as described on page 27 of
[ROUTE:3]) ignore host routes in received updates. A
router MAY log ignored hosts routes.
The special address 0.0.0.0 is used to describe a
default route. A default route is used as the route of
last resort (i.e. when a route to the specific net does
not exist in the routing table). The router MUST be
able to create a RIP entry for the address 0.0.0.0.
Input Processing - Response: [ROUTE:3], pp. 26
When processing an update, the following validity
checks MUST be performed:
o The response MUST be from UDP port 520.
Almquist & Kastenholz [Page 117]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
o The source address MUST be on a directly connected
subnet (or on a directly connected, non-subnetted
network) to be considered valid.
o The source address MUST NOT be one of the router's
addresses.
DISCUSSION:
Some networks, media, and interfaces allow a
sending node to receive packets that it
broadcasts. A router must not accept its own
packets as valid routing updates and process
them. The last requirement prevents a router
from accepting its own routing updates and
processing them (on the assumption that they were
sent by some other router on the network).
An implementation MUST NOT replace an existing route if
the metric received is equal to the existing metric
except in accordance with the following heuristic.
An implementation MAY choose to implement the following
heuristic to deal with the above situation. Normally,
it is useless to change the route to a network from one
router to another if both are advertised at the same
metric. However, the route being advertised by one of
the routers may be in the process of timing out.
Instead of waiting for the route to timeout, the new
route can be used after a specified amount of time has
elapsed. If this heuristic is implemented, it MUST wait
at least halfway to the expiration point before the new
route is installed.
7.2.4.3 Specific Issues
RIP Shutdown
An implementation of RIP SHOULD provide for a graceful
shutdown using the following steps:
(1) Input processing is terminated,
(2) Four updates are generated at random intervals of
between two and four seconds, These updates contain
all routes that were previously announced, but with
some metric changes. Routes that were being
Almquist & Kastenholz [Page 118]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
announced at a metric of infinity should continue to
use this metric. Routes that had been announced with
a non-infinite metric should be announced with a
metric of 15 (infinity - 1).
DISCUSSION:
The metric used for the above really ought to be
16 (infinity); setting it to 15 is a kludge to
avoid breaking certain old hosts which wiretap the
RIP protocol. Such a host will (erroneously)
abort a TCP connection if it tries to send a
datagram on the connection while the host has no
route to the destination (even if the period when
the host has no route lasts only a few seconds
while RIP chooses an alternate path to the
destination).
RIP Split Horizon and Static Routes
Split horizon SHOULD be applied to static routes by
default. An implementation SHOULD provide a way to
specify, per static route, that split horizon should not
be applied to this route.
7.2.5 GATEWAY TO GATEWAY PROTOCOL - GGP
The Gateway to Gateway protocol is considered obsolete and SHOULD
NOT be implemented.
7.3 EXTERIOR GATEWAY PROTOCOLS
7.3.1 INTRODUCTION
Exterior Gateway Protocols are utilized for inter-Autonomous
System routing to exchange reachability information for a set of
networks internal to a particular autonomous system to a
neighboring autonomous system.
The area of inter-AS routing is a current topic of research inside
the Internet Engineering Task Force. The Exterior Gateway
Protocol (EGP) described in Section [7.3.3] has traditionally been
the inter-AS protocol of choice. The Border Gateway Protocol
(BGP) eliminates many of the restrictions and limitations of EGP,
and is therefore growing rapidly in popularity. A router is not
required to implement any inter-AS routing protocol. However, if
a router does implement EGP it also MUST IMPLEMENT BGP.
Almquist & Kastenholz [Page 119]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Although it was not designed as an exterior gateway protocol, RIP
(described in Section [7.2.4]) is sometimes used for inter-AS
routing.
7.3.2 BORDER GATEWAY PROTOCOL - BGP
7.3.2.1 Introduction
The Border Gateway Protocol (BGP) is an inter-AS routing
protocol which exchanges network reachability information with
other BGP speakers. The information for a network includes the
complete list of ASs that traffic must transit to reach that
network. This information can then be used to insure loop-free
paths. This information is sufficient to construct a graph of
AS connectivity from which routing loops may be pruned and some
policy decisions at the AS level may be enforced.
BGP is defined by [ROUTE:4]. [ROUTE:5] specifies the proper
usage of BGP in the Internet, and provides some useful
implementation hints and guidelines. [ROUTE:12] and [ROUTE:13]
provide additional useful information.
To comply with Section [8.3] of this memo, a router which
implements BGP MUST also implement the BGP MIB [MGT:15].
To characterize the set of policy decisions that can be
enforced using BGP, one must focus on the rule that an AS
advertises to its neighbor ASs only those routes that it itself
uses. This rule reflects the hop-by-hop routing paradigm
generally used throughout the current Internet. Note that some
policies cannot be supported by the hop-by-hop routing paradigm
and thus require techniques such as source routing to enforce.
For example, BGP does not enable one AS to send traffic to a
neighbor AS intending that that traffic take a different route
from that taken by traffic originating in the neighbor AS. On
the other hand, BGP can support any policy conforming to the
hop-by-hop routing paradigm.
Implementors of BGP are strongly encouraged to follow the
recommendations outlined in Section 6 of [ROUTE:5].
7.3.2.2 Protocol Walk-through
While BGP provides support for quite complex routing policies
(as an example see Section 4.2 in [ROUTE:5]), it is not
required for all BGP implementors to support such policies. At
Almquist & Kastenholz [Page 120]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
a minimum, however, a BGP implementation:
(1) SHOULD allow an AS to control announcements of the BGP
learned routes to adjacent AS's. Implementations SHOULD
support such control with at least the granularity of a
single network. Implementations SHOULD also support such
control with the granularity of an autonomous system,
where the autonomous system may be either the autonomous
system that originated the route, or the autonomous system
that advertised the route to the local system (adjacent
autonomous system).
(2) SHOULD allow an AS to prefer a particular path to a
destination (when more than one path is available). Such
function SHOULD be implemented by allowing system
administrator to assign weights to Autonomous Systems, and
making route selection process to select a route with the
lowest weight (where weight of a route is defined as a sum
of weights of all AS's in the AS_PATH path attribute
associated with that route).
(3) SHOULD allow an AS to ignore routes with certain AS's in
the AS_PATH path attribute. Such function can be
implemented by using technique outlined in (2), and by
assigning infinity as weights for such AS's. The route
selection process must ignore routes that have weight
equal to infinity.
7.3.3 EXTERIOR GATEWAY PROTOCOL - EGP
7.3.3.1 Introduction
The Exterior Gateway Protocol (EGP) specifies an EGP which is
used to exchange reachability information between routers of
the same or differing autonomous systems. EGP is not considered
a routing protocol since there is no standard interpretation
(i.e. metric) for the distance fields in the EGP update
message, so distances are comparable only among routers of the
same AS. It is however designed to provide high-quality
reachability information, both about neighbor routers and about
routes to non-neighbor routers.
EGP is defined by [ROUTE:6]. An implementor almost certainly
wants to read [ROUTE:7] and [ROUTE:8] as well, for they contain
useful explanations and background material.
Almquist & Kastenholz [Page 121]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
The present EGP specification has serious limitations, most
importantly a restriction which limits routers to
advertising only those networks which are reachable from
within the router's autonomous system. This restriction
against propagating third party EGP information is to
prevent long-lived routing loops. This effectively limits
EGP to a two-level hierarchy.
RFC-975 is not a part of the EGP specification, and should
be ignored.
7.3.3.2 Protocol Walk-through
Indirect Neighbors: RFC-888, pp. 26
An implementation of EGP MUST include indirect neighbor
support.
Polling Intervals: RFC-904, pp. 10
The interval between Hello command retransmissions and the
interval between Poll retransmissions SHOULD be configurable
but there MUST be a minimum value defined.
The interval at which an implementation will respond to
Hello commands and Poll commands SHOULD be configurable but
there MUST be a minimum value defined.
Network Reachability: RFC-904, pp. 15
An implementation MUST default to not providing the external
list of routers in other autonomous systems; only the
internal list of routers together with the nets which are
reachable via those routers should be included in an Update
Response/Indication packet. However, an implementation MAY
elect to provide a configuration option enabling the
external list to be provided. An implementation MUST NOT
include in the external list routers which were learned via
the external list provided by a router in another autonomous
system. An implementation MUST NOT send a network back to
the autonomous system from which it is learned, i.e. it MUST
do split-horizon on an autonomous system level.
If more than 255 internal or 255 external routers need to be
Almquist & Kastenholz [Page 122]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
specified in a Network Reachability update, the networks
reachable from routers that can not be listed MUST be merged
into the list for one of the listed routers. Which of the
listed routers is chosen for this purpose SHOULD be user
configurable, but SHOULD default to the source address of
the EGP update being generated.
An EGP update contains a series of blocks of network
numbers, where each block contains a list of network numbers
reachable at a particular distance via a particular router.
If more than 255 networks are reachable at a particular
distance via a particular router, they are split into
multiple blocks (all of which have the same distance).
Similarly, if more than 255 blocks are required to list the
networks reachable via a particular router, the router's
address is listed as many times as necessary to include all
of the blocks in the update.
Unsolicited Updates: RFC-904, pp. 16
If a network is shared with the peer, an implementation MUST
send an unsolicited update upon entry to the Up state
assuming that the source network is the shared network.
Neighbor Reachability: RFC-904, pp. 6, 13-15
The table on page 6 which describes the values of j and k
(the neighbor up and down thresholds) is incorrect. It is
reproduced correctly here:
Name Active Passive Description
-----------------------------------------------
j 3 1 neighbor-up threshold
k 1 0 neighbor-down threshold
The value for k in passive mode also specified incorrectly
in RFC-904, pp. 14 The values in parenthesis should read:
(j = 1, k = 0, and T3/T1 = 4)
As an optimization, an implementation can refrain from
sending a Hello command when a Poll is due. If an
implementation does so, it SHOULD provide a user
configurable option to disable this optimization.
Abort timer: RFC-904, pp. 6, 12, 13
Almquist & Kastenholz [Page 123]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
An EGP implementation MUST include support for the abort
timer (as documented in section 4.1.4 of RFC-904). An
implementation SHOULD use the abort timer in the Idle state
to automatically issue a Start event to restart the protocol
machine. Recommended values are P4 for a critical error
(Administratively prohibited, Protocol Violation and
Parameter Problem) and P5 for all others. The abort timer
SHOULD NOT be started when a Stop event was manually
initiated (such as via a network management protocol).
Cease command received in Idle state: RFC-904, pp. 13
When the EGP state machine is in the Idle state, it MUST
reply to Cease commands with a Cease-ack response.
Hello Polling Mode: RFC-904, pp. 11
An EGP implementation MUST include support for both active
and passive polling modes.
Neighbor Acquisition Messages: RFC-904, pp. 18
As noted the Hello and Poll Intervals should only be present
in Request and Confirm messages. Therefore the length of an
EGP Neighbor Acquisition Message is 14 bytes for a Request
or Confirm message and 10 bytes for a Refuse, Cease or
Cease-ack message. Implementations MUST NOT send 14 bytes
for Refuse, Cease or Cease-ack messages but MUST allow for
implementations that send 14 bytes for these messages.
Sequence Numbers: RFC-904, pp. 10
Response or indication packets received with a sequence
number not equal to S MUST be discarded. The send sequence
number S MUST be incremented just before the time a Poll
command is sent and at no other times.
7.3.4 INTER-AS ROUTING WITHOUT AN EXTERIOR PROTOCOL
It is possible to exchange routing information between two
autonomous systems or routing domains without using a standard
exterior routing protocol between two separate, standard interior
routing protocols. The most common way of doing this is to run
both interior protocols independently in one of the border routers
with an exchange of route information between the two processes.
As with the exchange of information from an EGP to an IGP, without
Almquist & Kastenholz [Page 124]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
appropriate controls these exchanges of routing information
between two IGPs in a single router are subject to creation of
routing loops.
7.4 STATIC ROUTING
Static routing provides a means of explicitly defining the next hop
from a router for a particular destination. A router SHOULD provide
a means for defining a static route to a destination, where the
destination is defined by an address and an address mask. The
mechanism SHOULD also allow for a metric to be specified for each
static route.
A router which supports a dynamic routing protocol MUST allow static
routes to be defined with any metric valid for the routing protocol
used. The router MUST provide the ability for the user to specify a
list of static routes which may or may not be propagated via the
routing protocol. In addition, a router SHOULD support the following
additional information if it supports a routing protocol that could
make use of the information. They are:
o TOS,
o Subnet mask, or
o A metric specific to a given routing protocol that can import the
route.
DISCUSSION:
We intend that one needs to support only the things useful to the
given routing protocol. The need for TOS should not require the
vendor to implement the other parts if they are not used.
Whether a router prefers a static route over a dynamic route (or vice
versa) or whether the associated metrics are used to choose between
conflicting static and dynamic routes SHOULD be configurable for each
static route.
A router MUST allow a metric to be assigned to a static route for
each routing domain that it supports. Each such metric MUST be
explicitly assigned to a specific routing domain. For example:
route 36.0.0.0 255.0.0.0 via 192.19.200.3 rip metric 3
route 36.21.0.0 255.255.0.0 via 192.19.200.4 ospf inter-area
metric 27
Almquist & Kastenholz [Page 125]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
route 36.22.0.0 255.255.0.0 via 192.19.200.5 egp 123 metric 99
route 36.23.0.0 255.255.0.0 via 192.19.200.6 igrp 47 metric 1 2
3 4 5
DISCUSSION:
It has been suggested that, ideally, static routes should have
preference values rather than metrics (since metrics can only be
compared with metrics of other routes in the same routing domain,
the metric of a static route could only be compared with metrics
of other static routes). This is contrary to some current
implementations, where static routes really do have metrics, and
those metrics are used to determine whether a particular dynamic
route overrides the static route to the same destination. Thus,
this document uses the term metric rather than preference.
This technique essentially makes the static route into a RIP
route, or an OSPF route (or whatever, depending on the domain of
the metric). Thus, the route lookup algorithm of that domain
applies. However, this is NOT route leaking, in that coercing a
static route into a dynamic routing domain does not authorize the
router to redistribute the route into the dynamic routing domain.
For static routes not put into a specific routing domain, the
route lookup algorithm is:
(1) Basic match
(2) Longest match
(3) Weak TOS (if TOS supported)
(4) Best metric (where metric are implementation-defined)
The last step may not be necessary, but it's useful in the case
where you want to have a primary static route over one interface
and a secondary static route over an alternate interface, with
failover to the alternate path if the interface for the primary
route fails.
Almquist & Kastenholz [Page 126]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
7.5 FILTERING OF ROUTING INFORMATION
Each router within a network makes forwarding decisions based upon
information contained within its forwarding database. In a simple
network the contents of the database may be statically configured.
As the network grows more complex, the need for dynamic updating of
the forwarding database becomes critical to the efficient operation
of the network.
If the data flow through a network is to be as efficient as possible,
it is necessary to provide a mechanism for controlling the
propagation of the information a router uses to build its forwarding
database. This control takes the form of choosing which sources of
routing information should be trusted and selecting which pieces of
the information to believe. The resulting forwarding database is a
filtered version of the available routing information.
In addition to efficiency, controlling the propagation of routing
information can reduce instability by preventing the spread of
incorrect or bad routing information.
In some cases local policy may require that complete routing
information not be widely propagated.
These filtering requirements apply only to non-SPF-based protocols
(and therefore not at all to routers which don't implement any
distance vector protocols).
7.5.1 Route Validation
A router SHOULD log as an error any routing update advertising a
route to network zero, subnet zero, or subnet -1, unless the
routing protocol from which the update was received uses those
values to encode special routes (such as default routes).
7.5.2 Basic Route Filtering
Filtering of routing information allows control of paths used by a
router to forward packets it receives. A router should be
selective in which sources of routing information it listens to
and what routes it believes. Therefore, a router MUST provide the
ability to specify:
o On which logical interfaces routing information will be
accepted and which routes will be accepted from each logical
interface.
Almquist & Kastenholz [Page 127]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
o Whether all routes or only a default route is advertised on a
logical interface.
Some routing protocols do not recognize logical interfaces as a
source of routing information. In such cases the router MUST
provide the ability to specify
o from which other routers routing information will be accepted.
For example, assume a router connecting one or more leaf networks
to the main portion or backbone of a larger network. Since each
of the leaf networks has only one path in and out, the router can
simply send a default route to them. It advertises the leaf
networks to the main network.
7.5.3 Advanced Route Filtering
As the topology of a network grows more complex, the need for more
complex route filtering arises. Therefore, a router SHOULD
provide the ability to specify independently for each routing
protocol:
o Which logical interfaces or routers routing information
(routes) will be accepted from and which routes will be
believed from each other router or logical interface,
o Which routes will be sent via which logical interface(s), and
o Which routers routing information will be sent to, if this is
supported by the routing protocol in use.
In many situations it is desirable to assign a reliability
ordering to routing information received from another router
instead of the simple believe or don't believe choice listed in
the first bullet above. A router MAY provide the ability to
specify:
o A reliability or preference to be assigned to each route
received. A route with higher reliability will be chosen over
one with lower reliability regardless of the routing metric
associated with each route.
If a router supports assignment of preferences, the router MUST
NOT propagate any routes it does not prefer as first party
information. If the routing protocol being used to propagate the
routes does not support distinguishing between first and third
party information, the router MUST NOT propagate any routes it
Almquist & Kastenholz [Page 128]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
does not prefer.
DISCUSSION:
For example, assume a router receives a route to network C from
router R and a route to the same network from router S. If
router R is considered more reliable than router S traffic
destined for network C will be forwarded to router R regardless
of the route received from router S.
Routing information for routes which the router does not use
(router S in the above example) MUST NOT be passed to any other
router.
7.6 INTER-ROUTING-PROTOCOL INFORMATION EXCHANGE
Routers MUST be able to exchange routing information between separate
IP interior routing protocols, if independent IP routing processes
can run in the same router. Routers MUST provide some mechanism for
avoiding routing loops when routers are configured for bi-directional
exchange of routing information between two separate interior routing
processes. Routers MUST provide some priority mechanism for choosing
routes from among independent routing processes. Routers SHOULD
provide administrative control of IGP-IGP exchange when used across
administrative boundaries.
Routers SHOULD provide some mechanism for translating or transforming
metrics on a per network basis. Routers (or routing protocols) MAY
allow for global preference of exterior routes imported into an IGP.
DISCUSSION:
Different IGPs use different metrics, requiring some translation
technique when introducing information from one protocol into
another protocol with a different form of metric. Some IGPs can
run multiple instances within the same router or set of routers.
In this case metric information can be preserved exactly or
translated.
There are at least two techniques for translation between
different routing processes. The static (or reachability)
approach uses the existence of a route advertisement in one IGP to
generate a route advertisement in the other IGP with a given
metric. The translation or tabular approach uses the metric in
one IGP to create a metric in the other IGP through use of either
a function (such as adding a constant) or a table lookup.
Bi-directional exchange of routing information is dangerous
without control mechanisms to limit feedback. This is the same
Almquist & Kastenholz [Page 129]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
problem that distance vector routing protocols must address with
the split horizon technique and that EGP addresses with the
third-party rule. Routing loops can be avoided explicitly through
use of tables or lists of permitted/denied routes or implicitly
through use of a split horizon rule, a no-third-party rule, or a
route tagging mechanism. Vendors are encouraged to use implicit
techniques where possible to make administration easier for
network operators.
Almquist & Kastenholz [Page 130]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
8. APPLICATION LAYER - NETWORK MANAGEMENT PROTOCOLS
Note that this chapter supersedes any requirements stated in section 6.3
of [INTRO:3].
8.1 The Simple Network Management Protocol - SNMP
8.1.1 SNMP Protocol Elements
Routers MUST be manageable by SNMP [MGT:3]. The SNMP MUST operate
using UDP/IP as its transport and network protocols. Others MAY
be supported (e.g., see [MGT:25, MGT:26, MGT:27, and MGT:28]).
SNMP management operations MUST operate as if the SNMP was
implemented on the router itself. Specifically, management
operations MUST be effected by sending SNMP management requests to
any of the IP addresses assigned to any of the router's
interfaces. The actual management operation may be performed
either by the router or by a proxy for the router.
DISCUSSION:
This wording is intended to allow management either by proxy,
where the proxy device responds to SNMP packets which have one
of the router's IP addresses in the packets destination address
field, or the SNMP is implemented directly in the router itself
and receives packets and responds to them in the proper manner.
It is important that management operations can be sent to one
of the router's IP Addresses. In diagnosing network problems
the only thing identifying the router that is available may be
one of the router's IP address; obtained perhaps by looking
through another router's routing table.
All SNMP operations (get, get-next, get-response, set, and trap)
MUST be implemented.
Routers MUST provide a mechanism for rate-limiting the generation
of SNMP trap messages. Routers MAY provide this mechanism via the
algorithms for asynchronous alert management described in [MGT:5].
DISCUSSION:
Although there is general agreement about the need to rate-
limit traps, there is not yet consensus on how this is best
achieved. The reference cited is considered experimental.
Almquist & Kastenholz [Page 131]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
8.2 Community Table
For the purposes of this specification, we assume that there is an
abstract `community table' in the router. This table contains
several entries, each entry for a specific community and containing
the parameters necessary to completely define the attributes of that
community. The actual implementation method of the abstract
community table is, of course, implementation specific.
A router's community table MUST allow for at least one entry and
SHOULD allow for at least two entries.
DISCUSSION:
A community table with zero capacity is useless. It means that
the router will not recognize any communities and, therefore, all
SNMP operations will be rejected.
Therefore, one entry is the minimal useful size of the table.
Having two entries allows one entry to be limited to read-only
access while the other would have write capabilities.
Routers MUST allow the user to manually (i.e., without using SNMP)
examine, add, delete and change entries in the SNMP community table.
The user MUST be able to set the community name. The user MUST be
able to configure communities as read-only (i.e., they do not allow
SETs) or read-write (i.e., they do allow SETs).
The user MUST be able to define at least one IP address to which
traps are sent for each community. These addresses MUST be definable
on a per-community basis. Traps MUST be enablable or disablable on a
per-community basis.
A router SHOULD provide the ability to specify a list of valid
network managers for any particular community. If enabled, a router
MUST validate the source address of the SNMP datagram against the
list and MUST discard the datagram if its address does not appear.
If the datagram is discarded the router MUST take all actions
appropriate to an SNMP authentication failure.
DISCUSSION:
This is a rather limited authentication system, but coupled with
various forms of packet filtering may provide some small measure
of increased security.
The community table MUST be saved in non-volatile storage.
The initial state of the community table SHOULD contain one entry,
Almquist & Kastenholz [Page 132]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
with the community name string public and read-only access. The
default state of this entry MUST NOT send traps. If it is
implemented, then this entry MUST remain in the community table until
the administrator changes it or deletes it.
DISCUSSION:
By default, traps are not sent to this community. Trap PDUs are
sent to unicast IP addresses. This address must be configured into
the router in some manner. Before the configuration occurs, there
is no such address, so to whom should the trap be sent? Therefore
trap sending to the public community defaults to be disabled. This
can, of course, be changed by an administrative operation once the
router is operational.
8.3 Standard MIBS
All MIBS relevant to a router's configuration are to be implemented.
To wit:
o The System, Interface, IP, ICMP, and UDP groups of MIB-II [MGT:2]
MUST be implemented.
o The Interface Extensions MIB [MGT:18] MUST be implemented.
o The IP Forwarding Table MIB [MGT:20] MUST be implemented.
o If the router implements TCP (e.g. for Telnet) then the TCP group
of MIB-II [MGT:2] MUST be implemented.
o If the router implements EGP then the EGP group of MIB-II [MGT:2]
MUST be implemented.
o If the router supports OSPF then the OSPF MIB [MGT:14] MUST be
implemented.
o If the router supports BGP then the BGP MIB [MGT:15] MUST be
implemented.
o If the router has Ethernet, 802.3, or StarLan interfaces then the
Ethernet-Like MIB [MGT:6] MUST be implemented.
o If the router has 802.4 interfaces then the 802.4 MIB [MGT:7] MAY
be implemented.
o If the router has 802.5 interfaces then the 802.5 MIB [MGT:8] MUST
be implemented.
Almquist & Kastenholz [Page 133]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
o If the router has FDDI interfaces that implement ANSI SMT 7.3 then
the FDDI MIB [MGT:9] MUST be implemented.
o If the router has FDDI interfaces that implement ANSI SMT 6.2 then
the FDDI MIB [MGT:29] MUST be implemented.
o If the router has RS-232 interfaces then the RS-232 [MGT:10] MIB
MUST be implemented.
o If the router has T1/DS1 interfaces then the T1/DS1 MIB [MGT:16]
MUST be implemented.
o If the router has T3/DS3 interfaces then the T3/DS3 MIB [MGT:17]
MUST be implemented.
o If the router has SMDS interfaces then the SMDS Interface Protocol
MIB [MGT:19] MUST be implemented.
o If the router supports PPP over any of its interfaces then the PPP
MIBs [MGT:11], [MGT:12], and [MGT:13] MUST be implemented.
o If the router supports RIP Version 2 then the RIP Version 2 MIB
[MGT:21] MUST be implemented.
o If the router supports X.25 over any of its interfaces then the
X.25 MIBs [MGT:22, MGT:23 and MGT:24] MUST be implemented.
8.4 Vendor Specific MIBS
The Internet Standard and Experimental MIBs do not cover the entire
range of statistical, state, configuration and control information
that may be available in a network element. This information is,
never the less, extremely useful. Vendors of routers (and other
network devices) generally have developed MIB extensions that cover
this information. These MIB extensions are called Vendor Specific
MIBs.
The Vendor Specific MIB for the router MUST provide access to all
statistical, state, configuration, and control information that is
not available through the Standard and Experimental MIBs that have
been implemented. This information MUST be available for both
monitoring and control operations.
Almquist & Kastenholz [Page 134]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
The intent of this requirement is to provide the ability to do
anything on the router via SNMP that can be done via a console. A
certain minimal amount of configuration is necessary before SNMP
can operate (e.g., the router must have an IP address). This
initial configuration can not be done via SNMP. However, once the
initial configuration is done, full capabilities ought to be
available via network management.
The vendor SHOULD make available the specifications for all Vendor
Specific MIB variables. These specifications MUST conform to the SMI
[MGT:1] and the descriptions MUST be in the form specified in
[MGT:4].
DISCUSSION:
Making the Vendor Specific MIB available to the user is necessary.
Without this information the users would not be able to configure
their network management systems to be able to access the Vendor
Specific parameters. These parameters would then be useless.
The format of the MIB specification is also specified. Parsers
which read MIB specifications and generate the needed tables for
the network management station are available. These parsers
generally understand only the standard MIB specification format.
8.5 Saving Changes
Parameters altered by SNMP MAY be saved to non-volatile storage.
DISCUSSION:
Reasons why this requirement is a MAY:
o The exact physical nature of non-volatile storage is not
specified in this document. Hence, parameters may be saved in
NVRAM/EEPROM, local floppy or hard disk, or in some TFTP file
server or BOOTP server, etc. Suppose that that this information
is in a file that is retrieved via TFTP. In that case, a change
made to a configuration parameter on the router would need to
be propagated back to the file server holding the configuration
file. Alternatively, the SNMP operation would need to be
directed to the file server, and then the change somehow
propagated to the router. The answer to this problem does not
seem obvious.
This also places more requirements on the host holding the
configuration information than just having an available tftp
Almquist & Kastenholz [Page 135]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
server, so much more that its probably unsafe for a vendor to
assume that any potential customer will have a suitable host
available.
o The timing of committing changed parameters to non-volatile
storage is still an issue for debate. Some prefer to commit all
changes immediately. Others prefer to commit changes to non-
volatile storage only upon an explicit command.
Almquist & Kastenholz [Page 136]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
9. APPLICATION LAYER - MISCELLANEOUS PROTOCOLS
For all additional application protocols that a router implements, the
router MUST be compliant and SHOULD be unconditionally compliant with
the relevant requirements of [INTRO:3].
9.1 BOOTP
9.1.1 Introduction
The Bootstrap Protocol (BOOTP) is a UDP/IP-based protocol which
allows a booting host to configure itself dynamically and without
user supervision. BOOTP provides a means to notify a host of its
assigned IP address, the IP address of a boot server host, and the
name of a file to be loaded into memory and executed ([APPL:1]).
Other configuration information such as the local subnet mask, the
local time offset, the addresses of default routers, and the
addresses of various Internet servers can also be communicated to
a host using BOOTP ([APPL:2]).
9.1.2 BOOTP Relay Agents
In many cases, BOOTP clients and their associated BOOTP server(s)
do not reside on the same IP network or subnet. In such cases, a
third-party agent is required to transfer BOOTP messages between
clients and servers. Such an agent was originally referred to as
a BOOTP forwarding agent. However, in order to avoid confusion
with the IP forwarding function of a router, the name BOOTP relay
agent has been adopted instead.
DISCUSSION:
A BOOTP relay agent performs a task which is distinct from a
router's normal IP forwarding function. While a router
normally switches IP datagrams between networks more-or-less
transparently, a BOOTP relay agent may more properly be thought
to receive BOOTP messages as a final destination and then
generate new BOOTP messages as a result. One should resist the
notion of simply forwarding a BOOTP message straight through
like a regular packet.
This relay-agent functionality is most conveniently located in the
routers which interconnect the clients and servers (although it
may alternatively be located in a host which is directly connected
to the client subnet).
A router MAY provide BOOTP relay-agent capability. If it does, it
Almquist & Kastenholz [Page 137]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
MUST conform to the specifications in [APPL:3].
Section [5.2.3] discussed the circumstances under which a packet
is delivered locally (to the router). All locally delivered UDP
messages whose UDP destination port number is BOOTPS (67) are
considered for special processing by the router's logical BOOTP
relay agent.
Sections [4.2.2.11] and [5.3.7] discussed invalid IP source
addresses. According to these rules, a router must not forward
any received datagram whose IP source address is 0.0.0.0.
However, routers which support a BOOTP relay agent MUST accept for
local delivery to the relay agent BOOTREQUEST messages whose IP
source address is 0.0.0.0.
Almquist & Kastenholz [Page 138]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
10. OPERATIONS AND MAINTENANCE
This chapter supersedes any requirements stated in section 6.2 of
[INTRO:3].
Facilities to support operation and maintenance (O&M) activities form an
essential part of any router implementation. Although these functions
do not seem to relate directly to interoperability, they are essential
to the network manager who must make the router interoperate and must
track down problems when it doesn't. This chapter also includes some
discussion of router initialization and of facilities to assist network
managers in securing and accounting for their networks.
10.1 Introduction
The following kinds of activities are included under router O&M:
o Diagnosing hardware problems in the router's processor, in its
network interfaces, or in its connected networks, modems, or
communication lines.
o Installing new hardware
o Installing new software.
o Restarting or rebooting the router after a crash.
o Configuring (or reconfiguring) the router.
o Detecting and diagnosing Internet problems such as congestion,
routing loops, bad IP addresses, black holes, packet avalanches,
and misbehaved hosts.
o Changing network topology, either temporarily (e.g., to bypass a
communication line problem) or permanently.
o Monitoring the status and performance of the routers and the
connected networks.
o Collecting traffic statistics for use in (Inter-)network planning.
o Coordinating the above activities with appropriate vendors and
telecommunications specialists.
Routers and their connected communication lines are often operated as
a system by a centralized O&M organization. This organization may
maintain a (Inter-)network operation center, or NOC, to carry out its
Almquist & Kastenholz [Page 139]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
O&M functions. It is essential that routers support remote control
and monitoring from such a NOC through an Internet path, since
routers might not be connected to the same network as their NOC.
Since a network failure may temporarily preclude network access, many
NOCs insist that routers be accessible for network management via an
alternative means, often dialup modems attached to console ports on
the routers.
Since an IP packet traversing an internet will often use routers
under the control of more than one NOC, Internet problem diagnosis
will often involve cooperation of personnel of more than one NOC. In
some cases, the same router may need to be monitored by more than one
NOC, but only if necessary, because excessive monitoring could impact
a router's performance.
The tools available for monitoring at a NOC may cover a wide range of
sophistication. Current implementations include multi-window, dynamic
displays of the entire router system. The use of AI techniques for
automatic problem diagnosis is proposed for the future.
Router O&M facilities discussed here are only a part of the large and
difficult problem of Internet management. These problems encompass
not only multiple management organizations, but also multiple
protocol layers. For example, at the current stage of evolution of
the Internet architecture, there is a strong coupling between host
TCP implementations and eventual IP-level congestion in the router
system [OPER:1]. Therefore, diagnosis of congestion problems will
sometimes require the monitoring of TCP statistics in hosts. There
are currently a number of R&D efforts in progress in the area of
Internet management and more specifically router O&M. These R&D
efforts have already produced standards for router O&M. This is also
an area in which vendor creativity can make a significant
contribution.
10.2 Router Initialization
10.2.1 Minimum Router Configuration
There exists a minimum set of conditions that must be satisfied
before a router may forward packets. A router MUST NOT enable
forwarding on any physical interface unless either:
(1) The router knows the IP address and associated subnet mask of
at least one logical interface associated with that physical
interface, or
Almquist & Kastenholz [Page 140]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(2) The router knows that the interface is an unnumbered
interface and also knows its router-id.
These parameters MUST be explicitly configured:
o A router MUST NOT use factory-configured default values for its
IP addresses, subnet masks, or router-id, and
o A router MUST NOT assume that an unconfigured interface is an
unnumbered interface.
DISCUSSION:
There have been instances in which routers have been shipped
with vendor-installed default addresses for interfaces. In a
few cases, this has resulted in routers advertising these
default addresses into active networks.
10.2.2 Address and Address Mask Initialization
A router MUST allow its IP addresses and their subnet masks to be
statically configured and saved in permanent storage.
A router MAY obtain its IP addresses and their corresponding
subnet masks dynamically as a side effect of the system
initialization process (see Section 10.2.3]);
If the dynamic method is provided, the choice of method to be used
in a particular router MUST be configurable.
As was described in Section [4.2.2.11], IP addresses are not
permitted to have the value 0 or -1 for any of the <Host-number>,
<Network-number>, or <Subnet-number> fields. Therefore, a router
SHOULD NOT allow an IP address or subnet mask to be set to a value
which would make any of the the three fields above have the value
zero or -1.
DISCUSSION:
It is possible using variable length subnet masks to create
situations in which routing is ambiguous (i.e., two routes with
different but equally-specific subnet masks match a particular
destination address). We suspect that a router could, when
setting a subnet mask, check whether the mask would cause
routing to be ambiguous, and that implementors might be able to
decrease their customer support costs by having routers
prohibit or log such erroneous configurations. However, at
this time we do not require routers to make such checks because
Almquist & Kastenholz [Page 141]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
we know of no published method for accurately making this
check.
A router SHOULD make the following checks on any subnet mask it
installs:
o The mask is not all 1-bits.
o The bits which correspond to the network number part of the
address are all set to 1.
DISCUSSION:
The masks associated with routes are also sometimes called
subnet masks, this test should not be applied to them.
10.2.3 Network Booting using BOOTP and TFTP
There has been a lot of discussion on how routers can and should
be booted from the network. In general, these discussions have
centered around BOOTP and TFTP. Currently, there are routers that
boot with TFTP from the network. There is no reason that BOOTP
could not be used for locating the server that the boot image
should be loaded from.
In general, BOOTP is a protocol used to boot end systems, and
requires some stretching to accommodate its use with routers. If
a router is using BOOTP to locate the current boot host, it should
send a BOOTP Request with its hardware address for its first
interface, or, if it has been previously configured otherwise,
with either another interface's hardware address, or another
number to put in the hardware address field of the BOOTP packet.
This is to allow routers without hardware addresses (like sync
line only routers) to use BOOTP for bootload discovery. TFTP can
then be used to retrieve the image found in the BOOTP Reply. If
there are no configured interfaces or numbers to use, a router MAY
cycle through the interface hardware addresses it has until a
match is found by the BOOTP server.
A router SHOULD IMPLEMENT the ability to store parameters learned
via BOOTP into local stable storage. A router MAY implement the
ability to store a system image loaded over the network into local
stable storage.
A router MAY have a facility to allow a remote user to request
that the router get a new boot image. Differentiation should be
Almquist & Kastenholz [Page 142]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
made between getting the new boot image from one of three
locations: the one included in the request, from the last boot
image server, and using BOOTP to locate a server.
10.3 Operation and Maintenance
10.3.1 Introduction
There is a range of possible models for performing O&M functions
on a router. At one extreme is the local-only model, under which
the O&M functions can only be executed locally (e.g., from a
terminal plugged into the router machine). At the other extreme,
the fully-remote model allows only an absolute minimum of
functions to be performed locally (e.g., forcing a boot), with
most O&M being done remotely from the NOC. There are intermediate
models, such as one in which NOC personnel can log into the router
as a host, using the Telnet protocol, to perform functions which
can also be invoked locally. The local-only model may be adequate
in a few router installations, but in general remote operation
from a NOC will be required, and therefore remote O&M provisions
are required for most routers.
Remote O&M functions may be exercised through a control agent
(program). In the direct approach, the router would support
remote O&M functions directly from the NOC using standard Internet
protocols (e.g., SNMP, UDP or TCP); in the indirect approach, the
control agent would support these protocols and control the router
itself using proprietary protocols. The direct approach is
preferred, although either approach is acceptable. The use of
specialized host hardware and/or software requiring significant
additional investment is discouraged; nevertheless, some vendors
may elect to provide the control agent as an integrated part of
the network in which the routers are a part. If this is the case,
it is required that a means be available to operate the control
agent from a remote site using Internet protocols and paths and
with equivalent functionality with respect to a local agent
terminal.
It is desirable that a control agent and any other NOC software
tools which a vendor provides operate as user programs in a
standard operating system. The use of the standard Internet
protocols UDP and TCP for communicating with the routers should
facilitate this.
Remote router monitoring and (especially) remote router control
present important access control problems which must be addressed.
Almquist & Kastenholz [Page 143]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Care must also be taken to ensure control of the use of router
resources for these functions. It is not desirable to let router
monitoring take more than some limited fraction of the router CPU
time, for example. On the other hand, O&M functions must receive
priority so they can be exercised when the router is congested,
since often that is when O&M is most needed.
10.3.2 Out Of Band Access
Routers MUST support Out-Of-Band (OOB) access. OOB access SHOULD
provide the same functionality as in-band access.
DISCUSSION:
This Out-Of-Band access will allow the NOC a way to access
isolated routers during times when network access is not
available.
Out-Of-Band access is an important management tool for the
network administrator. It allows the access of equipment
independent of the network connections. There are many ways to
achieve this access. Whichever one is used it is important
that the access is independent of the network connections. An
example of Out-Of-Band access would be a serial port connected
to a modem that provides dial up access to the router.
It is important that the OOB access provides the same
functionality as in-band access. In-band access, or accessing
equipment through the existing network connection, is limiting,
because most of the time, administrators need to reach
equipment to figure out why it is unreachable. In band access
is still very important for configuring a router, and for
troubleshooting more subtle problems.
10.3.2 Router O&M Functions
10.3.2.1 Maintenance - Hardware Diagnosis
Each router SHOULD operate as a stand-alone device for the
purposes of local hardware maintenance. Means SHOULD be
available to run diagnostic programs at the router site using
only on-site tools. A router SHOULD be able to run diagnostics
in case of a fault. For suggested hardware and software
diagnostics see Section [10.3.3].
Almquist & Kastenholz [Page 144]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
10.3.2.2 Control - Dumping and Rebooting
A router MUST include both in-band and out-of-band mechanisms
to allow the network manager to reload, stop, and restart the
router. A router SHOULD also contain a mechanism (such as a
watchdog timer) which will reboot the router automatically if
it hangs due to a software or hardware fault.
A router SHOULD IMPLEMENT a mechanism for dumping the contents
of a router's memory (and/or other state useful for vendor
debugging after a crash), and either saving them on a stable
storage device local to the router or saving them on another
host via an up-line dump mechanism such as TFTP (see [OPER:2],
[INTRO:3]).
10.3.2.3 Control - Configuring the Router
Every router has configuration parameters which may need to be
set. It SHOULD be possible to update the parameters without
rebooting the router; at worst, a restart MAY be required.
There may be cases when it is not possible to change parameters
without rebooting the router (for instance, changing the IP
address of an interface). In these cases, care should be taken
to minimize disruption to the router and the surrounding
network.
There SHOULD be a way to configure the router over the network
either manually or automatically. A router SHOULD be able to
upload or download its parameters from a host or another
router, and these parameters SHOULD be convertible into some
sort of text format for making changes and then back to the
form the router can read. A router SHOULD have some sort of
stable storage for its configuration. A router SHOULD NOT
believe protocols such as RARP, ICMP Address Mask Reply, and
MAY not believe BOOTP.
DISCUSSION:
It is necessary to note here that in the future RARP, ICMP
Address Mask Reply, BOOTP and other mechanisms may be needed
to allow a router to auto-configure. Although routers may
in the future be able to configure automatically, the intent
here is to discourage this practice in a production
environment until such time as auto-configuration has been
tested more thoroughly. The intent is NOT to discourage
auto-configuration all together. In cases where a router is
expected to get its configuration automatically it may be
wise to allow the router to believe these things as it comes
Almquist & Kastenholz [Page 145]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
up and then ignore them after it has gotten its
configuration.
10.3.2.4 Netbooting of System Software
A router SHOULD keep its system image in local non-volatile
storage such as PROM, NVRAM, or disk. It MAY also be able to
load its system software over the network from a host or
another router.
A router which can keep its system image in local non-volatile
storage MAY be configurable to boot its system image over the
network. A router which offers this option SHOULD be
configurable to boot the system image in its non-volatile local
storage if it is unable to boot its system image over the
network.
DISCUSSION:
It is important that the router be able to come up and run
on its own. NVRAM may be a particular solution for routers
used in large networks, since changing PROMs can be quite
time consuming for a network manager responsible for
numerous or geographically dispersed routers. It is
important to be able to netboot the system image because
there should be an easy way for a router to get a bug fix or
new feature more quickly than getting PROMS installed. Also
if the router has NVRAM instead of PROMs, it will netboot
the image and then put it in NVRAM.
A router MAY also be able to distinguish between different
configurations based on which software it is running. If
configuration commands change from one software version to
another, it would be helpful if the router could use the
configuration that was compatible with the software.
10.3.2.5 Detecting and responding to misconfiguration
There MUST be mechanisms for detecting and responding to
misconfigurations. If a command is executed incorrectly, the
router SHOULD give an error message. The router SHOULD NOT
accept a poorly formed command as if it were correct.
Almquist & Kastenholz [Page 146]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
There are cases where it is not possible to detect errors:
the command is correctly formed, but incorrect with respect
to the network. This may be detected by the router, but may
not be possible.
Another form of misconfiguration is misconfiguration of the
network to which the router is attached. A router MAY detect
misconfigurations in the network. The router MAY log these
findings to a file, either on the router or a host, so that the
network manager will see that there are possible problems on
the network.
DISCUSSION:
Examples of such misconfigurations might be another router
with the same address as the one in question or a router
with the wrong subnet mask. If a router detects such
problems it is probably not the best idea for the router to
try to fix the situation. That could cause more harm than
good.
10.3.2.6 Minimizing Disruption
Changing the configuration of a router SHOULD have minimal
affect on the network. Routing tables SHOULD NOT be
unnecessarily flushed when a simple change is made to the
router. If a router is running several routing protocols,
stopping one routing protocol SHOULD NOT disrupt other routing
protocols, except in the case where one network is learned by
more than one routing protocol.
DISCUSSION:
It is the goal of a network manager to run a network so that
users of the network get the best connectivity possible.
Reloading a router for simple configuration changes can
cause disruptions in routing and ultimately cause
disruptions to the network and its users. If routing tables
are unnecessarily flushed, for instance, the default route
will be lost as well as specific routes to sites within the
network. This sort of disruption will cause significant
downtime for the users. It is the purpose of this section to
point out that whenever possible, these disruptions should
be avoided.
Almquist & Kastenholz [Page 147]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
10.3.2.7 Control - Troubleshooting Problems
(1) A router MUST provide in-band network access, but (except
as required by Section [8.2]) for security considerations
this access SHOULD be disabled by default. Vendors MUST
document the default state of any in-band access.
DISCUSSION:
In-band access primarily refers to access via the
normal network protocols which may or may not affect
the permanent operational state of the router. This
includes, but is not limited to Telnet/RLOGIN console
access and SNMP operations.
This was a point of contention between the operational
out of the box and secure out of the box contingents.
Any automagic access to the router may introduce
insecurities, but it may be more important for the
customer to have a router which is accessible over the
network as soon as it is plugged in. At least one
vendor supplies routers without any external console
access and depends on being able to access the router
via the network to complete its configuration.
Basically, it is the vendors call whether or not in-
band access is enabled by default; but it is also the
vendors responsibility to make its customers aware of
possible insecurities.
(2) A router MUST provide the ability to initiate an ICMP
echo. The following options SHOULD be implemented:
o Choice of data patterns
o Choice of packet size
o Record route
and the following additional options MAY be implemented:
o Loose source route
o Strict source route
o Timestamps
Almquist & Kastenholz [Page 148]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(3) A router SHOULD provide the ability to initiate a
traceroute. If traceroute is provided, then the 3rd party
traceroute SHOULD be implemented.
Each of the above three facilities (if implemented) SHOULD have
access restrictions placed on it to prevent its abuse by
unauthorized persons.
10.4 Security Considerations
10.4.1 Auditing and Audit Trails
Auditing and billing are the bane of the network operator, but are
the two features most requested by those in charge of network
security and those who are responsible for paying the bills. In
the context of security, auditing is desirable if it helps you
keep your network working and protects your resources from abuse,
without costing you more than those resources are worth.
(1) Configuration Changes
Router SHOULD provide a method for auditing a configuration
change of a router, even if it's something as simple as
recording the operator's initials and time of change.
DISCUSSION:
Having the ability to track who made changes and when is
highly desirable, especially if your packets suddenly
start getting routed through Alaska on their way across
town.
(2) Packet Accounting
Vendors should strongly consider providing a system for
tracking traffic levels between pairs of hosts or networks.
A mechanism for limiting the collection of this information
to specific pairs of hosts or networks is also strongly
encouraged.
DISCUSSION:
A host traffic matrix as described above can give the
network operator a glimpse of traffic trends not apparent
from other statistics. It can also identify hosts or
networks which are probing the structure of the attached
networks - e.g., a single external host which tries to
send packets to every IP address in the network address
Almquist & Kastenholz [Page 149]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
range for a connected network.
(3) Security Auditing
Routers MUST provide a method for auditing security related
failures or violations to include:
o Authorization Failures: bad passwords, invalid SNMP
communities, invalid authorization tokens,
o Violations of Policy Controls: Prohibited Source Routes,
Filtered Destinations, and
o Authorization Approvals: good passwords - Telnet in-band
access, console access.
Routers MUST provide a method of limiting or disabling such
auditing but auditing SHOULD be on by default. Possible
methods for auditing include listing violations to a console
if present, logging or counting them internally, or logging
them to a remote security server via the SNMP trap mechanism
or the Unix logging mechanism as appropriate. A router MUST
implement at least one of these reporting mechanisms - it MAY
implement more than one.
10.4.2 Configuration Control
A vendor has a responsibility to use good configuration control
practices in the creation of the software/firmware loads for their
routers. In particular, if a vendor makes updates and loads
available for retrieval over the Internet, the vendor should also
provide a way for the customer to confirm the load is a valid one,
perhaps by the verification of a checksum over the load.
DISCUSSION:
Many vendors currently provide short notice updates of their
software products via the Internet. This a good trend and
should be encouraged, but provides a point of vulnerability in
the configuration control process.
If a vendor provides the ability for the customer to change the
configuration parameters of a router remotely, for example via a
Telnet session, the ability to do so SHOULD be configurable and
SHOULD default to off. The router SHOULD require a password or
other valid authentication before permitting remote
reconfiguration.
Almquist & Kastenholz [Page 150]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
DISCUSSION:
Allowing your properly identified network operator to twiddle
with your routers is necessary; allowing anyone else to do so
is foolhardy.
A router MUST NOT have undocumented back door access and master
passwords. A vendor MUST ensure any such access added for
purposes of debugging or product development are deleted before
the product is distributed to its customers.
DISCUSSION:
A vendor has a responsibility to its customers to ensure they
are aware of the vulnerabilities present in its code by
intention - e.g. in-band access. Trap doors, back doors and
master passwords intentional or unintentional can turn a
relatively secure router into a major problem on an operational
network. The supposed operational benefits are not matched by
the potential problems.
Almquist & Kastenholz [Page 151]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
11. REFERENCES
Implementors should be aware that Internet protocol standards are
occasionally updated. These references are current as of this writing,
but a cautious implementor will always check a recent version of the RFC
index to ensure that an RFC has not been updated or superseded by
another, more recent RFC. Reference [INTRO:6] explains various ways to
obtain a current RFC index.
APPL:1.
B. Croft and J. Gilmore, Bootstrap Protocol (BOOTP), Request For
Comments (RFC) 951, Stanford and SUN Microsystems, September 1985.
APPL:2.
S. Alexander and R. Droms, DHCP Options and BOOTP Vendor
Extensions, Request For Comments (RFC) 1533, Lachman Technology,
Inc., Bucknell University, October 1993.
APPL:3.
W. Wimer, Clarifications and Extensions for the Bootstrap Protocol,
Request For Comments (RFC) 1542, Carnegie Mellon University,
October 1993.
ARCH:1.
DDN Protocol Handbook, NIC-50004, NIC-50005, NIC-50006 (three
volumes), DDN Network Information Center, SRI International, Menlo
Park, California, USA, December 1985.
ARCH:2.
V. Cerf and R. Kahn, A Protocol for Packet Network
Intercommunication," IEEE Transactions on Communication, May 1974.
Also included in [ARCH:1].
ARCH:3.
J. Postel, C. Sunshine, and D. Cohen, The ARPA Internet Protocol,"
Computer Networks, vol. 5, no. 4, July 1981. Also included in
[ARCH:1].
ARCH:4.
B. Leiner, J. Postel, R. Cole, and D. Mills, The DARPA Internet
Protocol Suite, Proceedings of INFOCOM '85, IEEE, Washington, DC,
March 1985. Also in: IEEE Communications Magazine, March 1985.
Also available from the Information Sciences Institute, University
of Southern California as Technical Report ISI-RS-85-153.
Almquist & Kastenholz [Page 152]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
ARCH:5.
D. Comer, Internetworking With TCP/IP Volume 1: Principles,
Protocols, and Architecture, Prentice Hall, Englewood Cliffs, NJ,
1991.
ARCH:6.
W. Stallings, Handbook of Computer-Communications Standards Volume
3: The TCP/IP Protocol Suite, Macmillan, New York, NY, 1990.
ARCH:7.
J. Postel, Internet Official Protocol Standards, Request For
Comments (RFC) 1610, STD 1, USC/Information Sciences Institute,
July 1994.
ARCH:8.
Information processing systems - Open Systems Interconnection -
Basic Reference Model, ISO 7489, International Standards
Organization, 1984.
FORWARD:1.
IETF CIP Working Group (C. Topolcic, Editor), Experimental Internet
Stream Protocol, Version 2 (ST-II), Request For Comments (RFC)
1190, CIP Working Group, October 1990.
FORWARD:2.
A. Mankin and K. Ramakrishnan, Editors, Gateway Congestion Control
Survey, Request For Comments (RFC) 1254, MITRE, Digital Equipment
Corporation, August 1991.
FORWARD:3.
J. Nagle, On Packet Switches with Infinite Storage, IEEE
Transactions on Communications, vol. COM-35, no. 4, April 1987.
FORWARD:4.
R. Jain, K. Ramakrishnan, and D. Chiu, Congestion Avoidance in
Computer Networks With a Connectionless Network Layer, Technical
Report DEC-TR-506, Digital Equipment Corporation.
FORWARD:5.
V. Jacobson, Congestion Avoidance and Control, Proceedings of
SIGCOMM '88, Association for Computing Machinery, August 1988.
FORWARD:6.
W. Barns, Precedence and Priority Access Implementation for
Department of Defense Data Networks, Technical Report MTR-91W00029,
The Mitre Corporation, McLean, Virginia, USA, July 1991.
Almquist & Kastenholz [Page 153]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
INTERNET:1.
J. Postel, Internet Protocol, Request For Comments (RFC) 791, STD
5, USC/Information Sciences Institute, September 1981.
INTERNET:2.
J. Mogul and J. Postel, Internet Standard Subnetting Procedure,
Request For Comments (RFC) 950, STD 5, USC/Information Sciences
Institute, August 1985.
INTERNET:3.
J. Mogul, Broadcasting Internet Datagrams in the Presence of
Subnets, Request For Comments (RFC) 922, STD 5, Stanford, October
1984.
INTERNET:4.
S. Deering, Host Extensions for IP Multicasting, Request For
Comments (RFC) 1112, STD 5, Stanford University, August 1989.
INTERNET:5.
S. Kent, U.S. Department of Defense Security Options for the
Internet Protocol, Request for Comments (RFC) 1108, BBN
Communications, November 1991.
INTERNET:6.
R. Braden, D. Borman, and C. Partridge, Computing the Internet
Checksum, Request For Comments (RFC) 1071, USC/Information Sciences
Institute, Cray Researc, BBN, September 1988.
INTERNET:7.
T. Mallory and A. Kullberg, Incremental Updating of the Internet
Checksum, Request For Comments (RFC) 1141, BBN, January 1990.
INTERNET:8.
J. Postel, Internet Control Message Protocol, Request For Comments
(RFC) 792, STD 5, USC/Information Sciences Institute, September
1981.
INTERNET:9.
A. Mankin, G. Hollingsworth, G. Reichlen, K. Thompson, R. Wilder,
and R. Zahavi, Evaluation of Internet Performance - FY89, Technical
Report MTR-89W00216, MITRE Corporation, February, 1990.
INTERNET:10.
G. Finn, A Connectionless Congestion Control Algorithm, Computer
Communications Review, vol. 19, no. 5, Association for Computing
Machinery, October 1989.
Almquist & Kastenholz [Page 154]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
INTERNET:11.
W. Prue, J. Postel, The Source Quench Introduced Delay (SQuID),
Request For Comments (RFC) 1016, USC/Information Sciences
Institute, August 1987.
INTERNET:12.
A. McKenzie, Some comments on SQuID, Request For Comments (RFC)
1018, BBN, August 1987.
INTERNET:13.
S. Deering, ICMP Router Discovery Messages, Request For Comments
(RFC) 1256, Xerox PARC, September 1991.
INTERNET:14.
J. Mogul and S. Deering, Path MTU Discovery, Request For Comments
(RFC) 1191, DECWRL, Stanford University, November 1990.
INTERNET:15
V. Fuller, T. Li, J. Yi, and K. Varadhan, Classless Inter-Domain
Routing (CIDR): an Address Assignment and Aggregation Strategy
Request For Comments (RFC) 1519, BARRNet, cisco, Merit, OARnet,
September 1993.
INTERNET:16
M. St. Johns, Draft Revised IP Security Option, Request for
Comments 1038, IETF, January 1988.
INTERNET:17
W. Prue and J. Postel, Queuing Algorithm to Provide Type-of-service
For IP Links, Request for Comments 1046, USC/Information Sciences
Institute, February 1988.
INTRO:1.
R. Braden and J. Postel, Requirements for Internet Gateways,
Request For Comments (RFC) 1009, STD 4, USC/Information Sciences
Institute, June 1987.
INTRO:2.
Internet Engineering Task Force (R. Braden, Editor), Requirements
for Internet Hosts - Communication Layers, Request For Comments
(RFC) 1122, STD 3, USC/Information Sciences Institute, October
1989.
Almquist & Kastenholz [Page 155]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
INTRO:3.
Internet Engineering Task Force (R. Braden, Editor), Requirements
for Internet Hosts - Application and Support, Request For Comments
(RFC) 1123, STD 3, USC/Information Sciences Institute, October
1989.
INTRO:4.
D. Clark, Modularity and Efficiency in Protocol Implementations,
Request For Comments (RFC) 817, MIT, July 1982.
INTRO:5.
D. Clark, The Structuring of Systems Using Upcalls, Proceedings of
10th ACM SOSP, December 1985.
INTRO:6.
O. Jacobsen and J. Postel, Protocol Document Order Information,
Request For Comments (RFC) 980, SRI, USC/Information Sciences
Institute, March 1986.
INTRO:7.
J. Reynolds and J. Postel, Assigned Numbers, Request For Comments
(RFC) 1700, STD 2, USC/Information Sciences Institute, October
1994. This document is periodically updated and reissued with a
new number. It is wise to verify occasionally that the version you
have is still current.
INTRO:8.
DoD Trusted Computer System Evaluation Criteria, DoD publication
5200.28-STD, U.S. Department of Defense, December 1985.
INTRO:9
G. Malkin and T. LaQuey Parker, Internet Users' Glossary, Request
for Comments (RFC) 1392 (also FYI 0018), Xylogics, Inc., UTexas,
January 1993.
LINK:1.
S. Leffler and M. Karels, Trailer Encapsulations, Request For
Comments (RFC) 893, U. C. Berkeley, April 1984.
LINK:2
W. Simpson, The Point-to-Point Protocol (PPP) for the Transmission
of Multi-protocol Datagrams over Point-to-Point Links, Daydreamer,
Request For Comments (RFC) 1331, May 1992.
Almquist & Kastenholz [Page 156]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
LINK:3
G. McGregor, The PPP Internet Protocol Control Protocol (IPCP),
Request For Comments (RFC) 1332, Merit, May 1992.
LINK:4
B. Lloyd, W. Simpson, PPP Authentication Protocols, Request For
Comments (RFC) 1334, Daydreamer, May 1992.
LINK:5
W. Simpson, PPP Link Quality Monitoring, Daydreamer, Request For
Comments (RFC) 1333, May 1992.
MGT:1.
M. Rose and K. McCloghrie, Structure and Identification of
Management Information of TCP/IP-based Internets, Request For
Comments (RFC) 1155, STD 16, Performance Systems International,
Hughes LAN Systems, May 1990.
MGT:2.
K. McCloghrie and M. Rose (Editors), Management Information Base of
TCP/IP-Based Internets: MIB-II, Request For Comments (RFC) 1213,
STD 16, Hughes LAN Systems, Performance Systems International,
March 1991.
MGT:3.
J. Case, M. Fedor, M. Schoffstall, and J. Davin, Simple Network
Management Protocol, Request For Comments (RFC) 1157, STD 15, SNMP
Research, Performance Systems International, MIT Laboratory for
Computer Science, May 1990.
MGT:4.
M. Rose and K. McCloghrie (Editors), Towards Concise MIB
Definitions, Request For Comments (RFC) 1212, STD 16, Performance
Systems International, Hughes LAN Systems, March 1991.
MGT:5.
L. Steinberg, Techniques for Managing Asynchronously Generated
Alerts, Request for Comments (RFC) 1224, IBM, May 1991.
MGT:6.
F. Kastenholz, Definitions of Managed Objects for the Ethernet-like
Interface Types, Request for Comments (RFC) 1398, FTP Software
January 1993.
Almquist & Kastenholz [Page 157]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
MGT:7.
R. Fox and K. McCloghrie, IEEE 802.4 Token Bus MIB, Request for
Comments (RFC) 1230, Hughes LAN Systems, Synoptics, Inc., May 1991.
MGT:8.
K. McCloghrie, R. Fox and E. Decker, IEEE 802.5 Token Ring MIB,
Request for Comments (RFC) 1231, Hughes LAN Systems, Synoptics,
Inc., cisco Systems, Inc., February 1993.
MGT:9.
J. Case and A. Rijsinghani, FDDI Management Information Base,
Request for Comments (RFC) 1512, SNMP Research, Digital Equipment
Corporation, September 1993.
MGT:10.
B. Stewart, Definitions of Managed Objects for RS-232-like Hardware
Devices, Request for Comments (RFC) 1317, Xyplex, Inc., April 1992.
MGT:11.
F. Kastenholz, Definitions of Managed Objects for the Link Control
Protocol of the Point-to-Point Protocol, Request For Comments (RFC)
1471, FTP Software, June 1992.
MGT:12.
F. Kastenholz, The Definitions of Managed Objects for the Security
Protocols of the Point-to-Point Protocol, Request For Comments
(RFC) 1472, FTP Software, June 1992.
MGT:13.
F. Kastenholz, The Definitions of Managed Objects for the IP
Network Control Protocol of the Point-to-Point Protocol, Request
For Comments (RFC) 1473, FTP Software, June 1992.
MGT:14.
F. Baker and R. Coltun, OSPF Version 2 Management Information Base,
Request For Comments (RFC) 1253, ACC, Computer Science Center,
August 1991.
MGT:15.
S. Willis and J. Burruss, Definitions of Managed Objects for the
Border Gateway Protocol (Version 3), Request For Comments (RFC)
1269, Wellfleet Communications Inc., October 1991.
MGT:16.
F. Baker, J. Watt, Definitions of Managed Objects for the DS1 and
E1 Interface Types, Request For Comments (RFC) 1406, Advanced
Computer Communications, Newbridge Networks Corporation, January
Almquist & Kastenholz [Page 158]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
1993.
MGT:17.
T. Cox and K. Tesink, Definitions of Managed Objects for the DS3/E3
Interface Types, Request For Comments (RFC) 1407, Bell
Communications Research, January 1993.
MGT:18.
K. McCloghrie, Extensions to the Generic-Interface MIB, Request For
Comments (RFC) 1229, Hughes LAN Systems, August 1992.
MGT:19.
T. Cox and K. Tesink, Definitions of Managed Objects for the SIP
Interface Type, Request For Comments (RFC) 1304, Bell
Communications Research, February 1992.
MGT:20
F. Baker, IP Forwarding Table MIB, Request For Comments (RFC) 1354,
ACC, July 1992.
MGT:21.
G. Malkin and F. Baker, RIP Version 2 MIB Extension, Request For
Comments (RFC) 1389, Xylogics, Inc., Advanced Computer
Communications, January 1993.
MGT:22.
D. Throop, SNMP MIB Extension for the X.25 Packet Layer, Request
For Comments (RFC) 1382, Data General Corporation, November 1992.
MGT:23.
D. Throop and F. Baker, SNMP MIB Extension for X.25 LAPB, Request
For Comments (RFC) 1381, Data General Corporation, Advanced
Computer Communications, November 1992.
MGT:24.
D. Throop and F. Baker, SNMP MIB Extension for MultiProtocol
Interconnect over X.25, Request For Comments (RFC) 1461, Data
General Corporation, May 1993.
MGT:25.
M. Rose, SNMP over OSI, Request For Comments (RFC) 1418, Dover
Beach Consulting, Inc., March 1993.
MGT:26.
G. Minshall and M. Ritter, SNMP over AppleTalk, Request For
Comments (RFC) 1419, Novell, Inc., Apple Computer, Inc., March
1993.
Almquist & Kastenholz [Page 159]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
MGT:27.
S. Bostock, SNMP over IPX, Request For Comments (RFC) 1420, Novell,
Inc., March 1993.
MGT:28.
M. Schoffstall, C. Davin, M. Fedor, J. Case, SNMP over Ethernet,
Request For Comments (RFC) 1089, Rensselaer Polytechnic Institute,
MIT Laboratory for Computer Science, NYSERNet, Inc., University of
Tennessee at Knoxville, February 1989.
MGT:29.
J. Case, FDDI Management Information Base, Request For Comments
(RFC) 1285, SNMP Research, Incorporated, January 1992.
OPER:1.
J. Nagle, Congestion Control in IP/TCP Internetworks, Request For
Comments (RFC) 896, FACC, January 1984.
OPER:2.
K.R. Sollins, TFTP Protocol (revision 2), Request For Comments
(RFC) 1350, MIT, July 1992.
ROUTE:1.
J. Moy, OSPF Version 2, Request For Comments (RFC) 1247, Proteon,
July 1991.
ROUTE:2.
R. Callon, Use of OSI IS-IS for Routing in TCP/IP and Dual
Environments, Request For Comments (RFC) 1195, DEC, December 1990.
ROUTE:3.
C. L. Hedrick, Routing Information Protocol, Request For Comments
(RFC) 1058, Rutgers University, June 1988.
ROUTE:4.
K. Lougheed and Y. Rekhter, A Border Gateway Protocol 3 (BGP-3),
Request For Comments (RFC) 1267, cisco, T.J. Watson Research
Center, IBM Corp., October 1991.
ROUTE:5.
Y. Rekhter and P. Gross Application of the Border Gateway Protocol
in the Internet, Request For Comments (RFC) 1268, T.J. Watson
Research Center, IBM Corp., ANS, October 1991.
Almquist & Kastenholz [Page 160]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
ROUTE:6.
D. Mills, Exterior Gateway Protocol Formal Specification, Request
For Comments (RFC) 904, UDEL, April 1984.
ROUTE:7.
E. Rosen, Exterior Gateway Protocol (EGP), Request For Comments
(RFC) 827, BBN, October 1982.
ROUTE:8.
L. Seamonson and E. Rosen, "STUB" Exterior Gateway Protocol,
Request For Comments (RFC) 888, BBN, January 1984.
ROUTE:9.
D. Waitzman, C. Partridge, and S. Deering, Distance Vector
Multicast Routing Protocol, Request For Comments (RFC) 1075, BBN,
Stanford, November 1988.
ROUTE:10.
S. Deering, Multicast Routing in Internetworks and Extended LANs,
Proceedings of SIGCOMM '88, Association for Computing Machinery,
August 1988.
ROUTE:11.
P. Almquist, Type of Service in the Internet Protocol Suite,
Request for Comments (RFC) 1349, Consultant, July 1992.
ROUTE:12.
Y. Rekhter, Experience with the BGP Protocol, Request For Comments
(RFC) 1266, T.J. Watson Research Center, IBM Corp., October 1991.
ROUTE:13.
Y. Rekhter, BGP Protocol Analysis, Request For Comments (RFC) 1265,
T.J. Watson Research Center, IBM Corp., October 1991.
TRANS:1.
J. Postel, User Datagram Protocol, Request For Comments (RFC) 768,
STD 6, USC/Information Sciences Institute, August 1980.
TRANS:2.
J. Postel, Transmission Control Protocol, Request For Comments
(RFC) 793, STD 7, T.J. Watson Research Center, IBM Corp., September
1981.
Almquist & Kastenholz [Page 161]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
APPENDIX A. REQUIREMENTS FOR SOURCE-ROUTING HOSTS
Subject to restrictions given below, a host MAY be able to act as an
intermediate hop in a source route, forwarding a source-routed datagram
to the next specified hop.
However, in performing this router-like function, the host MUST obey all
the relevant rules for a router forwarding source-routed datagrams
[INTRO:2]. This includes the following specific provisions:
(A) TTL
The TTL field MUST be decremented and the datagram perhaps
discarded as specified for a router in [INTRO:2].
(B) ICMP Destination Unreachable
A host MUST be able to generate Destination Unreachable messages
with the following codes:
4 (Fragmentation Required but DF Set) when a source-routed datagram
cannot be fragmented to fit into the target network;
5 (Source Route Failed) when a source-routed datagram cannot be
forwarded, e.g., because of a routing problem or because the next
hop of a strict source route is not on a connected network.
(C) IP Source Address
A source-routed datagram being forwarded MAY (and normally will)
have a source address that is not one of the IP addresses of the
forwarding host.
(D) Record Route Option
A host that is forwarding a source-routed datagram containing a
Record Route option MUST update that option, if it has room.
(E) Timestamp Option
A host that is forwarding a source-routed datagram containing a
Timestamp Option MUST add the current timestamp to that option,
according to the rules for this option.
To define the rules restricting host forwarding of source-routed
datagrams, we use the term local source-routing if the next hop will be
through the same physical interface through which the datagram arrived;
otherwise, it is non-local source-routing.
A host is permitted to perform local source-routing without restriction.
A host that supports non-local source-routing MUST have a configurable
switch to disable forwarding, and this switch MUST default to disabled.
Almquist & Kastenholz [Page 162]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
The host MUST satisfy all router requirements for configurable policy
filters [INTRO:2] restricting non-local forwarding.
If a host receives a datagram with an incomplete source route but does
not forward it for some reason, the host SHOULD return an ICMP
Destination Unreachable (code 5, Source Route Failed) message, unless
the datagram was itself an ICMP error message.
Almquist & Kastenholz [Page 163]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
APPENDIX B. GLOSSARY
This Appendix defines specific terms used in this memo. It also defines
some general purpose terms that may be of interest. See also [INTRO:9]
for a more general set of definitions.
AS
Autonomous System A collection of routers under a single
administrative authority using a common Interior Gateway Protocol
for routing packets.
Connected Network
A network to which a router is interfaced is often known as the
local network or the subnetwork relative to that router. However,
these terms can cause confusion, and therefore we use the term
Connected Network in this memo.
Connected (Sub)Network
A Connected (Sub)Network is an IP subnetwork to which a router is
interfaced, or a connected network if the connected network is not
subnetted. See also Connected Network.
Datagram
The unit transmitted between a pair of internet modules. data,
called datagrams, from sources to destinations. The Internet
Protocol does not provide a reliable communication facility. There
are no acknowledgments either end-to-end or hop-by-hop. There is
no error no retransmissions. There is no flow control. See IP.
Default Route
A routing table entry which is used to direct any data addressed to
any network numbers not explicitly listed in the routing table.
EGP
Exterior Gateway Protocol A protocol which distributes routing
information to the gateways (routers) which connect autonomous
systems. See IGP.
EGP-2
Exterior Gateway Protocol version 2 This is an EGP routing protocol
developed to handle traffic between AS's in the Internet.
Forwarder
The logical entity within a router that is responsible for
switching packets among the router's interfaces. The Forwarder
also makes the decisions to queue a packet for local delivery, to
Almquist & Kastenholz [Page 164]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
queue a packet for transmission out another interface, or both.
Forwarding
Forwarding is the process a router goes through for each packet
received by the router. The packet may be consumed by the router,
it may be output on one or more interfaces of the router, or both.
Forwarding includes the process of deciding what to do with the
packet as well as queuing it up for (possible) output or internal
consumption.
Fragment
An IP datagram which represents a portion of a higher layer's
packet which was too large to be sent in its entirety over the
output network.
IGP
Interior Gateway Protocol A protocol which distributes routing
information with an Autonomous System (AS). See EGP.
Interface IP Address
The IP Address and subnet mask that is assigned to a specific
interface of a router.
Internet Address
An assigned number which identifies a host in an internet. It has
two or three parts: network number, optional subnet number, and
host number.
IP
Internet Protocol The network layer protocol for the Internet. It
is a packet switching, datagram protocol defined in RFC 791. IP
does not provide a reliable communications facility; that is, there
are no end-to-end of hop-by-hop acknowledgments.
IP Datagram
An IP Datagram is the unit of end-to-end transmission in the
Internet Protocol. An IP Datagram consists of an IP header
followed by all of higher-layer data (such as TCP, UDP, ICMP, and
the like). An IP Datagram is an IP header followed by a message.
An IP Datagram is a complete IP end-to-end transmission unit. An
IP Datagram is composed of one or more IP Fragments.
In this memo, the unqualified term Datagram should be understood to
refer to an IP Datagram.
Almquist & Kastenholz [Page 165]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
IP Fragment
An IP Fragment is a component of an IP Datagram. An IP Fragment
consists of an IP header followed by all or part of the higher-
layer of the original IP Datagram.
One or more IP Fragments comprises a single IP Datagram.
In this memo, the unqualified term Fragment should be understood to
refer to an IP Fragment.
IP Packet
An IP Datagram or an IP Fragment.
In this memo, the unqualified term Packet should generally be
understood to refer to an IP Packet.
Logical [network] interface
We define a logical [network] interface to be a logical path,
distinguished by a unique IP address, to a connected network.
Martian Filtering
A packet which contains an invalid source or destination address is
considered to be martian and discarded.
MTU (Maximum Transmission Unit)
The size of the largest packet that can be transmitted or received
through a logical interface. This size includes the IP header but
does not include the size of any Link Layer headers or framing.
Multicast
A packet which is destined for multiple hosts. See broadcast.
Multicast Address
A special type of address which is recognized by multiple hosts.
A Multicast Address is sometimes known as a Functional Address or a
Group Address.
Originate
Packets can be transmitted by a router for one of two reasons: 1)
the packet was received and is being forwarded or 2) the router
itself created the packet for transmission (such as route
advertisements). Packets that the router creates for transmission
are said to originate at the router.
Packet
A packet is the unit of data passed across the interface between
Almquist & Kastenholz [Page 166]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
the Internet Layer and the Link Layer. It includes an IP header
and data. A packet may be a complete IP datagram or a fragment of
an IP datagram.
Path
The sequence of routers and (sub-)networks which a packet traverses
from a particular router to a particular destination host. Note
that a path is uni-directional; it is not unusual to have different
paths in the two directions between a given host pair.
Physical Network
A Physical Network is a network (or a piece of an internet) which
is contiguous at the Link Layer. Its internal structure (if any)
is transparent to the Internet Layer.
In this memo, several media components that are connected together
via devices such as bridges or repeaters are considered to be a
single Physical Network since such devices are transparent to the
IP.
Physical Network Interface
This is a physical interface to a Connected Network and has a
(possibly unique) Link-Layer address. Multiple Physical Network
Interfaces on a single router may share the same Link-Layer
address, but the address must be unique for different routers on
the same Physical Network.
router
A special-purpose dedicated computer that attaches several networks
together. Routers switch packets between these networks in a
process known as forwarding. This process may be repeated several
times on a single packet by multiple routers until the packet can
be delivered to the final destination - switching the packet from
router to router to router... until the packet gets to its
destination.
RPF
Reverse Path Forwarding A method used to deduce the next hops for
broadcast and multicast packets.
serial line
A physical medium which we cannot define, but we recognize one when
we see one. See the U.S. Supreme Court's definitions on
pornography.
Silently Discard
This memo specifies several cases where a router is to Silently
Almquist & Kastenholz [Page 167]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Discard a received packet (or datagram). This means that the
router should discard the packet without further processing, and
that the router will not send any ICMP error message (see Section
[4.3.2]) as a result. However, for diagnosis of problems, the
router should provide the capability of logging the error (see
Section [1.3.3]), including the contents of the silently-discarded
packet, and should record the event in a statistics counter.
Silently Ignore
A router is said to Silently Ignore an error or condition if it
takes no action other than possibly generating an error report in
an error log or via some network management protocol, and
discarding, or ignoring, the source of the error. In particular,
the router does NOT generate an ICMP error message.
Specific-destination address
This is defined to be the destination address in the IP header
unless the header contains an IP broadcast or IP multicast address,
in which case the specific-destination is an IP address assigned to
the physical interface on which the packet arrived.
subnet
A portion of a network, which may be a physically independent
network, which shares a network address with other portions of the
network and is distinguished by a subnet number. A subnet is to a
network what a network is to an internet.
subnet number
A part of the internet address which designates a subnet. It is
ignored for the purposes internet routing, but is used for intranet
routing.
TOS
Type Of Service A field in the IP header which represents the
degree of reliability expected from the network layer by the
transport layer or application.
TTL
Time To Live A field in the IP header which represents how long a
packet is considered valid. It is a combination hop count and
timer value.
Almquist & Kastenholz [Page 168]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
APPENDIX C. FUTURE DIRECTIONS
This appendix lists work that future revisions of this document may wish
to address.
In the preparation of Router Requirements, we stumbled across several
other architectural issues. Each of these is dealt with somewhat in the
document, but still ought to be classified as an open issue in the IP
architecture.
Most of the he topics presented here generally indicate areas where the
technology is still relatively new and it is not appropriate to develop
specific requirements since the community is still gaining operational
experience.
Other topics represent areas of ongoing research and indicate areas that
the prudent developer would closely monitor.
(1) SNMP Version 2
(2) Additional SNMP MIBs
(3) IDPR
(4) CIPSO
(5) IP Next Generation research
(6) More detailed requirements for next-hop selection
(7) More detailed requirements for leaking routes between routing
protocols
(8) Router system security
(9) Routing protocol security
(10) Internetwork Protocol layer security. There has been extensive
work refining the security of IP since the original work writing
this document. This security work should be included in here.
(11) Route caching
(12) Load Splitting
(13) Sending fragments along different paths
Almquist & Kastenholz [Page 169]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(14) Variable width subnet masks (i.e., not all subnets of a particular
net use the same subnet mask). Routers are required (MUST) support
them, but are not required to detect ambiguous configurations.
(15) Multiple logical (sub)nets on the same wire. Router Requirements
does not require support for this. We made some attempt to
identify pieces of the architecture (e.g. forwarding of directed
broadcasts and issuing of Redirects) where the wording of the rules
has to be done carefully to make the right thing happen, and tried
to clearly distinguish logical interfaces from physical interfaces.
However, we did not study this issue in detail, and we are not at
all confident that all of the rules in the document are correct in
the presence of multiple logical (sub)nets on the same wire.
(15) Congestion control and resource management. On the advice of the
IETF's experts (Mankin and Ramakrishnan) we deprecated (SHOULD NOT)
Source Quench and said little else concrete (Section 5.3.6).
(16) Developing a Link-Layer requirements document that would be common
for both routers and hosts.
(17) Developing a common PPP LQM algorithm.
(18) Investigate of other information (above and beyond section [3.2])
that passes between the layers, such as physical network MTU,
mappings of IP precedence to Link Layer priority values, etc.
(19) Should the Link Layer notify IP if address resolution failed (just
like it notifies IP when there is a Link Layer priority value
problem)?
(20) Should all routers be required to implement a DNS resolver?
(21) Should a human user be able to use a host name anywhere you can use
an IP address when configuring the router? Even in ping and
traceroute?
(22) Almquist's draft ruminations on the next hop and ruminations on
route leaking need to be reviewed, brought up to date, and
published.
(23) Investigation is needed to determine if a redirect message for
precedence is needed or not. If not, are the type-of-service
redirects acceptable?
(24) RIPv2 and RIP+CIDR and variable length subnet masks.
Almquist & Kastenholz [Page 170]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
(25) BGP-4 CIDR is going to be important, and everyone is betting on
BGP-4. We can't avoid mentioning it. Probably need to describe the
differences between BGP-3 and BGP-4, and explore upgrade issues...
(26) Loose Source Route Mobile IP and some multicasting may require
this. Perhaps it should be elevated to a SHOULD (per Fred Baker's
Suggestion).
Almquist & Kastenholz [Page 171]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
APPENDIX D. Multicast Routing Protocols
Multicasting is a relatively new technology within the Internet Protocol
family. It is not widely deployed or commonly in use yet. Its
importance, however, is expected to grow over the coming years.
This Appendix describes some of the technologies being investigated for
routing multicasts through the Internet.
A diligent implementor will keep abreast of developments in this area in
order to properly develop multicast facilities.
This Appendix does not specify any standards or requirements.
D.1 Introduction
Multicast routing protocols enable the forwarding of IP multicast
datagrams throughout a TCP/IP internet. Generally these algorithms
forward the datagram based on its source and destination addresses.
Additionally, the datagram may need to be forwarded to several
multicast group members, at times requiring the datagram to be
replicated and sent out multiple interfaces.
The state of multicast routing protocols is less developed than the
protocols available for the forwarding of IP unicasts. Two multicast
routing protocols have been documented for TCP/IP; both are currently
considered to be experimental. Both also use the IGMP protocol
(discussed in Section [4.4]) to monitor multicast group membership.
D.2 Distance Vector Multicast Routing Protocol - DVMRP
DVMRP, documented in [ROUTE:9], is based on Distance Vector or
Bellman-Ford technology. It routes multicast datagrams only, and does
so within a single Autonomous System. DVMRP is an implementation of
the Truncated Reverse Path Broadcasting algorithm described in
[ROUTE:10]. In addition, it specifies the tunneling of IP multicasts
through non-multicast-routing-capable IP domains.
Almquist & Kastenholz [Page 172]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
D.3 Multicast Extensions to OSPF - MOSPF
MOSPF, currently under development, is a backward-compatible addition
to OSPF that allows the forwarding of both IP multicasts and unicasts
within an Autonomous System. MOSPF routers can be mixed with OSPF
routers within a routing domain, and they will interoperate in the
forwarding of unicasts. OSPF is a link-state or SPF-based protocol.
By adding link state advertisements that pinpoint group membership,
MOSPF routers can calculate the path of a multicast datagram as a
tree rooted at the datagram source. Those branches that do not
contain group members can then be discarded, eliminating unnecessary
datagram forwarding hops.
Almquist & Kastenholz [Page 173]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
APPENDIX E Additional Next-Hop Selection Algorithms
Section [5.2.4.3] specifies an algorithm that routers ought to use when
selecting a next-hop for a packet.
This appendix provides historical perspective for the next-hop selection
problem. It also presents several additional pruning rules and next-hop
selection algorithms that might be found in the Internet.
This appendix presents material drawn from an earlier, unpublished, work
by Philip Almquist; Ruminations on the Next Hop.
This Appendix does not specify any standards or requirements.
E.1. Some Historical Perspective
It is useful to briefly review the history of the topic, beginning
with what is sometimes called the "classic model" of how a router
makes routing decisions. This model predates IP. In this model, a
router speaks some single routing protocol such as RIP. The protocol
completely determines the contents of the router's FIB. The route
lookup algorithm is trivial: the router looks in the FIB for a route
whose destination attribute exactly matches the network number
portion of the destination address in the packet. If one is found,
it is used; if none is found, the destination is unreachable.
Because the routing protocol keeps at most one route to each
destination, the problem of what to do when there are multiple routes
which match the same destination cannot arise.
Over the years, this classic model has been augmented in small ways.
With the advent of default routes, subnets, and host routes, it
became possible to have more than one routing table entry which in
some sense matched the destination. This was easily resolved by a
consensus that there was a hierarchy of routes: host routes should be
preferred over subnet routes, subnet routes over net routes, and net
routes over default routes.
With the advent of variable length subnet masks, the general approach
remained the same although its description became a little more
complicated. We now say that each route has a bit mask associated
with it. If a particular bit in a route's bit mask is set, the
corresponding bit in the route's destination attribute is
significant. A route cannot be used to route a packet unless each
significant bit in the route's destination attribute matches the
corresponding bit in the packet's destination address, and routes
with more bits set in their masks are preferred over routes which
have fewer bits set in their masks. This is simply a generalization
Almquist & Kastenholz [Page 174]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
of the hierarchy of routes described above, and will be referred to
for the rest of this memo as choosing a route by preferring longest
match.
Another way the classic model has been augmented is through a small
amount of relaxation of the notion that a routing protocol has
complete control over the contents of the routing table. First,
static routes were introduced. For the first time, it was possible
to simultaneously have two routes (one dynamic and one static) to the
same destination. When this happened, a router had to have a policy
(in some cases configurable, and in other cases chosen by the author
of the router's software) which determined whether the static route
or the dynamic route was preferred. However, this policy was only
used as a tie-breaker when longest match didn't uniquely determine
which route to use. Thus, for example, a static default route would
never be preferred over a dynamic net route even if the policy
preferred static routes over dynamic routes.
The classic model had to be further augmented when inter-domain
routing protocols were invented. Traditional routing protocols came
to be called "interior gateway protocols" (IGPs), and at each
Internet site there was a strange new beast called an "exterior
gateway", a router which spoke EGP to several "BBN Core Gateways"
(the routers which made up the Internet backbone at the time) at the
same time as it spoke its IGP to the other routers at its site. Both
protocols wanted to determine the contents of the router's routing
table. Theoretically, this could result in a router having three
routes (EGP, IGP, and static) to the same destination. Because of
the Internet topology at the time, it was resolved with little debate
that routers would be best served by a policy of preferring IGP
routes over EGP routes. However, the sanctity of longest match
remained unquestioned: a default route learned from the IGP would
never be preferred over a net route from learned EGP.
Although the Internet topology, and consequently routing in the
Internet, have evolved considerably since then, this slightly
augmented version of the classic model has survived pretty much
intact to this day in the Internet (except that BGP has replaced
EGP). Conceptually (and often in implementation) each router has a
routing table and one or more routing protocol processes. Each of
these processes can add any entry that it pleases, and can delete or
modify any entry that it has created. When routing a packet, the
router picks the best route using longest match, augmented with a
policy mechanism to break ties. Although this augmented classic model
has served us well, it has a number of shortcomings:
o It ignores (although it could be augmented to consider) path
Almquist & Kastenholz [Page 175]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
characteristics such as quality of service and MTU.
o It doesn't support routing protocols (such as OSPF and Integrated
IS-IS) that require route lookup algorithms different than pure
longest match.
o There has not been a firm consensus on what the tie-breaking
mechanism ought to be. Tie-breaking mechanisms have often been
found to be difficult if not impossible to configure in such a way
that the router will always pick what the network manger considers
to be the "correct" route.
E.2. Additional Pruning Rules
Section [5.2.4.3] defined several pruning rules to use to select
routes from the FIB. There are other rules that could also be used.
o OSPF Route Class
Routing protocols which have areas or make a distinction between
internal and external routes divide their routes into classes,
where classes are rank-ordered in terms of preference. A route is
always chosen from the most preferred class unless none is
available, in which case one is chosen from the second most
preferred class, and so on. In OSPF, the classes (in order from
most preferred to least preferred) are intra-area, inter-area,
type 1 external (external routes with internal metrics), and type
2 external. As an additional wrinkle, a router is configured to
know what addresses ought to be accessible via intra-area routes,
and will not use inter- area or external routes to reach these
destinations even when no intra-area route is available.
More precisely, we assume that each route has a class attribute,
called route.class, which is assigned by the routing protocol.
The set of candidate routes is examined to determine if it
contains any for which route.class = intra-area. If so, all
routes except those for which route.class = intra-area are
discarded. Otherwise, router checks whether the packet's
destination falls within the address ranges configured for the
local area. If so, the entire set of candidate routes is deleted.
Otherwise, the set of candidate routes is examined to determine if
it contains any for which route.class = inter-area. If so, all
routes except those for which route.class = inter-area are
discarded. Otherwise, the set of candidate routes is examined to
determine if it contains any for which route.class = type 1
external. If so, all routes except those for which route.class =
type 1 external are discarded.
Almquist & Kastenholz [Page 176]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
o IS-IS Route Class
IS-IS route classes work identically to OSPF's. However, the set
of classes defined by Integrated IS-IS is different, such that
there isn't a one-to-one mapping between IS-IS route classes and
OSPF route classes. The route classes used by Integrated IS-IS are
(in order from most preferred to least preferred) intra-area,
inter-area, and external.
The Integrated IS-IS internal class is equivalent to the OSPF
internal class. Likewise, the Integrated IS-IS external class is
equivalent to OSPF's type 2 external class. However, Integrated
IS-IS does not make a distinction between inter-area routes and
external routes with internal metrics - both are considered to be
inter-area routes. Thus, OSPF prefers true inter-area routes over
external routes with internal metrics, whereas Integrated IS-IS
gives the two types of routes equal preference.
o IDPR Policy
A specific case of Policy. The IETF's Inter-domain Policy Routing
Working Group is devising a routing protocol called Inter-Domain
Policy Routing (IDPR) to support true policy-based routing in the
Internet. Packets with certain combinations of header attributes
(such as specific combinations of source and destination addresses
or special IDPR source route options) are required to use routes
provided by the IDPR protocol. Thus, unlike other Policy pruning
rules, IDPR Policy would have to be applied before any other
pruning rules except Basic Match.
Specifically, IDPR Policy examines the packet being forwarded to
ascertain if its attributes require that it be forwarded using
policy-based routes. If so, IDPR Policy deletes all routes not
provided by the IDPR protocol.
E.3 Some Route Lookup Algorithms
This section examines several route lookup algorithms that are in use
or have been proposed. Each is described by giving the sequence of
pruning rules it uses. The strengths and weaknesses of each
algorithm are presented
Almquist & Kastenholz [Page 177]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
E.3.1 The Revised Classic Algorithm
The Revised Classic Algorithm is the form of the traditional
algorithm which was discussed in Section [E.1]. The steps of this
algorithm are:
1. Basic match
2. Longest match
3. Best metric
4. Policy
Some implementations omit the Policy step, since it is needed only
when routes may have metrics that are not comparable (because they
were learned from different routing domains).
The advantages of this algorithm are:
(1) It is widely implemented.
(2) Except for the Policy step (which an implementor can choose
to make arbitrarily complex) the algorithm is simple both to
understand and to implement.
Its disadvantages are:
(1) It does not handle IS-IS or OSPF route classes, and therefore
cannot be used for Integrated IS-IS or OSPF.
(2) It does not handle TOS or other path attributes.
(3) The policy mechanisms are not standardized in any way, and
are therefore are often implementation-specific. This causes
extra work for implementors (who must invent appropriate
policy mechanisms) and for users (who must learn how to use
the mechanisms. This lack of a standardized mechanism also
makes it difficult to build consistent configurations for
routers from different vendors. This presents a significant
practical deterrent to multi-vendor interoperability.
(4) The proprietary policy mechanisms currently provided by
vendors are often inadequate in complex parts of the
Internet.
(5) The algorithm has not been written down in any generally
available document or standard. It is, in effect, a part of
the Internet Folklore.
Almquist & Kastenholz [Page 178]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
E.3.2 The Variant Router Requirements Algorithm
Some Router Requirements Working Group members have proposed a
slight variant of the algorithm described in the Section
[5.2.4.3]. In this variant, matching the type of service
requested is considered to be more important, rather than less
important, than matching as much of the destination address as
possible. For example, this algorithm would prefer a default
route which had the correct type of service over a network route
which had the default type of service, whereas the algorithm in
[5.2.4.3] would make the opposite choice.
The steps of the algorithm are:
1. Basic match
2. Weak TOS
3. Longest match
4. Best metric
5. Policy
Debate between the proponents of this algorithm and the regular
Router Requirements Algorithm suggests that each side can show
cases where its algorithm leads to simpler, more intuitive routing
than the other's algorithm does. In general, this variant has the
same set of advantages and disadvantages that the algorithm
specified in [5.2.4.3] does, except that pruning on Weak TOS
before pruning on Longest Match makes this algorithm less
compatible with OSPF and Integrated IS-IS than the standard Router
Requirements Algorithm.
E.3.3 The OSPF Algorithm
OSPF uses an algorithm which is virtually identical to the Router
Requirements Algorithm except for one crucial difference: OSPF
considers OSPF route classes.
The algorithm is:
1. Basic match
2. OSPF route class
3. Longest match
4. Weak TOS
5. Best metric
6. Policy
Type of service support is not always present. If it is not
present then, of course, the fourth step would be omitted
This algorithm has some advantages over the Revised Classic
Almquist & Kastenholz [Page 179]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Algorithm:
(1) It supports type of service routing.
(2) Its rules are written down, rather than merely being a part
of the Internet folklore.
(3) It (obviously) works with OSPF.
However, this algorithm also retains some of the disadvantages of
the Revised Classic Algorithm:
(1) Path properties other than type of service (e.g. MTU) are
ignored.
(2) As in the Revised Classic Algorithm, the details (or even the
existence) of the Policy step are left to the discretion of
the implementor.
The OSPF Algorithm also has a further disadvantage (which is not
shared by the Revised Classic Algorithm). OSPF internal (intra-
area or inter-area) routes are always considered to be superior to
routes learned from other routing protocols, even in cases where
the OSPF route matches fewer bits of the destination address.
This is a policy decision that is inappropriate in some networks.
Finally, it is worth noting that the OSPF Algorithm's TOS support
suffers from a deficiency in that routing protocols which support
TOS are implicitly preferred when forwarding packets which have
non-zero TOS values. This may not be appropriate in some cases.
E.3.4 The Integrated IS-IS Algorithm
Integrated IS-IS uses an algorithm which is similar to but not
quite identical to the OSPF Algorithm. Integrated IS-IS uses a
different set of route classes, and also differs slightly in its
handling of type of service. The algorithm is:
1. Basic Match
2. IS-IS Route Classes
3. Longest Match
4. Weak TOS
5. Best Metric
6. Policy
Although Integrated IS-IS uses Weak TOS, the protocol is only
capable of carrying routes for a small specific subset of the
possible values for the TOS field in the IP header. Packets
Almquist & Kastenholz [Page 180]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
containing other values in the TOS field are routed using the
default TOS.
Type of service support is optional; if disabled, the fourth step
would be omitted. As in OSPF, the specification does not include
the Policy step.
This algorithm has some advantages over the Revised Classic
Algorithm:
(1) It supports type of service routing.
(2) Its rules are written down, rather than merely being a part
of the Internet folklore.
(3) It (obviously) works with Integrated IS-IS.
However, this algorithm also retains some of the disadvantages of
the Revised Classic Algorithm:
(1) Path properties other than type of service (e.g. MTU) are
ignored.
(2) As in the Revised Classic Algorithm, the details (or even the
existence) of the Policy step are left to the discretion of
the implementor.
(3) It doesn't work with OSPF because of the differences between
IS-IS route classes and OSPF route classes. Also, because
IS-IS supports only a subset of the possible TOS values, some
obvious implementations of the Integrated IS-IS algorithm
would not support OSPF's interpretation of TOS.
The Integrated IS-IS Algorithm also has a further disadvantage
(which is not shared by the Revised Classic Algorithm): IS-IS
internal (intra-area or inter-area) routes are always considered
to be superior to routes learned from other routing protocols,
even in cases where the IS-IS route matches fewer bits of the
destination address and doesn't provide the requested type of
service. This is a policy decision that may not be appropriate in
all cases.
Finally, it is worth noting that the Integrated IS-IS Algorithm's
TOS support suffers from the same deficiency noted for the OSPF
Algorithm.
Almquist & Kastenholz [Page 181]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Security Considerations
Although the focus of this document is interoperability rather than
security, there are obviously many sections of this document which have
some ramifications on network security.
Security means different things to different people. Security from a
router's point of view is anything that helps to keep its own networks
operational and in addition helps to keep the Internet as a whole
healthy. For the purposes of this document, the security services we
are concerned with are denial of service, integrity, and authentication
as it applies to the first two. Privacy as a security service is
important, but only peripherally a concern of a router - at least as of
the date of this document.
In several places in this document there are sections entitled ...
Security Considerations. These sections discuss specific considerations
that apply to the general topic under discussion.
Rarely does this document say do this and your router/network will be
secure. More likely, it says this is a good idea and if you do it, it
*may* improve the security of the Internet and your local system in
general.
Unfortunately, this is the state-of-the-art AT THIS TIME. Few if any of
the network protocols a router is concerned with have reasonable,
built-in security features. Industry and the protocol designers have
been and are continuing to struggle with these issues. There is
progress, but only small baby steps such as the peer-to-peer
authentication available in the BGP and OSPF routing protocols.
In particular, this document notes the current research into developing
and enhancing network security. Specific areas of research,
development, and engineering that are underway as of this writing
(December 1993) are in IP Security, SNMP Security, and common
authentication technologies.
Notwithstanding all of the above, there are things both vendors and
users can do to improve the security of their router. Vendors should
get a copy of Trusted Computer System Interpretation [INTRO:8]. Even if
a vendor decides not to submit their device for formal verification
under these guidelines, the publication provides excellent guidance on
general security design and practices for computing devices.
Almquist & Kastenholz [Page 182]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Acknowledgments
O that we now had here
But one ten thousand of those men in England
That do no work to-day!
What's he that wishes so?
My cousin Westmoreland? No, my fair cousin:
If we are mark'd to die, we are enow
To do our country loss; and if to live,
The fewer men, the greater share of honour.
God's will! I pray thee, wish not one man more.
By Jove, I am not covetous for gold,
Nor care I who doth feed upon my cost;
It yearns me not if men my garments wear;
Such outward things dwell not in my desires:
But if it be a sin to covet honour,
I am the most offending soul alive.
No, faith, my coz, wish not a man from England:
God's peace! I would not lose so great an honour
As one man more, methinks, would share from me
For the best hope I have. O, do not wish one more!
Rather proclaim it, Westmoreland, through my host,
That he which hath no stomach to this fight,
Let him depart; his passport shall be made
And crowns for convoy put into his purse:
We would not die in that man's company
That fears his fellowship to die with us.
This day is called the feast of Crispian:
He that outlives this day, and comes safe home,
Will stand a tip-toe when the day is named,
And rouse him at the name of Crispian.
He that shall live this day, and see old age,
Will yearly on the vigil feast his neighbours,
And say 'To-morrow is Saint Crispian:'
Then will he strip his sleeve and show his scars.
And say 'These wounds I had on Crispin's day.'
Old men forget: yet all shall be forgot,
But he'll remember with advantages
What feats he did that day: then shall our names.
Familiar in his mouth as household words
Harry the king, Bedford and Exeter,
Warwick and Talbot, Salisbury and Gloucester,
Be in their flowing cups freshly remember'd.
This story shall the good man teach his son;
And Crispin Crispian shall ne'er go by,
Almquist & Kastenholz [Page 183]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
From this day to the ending of the world,
But we in it shall be remember'd;
We few, we happy few, we band of brothers;
For he to-day that sheds his blood with me
Shall be my brother; be he ne'er so vile,
This day shall gentle his condition:
And gentlemen in England now a-bed
Shall think themselves accursed they were not here,
And hold their manhoods cheap whiles any speaks
That fought with us upon Saint Crispin's day.
This memo is a product of the IETF's Router Requirements Working Group.
A memo such as this one is of necessity the work of many more people
than could be listed here. A wide variety of vendors, network managers,
and other experts from the Internet community graciously contributed
their time and wisdom to improve the quality of this memo. The editor
wishes to extend sincere thanks to all of them.
The current editor also wishes to single out and extend his heartfelt
gratitude and appreciation to the original editor of this document;
Philip Almquist. Without Philip's work, both as the original editor and
as the Chair of the working group, this document would not have been
produced.
Philip Almquist, Jeffrey Burgan, Frank Kastenholz, and Cathy Wittbrodt
each wrote major chapters of this memo. Others who made major
contributions to the document included Bill Barns, Steve Deering, Kent
England, Jim Forster, Martin Gross, Jeff Honig, Steve Knowles, Yoni
Malachi, Michael Reilly, and Walt Wimer.
Additional text came from Art Berggreen, John Cavanaugh, Ross Callon,
John Lekashman, Brian Lloyd, Gary Malkin, Milo Medin, John Moy, Craig
Partridge, Stephanie Price, Yakov Rekhter, Steve Senum, Richard Smith,
Frank Solensky, Rich Woundy, and others who have been inadvertently
overlooked.
Some of the text in this memo has been (shamelessly) plagiarized from
earlier documents, most notably RFC-1122 by Bob Braden and the Host
Requirements Working Group, and RFC-1009 by Bob Braden and Jon Postel.
The work of these earlier authors is gratefully acknowledged.
Jim Forster was a co-chair of the Router Requirements Working Group
during its early meetings, and was instrumental in getting the group off
to a good start. Jon Postel, Bob Braden, and Walt Prue also contributed
to the success by providing a wealth of good advice prior to the group's
first meeting. Later on, Phill Gross, Vint Cerf, and Noel Chiappa all
provided valuable advice and support.
Almquist & Kastenholz [Page 184]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Mike St. Johns coordinated the Working Group's interactions with the
security community, and Frank Kastenholz coordinated the Working Group's
interactions with the network management area. Allison Mankin and K.K.
Ramakrishnan provided expertise on the issues of congestion control and
resource allocation.
Many more people than could possibly be listed or credited here
participated in the deliberations of the Router Requirements Working
Group, either through electronic mail or by attending meetings.
However, the efforts of Ross Callon and Vince Fuller in sorting out the
difficult issues of route choice and route leaking are especially
acknowledged.
The previous editor, Philip Almquist, wishes to extend his thanks and
appreciation to his former employers, Stanford University and BARRNet,
for allowing him to spend a large fraction (probably far more than they
ever imagined when he started on this) of his time working on this
project.
The current editor wishes to thank his employer, FTP Software, for
allowing him to spend the time necessary to finish this document.
Almquist & Kastenholz [Page 185]
^L
RFC 1716 Towards Requirements for IP Routers November 1994
Editor's Address
The address of the current editor of this document is
Frank J. Kastenholz
FTP Software
2 High Street
North Andover, MA, 01845-2620
USA
Phone: +1 508-685-4000
EMail: kasten@ftp.com
Almquist & Kastenholz [Page 186]
^L
|