1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
Network Working Group R. Hinden, Ipsilon Networks
Request for Comments: 1884 S. Deering, Xerox PARC
Category: Standards Track Editors
December 1995
IP Version 6 Addressing Architecture
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This specification defines the addressing architecture of the IP
Version 6 protocol [IPV6]. The document includes the IPv6 addressing
model, text representations of IPv6 addresses, definition of IPv6
unicast addresses, anycast addresses, and multicast addresses, and an
IPv6 nodes required addresses.
Hinden & Deering Standards Track [Page 1]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
Table of Contents
1. Introduction................................................3
2. IPv6 Addressing.............................................3
2.1 Addressing Model........................................4
2.2 Text Representation of Addresses........................4
2.3 Address Type Representation.............................5
2.4 Unicast Addresses.......................................7
2.4.1 Unicast Address Example.............................8
2.4.2 The Unspecified Address.............................9
2.4.3 The Loopback Address................................9
2.4.4 IPv6 Addresses with Embedded IPv4 Addresses.........9
2.4.5 NSAP Addresses......................................10
2.4.6 IPX Addresses.......................................10
2.4.7 Provider-Based Global Unicast Addresses.............10
2.4.8 Local-use IPv6 Unicast Addresses....................11
2.5 Anycast Addresses.......................................12
2.5.1 Required Anycast Address............................13
2.6 Multicast Addresses.....................................14
2.6.1 Pre-Defined Multicast Addresses.....................15
2.7 A Node's Required Addresses.............................17
REFERENCES.....................................................18
SECURITY CONSIDERATIONS........................................18
DOCUMENT EDITOR'S ADDRESSES....................................18
Hinden & Deering Standards Track [Page 2]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
1.0 INTRODUCTION
This specification defines the addressing architecture of the IP
Version 6 protocol. It includes a detailed description of the
currently defined address formats for IPv6 [IPV6].
The editors would like to acknowledge the contributions of Paul
Francis, Jim Bound, Brian Carpenter, Deborah Estrin, Peter Ford, Bob
Gilligan, Christian Huitema, Tony Li, Greg Minshall, Erik Nordmark,
Yakov Rekhter, Bill Simpson, and Sue Thomson.
2.0 IPv6 ADDRESSING
IPv6 addresses are 128-bit identifiers for interfaces and sets of
interfaces. There are three types of addresses:
Unicast: An identifier for a single interface. A packet sent
to a unicast address is delivered to the interface
identified by that address.
Anycast: An identifier for a set of interfaces (typically
belonging to different nodes). A packet sent to an
anycast address is delivered to one of the interfaces
identified by that address (the "nearest" one,
according to the routing protocols' measure of
distance).
Multicast: An identifier for a set of interfaces (typically
belonging to different nodes). A packet sent to a
multicast address is delivered to all interfaces
identified by that address.
There are no broadcast addresses in IPv6, their function being
superseded by multicast addresses.
In this document, fields in addresses are given a specific name, for
example "subscriber". When this name is used with the term "ID" for
identifier after the name (e.g., "subscriber ID"), it refers to the
contents of the named field. When it is used with the term "prefix"
(e.g., "subscriber prefix") it refers to all of the address up to and
including this field.
In IPv6, all zeros and all ones are legal values for any field,
unless specifically excluded. Specifically, prefixes may contain
zero-valued fields or end in zeros.
Hinden & Deering Standards Track [Page 3]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
2.1 Addressing Model
IPv6 Addresses of all types are assigned to interfaces, not nodes.
Since each interface belongs to a single node, any of that node's
interfaces' unicast addresses may be used as an identifier for the
node.
An IPv6 unicast address refers to a single interface. A single
interface may be assigned multiple IPv6 addresses of any type
(unicast, anycast, and multicast). There are two exceptions to this
model. These are:
1) A single address may be assigned to multiple physical interfaces
if the implementation treats the multiple physical interfaces as
one interface when presenting it to the internet layer. This is
useful for load-sharing over multiple physical interfaces.
2) Routers may have unnumbered interfaces (i.e., no IPv6 address
assigned to the interface) on point-to-point links to eliminate
the necessity to manually configure and advertise the addresses.
Addresses are not needed for point-to-point interfaces on
routers if those interfaces are not to be used as the origins or
destinations of any IPv6 datagrams.
IPv6 continues the IPv4 model that a subnet is associated with one
link. Multiple subnets may be assigned to the same link.
2.2 Text Representation of Addresses
There are three conventional forms for representing IPv6 addresses as
text strings:
1. The preferred form is x:x:x:x:x:x:x:x, where the 'x's are the
hexadecimal values of the eight 16-bit pieces of the address.
Examples:
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
1080:0:0:0:8:800:200C:417A
Note that it is not necessary to write the leading zeros in an
individual field, but there must be at least one numeral in
every field (except for the case described in 2.).
2. Due to the method of allocating certain styles of IPv6
addresses, it will be common for addresses to contain long
strings of zero bits. In order to make writing addresses
Hinden & Deering Standards Track [Page 4]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
containing zero bits easier a special syntax is available to
compress the zeros. The use of "::" indicates multiple groups
of 16-bits of zeros. The "::" can only appear once in an
address. The "::" can also be used to compress the leading
and/or trailing zeros in an address.
For example the following addresses:
1080:0:0:0:8:800:200C:417A a unicast address
FF01:0:0:0:0:0:0:43 a multicast address
0:0:0:0:0:0:0:1 the loopback address
0:0:0:0:0:0:0:0 the unspecified addresses
may be represented as:
1080::8:800:200C:417A a unicast address
FF01::43 a multicast address
::1 the loopback address
:: the unspecified addresses
3. An alternative form that is sometimes more convenient when
dealing with a mixed environment of IPv4 and IPv6 nodes is
x:x:x:x:x:x:d.d.d.d, where the 'x's are the hexadecimal values
of the six high-order 16-bit pieces of the address, and the 'd's
are the decimal values of the four low-order 8-bit pieces of the
address (standard IPv4 representation). Examples:
0:0:0:0:0:0:13.1.68.3
0:0:0:0:0:FFFF:129.144.52.38
or in compressed form:
::13.1.68.3
::FFFF:129.144.52.38
2.3 Address Type Representation
The specific type of an IPv6 address is indicated by the leading bits
in the address. The variable-length field comprising these leading
bits is called the Format Prefix (FP). The initial allocation of
these prefixes is as follows:
Hinden & Deering Standards Track [Page 5]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
Allocation Prefix Fraction of
(binary) Address Space
------------------------------- -------- -------------
Reserved 0000 0000 1/256
Unassigned 0000 0001 1/256
Reserved for NSAP Allocation 0000 001 1/128
Reserved for IPX Allocation 0000 010 1/128
Unassigned 0000 011 1/128
Unassigned 0000 1 1/32
Unassigned 0001 1/16
Unassigned 001 1/8
Provider-Based Unicast Address 010 1/8
Unassigned 011 1/8
Reserved for Geographic-
Based Unicast Addresses 100 1/8
Unassigned 101 1/8
Unassigned 110 1/8
Unassigned 1110 1/16
Unassigned 1111 0 1/32
Unassigned 1111 10 1/64
Unassigned 1111 110 1/128
Unassigned 1111 1110 0 1/512
Link Local Use Addresses 1111 1110 10 1/1024
Site Local Use Addresses 1111 1110 11 1/1024
Multicast Addresses 1111 1111 1/256
Note: The "unspecified address" (see section 2.4.2), the
loopback address (see section 2.4.3), and the IPv6 Addresses
with Embedded IPv4 Addresses (see section 2.4.4), are assigned
out of the 0000 0000 format prefix space.
This allocation supports the direct allocation of provider addresses,
local use addresses, and multicast addresses. Space is reserved for
NSAP addresses, IPX addresses, and geographic addresses. The
remainder of the address space is unassigned for future use. This
can be used for expansion of existing use (e.g., additional provider
addresses, etc.) or new uses (e.g., separate locators and
identifiers). Fifteen percent of the address space is initially
Hinden & Deering Standards Track [Page 6]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
allocated. The remaining 85% is reserved for future use.
Unicast addresses are distinguished from multicast addresses by the
value of the high-order octet of the addresses: a value of FF
(11111111) identifies an address as a multicast address; any other
value identifies an address as a unicast address. Anycast addresses
are taken from the unicast address space, and are not syntactically
distinguishable from unicast addresses.
2.4 Unicast Addresses
The IPv6 unicast address is contiguous bit-wise maskable, similar to
IPv4 addresses under Class-less Interdomain Routing [CIDR].
There are several forms of unicast address assignment in IPv6,
including the global provider based unicast address, the geographic
based unicast address, the NSAP address, the IPX hierarchical
address, the site-local-use address, the link-local-use address, and
the IPv4-capable host address. Additional address types can be
defined in the future.
IPv6 nodes may have considerable or little knowledge of the internal
structure of the IPv6 address, depending on the role the node plays
(for instance, host versus router). At a minimum, a node may
consider that unicast addresses (including its own) have no internal
structure:
| 128 bits |
+-----------------------------------------------------------------+
| node address |
+-----------------------------------------------------------------+
A slightly sophisticated host (but still rather simple) may
additionally be aware of subnet prefix(es) for the link(s) it is
attached to, where different addresses may have different values for
n:
| n bits | 128-n bits |
+------------------------------------------------+----------------+
| subnet prefix | interface ID |
+------------------------------------------------+----------------+
Still more sophisticated hosts may be aware of other hierarchical
boundaries in the unicast address. Though a very simple router may
have no knowledge of the internal structure of IPv6 unicast
Hinden & Deering Standards Track [Page 7]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
addresses, routers will more generally have knowledge of one or more
of the hierarchical boundaries for the operation of routing
protocols. The known boundaries will differ from router to router,
depending on what positions the router holds in the routing
hierarchy.
2.4.1 Unicast Address Examples
An example of a Unicast address format which will likely be common on
LANs and other environments where IEEE 802 MAC addresses are
available is:
| n bits | 80-n bits | 48 bits |
+--------------------------------+-----------+--------------------+
| subscriber prefix | subnet ID | interface ID |
+--------------------------------+-----------+--------------------+
Where the 48-bit Interface ID is an IEEE-802 MAC address. The use of
IEEE 802 MAC addresses as a interface ID is expected to be very
common in environments where nodes have an IEEE 802 MAC address. In
other environments, where IEEE 802 MAC addresses are not available,
other types of link layer addresses can be used, such as E.164
addresses, for the interface ID.
The inclusion of a unique global interface identifier, such as an
IEEE MAC address, makes possible a very simple form of auto-
configuration of addresses. A node may discover a subnet ID by
listening to Router Advertisement messages sent by a router on its
attached link(s), and then fabricating an IPv6 address for itself by
using its IEEE MAC address as the interface ID on that subnet.
Another unicast address format example is where a site or
organization requires additional layers of internal hierarchy. In
this example the subnet ID is divided into an area ID and a subnet
ID. Its format is:
| s bits | n bits | m bits | 128-s-n-m bits |
+----------------------+---------+--------------+-----------------+
| subscriber prefix | area ID | subnet ID | interface ID |
+----------------------+---------+--------------+-----------------+
This technique can be continued to allow a site or organization to
add additional layers of internal hierarchy. It may be desirable to
use an interface ID smaller than a 48-bit IEEE 802 MAC address to
allow more space for the additional layers of internal hierarchy.
These could be interface IDs which are administratively created by
Hinden & Deering Standards Track [Page 8]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
the site or organization.
2.4.2 The Unspecified Address
The address 0:0:0:0:0:0:0:0 is called the unspecified address. It
must never be assigned to any node. It indicates the absence of an
address. One example of its use is in the Source Address field of
any IPv6 datagrams sent by an initializing host before it has learned
its own address.
The unspecified address must not be used as the destination address
of IPv6 datagrams or in IPv6 Routing Headers.
2.4.3 The Loopback Address
The unicast address 0:0:0:0:0:0:0:1 is called the loopback address.
It may be used by a node to send an IPv6 datagram to itself. It may
never be assigned to any interface.
The loopback address must not be used as the source address in IPv6
datagrams that are sent outside of a single node. An IPv6 datagram
with a destination address of loopback must never be sent outside of
a single node.
2.4.4 IPv6 Addresses with Embedded IPv4 Addresses
The IPv6 transition mechanisms include a technique for hosts and
routers to dynamically tunnel IPv6 packets over IPv4 routing
infrastructure. IPv6 nodes that utilize this technique are assigned
special IPv6 unicast addresses that carry an IPv4 address in the
low-order 32-bits. This type of address is termed an "IPv4-
compatible IPv6 address" and has the format:
| 80 bits | 16 | 32 bits |
+--------------------------------------+--------------------------+
|0000..............................0000|0000| IPv4 address |
+--------------------------------------+----+---------------------+
A second type of IPv6 address which holds an embedded IPv4 address is
also defined. This address is used to represent the addresses of
IPv4-only nodes (those that *do not* support IPv6) as IPv6 addresses.
This type of address is termed an "IPv4-mapped IPv6 address" and has
the format:
Hinden & Deering Standards Track [Page 9]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
| 80 bits | 16 | 32 bits |
+--------------------------------------+--------------------------+
|0000..............................0000|FFFF| IPv4 address |
+--------------------------------------+----+---------------------+
2.4.5 NSAP Addresses
This mapping of NSAP address into IPv6 addresses is as follows:
| 7 | 121 bits |
+-------+---------------------------------------------------------+
|0000001| to be defined |
+-------+---------------------------------------------------------+
The draft definition, motivation, and usage are under study [NSAP].
2.4.6 IPX Addresses
This mapping of IPX address into IPv6 addresses is as follows:
| 7 | 121 bits |
+-------+---------------------------------------------------------+
|0000010| to be defined |
+-------+---------------------------------------------------------+
The draft definition, motivation, and usage are under study.
2.4.7 Provider-Based Global Unicast Addresses
The global provider-based unicast address is assigned as described in
[ALLOC]. This initial assignment plan for these unicast addresses is
similar to assignment of IPv4 addresses under the CIDR scheme [CIDR].
The IPv6 global provider-based unicast address format is as follows:
| 3 | n bits | m bits | o bits | 125-n-m-o bits |
+---+-----------+-----------+-------------+--------------------+
|010|registry ID|provider ID|subscriber ID| intra-subscriber |
+---+-----------+-----------+-------------+--------------------+
Hinden & Deering Standards Track [Page 10]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
The high-order part of the address is assigned to registries, who
then assign portions of the address space to providers, who then
assign portions of the address space to subscribers, etc.
The registry ID identifies the registry which assigns the provider
portion of the address. The term "registry prefix" refers to the
high-order part of the address up to and including the registry ID.
The provider ID identifies a specific provider which assigns the
subscriber portion of the address. The term "provider prefix" refers
to the high-order part of the address up to and including the
provider ID.
The subscriber ID distinguishes among multiple subscribers attached
to the provider identified by the provider ID. The term "subscriber
prefix" refers to the high-order part of the address up to and
including the subscriber ID.
The intra-subscriber portion of the address is defined by an
individual subscriber and is organized according to the subscribers
local internet topology. It is likely that many subscribers will
choose to divide the intra-subscriber portion of the address into a
subnet ID and an interface ID. In this case the subnet ID identifies
a specific physical link and the interface ID identifies a single
interface on that subnet.
2.4.8 Local-use IPv6 Unicast Addresses
There are two types of local-use unicast addresses defined. These
are Link-Local and Site-Local. The Link-Local is for use on a single
link and the Site-Local is for use in a single site. Link-Local
addresses have the following format:
| 10 |
| bits | n bits | 118-n bits |
+----------+-------------------------+----------------------------+
|1111111010| 0 | interface ID |
+----------+-------------------------+----------------------------+
Link-Local addresses are designed to be used for addressing on a
single link for purposes such as auto-address configuration, neighbor
discovery, or when no routers are present.
Routers MUST not forward any packets with link-local source
addresses.
Hinden & Deering Standards Track [Page 11]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
Site-Local addresses have the following format:
| 10 |
| bits | n bits | m bits | 118-n-m bits |
+----------+---------+---------------+----------------------------+
|1111111011| 0 | subnet ID | interface ID |
+----------+---------+---------------+----------------------------+
Site-Local addresses may be used for sites or organizations that are
not (yet) connected to the global Internet. They do not need to
request or "steal" an address prefix from the global Internet address
space. IPv6 site-local addresses can be used instead. When the
organization connects to the global Internet, it can then form global
addresses by replacing the site-local prefix with a subscriber
prefix.
Routers MUST not forward any packets with site-local source addresses
outside of the site.
2.5 Anycast Addresses
An IPv6 anycast address is an address that is assigned to more than
one interface (typically belonging to different nodes), with the
property that a packet sent to an anycast address is routed to the
"nearest" interface having that address, according to the routing
protocols' measure of distance.
Anycast addresses are allocated from the unicast address space, using
any of the defined unicast address formats. Thus, anycast addresses
are syntactically indistinguishable from unicast addresses. When a
unicast address is assigned to more than one interface, thus turning
it into an anycast address, the nodes to which the address is
assigned must be explicitly configured to know that it is an anycast
address.
For any assigned anycast address, there is a longest address prefix P
that identifies the topological region in which all interfaces
belonging to that anycast address reside. Within the region
identified by P, each member of the anycast set must be advertised as
a separate entry in the routing system (commonly referred to as a
"host route"); outside the region identified by P, the anycast
address may be aggregated into the routing advertisement for prefix
P.
Note that in, the worst case, the prefix P of an anycast set may be
the null prefix, i.e., the members of the set may have no topological
locality. In that case, the anycast address must be advertised as a
Hinden & Deering Standards Track [Page 12]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
separate routing entry throughout the entire internet, which presents
a severe scaling limit on how many such "global" anycast sets may be
supported. Therefore, it is expected that support for global anycast
sets may be unavailable or very restricted.
One expected use of anycast addresses is to identify the set of
routers belonging to an internet service provider. Such addresses
could be used as intermediate addresses in an IPv6 Routing header, to
cause a packet to be delivered via a particular provider or sequence
of providers. Some other possible uses are to identify the set of
routers attached to a particular subnet, or the set of routers
providing entry into a particular routing domain.
There is little experience with widespread, arbitrary use of internet
anycast addresses, and some known complications and hazards when
using them in their full generality [ANYCST]. Until more experience
has been gained and solutions agreed upon for those problems, the
following restrictions are imposed on IPv6 anycast addresses:
o An anycast address MUST NOT be used as the source address of an
IPv6 packet.
o An anycast address MUST NOT be assigned to an IPv6 host, that
is, it may be assigned to an IPv6 router only.
2.5.1 Required Anycast Address
The Subnet-Router anycast address is predefined. It's format is as
follows:
| n bits | 128-n bits |
+------------------------------------------------+----------------+
| subnet prefix | 00000000000000 |
+------------------------------------------------+----------------+
The "subnet prefix" in an anycast address is the prefix which
identifies a specific link. This anycast address is syntactically
the same as a unicast address for an interface on the link with the
interface identifier set to zero.
Packets sent to the Subnet-Router anycast address will be delivered
to one router on the subnet. All routers are required to support the
Subnet-Router anycast addresses for the subnets which they have
interfaces.
Hinden & Deering Standards Track [Page 13]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
The subnet-router anycast address is intended to be used for
applications where a node needs to communicate with one of a set of
routers on a remote subnet. For example when a mobile host needs to
communicate with one of the mobile agents on it's "home" subnet.
2.6 Multicast Addresses
An IPv6 multicast address is an identifier for a group of nodes. A
node may belong to any number of multicast groups. Multicast
addresses have the following format:
| 8 | 4 | 4 | 112 bits |
+------ -+----+----+---------------------------------------------+
|11111111|flgs|scop| group ID |
+--------+----+----+---------------------------------------------+
11111111 at the start of the address identifies the address as
being a multicast address.
+-+-+-+-+
flgs is a set of 4 flags: |0|0|0|T|
+-+-+-+-+
The high-order 3 flags are reserved, and must be
initialized to 0.
T = 0 indicates a permanently-assigned ("well-known")
multicast address, assigned by the global internet
numbering authority.
T = 1 indicates a non-permanently-assigned ("transient")
multicast address.
scop is a 4-bit multicast scope value used to limit the scope of
the multicast group. The values are:
0 reserved
1 node-local scope
2 link-local scope
3 (unassigned)
4 (unassigned)
5 site-local scope
6 (unassigned)
7 (unassigned)
8 organization-local scope
9 (unassigned)
A (unassigned)
Hinden & Deering Standards Track [Page 14]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
B (unassigned)
C (unassigned)
D (unassigned)
E global scope
F reserved
group ID identifies the multicast group, either permanent or
transient, within the given scope.
The "meaning" of a permanently-assigned multicast address is
independent of the scope value. For example, if the "NTP servers
group" is assigned a permanent multicast address with a group ID of
43 (hex), then:
FF01:0:0:0:0:0:0:43 means all NTP servers on the same node as
the sender.
FF02:0:0:0:0:0:0:43 means all NTP servers on the same link as
the sender.
FF05:0:0:0:0:0:0:43 means all NTP servers at the same site as
the sender.
FF0E:0:0:0:0:0:0:43 means all NTP servers in the internet.
Non-permanently-assigned multicast addresses are meaningful only
within a given scope. For example, a group identified by the non-
permanent, site-local multicast address FF15:0:0:0:0:0:0:43 at one
site bears no relationship to a group using the same address at a
different site, nor to a non-permanent group using the same group ID
with different scope, nor to a permanent group with the same group
ID.
Multicast addresses must not be used as source addresses in IPv6
datagrams or appear in any routing header.
2.6.1 Pre-Defined Multicast Addresses
The following well-known multicast addresses are pre-defined:
Reserved Multicast Addresses: FF00:0:0:0:0:0:0:0
FF01:0:0:0:0:0:0:0
FF02:0:0:0:0:0:0:0
FF03:0:0:0:0:0:0:0
FF04:0:0:0:0:0:0:0
FF05:0:0:0:0:0:0:0
FF06:0:0:0:0:0:0:0
Hinden & Deering Standards Track [Page 15]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
FF07:0:0:0:0:0:0:0
FF08:0:0:0:0:0:0:0
FF09:0:0:0:0:0:0:0
FF0A:0:0:0:0:0:0:0
FF0B:0:0:0:0:0:0:0
FF0C:0:0:0:0:0:0:0
FF0D:0:0:0:0:0:0:0
FF0E:0:0:0:0:0:0:0
FF0F:0:0:0:0:0:0:0
The above multicast addresses are reserved and shall never be
assigned to any multicast group.
All Nodes Addresses: FF01:0:0:0:0:0:0:1
FF02:0:0:0:0:0:0:1
The above multicast addresses identify the group of all IPv6 nodes,
within scope 1 (node-local) or 2 (link-local).
All Routers Addresses: FF01:0:0:0:0:0:0:2
FF02:0:0:0:0:0:0:2
The above multicast addresses identify the group of all IPv6 routers,
within scope 1 (node-local) or 2 (link-local).
DHCP Server/Relay-Agent: FF02:0:0:0:0:0:0:C
The above multicast addresses identify the group of all IPv6 DHCP
Servers and Relay Agents within scope 2 (link-local).
Solicited-Node Address: FF02:0:0:0:0:1:XXXX:XXXX
The above multicast address is computed as a function of a node's
unicast and anycast addresses. The solicited-node multicast address
is formed by taking the low-order 32 bits of the address (unicast or
anycast) and appending those bits to the 96-bit prefix FF02:0:0:0:0:1
resulting in a multicast address in the range
FF02:0:0:0:0:1:0000:0000
to
FF02:0:0:0:0:1:FFFF:FFFF
For example, the solicited node multicast address corresponding to
the IPv6 address 4037::01:800:200E:8C6C is FF02::1:200E:8C6C. IPv6
addresses that differ only in the high-order bits, e.g., due to
multiple high-order prefixes associated with different providers,
Hinden & Deering Standards Track [Page 16]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
will map to the same solicited-node address thereby reducing the
number of multicast addresses a node must join.
A node is required to compute and support a Solicited-Node multicast
addresses for every unicast and anycast address it is assigned.
2.7 A Node's Required Addresses
A host is required to recognize the following addresses as
identifying itself:
o Its Link-Local Address for each interface
o Assigned Unicast Addresses
o Loopback Address
o All-Nodes Multicast Address
o Solicited-Node Multicast Address for each of its assigned
unicast and anycast addresses
o Multicast Addresses of all other groups which the host belongs.
A router is required to recognize the following addresses as
identifying itself:
o Its Link-Local Address for each interface
o Assigned Unicast Addresses
o Loopback Address
o The Subnet-Router anycast addresses for the links it has
interfaces.
o All other Anycast addresses with which the router has been
configured.
o All-Nodes Multicast Address
o All-Router Multicast Address
o Solicited-Node Multicast Address for each of its assigned
unicast and anycast addresses
o Multicast Addresses of all other groups which the router
belongs.
The only address prefixes which should be predefined in an
implementation are the:
o Unspecified Address
o Loopback Address
o Multicast Prefix (FF)
o Local-Use Prefixes (Link-Local and Site-Local)
o Pre-Defined Multicast Addresses
o IPv4-Compatible Prefixes
Implementations should assume all other addresses are unicast unless
specifically configured (e.g., anycast addresses).
Hinden & Deering Standards Track [Page 17]
^L
RFC 1884 IPv6 Addressing Architecture December 1995
REFERENCES
[ALLOC] Rekhter, Y., and T. Li, "An Architecture for IPv6 Unicast
Address Allocation", RFC 1887, cisco Systems, December
1995.
[ANYCST] Partridge, C., Mendez, T., and W. Milliken, "Host
Anycasting Service", RFC 1546, BBN, November 1993.
[CIDR] Fuller, V., Li, T., Varadhan, K., and J. Yu, "Supernetting:
an Address Assignment and Aggregation Strategy", RFC 1338,
BARRNet, cisco, Merit, OARnet, June 1992.
[IPV6] Deering, S., and R. Hinden, Editors, "Internet Protocol,
Version 6 (IPv6) Specification", RFC 1883, Xerox PARC,
Ipsilon Networks, December 1995.
[MULT] Deering, S., "Host Extensions for IP multicasting", STD 5,
RFC 1112, Stanford University, August 1989.
[NSAP] Carpenter, B., Editor, "Mechanisms for OSIN SAPs, CLNP and
TP over IPv6", Work in Progress.
SECURITY CONSIDERATIONS
Security issues are not discussed in this document.
DOCUMENT EDITOR'S ADDRESSES
Robert M. Hinden Stephen E. Deering
Ipsilon Networks, Inc. Xerox Palo Alto Research Center
2191 E. Bayshore Road, Suite 100 3333 Coyote Hill Road
Palo Alto, CA 94303 Palo Alto, CA 94304
USA USA
Phone: +1 415 846 4604 Phone: +1 415 812 4839
Fax: +1 415 855 1414 Fax: +1 415 812 4471
EMail: hinden@ipsilon.com EMail: deering@parc.xerox.com
Hinden & Deering Standards Track [Page 18]
^L
|